101
|
Tanaka Y, Kobayashi H, Suzuki M, Hirashima Y, Kanayama N, Terao T. Genetic downregulation of pregnancy-associated plasma protein-A (PAPP-A) by bikunin reduces IGF-I-dependent Akt and ERK1/2 activation and subsequently reduces ovarian cancer cell growth, invasion and metastasis. Int J Cancer 2004; 109:336-47. [PMID: 14961570 DOI: 10.1002/ijc.11700] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A Kunitz-type protease inhibitor, bikunin, downregulates expression of uPA and its receptor uPAR at the mRNA and protein levels in several types of tumor cells. Our recent work showed that, using a cDNA microarray analysis, pregnancy-associated plasma protein-A (PAPP-A) is a candidate bikunin target gene. To clarify how reduced levels of PAPP-A may confer repressed invasiveness, we transfected human ovarian cancer cell line HRA with antisense (AS)-PAPP-A cDNA and compared the properties of the transfected cells to those of parental HRA cells. Here, we show that regulation of uPA mRNA and protein by IGF-I depends on the PI3K and MAPK signaling pathways and phosphorylation of Akt and ERK1/2 is required for IGF-I-mediated cell invasion; that IGFBP-4 protease in HRA cells is identified as PAPP-A; that reduced PAPP-A expression is associated with the upregulation of IGFBP-4 expression; that higher intact IGFBP-4 levels were associated with low invasive potential and growth rate in AS-PAPP-A cells in response to IGF-I; that IGF-I stimulates Akt and ERK1/2 activation of both the control and antisense cells, but the relative potency and efficacy of IGF-I were lower in the antisense cells compared to the control; and that genetic downregulation of PAPP-A reduces the proliferation, invasion and metastasis of HRA cells. In conclusion, our data identify a novel role for PAPP-A as a bikunin target gene. IGF-I-induced IGFBP-4 proteolysis by PAPP-A may enhance cell growth and invasion through IGF-I-dependent Akt and ERK1/2 activation and subsequently upregulation of uPA.
Collapse
Affiliation(s)
- Yoshiko Tanaka
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
102
|
Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 2004; 287:C281-91. [PMID: 15028555 DOI: 10.1152/ajpcell.00422.2003] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- 1820 MBR Cancer Center and Dept. of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Ricort JM, Binoux M. Insulin-like growth factor binding protein-3 stimulates phosphatidylinositol 3-kinase in MCF-7 breast carcinoma cells. Biochem Biophys Res Commun 2004; 314:1044-9. [PMID: 14751238 DOI: 10.1016/j.bbrc.2004.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is the most abundant IGFBP in serum and other biological fluids. Apart from its capacity for specific and high-affinity binding to IGFs, it also has so-called "IGF-independent" activities that modulate cell proliferation and survival/apoptosis. However, the molecular elements of the IGFBP-3 signalling pathway remain obscure. In this study, we investigated the possible implication of phosphatidylinositol 3-kinase (PI 3-kinase) activity in MCF-7 breast carcinoma cells. In cells incubated with IGFBP-3, both total and insulin receptor substrate-1 (IRS-1)-associated PI 3-kinase activities were rapidly stimulated, with maximal effects after 3 and 10min of incubation, respectively. IGFBP-3-induced PI 3-kinase activity was unaffected by the state of IRS-1 tyrosine phosphorylation. Since IGFBP-3 failed to stimulate PI 3-kinase activity in MDA-MB 231 breast carcinoma cells, its effects in MCF-7 cells could be considered as cell-type-specific. Pertussis toxin abolished IGFBP-3-stimulation of PI 3-kinase activity, suggesting that this IGFBP-3 signalling pathway depends upon a pertussis toxin-sensitive G protein. Our results provide further evidence that IGFBP-3 directly triggers a specific intracellular signal in MCF-7 cells.
Collapse
Affiliation(s)
- Jean-Marc Ricort
- Institut National de la Santé et de la Recherche Médicale, Unité 515, Croissance, Différenciation et Processus Tumoraux, Hôpital Saint-Antoine, Paris, France
| | | |
Collapse
|
104
|
Sachdev D, Hartell JS, Lee AV, Zhang X, Yee D. A Dominant Negative Type I Insulin-like Growth Factor Receptor Inhibits Metastasis of Human Cancer Cells. J Biol Chem 2004; 279:5017-24. [PMID: 14615489 DOI: 10.1074/jbc.m305403200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that LCC6 wild-type (WT) cells, a metastatic variant of MDA-MB-435 cancer cells originally derived from a breast cancer patient, exhibit enhanced motility in response to IGF-I compared with the parent MDA-MB-435 cells. To further understand the role of the type I insulin-like growth factor (IGF) receptor (IGF1R) in cancer metastasis we inhibited signaling via IGF1R using a C-terminal-truncated IGF1R. The truncated receptor retains the ligand binding domain but lacks the autophosphorylated tyrosine residues in the carboxyl terminus. Cells stably transfected with this truncated receptor (LCC6-DN cells) overexpressed the truncated IGF1R messenger RNA nearly 50-fold over endogenous receptor. The truncated receptor in the LCC6-DN cells behaved in a dominant negative manner to inhibit endogenous IGF1R activation by IGF-I. Compared with the LCC6-WT cells, LCC6-DN cells failed to phosphorylate the adaptor proteins insulin receptor substrate-1 and -2 in response to IGF-I and did not activate Akt after exposure to IGF-I. Unlike LCC6-WT cells, LCC6-DN cells did not show enhanced motility in response to IGF-I. To assay for metastasis, LCC6-WT and LCC6-DN cells were injected into the mammary fat pads of mice, and the primary xenograft tumors were removed after 21 days. Mice sacrificed 5 weeks later showed multiple lung metastases derived from LCC-WT xenografts, whereas mice harboring LCC6-DN xenografts showed no lung metastases. Our data show that IGF1R can regulate several aspects of the malignant phenotype. In these cells, metastasis but not proliferation requires IGF1R function.
Collapse
Affiliation(s)
- Deepali Sachdev
- Department of Medicine and Cancer Center, University of Minnesota, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
105
|
Moon JJ, Rubio ED, Martino A, Krumm A, Nelson BH. A Permissive Role for Phosphatidylinositol 3-Kinase in the Stat5- mediated Expression of Cyclin D2 by the Interleukin-2 Receptor. J Biol Chem 2004; 279:5520-7. [PMID: 14660677 DOI: 10.1074/jbc.m308998200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interleukin-2 (IL-2) receptor promotes T cell proliferation in part by inducing the expression of D-type cyclins, which enable cells to progress from the G1 to S phase of the cell cycle. We previously showed that the IL-2 receptor induces expression of cyclin D2 by activating the transcription factor Stat5, which binds directly and immediately to a site upstream of the cyclin D2 promoter. We show here that subsequent transcription of the cyclin D2 gene occurs by a delayed, cycloheximide-sensitive mechanism, which implies the involvement of additional regulatory mechanisms. The transcription factor c-Myc is induced by Stat5 and is reported to bind to two E box motifs in the cyclin D2 promoter. However, in IL-2-stimulated T cells, c-Myc does not appear to be involved in cyclin D2 induction, since we found that these two E boxes are preferentially bound by USF-1 and USF-2 and, moreover, are dispensable for cyclin D2 promoter activity. Instead, we found that Stat5 activates the phosphatidylinositol 3-kinase (PI3 kinase) pathway by a delayed, cycloheximide-sensitive mechanism and that PI3 kinase activity is essential for the induction of cyclin D2 by Stat5. Chromatin immunoprecipitation experiments revealed that PI3 kinase is required for the optimal binding of RNA polymerase II to the promoters of cyclin D2 as well as other genes. Our results reveal a novel link between PI3 kinase and RNA polymerase II promoter binding activity and demonstrate discrete, coordinated roles for the PI3 kinase and Stat5 pathways in cyclin D2 transcription.
Collapse
Affiliation(s)
- James J Moon
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
106
|
Aberg MAI, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P, Rosengren LE, Olsson T, Gage FH, Eriksson PS. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci 2004; 24:23-40. [PMID: 14550766 DOI: 10.1016/s1044-7431(03)00082-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The aim of the present study was to investigate the potential direct effects of insulin-like growth factor-I (IGF-I) on adult rat hippocampal stem/progenitor cells (AHPs). IGF-I-treated cultures showed a dose-dependent increase in thymidine incorporation, total number of cells, and number of cells entering the mitosis phase. Pretreatment with fibroblast growth factor-2 (FGF-2) increased the IGF-I receptor (IGF-IR) expression, and both FGF-2 and IGF-I were required for maximal proliferation. Time-lapse recordings showed that IGF-I at 100 ng/ml decreased differentiation and increased proliferation of single AHPs. Specific inhibition of mitogen-activated protein kinase kinase (MAPKK), phosphatidylinositol 3-kinase (PI3-K), or the downstream effector of the PI3-K pathway, serine/threonine p70 S6 kinase (p70(S6K)), showed that both the MAPK and the PI3-K pathways participate in IGF-I-induced proliferation but that the MAPK activation is obligatory. These results were confirmed with dominant-negative constructs for these pathways. Stimulation of differentiation was found at a low dose (1 ng/ml) of IGF-I, clonal analysis indicating an instructive component of IGF-I signaling.
Collapse
Affiliation(s)
- Maria A I Aberg
- The Arvid Carlsson Institute for Neuroscience at the Institute of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Blå Stråket 7, SE-413 45 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Caporali S, Imai M, Altucci L, Cancemi M, Caristi S, Cicatiello L, Matarese F, Penta R, Sarkar DK, Bresciani F, Weisz A. Distinct signaling pathways mediate stimulation of cell cycle progression and prevention of apoptotic cell death by estrogen in rat pituitary tumor PR1 cells. Mol Biol Cell 2003; 14:5051-9. [PMID: 12960425 PMCID: PMC284806 DOI: 10.1091/mbc.e03-05-0303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17beta-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones.
Collapse
Affiliation(s)
- Simona Caporali
- Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, 80138 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Lassarre C, Ricort JM. Growth factor-specific regulation of insulin receptor substrate-1 expression in MCF-7 breast carcinoma cells: effects on the insulin-like growth factor signaling pathway. Endocrinology 2003; 144:4811-9. [PMID: 12960057 DOI: 10.1210/en.2002-0205] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGFs are potent mitogens that play a crucial role in cell proliferation and/or differentiation and tumorigenesis. Insulin receptor substrate-1 (IRS-1) is a key protein in the IGF signaling pathway in the estrogen-dependent MCF-7 breast carcinoma cell line. In this study, three growth factors [fibroblast growth factor (FGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF)] were tested for their ability to modulate IRS-1 protein expression and the IGF-I signaling pathway. FGF and, to a lesser extent, EGF were found to increase IRS-1 protein, whereas PDGF had no effect. This indicates that growth factors can specifically modulate IRS-1 protein content. The increases provoked by EGF and FGF were dependent on the MAPK signaling pathway but independent of phosphatidylinositol 3-kinase (PI 3-kinase) signaling and required de novo protein synthesis. We noted that the kinetics of MAPK activation was continuous in response to FGF but transient in response to EGF. In addition, transfection of cells with a constitutively active form of MAPK kinase, which results in continuous MAPK activity, increased IRS-1 expression. Taken together, these results suggest that stimulation of IRS-1 expression was therefore stronger when MAPK activity was sustained. Pretreatment of cells with EGF, FGF, or PDGF for 24 h reduced IGF-I-induced tyrosine phosphorylation per molecule of IRS-1. However, IGF-I-induced PI 3-kinase activity was decreased by 24 h of pretreatment with EGF or PDGF but not with FGF. Our results therefore demonstrate that different growth factors are capable of specifically modulating the IGF-I signaling via IRS-1. They further suggest that the FGF-induced increase in IRS-1 counterbalances the inhibition of IRS-1 tyrosine phosphorylation to allow normal stimulation of IGF-I-induced PI 3-kinase activity.
Collapse
Affiliation(s)
- Claudine Lassarre
- Institut National de la Santé et de la Recherche Médicale, Unité 515, Hôpital Saint-Antoine, Paris, France
| | | |
Collapse
|
109
|
Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 2003; 310:1124-32. [PMID: 14559232 DOI: 10.1016/j.bbrc.2003.09.132] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- Institute for Nutritional Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | |
Collapse
|
110
|
Dupont J, Karas M, LeRoith D. The cyclin-dependent kinase inhibitor p21CIP/WAF is a positive regulator of insulin-like growth factor I-induced cell proliferation in MCF-7 human breast cancer cells. J Biol Chem 2003; 278:37256-64. [PMID: 12867429 DOI: 10.1074/jbc.m302355200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the role of IGF-I receptor signaling on cell cycle events we utilized MCF-7 breast cancer cells. IGF-I at physiological concentrations increased the level of p21CIP/WAF mRNA after 4has well as protein after 8hby 10- and 6-fold, respectively, in MCF-7 cells. This IGF-1 effect was reduced by 50% in MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression, demonstrating that IGF-1 receptor activation was involved in this process. Preincubation with the ERK1/2 inhibitor U0126 significantly reduced the IGF-1 effect on the amount of p21CIP/WAF protein in MCF-7 cells. These results were confirmed by the expression of a dominant negative construct for MEK-1 suggesting that the increase of the abundance of p21CIP/WAF in response to IGF-1 occurs via the ERK1/2 mitogen-activated protein kinase pathway. Using an antisense strategy, we demonstrated that abolition of p21CIP/WAF expression decreased by 2-fold the IGF-1 effect on cell proliferation in MCF-7. This latter result is explained by a delay in G1 to S cell cycle progression due partly to a reduction in the activation of some components of cell cycle including the induction of cyclin D1 expression in response to IGF-1. MCF-7 cells transiently overexpressing p21 showed increased basal and IGF-I-induced thymidine incorporation. Taken together, these results define p21CIP/WAF as a positive regulator in the cell proliferation induced by IGF-1 in MCF-7 cells.
Collapse
Affiliation(s)
- Joëlle Dupont
- Section on Molecular and Cellular Physiology, Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | | | |
Collapse
|
111
|
Zhang SXL, Gozal D, Sachleben LR, Rane M, Klein JB, Gozal E. Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J 2003; 17:1709-11. [PMID: 12958184 DOI: 10.1096/fj.02-1111fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In neurons, hypoxia activates intracellular death-related pathways, yet the antiapoptotic mechanisms triggered by hypoxia remain unclear. In RN46A neuronal cells, minimum media growth conditions induced cell death as early as 12 h after the cells were placed in these conditions (i.e., after removal of B-27 supplement). However, apoptosis occurred in hypoxia (1% O2) only after 48 h, and in fact hypoxia reduced the apoptosis associated with trophic factor withdrawal. Furthermore, hypoxia induced time-dependent increases in expression of platelet-derived growth factor (PDGF) B mRNA and protein, as well as PDGF-beta receptor phosphorylation. Although exogenous PDGF-BB induced only transient Akt activation, hypoxia triggered persistent activation of Akt for up to 24 h. Inhibition of phosphatidylinositol 3-kinase (PI3K) or of PDGF-beta receptor phosphorylation abrogated both hypoxia-induced and exogenous PDGF-BB-induced Akt phosphorylation, and it completely abolished hypoxia-induced protection from media supplement deprivation, which suggests that the long-lasting activation of Akt during hypoxia and the prosurvival induction were due to endogenously generated PDGF-BB. Furthermore, these inhibitors decreased hypoxia-inducible factor 1alpha (HIF-1alpha) DNA binding, which suggests that the PDGF/PDGF-beta receptor/Akt pathway induces downstream HIF-1alpha gene transcription. We conclude that in RN46A neuronal cells, hypoxia activates an autocrine-paracrine antiapoptotic mechanism that involves up-regulation of PDGF-B and PDGF-beta receptor-dependent activation of the PI3K/Akt signaling pathway to induce downstream transcription of survival genes.
Collapse
Affiliation(s)
- Shelley X L Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
112
|
Affiliation(s)
- Roy S Herbst
- University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
113
|
Hamelers IHL, van Schaik RFMA, Sussenbach JS, Steenbergh PH. 17beta-Estradiol responsiveness of MCF-7 laboratory strains is dependent on an autocrine signal activating the IGF type I receptor. Cancer Cell Int 2003; 3:10. [PMID: 12890289 PMCID: PMC169177 DOI: 10.1186/1475-2867-3-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 07/11/2003] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND: Human MCF-7 cells have been studied extensively as a model for breast cancer cell growth. Many reports have established that serum-starved MCF-7 cells can be induced to proliferate upon the sole addition of 17beta-estradiol (E2). However, the extent of the mitogenic response to E2 varies in different MCF-7 strains and may even be absent. In this study we compared the E2-sensitivity of three MCF-7 laboratory strains. RESULTS: The MCF-7S line is non-responsive to E2, the MCF-7 ATCC has an intermediate response to E2, while the MCF-7 NKI is highly E2-sensitive, although the levels and activities of the estrogen receptor (ER) are not significantly different. Both suramin and IGF type I receptor blocking antibodies are able to inhibit the mitogenic response to E2-treatment in MCF-7 ATCC and MCF-7 NKI cells. From this we conclude that E2-induced proliferation is dependent on IGF type I receptor activation in all three MCF-7 strains. CONCLUSIONS: The results presented in this article suggest that E2-responsiveness of MCF-7 cells is dependent on the secretion of an autocrine factor activating the IGF-IR. All three strains of MCF-7 breast cancer cells investigated do not respond to E2 if the IGF-RI-pathway is blocked. Generally, breast cancer therapy is targeted at inhibiting estrogen action. This study suggests that inhibition of IGF-action in combination with anti-estrogen-treatment may provide a more effective way in treatment or even prevention of breast cancer.
Collapse
Affiliation(s)
- Irene HL Hamelers
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Richard FMA van Schaik
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - John S Sussenbach
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Paul H Steenbergh
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
114
|
Fromigue O, Kheddoumi N, Body JJ. Bisphosphonates antagonise bone growth factors' effects on human breast cancer cells survival. Br J Cancer 2003; 89:178-84. [PMID: 12838321 PMCID: PMC2394205 DOI: 10.1038/sj.bjc.6601009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bone tissue constitutes a fertile 'soil' for metastatic tumours, notably breast cancer. High concentrations of growth factors in bone matrix favour cancer cell proliferation and survival, and a vicious cycle settles between bone matrix, osteoclasts and cancer cells. Classically, bisphosphonates interrupt this vicious cycle by inhibiting osteoclast-mediated bone resorption. We and others recently reported that bisphosphonates can also induce human breast cancer cell death in vitro, which could contribute to their beneficial clinical effects. We hypothesised that bisphosphonates could inhibit the favourable effects of 'bone-derived' growth factors, and indeed found that bisphosphonates reduced or abolished the stimulatory effects of growth factors (IGFs, FGF-2) on MCF-7 and T47D cell proliferation and inhibited their protective effects on apoptotic cell death in vitro under serum-free conditions. This could happen through an interaction with growth factors' intracellular phosphorylation transduction pathways, such as ERK1/2-MAPK. In conclusion, we report that bisphosphonates antagonised the stimulatory effects of growth factors on human breast cancer cell survival and reduced their protective effects against apoptotic cell death. Bisphosphonates and growth factors thus appear to be concurrent compounds for tumour cell growth and survival in bone tissue. This could represent a new mechanism of action of bisphosphonates in their protective effects against breast cancer-induced osteolysis.
Collapse
Affiliation(s)
- O Fromigue
- Laboratory of Endocrinology, Bone Diseases and Breast Cancer Research, Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles. Rue Heger-Bordet, 11000 Brussels, Belgium
| | - N Kheddoumi
- Laboratory of Endocrinology, Bone Diseases and Breast Cancer Research, Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles. Rue Heger-Bordet, 11000 Brussels, Belgium
| | - J-J Body
- Laboratory of Endocrinology, Bone Diseases and Breast Cancer Research, Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles. Rue Heger-Bordet, 11000 Brussels, Belgium
- Laboratory of Endocrinology, Bone Diseases and Breast Cancer Research, Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles. Rue Heger-Bordet, 11000 Brussels, Belgium. E-mail:
| |
Collapse
|
115
|
del Rincón SV, Rousseau C, Samanta R, Miller WH. Retinoic acid-induced growth arrest of MCF-7 cells involves the selective regulation of the IRS-1/PI 3-kinase/AKT pathway. Oncogene 2003; 22:3353-60. [PMID: 12776186 DOI: 10.1038/sj.onc.1206485] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the MCF-7 breast cancer cell line, insulin-like growth factors (IGFs) are known to elicit antiproliferative actions via the insulin receptor substrate-1 (IRS-1)/PI 3-kinase/AKT pathway. All-trans retinoic acid (RA) is a potent inhibitor of MCF-7 cell proliferation, but the mechanism by which growth regulation is achieved remains unclear. We investigated the effects of RA on the regulation of the IGF-IR and its key signaling elements: IRS-1, IRS-2, and SHC. Treatment of MCF-7 cells with RA caused a significant reduction in IRS-1 protein and tyrosine phosphorylation levels at a concentration and time consistent with RA-mediated growth inhibition. IRS-1 regulation is selective, as RA did not influence IRS-2 or SHC levels. Downstream signaling events were also selectively reduced, as RA abrogated IGF-I-stimulated AKT activation but did not alter erk1/2 activation. To confirm the importance of IRS-1 regulation by RA, we examined the response to RA in MCF-7 cells overexpressing IGF-IR and IRS-1. RA resistance was observed in MCF-7 cells overexpressing IRS-1 but not IGF-IR. This suggests that RA-mediated growth inhibition requires the selective downregulation of IRS-1 and AKT. Therapeutic agents targeting the IRS-1/PI 3-kinase/AKT pathway may enhance the cytostatic effects of RA in breast cancer, since overexpression of IRS-1 and AKT have been reported in primary breast tumors.
Collapse
Affiliation(s)
- Sonia V del Rincón
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University, Department of Oncology, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
116
|
Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 2003; 22:974-82. [PMID: 12592384 DOI: 10.1038/sj.onc.1206197] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The membrane type 1 matrix metalloproteinase (MT1-MMP) has been identified as a major activator of MMP-2 - a process involving the formation of a trimolecular complex with TIMP-2. We previously identified the IGF-I receptor as a positive regulator of MMP-2 synthesis. Here, we investigated the role of IGF-IR in the regulation of MT1-MMP. Highly invasive Lewis lung carcinoma subline H-59 cells express MT1-MMP and utilize it to activate their major extracellular matrix degrading proteinase-MMP-2. These cells were transiently transfected with a plasmid vector expressing a luciferase reporter gene downstream of the mouse MT1-MMP promoter. IGF-I treatment increased luciferase activity in the transfected cells by up to 10-fold and augmented endogenous MT1-MMP mRNA and protein synthesis by up to 2-3-fold, relative to controls. MT1-MMP induction and invasion were blocked by the PI 3-kinase inhibitors LY294002 and wortmannin and by rapamycin, but not by the MEK inhibitor PD98059. Overexpression of a dominant negative Akt mutant or of the tumor suppressor phosphatase and tensin homologue, PTEN, in these cells also caused a significant reduction in MT1-MMP expression and invasion. The results demonstrate that IGF-IR controls tumor cell invasion by coordinately regulating MMP-2 expression and its MT1-MMP-mediated activation and identify PI 3-kinase/Akt/mTOR signaling as critical to this regulation.
Collapse
MESH Headings
- Amino Acid Substitution
- Androstadienes/pharmacology
- Animals
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Chromones/pharmacology
- Collagen
- Drug Combinations
- Enzyme Induction/drug effects
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/physiology
- Laminin
- Matrix Metalloproteinase 14
- Matrix Metalloproteinase 2/physiology
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- Mice
- Morpholines/pharmacology
- Neoplasm Invasiveness/physiopathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation/drug effects
- Point Mutation
- Promoter Regions, Genetic
- Protein Kinases/physiology
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proteoglycans
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptor, IGF Type 1/drug effects
- Receptor, IGF Type 1/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Wortmannin
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Surgery, McGill University Health Center, The Royal Victoria Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
117
|
Hamelers IHL, van Schaik RFMA, Sipkema J, Sussenbach JS, Steenbergh PH. Insulin-like growth factor I triggers nuclear accumulation of cyclin D1 in MCF-7S breast cancer cells. J Biol Chem 2002; 277:47645-52. [PMID: 12364325 DOI: 10.1074/jbc.m208727200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of the breast cancer-derived MCF-7S cell line with insulin-like growth factor I (IGF-I; 20 ng/ml) leads to enhanced expression of cyclin D1, hyperphosphorylation of pRb, DNA synthesis, and cell division. 17beta-Estradiol (E(2); 10(-9) m) is not able to stimulate proliferation of MCF-7S cells, although addition of E(2) to serum-starved cells does result in induction of cyclin D1. However, in combination with submitogenic amounts of IGF-I (2 ng/ml), E(2) induces cell proliferation. We have previously shown that the synergistic action of E(2) and IGF-I emanates from the ability of both hormones to induce cyclin D1 expression and that IGF-I action is required to induce activity of the cyclin D1-CDK4 complex, which triggers cell cycle progression. Here, we show that IGF-I (but not E(2)) is able to induce nuclear accumulation of cyclin D1 by a phosphatidylinositol 3-kinase-dependent mechanism. Nuclear accumulation of cyclin D1 and cell cycle progression were also observed when LiCl, a known inhibitor of GSK3beta, was added to E(2)-stimulated cells. Thus, inhibition of GSK3beta activity appears to trigger nuclear accumulation of cyclin D1 and cell cycle progression. This notion was confirmed by overexpression of constitutively active GSK3beta, which blocks IGF-I-induced nuclear accumulation of cyclin D1 as well as S phase transition.
Collapse
Affiliation(s)
- Irene H L Hamelers
- Department of Physiological Chemistry, Utrecht Graduate School of Developmental Biology, University Medical Center, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
118
|
Hsi LC, Wilson LC, Eling TE. Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma. J Biol Chem 2002; 277:40549-56. [PMID: 12189136 DOI: 10.1074/jbc.m203522200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human prostate tumors have elevated levels of 15-lipoxygenase-1 (15-LOX-1) and data suggest that 15-LOX-1 may play a role in the development of prostate cancer. In contrast, 15-LOX-2 expression is higher in normal rather than in tumor prostate tissue and appears to suppress cancer development. We recently reported that 13-(S)-HODE, the 15-LOX-1 metabolite, up-regulates the MAP kinase signaling pathway and subsequently down-regulates PPARgamma in human colorectal carcinoma cells. To determine whether this mechanism is applicable to prostate cancer and what the effects of 15-LOX-2 are, we investigated the effect of 15-LOX-1, 15-LOX-2, and their metabolites on epidermal growth factor (EGF)- and insulin-like growth factor (IGF)-1 signaling in prostate carcinoma cells. In PC3 cells, 13-(S)-HODE, a 15-LOX-1 metabolite, up-regulated MAP kinase while in contrast 15-(S)-HETE, a 15-LOX-2 metabolite, down-regulated MAP kinase. As a result, 13-(S)-HODE increased PPARgamma phosphorylation while a subsequent decrease in PPARgamma phosphorylation was observed with 15-(S)-HETE. Thus, 15-LOX metabolites have opposing effects on the regulation of the MAP kinase signaling pathway and a downstream target of MAP kinase signaling like PPARgamma. In addition to the EGF signaling pathway, the IGF signaling pathway appears to be linked to prostate cancer. 13-(S)-HODE and 15-(S)-HETE up-regulate or down-regulate, respectively, both the MAPK and Akt pathways after activation with IGF-1. Thus, the effect of these lipid metabolites is not solely restricted to EGF signaling and not solely restricted to MAPK signaling. These results provide a plausible mechanism to explain the apparent opposing effects 15-LOX-1 and 15-LOX-2 play in prostate cancer.
Collapse
Affiliation(s)
- Linda C Hsi
- Eicosanoid Biochemistry Section, Laboratory of Molecular Carcinogenesis, NIEHS/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
119
|
Alkhalaf M, El-Mowafy A, Karam S. Growth inhibition of MCF-7 human breast cancer cells by progesterone is associated with cell differentiation and phosphorylation of Akt protein. Eur J Cancer Prev 2002; 11:481-488. [PMID: 12394246 DOI: 10.1097/00008469-200210000-00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progesterone inhibits the proliferation of normal breast epithelial cells as well as breast cancer cells. The molecular mechanisms of this inhibition are not fully understood. The purpose of this study was to investigate the capacity of progesterone to induce apoptosis and to alter the activity of a key regulator of cell growth and differentiation, the Akt protein. We show here that (i) growth inhibition of breast cancer cells by progesterone is due to the induction of cell differentiation and not to apoptosis; (ii) progesterone activates the PI3-kinase/Akt pathway as shown by the increase in the phosphorylation of Akt protein; (iii) inhibiting PI3-kinase/Akt pathway with LY294002 causes stimulation of apoptosis; and (v) progesterone enhances LY294002 induced-growth inhibition and apoptosis. These results suggest that progesterone may protect breast cancer cells from apoptosis by altering PI3-kinase activity and that MCF-7 cells become more sensitive to progesterone and die by apoptosis upon inhibition of the PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- M Alkhalaf
- Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | |
Collapse
|
120
|
Mabuchi S, Ohmichi M, Kimura A, Hisamoto K, Hayakawa J, Nishio Y, Adachi K, Takahashi K, Arimoto-Ishida E, Nakatsuji Y, Tasaka K, Murata Y. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem 2002; 277:33490-500. [PMID: 12087097 DOI: 10.1074/jbc.m204042200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We studied the roles of the phosphatidylinositol 3-kinase (PI-3K)-Akt-BAD cascade, ERK-BAD cascade, and Akt-Raf-1 cascade in the paclitaxel-resistant SW626 human ovarian cancer cell line, which lacks functional p53. Treatment of SW626 cells with paclitaxel activates Akt and ERK with different time frames. Interference with the Akt cascade either by treatment with PI-3K inhibitor (wortmannin or LY294002) or by exogenous expression of a dominant negative Akt in SW626 cells caused decreased cell viability following treatment with paclitaxel. Interference with the ERK cascade by treatment with an MEK inhibitor, PD98059, in SW626 cells also caused decreased cell viability following treatment with paclitaxel. Treatment of cells with paclitaxel also stimulated the phosphorylation of BAD at both the Ser-112 and Ser-136 sites. The phosphorylation of BAD at Ser-136 was blocked by treatment with wortmannin or cotransfection with the dominant negative Akt. On the other hand, the phosphorylation of BAD at Ser-112 was blocked by PD98059. We further examined the role of BAD in the viability following paclitaxel treatment using BAD mutants. Exogenous expression of doubly substituted BAD2SA in SW626 cells caused decreased viability following treatment with paclitaxel. Moreover, because paclitaxel-induced apoptosis is mediated by activated Raf-1 and the region surrounding Ser-259 in Raf-1 conforms to a consensus sequence for phosphorylation by Akt, the regulation of Raf-1 by Akt was examined. We demonstrated an association between Akt and Raf-1 and showed that the phosphorylation of Raf-1 on Ser-259 induced by paclitaxel was blocked by treatment with wortmannin or LY294002. Furthermore, interference with the Akt cascade induced by paclitaxel up-regulated Raf-1 activity, and expression of constitutively active Akt inhibited Raf-1 activity, suggesting that Akt negatively regulates Raf-1. Our findings suggest that paclitaxel induces the phosphorylation of BAD Ser-112 via the ERK cascade, and the phosphorylation of both BAD Ser-136 and Raf-1 Ser-259 via the PI-3K-Akt cascade, and that inhibition of either of these cascades sensitizes ovarian cancer cells to paclitaxel.
Collapse
Affiliation(s)
- Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ricort JM, Binoux M. Insulin-like growth factor-binding protein-3 activates a phosphotyrosine phosphatase. Effects on the insulin-like growth factor signaling pathway. J Biol Chem 2002; 277:19448-54. [PMID: 11940579 DOI: 10.1074/jbc.m200439200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferative action of insulin-like growth factors (IGF-I and -II) is mediated via the type I IGF receptor (IGF-IR) and is modulated by their association with high affinity binding proteins, IGFBP-1 to -6. We recently found that, in addition to its ability to bind IGFs, IGFBP-3 also inhibits IGF-IR activation independently of IGF binding and without interacting directly with IGF-IR. Here, we show that IGFBP-3 is capable of blocking the signal triggered by IGFs. Breast carcinoma-derived cells (MCF-7) were stimulated by des(1-3)IGF-I or [Gln(3),Ala(4),Tyr(15),Leu(16)]IGF-I, two IGF analogues with intact affinity for IGF-IR, but with weak or virtually no affinity for IGFBPs, then incubated with IGFBP-3. The activated IGF-IR was desensitized through reversal of its autophosphorylation, following which both phosphatidylinositol 3-kinase and p42(MAPK) activities were depressed. Direct measurement of phosphotyrosine phosphatase activity and reconstitution experiments using tyrosine-phosphorylated insulin receptor substrate-1 (IRS-1) indicated that IGFBP-3 activated a phosphotyrosine phosphatase (PTPase). This action appeared to be peculiar to IGFBP-3 among the IGFBPs, since neither IGFBP-1 nor IGFBP-5 (structurally the closest to IGFBP-3), had any such effect. Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific. Although the precise nature of the phosphatase remains to be determined, the results of this study demonstrate that IGFBP-3 stimulates a phosphotyrosine phosphatase activity that down-regulates the IGF-I signaling pathway, suggesting a major role for IGFBP-3 in regulating cell proliferation.
Collapse
Affiliation(s)
- Jean-Marc Ricort
- Institut National de la Santé et de la Recherche Médicale, Unité 515, Assistance Publique-Hôpitaux de Paris, Université Paris VI, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571 Paris CEDEX 12, France.
| | | |
Collapse
|
122
|
Abstract
Recent discoveries on endocrine, paracrine and autocrine involvement of insulin-like growth factor-1 (IGF-1) in the proliferation of many tissues raised the attention of its role in reproduction and in the growth of various cancers as well as of benign proliferations. The intention of this article is to focus on IGF-1 in the field of gynaecology. Perimenopausal women who exhibit high IGF-1 and low IGF binding protein (IGFBP) levels, like IGFBG-3, have an increased risk of developing breast cancer. A higher risk for cervical, ovarian and endometrial cancer is related to high IGF-1 levels in post- and premenopausal women. It has been shown that myomas, by far the most common benign uterine tumor in women, grow in the presence of IGF-1, in vitro as well as in vivo. Studies show that IGF-1 is involved in the differentiation of various reproductive tissues, like endometrium and ovarian tissues. Patients suffering from polycystic ovary syndrome (PCO) frequently show insulin resistance accompanied by an increase of IGF-1 in plasma. Plasma IGF-1 levels are higher in cases of severe endometriosis, however, in endometriosis and in PCO IGF levels locally in the endometrium are reduced, what might explain infertility. Recently, it was shown that IGF facilitates the implantation of the human embryo in the endometrium during IVF. Implantation is a paradox where different immune systems have to collaborate to make implantation and survival of the pregnancy possible. IGF seems to be the starter molecule so that the two epithelia can fuse. A disturbance can result in complications during pregnancy i.e. spontaneous miscarriage, preeclampsia as well as defects of the embryo. Therefore, IGF is a useful marker in successful pregnancy as well. A better mechanistic understanding of IGF-1 action on the cellular level not only provides more elegant mechanistic explanations for the scientist, but the practitioner might find it interesting to utilize its diagnostic potential as a marker for various diseases. The relation between systemic IGF levels and local tissue IGF-1 levels has not yet been determined for all conditions.
Collapse
Affiliation(s)
- R Druckmann
- Anemo-Menopause-Center, 12 Rue de France, F-06000, Nice, France.
| | | |
Collapse
|
123
|
Rabenoelina F, Semlali A, Duchesne MJ, Freiss G, Pons M, Badia E. Effect of prolonged hydroxytamoxifen treatment of MCF-7 cells on mitogen activated kinase cascade. Int J Cancer 2002; 98:698-706. [PMID: 11920638 DOI: 10.1002/ijc.10252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resistance to the antiestrogen tamoxifen is the main stumbling block for the success of breast cancer therapy. We focused our study on cellular alterations induced by a prolonged treatment with the active tamoxifen metabolite hydroxytamoxifen (OHT). We show that a prolonged OHT treatment (for up to 7 days) led to a progressive increase in the level of phosphorylated p44/42 mitogen activated kinase (MAP kinase) induced by 10(-7) M TPA stimulation, without any significant change in the protein level. This effect was also observed in MCF-7 cells grown first in medium containing dextran-coated charcoal-treated FCS (DCC medium) for 20 days prior to OHT treatment, indicating a specific effect of the antiestrogen and not an effect of estrogen deprivation. It was prevented by cotreatment with estradiol and not observed in the estrogen receptor negative HeLa cell line, suggesting that it was mediated by the estrogen receptor. TPA induced phosphorylation of MEK1/2 was also raised by OHT treatment, without any change in their protein level or Raf-1 and H-Ras levels. When the MCF-7R OHT resistant cell line was grown in antiestrogen containing medium, the level of phosphorylated p44/42 MAP kinase was also high but reversed when the antiestrogen was removed. The 2 other MAP kinase, JNK and P38 pathways were not affected in the same way by OHT treatment. In conclusion, our data reveal that a prolonged OHT treatment, by increasing p44/42 MAPK activity, affects a key step in the growth control of MCF-7 cells, although not sufficiently to overcome the growth inhibitory effect of the drug.
Collapse
|
124
|
You H, Zheng H, Murray SA, Yu Q, Uchida T, Fan D, Xiao ZXJ. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J Cell Biochem 2002; 84:211-6. [PMID: 11787050 DOI: 10.1002/jcb.10037] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factor I (IGF-1) is a well-established mitogen to many different cell types and is implicated in progression of a number of human cancers, notably breast cancer. The prolyl isomerase Pin1 plays an important role in cell cycle regulation through its specific interaction with proteins that are phosphorylated at Ser/Thr-Pro motifs. Pin1 knockout mice appear to have relatively normal development yet the Pin1(-/-)mouse embryo fibroblast (MEF) cells are defective in re-entering cell cycle in response to serum stimulation after G0 arrest. Here, we report that Pin1(-/-) MEF cells display a delayed cell cycle S-phase entry in response to IGF stimulation and that IGF-1 induces Pin1 protein expression which correlates with the induction of cyclin D1 and RB phosphorylation in human breast cancer cells. The induction of Pin1 by IGF-1 is mediated via the phosphatidylinositol 3-kinase as well as the MAP kinase pathways. Treatment of PI3K inhibitor LY294002 and the MAP kinase inhibitor PD098059, but not p38 inhibitor SB203580, effectively blocks IGF-1-induced upregulation of Pin1, cyclin D1 and RB phosphorylation. Furthermore, we found that Cyclin D1 expression and RB phosphorylation are dramatically decreased in Pin1(-/-) MEF cells. Reintroducing a recombinant adenovirus encoding Pin1 into Pin1(-/-) MEF cells restores the expression of cyclin D1 and RB phosphorylation. Thus, these data suggest that the mitogenic function of IGF-1 is at least partially linked to the induction of Pin1, which in turn stimulates cyclin D1 expression and RB phosphorylation, therefore contributing to G0/G1-S transition.
Collapse
Affiliation(s)
- Han You
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Hamelers IHL, van Schaik RFMA, van Teeffelen HAAM, Sussenbach JS, Steenbergh PH. Synergistic proliferative action of insulin-like growth factor I and 17 beta-estradiol in MCF-7S breast tumor cells. Exp Cell Res 2002; 273:107-17. [PMID: 11795951 DOI: 10.1006/excr.2001.5430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the mechanism by which the combination of insulin-like growth factor I (IGF-I) and 17 beta-estradiol (E2) induces cell cycle progression in MCF-7S cells. This cell line differs from many other breast cancer-derived cell lines in that E2 (1 nM) does not induce cell cycle progression, whereas the combination of submitogenic concentrations of IGF-I (2 ng/ml) and E2 does. We find that addition of IGF-I to MCF-7S cells leads to a dose-dependent activation of the IGF type I receptor and of the MAP kinase and PI3-kinase signaling pathways. No synergy of IGF-I and E2 was detected in the activation of these signaling cascades. In terms of cell cycle-related molecules, we find that IGF-I dose-dependently raises cyclin D1 levels in serum-starved cells. Subsequent activation of cyclin E/CDK2, hyperphosphorylation of pRb, and DNA synthesis are only induced by mitogenic concentrations of IGF-I (> or =20 ng/ml). Treatment of the cells with E2 also results in the induction of cyclin D1, but in the absence of IGF-I the cells remain arrested in G1 phase. We conclude that in MCF-7S cells, the synergistic action of E2 and IGF-I derives from the ability of both hormones to induce cyclin D1 expression. The action of IGF-I is required in these cells to induce activity of the cyclin D1/CDK4 complex, which triggers progression through the cell cycle.
Collapse
Affiliation(s)
- Irene H L Hamelers
- Utrecht Graduate School of Developmental Biology, University Medical Center Utrecht, Utrecht, 3508 AB, The Netherlands.
| | | | | | | | | |
Collapse
|
126
|
Sliva D, Rizzo MT, English D. Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem 2002; 277:3150-7. [PMID: 11689575 DOI: 10.1074/jbc.m109579200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell migration is a fundamental aspect of the neoplastic cell metastasis. Here, we show that phosphatidylinositol (PI) 3-kinase is constitutively active and controls cell motility of highly invasive breast cancer cells by the activation of transcription factor, NF-kappaB. The urokinase-type plasminogen activator (uPA) promoter contains an NF-kappaB binding site, and uPA expression in MDA-MB-231 cells is induced by the constitutively active NF-kappaB. Thus, motility was inhibited by overexpression of a dominant negative p85alpha regulatory subunit of PI 3-kinase (p85DN), as well as by pretreatment of cells with specific inhibitors of the p110 catalytic subunit of PI 3-kinase, wortmannin and LY294002. The involvement of gene transcription in cell motility was suggested because treatment with actinomycin D and cycloheximide, which inhibit transcription and new protein synthesis, respectively, abolished endogenous migration of MDA-MB-231 cells. Although wortmannin, Ly294002, or overexpression of p85DN did not significantly reduce DNA binding activity of NF-kappaB in nuclear extracts, wortmannin, Ly294002, and the overexpression of p85DN or IkappaBalpha inhibited constitutive activation of NF-kappaB in a reporter gene assay. Highly invasive MDA-MB-231 cells constitutively secreted uPA in amounts significantly higher than poorly invasive MCF-7 cells. Furthermore, inhibition of NF-kappaB markedly attenuated endogenous migration, and inhibition of PI 3-kinase and NF-kappaB reduced secretion of uPA. Our data suggest a link between constitutively active PI 3-kinase, NF-kappaB, and secretion of uPA, which is responsible for the migration of highly invasive breast cancer cells. Thus, constitutively active PI 3-kinase controls cell motility by the regulation of expression of uPA through the activation of NF-kappaB.
Collapse
Affiliation(s)
- Daniel Sliva
- Cancer Research Laboratory, the Signal Transduction Laboratory, and the Experimental Cell Research Program, Methodist Research Institute, Clarian Health Partners Inc., Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
127
|
Ackler S, Ahmad S, Tobias C, Johnson MD, Glazer RI. Delayed mammary gland involution in MMTV-AKT1 transgenic mice. Oncogene 2002; 21:198-206. [PMID: 11803463 DOI: 10.1038/sj.onc.1205052] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2001] [Revised: 09/27/2001] [Accepted: 10/09/2001] [Indexed: 01/09/2023]
Abstract
AKT1/protein kinase Balpha is a protein-serine/threonine kinase that regulates multiple targets involved in cell survival and cell cycle progression in a variety of cell types including breast cancer cells. To explore the role of Akt1 in mammary gland function and tumorigenesis, transgenic mice were generated that express human AKT1 under the control of the MMTV promoter. Virgin transgenic mice did not exhibit a dominant phenotype, but upon cessation of lactation, a notable delay in involution occurred compared to age-matched non-transgenic mice. The delay in involution coincided with increased hyperplasia as evidenced by an increased number of binucleated epithelial cells and a marked elevation in cyclin D1 expression in mammary epithelium. The delayed involution phenotype corresponded to increased phosphorylation of Thr308 in AKT1 and Ser136 in BAD, but not phosphorylation of Ser21 in GSK-3alpha. There was no evidence of mammary dysplasia or neoplasia during the lifespan of multiparous transgenic mice. These data suggest that AKT1 is involved in cell survival in the lactating and involuting mammary gland, but that overexpression of AKT1 alone is insufficient to induce transformation.
Collapse
Affiliation(s)
- Scott Ackler
- Department of Pharmacology, Georgetown University School of Medicine and Lombardi Cancer Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
128
|
Nair PN, De Armond DT, Adamo ML, Strodel WE, Freeman JW. Aberrant expression and activation of insulin-like growth factor-1 receptor (IGF-1R) are mediated by an induction of IGF-1R promoter activity and stabilization of IGF-1R mRNA and contributes to growth factor independence and increased survival of the pancreatic cancer cell line MIA PaCa-2. Oncogene 2001; 20:8203-14. [PMID: 11781836 DOI: 10.1038/sj.onc.1205044] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2001] [Revised: 10/04/2001] [Accepted: 10/09/2001] [Indexed: 12/22/2022]
Abstract
In the present study we investigated the mechanisms responsible for and the biological consequences of the constitutive activation of the insulin-like growth factor-1 receptor (IGF-1R) in the MIA PaCa-2 cells. An aberrant increase in the expression and activation of the IGF-1R was observed during the transition of growth states from exponential to quiescent. The increase in IGF-1R expression is preceded by an increase in IGF-1R mRNA transcript and is associated with an increase in the IGF-1R promoter activity. Inhibition of de novo transcription by actinomycin D increased the stability of IGF-1R mRNA in exponentially growing cells, thereby increasing the expression of IGF-1R to a level similar to that seen in quiescent cells. Increased IGF-1R signaling mediated the growth factor independence of quiescent MIA PaCa-2 cells through the constitutive activation of mitogen-activated protein kinase (MAPK). Exogenous IGF-1 increased cell proliferation and activated MAPK and AKT signaling pathways. The resistance of cells to apoptosis by IGF-1R signaling was mediated through MAPK and phosphatidylinositol 3-kinase (PI3K) pathways and a yet unidentified pathway(s). Thus, aberrant regulation of IGF-1R signaling is required for resistance to apoptosis and growth factor independence of MIA PaCa-2 cells. This likely protects cells from unfavorable conditions and allows cells to rapidly re-enter the cell cycle when conditions are favorable.
Collapse
Affiliation(s)
- P N Nair
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
129
|
Mauro L, Salerno M, Panno ML, Bellizzi D, Sisci D, Miglietta A, Surmacz E, Andò S. Estradiol increases IRS-1 gene expression and insulin signaling in breast cancer cells. Biochem Biophys Res Commun 2001; 288:685-9. [PMID: 11676497 DOI: 10.1006/bbrc.2001.5815] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study demonstrates how the potentiating effects of E2 on insulin signaling in ER-positive breast cancer cells are consequent to an enhanced IRS-1 expression [corrected]. It induces an increase of both PI-3K/AKT and ERK1/2 activities. A direct action of E2 in the regulating mouse IRS-1 gene is also investigated in both Chinese hamster ovary and MCF-7 cells that are transfected with mouse IRS-1 regulatory sequences. The authors have reported, for the first time, how E2 induction of IRS-1 mRNA was correlated with a direct positive regulatory role of E2 on the IRS-1 promoter. This effect seems to be not strictly related to the cell type.
Collapse
Affiliation(s)
- L Mauro
- Department of Cellular Biology, University of Calabria, Rende, CS, Italy
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Chappell J, Leitner JW, Solomon S, Golovchenko I, Goalstone ML, Draznin B. Effect of insulin on cell cycle progression in MCF-7 breast cancer cells. Direct and potentiating influence. J Biol Chem 2001; 276:38023-8. [PMID: 11500498 DOI: 10.1074/jbc.m104416200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated that in MCF-7 breast cancer cells, insulin promoted the phosphorylation and activation of geranylgeranyltransferase I (GGTI-I), increased the amounts of geranylgeranylated Rho-A and potentiated the transactivating activity of lysophosphatidic acid (LPA) (Chappell, J., Golovchenko, I., Wall, K., Stjernholm, R., Leitner, J., Goalstone, M., and Draznin, B. (2000) J. Biol. Chem. 275, 31792-31797). In the present study, we explored the mechanism of this potentiating effect of insulin on LPA. Insulin (10 nm) potentiated the ability of LPA to stimulate cell cycle progression and DNA synthesis in MCF-7 cells. The potentiating effect of insulin appears to involve increases in the expression of cyclin E and decreases in the expression of the cyclin-dependent kinase inhibitor p27Kip1. All potentiating effects of insulin were inhibited in the presence of an inhibitor of GGTase I, GGTI-286 (3 microm) or by an expression of a dominant negative mutant of Rho-A. In contrast to its potentiating action, a direct mitogenic effect of insulin in MCF-7 cells involves activation of phosphatidylinositol 3-kinase and increased expression of cyclin D1. We conclude that the ability of insulin to increase the cellular amounts of geranylgeranylated Rho-A results in potentiation of the LPA effect on cyclin E expression and degradation of p27Kip1 and cell cycle progression in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- J Chappell
- Research Service of the Department of Veterans Affairs, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
131
|
Moon JJ, Nelson BH. Phosphatidylinositol 3-kinase potentiates, but does not trigger, T cell proliferation mediated by the IL-2 receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2714-23. [PMID: 11509615 DOI: 10.4049/jimmunol.167.5.2714] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proliferative signaling by the IL-2R can occur through two distinct pathways, one mediated by Stat5 and one by the adaptor protein Shc. Although Stat5 induces T cell proliferation by serving as a transcription factor, the mechanism of proliferative signaling by Shc is poorly defined. We examined the roles of two major signaling pathways downstream of Shc, the p44/p42 mitogen-activated protein kinase (extracellular signal-related kinase (Erk)) and phosphatidylinositol 3-kinase (PI3K) pathways, in promitogenic gene induction and proliferation in the IL-2-dependent T cell line CTLL-2. Using IL-2R mutants and specific pharmacologic inhibitors, we found that the PI3K, but not Erk, pathway is required for maximal induction of c-myc, cyclin D2, cyclin D3, cyclin E, and bcl-x(L) by Shc. To test whether the PI3K pathway is sufficient for proliferative signaling, a tamoxifen-regulated form of PI3K (mp110*ER) was expressed in CTLL-2 cells. Activation of the PI3K pathway through mp110*ER failed to up-regulate expression of the c-myc, cyclin D2, cyclin D3, cyclin E, bcl-2, or bcl-x(L) genes or down-regulate expression of p27(Kip1), even when coactivated with the Janus kinases (Jak) or the Raf/Erk pathway. Moreover, mp110*ER induced modest levels of thymidine incorporation without subsequent cell division. Although insufficient for mitogenesis, mp110*ER enhanced Stat5-mediated proliferative signaling through a mechanism independent of Stat5 transcriptional activity. Thus, in addition to serving a necessary, but insufficient role in Shc-mediated promitogenic gene expression, the PI3K pathway contributes to T cell proliferation by potentiating mitogenic signaling by Stat5.
Collapse
Affiliation(s)
- J J Moon
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
132
|
Kadakia R, Arraztoa JA, Bondy C, Zhou J. Granulosa cell proliferation is impaired in the Igf1 null ovary. Growth Horm IGF Res 2001; 11:220-224. [PMID: 11735237 DOI: 10.1054/ghir.2001.0201] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor-I (IGF-I) expression is highly correlated with ovarian follicular growth and granulosa cell proliferation in both pre-pubertal and mature murine ovaries. Igf1 gene deleted mice are infertile, with ovarian follicles arrested at an early stage of development. To elucidate the cause of follicular dysfunction in Igf1 null mice, this study compared granulosa cell proliferation at baseline and in response to exogenous oestradiol (E2) in prepubertal Igf1 null and wild-type (WT) littermate mice. The basal granulosa cell mitotic index was 3.8+/-0.48 in WT and 1.3+/-0.7 in Igf1 null mice (P=0.03). After E2 treatment, WT granulosa mitotic index was 12.7+/-0.0 vs 5.5+/-0.8 for Igf1 null mice (P<0.001). Granulosal BRDU incorporation was also significantly reduced as were cyclin D2 and B1 immunoreactivities in Igf1 null compared with WT mice. The incidence of apoptosis was not increased in Igf1 null follicles, although BAX immunostaining was increased. These data suggest that IGF1 is essential for normal basal and oestrogen-induced granulosa cell proliferation and follicular growth.
Collapse
Affiliation(s)
- R Kadakia
- Developmental Endocrinology Branch, NICHD/NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
133
|
Lai A, Sarcevic B, Prall OW, Sutherland RL. Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2 activation and cell Cycle progression in MCF-7 breast cancer cells through differential regulation of cyclin E and p21(WAF1/Cip1). J Biol Chem 2001; 276:25823-33. [PMID: 11337496 DOI: 10.1074/jbc.m100925200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogens and insulin/insulin-like growth factor-I (IGF-I) are potent mitogens for breast epithelial cells and, when co-administered, induce synergistic stimulation of cell proliferation. To investigate the molecular basis of this effect, a MCF-7 breast cancer cell model was established where serum deprivation and concurrent treatment with the pure estrogen antagonist, ICI 182780, inhibited growth factor and estrogen action and arrested cells in G(0)/G(1) phase. Subsequent stimulation with insulin or IGF-I alone failed to induce significant S-phase entry. However, these treatments increased cyclin D1, cyclin E, and p21 gene expression and induced the formation of active Cdk4 complexes but resulted in only minor increases in cyclin E-Cdk2 activity, likely due to recruitment of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1/Cip1) into these complexes. Treatment with estradiol alone resulted in a greater increase in cyclin D1 gene expression but markedly decreased p21 expression, with a concurrent increase in Cdk4 and Cdk2 activity and subsequent synchronous entry of cells into S phase. Co-administration of insulin/IGF-I and estrogen induced synergistic stimulation of S-phase entry coincident with synergistic activation of high molecular mass (approximately 350 kDa) cyclin E-Cdk2 complexes lacking p21. To determine if the ability of estrogen to deplete p21 was central to these effects, cells stimulated with insulin and estradiol were infected with an adenovirus expressing p21. Induction of p21 to levels equivalent to those following treatment with insulin alone markedly inhibited the synergism between estradiol and insulin on S-phase entry. Thus the ability of estradiol to antagonize the insulin-induced increase in p21 gene expression, with consequent activation of cyclin E-Cdk2, is a central component of the synergistic stimulation of breast epithelial cell proliferation induced by simultaneous activation of the estrogen and insulin/IGF-I signaling pathways.
Collapse
Affiliation(s)
- A Lai
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
134
|
Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro. J Neurosci 2001. [PMID: 11264301 DOI: 10.1523/jneurosci.21-07-02256.2001] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have shown previously that BDNF, neurotrophin-3 (NT-3), chlorphenylthio-cAMP (cpt-cAMP) (a permeant cAMP analog), and membrane depolarization promote spiral ganglion neuron (SGN) survival in vitro in an additive manner, depolarization having the greatest efficacy. Expression of both BDNF and of NT-3 is detectable in cultured SGNs after plating in either depolarizing or nondepolarizing medium. These neurotrophins promote survival by an autocrine mechanism; TrkB-IgG or TrkC-IgG, which block neurotrophin binding to, respectively, TrkB and TrkC, partially inhibit the trophic effect of depolarization. The mitogen-activated protein kinase kinase inhibitor PD98059 and the phosphatidylinositol-3-OH kinase inhibitor LY294002 both abolish trophic support by neurotrophins but only partially inhibit support by depolarization. Inhibition by these compounds is not additive with inhibition by Trk-IgGs. The cAMP antagonist Rp-adenosine-3',5'-cyclic-phosphorothioate (Rp-cAMPS) abolishes survival attributable to cpt-cAMP but has no effect on that attributable to neurotrophins, nor do inhibitors of neurotrophin-dependent survival affect survival attributable to cpt-cAMP. However, Rp-cAMPS does partially inhibit depolarization-dependent survival, an inhibition that is additive with that by Trk-IgGs, PD98059, or LY294002. Moreover, Rp-cAMPS prevents depolarization-dependent survival of PC12 cells maintained in subthreshold levels of NGF. Inhibition of Ca(2+)/calmodulin-dependent protein kinases (CaMKs) with KN-62 reduces SGN survival independently of Rp-cAMPS, Trk-IgGs, and LY294002 and additively with them. Combined inhibition of Trk, cAMP, and CaMK signaling prevents depolarization-dependent survival. Thus, survival of SGNs under depolarizing conditions involves additivity among a depolarization-independent autocrine pathway, a cAMP-dependent pathway, and a CaMK-dependent pathway.
Collapse
|
135
|
Dupont J, Le Roith D. Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects. Mol Pathol 2001; 54:149-54. [PMID: 11376126 PMCID: PMC1187053 DOI: 10.1136/mp.54.3.149] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2001] [Indexed: 12/11/2022]
Abstract
In MCF-7 breast cancer cells, the insulin-like growth factor 1 receptor (IGF-1R) and the oestrogen receptor (ER) are coexpressed and the two signalling systems are engaged in a crosstalk that results in synergistic growth. However, coupling between the signalling cascades is poorly understood. Oestradiol enhances IGF-1R signalling by inducing the expression of insulin receptor substrate 1 (IRS-1), a substrate of the IGF-1R. Oestradiol induced expression of IRS-1 results in enhanced tyrosine phosphorylation of IRS-1 after IGF-1 stimulation, followed by enhanced mitogen activated protein kinase, phosphoinositide 3' kinase, and Akt activation. Oestradiol can also potentiate the effect of IGF-1 on the expression of cyclin D1 and cyclin E, and on the phosphorylation of the retinoblastoma protein (RB). These effects are greatly diminished in SX13 cells, which exhibit a 50% reduction in IGF-1R expression but few functional IGF-1Rs at the surface. Oestradiol and IGF-1 regulate the expression of two cyclin dependent kinase inhibitors, p21 and p27, differently. Whereas IGF-1 increases p21 expression and reduces p27 expression, oestradiol has no effect on p21. In summary, in MCF-7 cells, oestrogen potentiates the effect of IGF-1 on IGF-1R signalling and its effects on certain cell cycle components.
Collapse
Affiliation(s)
- J Dupont
- Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda MD 20892-1758, USA
| | | |
Collapse
|
136
|
Rosário M, Paterson HF, Marshall CJ. Activation of the Ral and phosphatidylinositol 3' kinase signaling pathways by the ras-related protein TC21. Mol Cell Biol 2001; 21:3750-62. [PMID: 11340168 PMCID: PMC87018 DOI: 10.1128/mcb.21.11.3750-3762.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TC21 is a member of the Ras superfamily of small GTP-binding proteins that, like Ras, has been implicated in the regulation of growth-stimulating pathways. We have previously identified the Raf/mitogen-activated protein kinase pathway as a direct TC21 effector pathway required for TC21-induced transformation (M. Rosário, H. F. Paterson, and C. J. Marshall, EMBO J. 18:1270-1279, 1999). In this study we have identified two further effector pathways for TC21, which contribute to TC21-stimulated transformation: the phosphatidylinositol 3' kinase (PI-3K) and Ral signaling pathways. Expression of constitutively active TC21 leads to the activation of Ral A and the PI-3K-dependent activation of Akt/protein kinase B. Strong activation of the PI-3K/Akt pathway is seen even with very low levels of TC21 expression, suggesting that TC21 may be a key small GTPase-regulator of PI-3K. TC21-induced alterations in cellular morphology in NIH 3T3 and PC12 cells are also PI-3K dependent. On the other hand, activation of the Ral pathway by TC21 is required for TC21-stimulated DNA synthesis but not transformed morphology. We show that inhibition of Ral signaling blocks DNA synthesis in human tumor cell lines containing activating mutations in TC21, demonstrating for the first time that this pathway is required for the proliferation of human tumor cells. Finally, we provide mechanisms for the activation of these pathways, namely, the direct in vivo interaction of TC21 with guanine nucleotide exchange factors for Ral, resulting in their translocation to the plasma membrane, and the direct interaction of TC21 with PI-3K. In both cases, the effector domain region of TC21 is required since point mutations in this region can interfere with activation of downstream signaling.
Collapse
Affiliation(s)
- M Rosário
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
137
|
Abstract
The prevailing concept has been that an FGF induces epithelial-to-fiber differentiation in the mammalian lens, whereas chick lens cells are unresponsive to FGF and are instead induced to differentiate by IGF/insulin-type factors. We show here that when treated for periods in excess of those used in previous investigations (>5 h), purified recombinant FGFs stimulate proliferation of primary cultures of embryonic chick lens epithelial cells and (at higher concentrations) expression of the fiber differentiation markers delta-crystallin and CP49. Surprisingly, upregulation of proliferation and delta-crystallin synthesis by FGF does not require activation of ERK kinases. ERK function is, however, essential for stimulation of delta-crystallin expression in response to insulin or IGF-1. Vitreous humor, the presumptive source of differentiation-promoting activity in vivo, contains a factor capable of diffusing out of the vitreous body and inducing delta-crystallin and CP49 expression in chick lens cultures. This factor binds heparin with high affinity and increases delta-crystallin expression in an ERK-insensitive manner, properties consistent with an FGF but not insulin or IGF. Our findings indicate that differentiation in the chick lens is likely to be mediated by an FGF and provide the first insights into the role of the ERK pathway in growth factor-induced signal transduction in the lens.
Collapse
Affiliation(s)
- A C Le
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
138
|
Yu JT, Foster RG, Dean DC. Transcriptional repression by RB-E2F and regulation of anchorage-independent survival. Mol Cell Biol 2001; 21:3325-35. [PMID: 11313458 PMCID: PMC100254 DOI: 10.1128/mcb.21.10.3325-3335.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations that lead to anchorage-independent survival are a hallmark of tumor cells. Adhesion of integrin receptors to extracellular matrix activates a survival signaling pathway in epithelial cells where Akt phosphorylates and blocks the activity of proapoptotic proteins such as the BCL2 family member Bad, the forkhead transcription factor FKHRL-1, and caspase 9. Insulin-like growth factor 1 (IGF-1) is a well-established epithelial cell survival factor that also triggers activation of Akt and can maintain Akt activity after cells lose matrix contact. It is not until IGF-1 expression diminishes (~16 h after loss of matrix contact) that epithelial cells deprived of matrix contact undergo apoptosis. This suggests that IGF-1 expression is linked to cell adhesion and that it is the loss of IGF-1 which dictates the onset of apoptosis after cells lose matrix contact. Here, we examine the linkage between cell adhesion and IGF-1 expression. While IGF-1 is able to maintain Akt activity and phosphorylation of proapoptotic proteins in cells that have lost matrix contact, Akt is not able to phosphorylate and inactivate another of its substrates, glycogen synthase kinase 3beta (GSK-3beta), under these conditions. The reason for this appears to be a rapid translocation of active Akt away from GSK-3beta when cells lose matrix contact. One target of GSK-3beta is cyclin D, which is turned over in response to this phosphorylation. Therefore, cyclin D is rapidly lost when cells are deprived of matrix contact, leading to a loss of cyclin-dependent kinase 4 activity and accumulation of hypophosphorylated, active Rb. This facilitates assembly of a repressor complex containing histone deacetylase (HDAC), Rb, and E2F that blocks transcription of the gene for IGF-1, leading to loss of Akt activity, accumulation of active proapoptotic proteins, and apoptosis. This feedback loop containing GSK-3beta, cyclin D, HDAC-Rb-E2F, and IGF-1 then determines how long Akt will remain active after cells lose matrix contact, and thus it serves to regulate the onset of apoptosis in such cells.
Collapse
Affiliation(s)
- J T Yu
- Division of Molecular Oncology, Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
139
|
Clejan S, O'Connor K, Rosensweig N. Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J Cell Mol Med 2001; 5:60-73. [PMID: 12067451 PMCID: PMC6737775 DOI: 10.1111/j.1582-4934.2001.tb00138.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The high aspect rotating-wall vessel (HARV) was designed to cultivate cells in an environment that simulate microgravity. We studied previously the effects of HARV cultivation on DU-145 human prostate carcinoma cells. We determined that HARV cultivation produced a less aggressive, slower growing, less proliferative, more differentiated and less pliant cell than other cell cultivation methods. The result was a 3-dimensional (3D) growth model of prostate cancer which mimics in vivo tissue growth. This work examines the signal transduction-second messenger pathways existing temporarily in these HARV cells and correlates these features with the special properties in growth and 3D spheroid formation. We found an initial very active ceramide, a diacylglycerol increase together with increases in PI-PLC and PLA(2) a central defect in PLD (no phosphatic acid or phosphatidylethanol at any time during 15 days of HARV cultivation). There is a cross-talk between ceramide and PI3K pathways with activation of PI3K, after 6 days of HARV growth concomitant with down-regulation of ceramide. At this time, there is also an increase of cAMP (seen by increases in arachidonic acid). Taken together these results can explain the 3D organoid-like growth. We therefore developed a model for growth in HARV prostate cancer cells which involve temporal "switches" between second messengers, activation and cross-talk between multiplicity of signaling pathways and a central defect in PLD pathways. Essential to the late slow growth, and 3D organotypic formation are the apoptotic, anti-survival, anti-proliferation and differentiation pathways in the first days of HARV, with growth of "new" different types of prostate cancer cells which set-up for later "switch" in ceramide-PI3K to survival and proliferation.
Collapse
Affiliation(s)
- S Clejan
- Department of Pathology & Laboratory Medicine, Tulane University Health Science Center, 1430 Tulane Ave., SL 79, New Orleans, LA 70112-2699, USA.
| | | | | |
Collapse
|
140
|
Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway. J Biol Chem 2000; 275:35942-52. [PMID: 10962000 DOI: 10.1074/jbc.m005832200] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.
Collapse
Affiliation(s)
- M V Chakravarthy
- Department of Integrative Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
141
|
Dupont J, Karas M, LeRoith D. The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components. J Biol Chem 2000; 275:35893-901. [PMID: 10967123 DOI: 10.1074/jbc.m006741200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the mechanisms involved in the cross-talk between IGF-1 receptor (IGF-1R) and estrogen receptor signaling pathways, we used MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression. Growth of NEO cells (control MCF-7 cells) was stimulated by both IGF-1 and estradiol (E2), and the addition of both mitogens resulted in a synergistic response. Estrogen enhanced IGF-1R signaling in NEO cells, but this effect was markedly diminished in SX13 cells. Estrogen was also able to potentiate the IGF-1 effect on the expression of cyclin D1 and cyclin E and on the phosphorylation of retinoblastoma protein in control but not in SX13 cells. IGF-1 increased the protein level of p21 and the luciferase activity of the p21 promoter, whereas it only reduced the protein level of p27 without affecting p27 promoter activity. Estrogen did not affect the p21 inhibitor, but it decreased the protein level of p27 and the p27 promoter luciferase activity. These effects of both mitogens were also observed at the level of association of both cyclin-dependent kinase inhibitors with CDK2 suggesting that IGF-1 and E2 affect the activity of both p21 and p27. Taken together, these data suggest that in MCF-7 cells, estrogen potentiates the IGF-1 effect on IGF-1R signaling as well as on the cell cycle components. Moreover, IGF-1 and E2 regulate the expression of p21 and p27 and their association with CDK2 differently.
Collapse
Affiliation(s)
- J Dupont
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | | | |
Collapse
|
142
|
Kamalati T, Jolin HE, Fry MJ, Crompton MR. Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene 2000; 19:5471-6. [PMID: 11114724 DOI: 10.1038/sj.onc.1203931] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A high proportion of human breast cancers, in contrast with normal mammary tissue, express the intracellular tyrosine kinase BRK. BRK expression enhances the mitogenic response of mammary epithelial cells to epidermal growth factor, and conferment of a proliferative advantage through this mechanism may account for the frequent elevation of BRK expression in tumours. Here we report that BRK expression in mammary epithelial cells, at pathologically relevant levels, results in an enhanced phosphorylation of the epidermal growth factor receptor-related receptor erbB3 in response to epidermal growth factor. As a consequence, erbB3 recruits increased levels of phosphoinositide 3-kinase, and this is associated with a potentiated activation of Akt. This effect of BRK on the regulation of phosphoinositide 3-kinase and Akt activity may account for BRK's ability to enhance mammary cell mitogenesis, and raises the possibility that breast tumours expressing BRK may acquire a resistance to pro-apoptotic signals.
Collapse
Affiliation(s)
- T Kamalati
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | |
Collapse
|
143
|
Di Popolo A, Memoli A, Apicella A, Tuccillo C, di Palma A, Ricchi P, Acquaviva AM, Zarrilli R. IGF-II/IGF-I receptor pathway up-regulates COX-2 mRNA expression and PGE2 synthesis in Caco-2 human colon carcinoma cells. Oncogene 2000; 19:5517-24. [PMID: 11114729 DOI: 10.1038/sj.onc.1203952] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs reduce the risk of colon cancer and this effect is mediated in part through inhibition of type 2 prostaglandin endoperoxide synthase/ cyclo-oxygenase (COX-2). In the present study, we demonstrate that COX-2 expression and PGE2 synthesis are up-regulated by an IGF-II/IGF-I receptor autocrine pathway in Caco-2 colon carcinoma cells. COX-2 mRNA and PGE2 levels are higher in proliferating cells compared with post-confluent differentiated cells and in cells that constitutively overexpress IGF-II. Up-regulation of COX-2 expression by IGF-II is mediated through activation of IGF-I receptor because: (i) treatment of Caco-2 cells with a blocking antibody to the IGF-I receptor inhibits COX-2 mRNA expression; (ii) transfection of Caco-2 cells with a dominant negative IGF-I receptor reduces COX-2 expression and activity. Also, the blockade of the PI3-kinase, that mediates the proliferative effect of IGF-I receptor in Caco-2 cells, inhibits IGF-II-dependent COX-2 up-regulation and PGE2 synthesis. Moreover, COX-2 expression and activity inversely correlate with the increase of apoptosis in parental, IGF-II and dominant-negative IGF-I receptor transfected cells. This study suggests that induction of proliferation and tumor progression of colon cancer cells by the IGF-II/IGF-I receptor pathway may depend on the activation of COX-2-related events.
Collapse
Affiliation(s)
- A Di Popolo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L Califano, Centro di Endocrinologia ed Oncologia Sperimentale G. Salvatore del Consiglio Nazionale delle Ricerche, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Birkenkamp KU, Esselink MT, Kruijer W, Vellenga E. An inhibitor of PI3-K differentially affects proliferation and IL-6 protein secretion in normal and leukemic myeloid cells depending on the stage of differentiation. Exp Hematol 2000; 28:1239-49. [PMID: 11063872 DOI: 10.1016/s0301-472x(00)00529-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, we examined the involvement of the phosphatidylinositol 3-kinase (PI3-K) and p70S6 kinase signal transduction pathway in the interleukin-1(IL-1)-mediated proliferation and cytokine production by normal and leukemic myeloid cells. Total AML blast populations, early progenitor (CD34(+)/CD36(-)) cells, and more differentiated (CD34(-)/CD36(+)) cells were treated with the PI3-K inhibitor Ly294002 and p70S6K inhibitor rapamycin. The effects on proliferation, IL-6 protein secretion, and intracellular signaling cascades were determined and compared with normal CD34(+) cells and monocytes. The function of the PI3-K pathway was dependent on the differentiation state of the AML cell population. In immature blasts, the IL-1-induced proliferation was strongly inhibited by Ly294002 and rapamycin, without a distinct effect on IL-6 protein production. In contrast, in mature monocytic blast cells inhibition of the PI3-K signaling route had a stimulatory effect on IL-6 protein secretion. Interestingly, these findings were not specifically linked to the malignant counterpart but were also observed with normal CD34(+) sorted cells vs mature monocytes. Evidence is provided that the Ly294002-induced increase in IL-6 protein secretion is linked to the cAMP dependent signaling pathway and not to changes in the phosphorylation of ERK or p38. However, although the enhanced IL-6 protein secretion is cAMP dependent, it was not found to be mediated by protein kinase A (PKA) or by the GTP-ase Rap1. This study indicates that inhibition of the PI3-K signaling pathway has an inhibitory effect on cell proliferation but a stimulatory effect on IL-6 expression mediated by a cAMP-dependent but PKA-independent route.
Collapse
Affiliation(s)
- K U Birkenkamp
- Division of Hematology, Department of Medicine, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
145
|
Guo M, Joiakim A, Reiners JJ. Suppression of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated aryl hydrocarbon receptor transformation and CYP1A1 induction by the phosphatidylinositol 3-kinase inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1- benzopyran-4-one (LY294002). Biochem Pharmacol 2000; 60:635-42. [PMID: 10927021 DOI: 10.1016/s0006-2952(00)00379-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous flavonoids are ligands of the aryl hydrocarbon receptor (AHR) and function as AHR antagonists and/or agonists. LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] is a widely used inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), and is structurally related to members of the flavonoid family. Concentrations of LY294002 >/= 10 microM were cytostatic, but not cytotoxic, to cultures of the immortalized human breast epithelial cell line MCF10A-Neo. Treatment of MCF10A-Neo cultures with the AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) stimulated the transcriptional activation of CYP1A1, as monitored by measurements of steady-state CYP1A1 mRNA. Pretreatment of cultures with >/= 10 microM LY294002 suppressed the TCDD activation of CYP1A1 (IC(50) approximately 10 microM). Electrophoretic mobility shift assays employing rat liver cytosol demonstrated that concentrations of LY294002 </= 400 microM did not transform the AHR into a DNA-binding species. However, the addition of LY294002 to cytosol just prior to TCDD addition completely suppressed AHR transformation by TCDD (IC(50) approximately 35 microM). The PI 3-kinase inhibitor Wortmannin was weakly cytostatic, but not cytotoxic to MCF10A-Neo cultures at concentrations </= 500 nM. Exposure of cultures to Wortmannin (10-500 nM) did not suppress TCDD activation of CYP1A1. Analyses of the phosphorylation status of Akt-1, an in vivo substrate of PI 3-kinase, demonstrated that concentrations of LY294002 >/= 50 microM and Wortmannin >/= 10 nM completely suppressed PI 3-kinase activity. Hence, the ability of LY294002 to suppress TCDD-dependent activation of CYP1A1 is unrelated to PI 3-kinase inhibition. Instead, this activity reflects LY294002 functioning as an AHR antagonist. Furthermore, most of the cytostatic activity of LY294002 towards MCF10A-Neo cells is unrelated to the inhibition of PI 3-kinase.
Collapse
Affiliation(s)
- M Guo
- Institute of Chemical Toxicology, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
146
|
Vercoutter-Edouart A, Lemoine J, Smart CE, Nurcombe V, Boilly B, Peyrat J, Hondermarck H. The mitogenic signaling pathway for fibroblast growth factor-2 involves the tyrosine phosphorylation of cyclin D2 in MCF-7 human breast cancer cells. FEBS Lett 2000; 478:209-15. [PMID: 10930570 DOI: 10.1016/s0014-5793(00)01855-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is mitogenic for the human breast cancer cell line MCF-7; here we investigate some of the signaling pathways subserving this activity. FGF-2 stimulation of MCF-7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate-2, the protooncogene product Src and the mitogen-activated protein kinase (MAP kinase) cascade. A major increase in the tyrosine phosphorylation of a 30-kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti-phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF-2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF-2-induced phosphorylation of cyclin D2 whereas MAP kinase activity is not. Thus, tyrosine phosphorylation of cyclin D2 may be a key regulatory target for FGF-2 signaling.
Collapse
Affiliation(s)
- A Vercoutter-Edouart
- Equipe Facteurs de Croissance, Laboratoire de Biologie du Développement, UPRES-EA1033, Unviersité des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
147
|
Guo M, Reiners JJ. Phorbol ester-induced production of cytostatic factors by normal and oncogenic Ha-ras-transformed human breast cell lines. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.5.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
148
|
Guo M, Reiners JJ. Phorbol ester-induced production of cytostatic factors by normal and oncogenic Ha- ras -transformed human breast cell lines. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.7.1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
149
|
Nedachi T, Akahori M, Ariga M, Sakamoto H, Suzuki N, Umesaki K, Hakuno F, Takahashi SI. Tyrosine kinase and phosphatidylinositol 3-kinase activation are required for cyclic adenosine 3',5'-monophosphate-dependent potentiation of deoxyribonucleic acid synthesis induced by insulin-like growth factor-I in FRTL-5 cells. Endocrinology 2000; 141:2429-38. [PMID: 10875243 DOI: 10.1210/endo.141.7.7539] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In previous studies, we showed that pretreatment of rat FRTL-5 thyroid cells with TSH, or other agents that increased intracellular cAMP, markedly potentiated DNA synthesis in response to insulin-like growth factor-I (IGF-I). In addition, we found that TSH pretreatment caused an increase in tyrosine phosphorylation of intracellular proteins including an unidentified 125-kDa protein that was well correlated with the TSH-potentiating effect on DNA synthesis induced by IGF-I. These results suggested that cAMP amplified IGF-I-dependent signals for cell growth through changes of cAMP-dependent tyrosine phosphorylation. The present studies were undertaken to determine how tyrosine kinase activation followed by an increase in tyrosine phosphorylation is required for cAMP-dependent potentiation of DNA synthesis induced by IGF-I in this cell line. First of all, we measured tyrosine kinase or protein-tyrosine phosphatase activities in the cell lysates by the in vitro assay. Chronic treatment with TSH or (Bu)2-cAMP stimulated tyrosine kinase activity in the particulate fraction and protein-tyrosine phosphatase activity in the soluble fraction, suggesting that tyrosine kinase plays more important roles for a cAMP-dependent increase in tyrosine phosphorylation of intracellular proteins. The increased tyrosine kinase activity was sensitive to genistein, a potent tyrosine kinase inhibitor. Genistein abolished both the cAMP-dependent increase in tyrosine phosphorylation of the 125-kDa protein and the enhanced DNA synthesis induced by IGF-I in a similar concentration-dependent manner. The only tyrosine-phosphorylated protein associated with the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase in response to cAMP was 125 kDa. In addition, we found that PI 3-kinase activity bound to p85 subunit significantly increased after (Bu)2cAMP treatment. These results suggested that cAMP stimulates PI 3-kinase through tyrosine phosphorylation of the 125-kDa protein. We then measured DNA synthesis in cells pretreated for 24 h with TSH or (Bu)2cAMP in the absence or presence of LY294002, a PI 3-kinase inhibitor, followed by treatment with IGF-I for 24 h. Presence of LY294002 during TSH or (Bu)2cAMP pretreatment completely abolished cAMP-dependent potentiation of DNA synthesis induced by IGF-I. These results suggest that in FRTL-5 cells cAMP activates genistein-sensitive tyrosine kinases that in turn activate PI 3-kinase activity. These mechanisms appear to be necessary for cAMP-dependent potentiation of the DNA synthesis induced by IGF-I.
Collapse
Affiliation(s)
- T Nedachi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Satoh J, Kuroda Y, Katamine S. Gene expression profile in prion protein-deficient fibroblasts in culture. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:59-68. [PMID: 10880376 PMCID: PMC1850192 DOI: 10.1016/s0002-9440(10)64517-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the physiological function of the cellular isoform of prion protein (PrP(C)), the gene expression profile was studied by analyzing a cDNA expression array containing 597 clones of various functional classes in two distinct skin fibroblast cell lines designated SFK and SFH, established from PrP-deficient (PrP(-)(/-)) mice and PrP(+/+) mice, respectively. The cells were incubated in the culture medium with or without inclusion of basic fibroblast growth factor (bFGF). When SFK cells were compared with SFH cells in untreated conditions, the expression of 15 genes, including those essential for cell proliferation and adhesion, was reduced, whereas the expression of 27 genes, including those involved in the insulin-like growth factor-I (IGF-I) signaling pathway, was elevated. Northern blot analysis verified a significant down-regulation of the receptor tyrosine kinase substrate Eps8, cyclin D1, and CD44 mRNAs, and a substantial up-regulation of phosphatidylinositol 3-kinase p85, IGF-I, and serine protease inhibitor-2.2 mRNAs in SFK cells. The patterns of induction or reduction of gene expression after exposure to bFGF showed considerable overlap between both cell types. Furthermore, both Eps8 and CD44 mRNA levels were reduced greatly in the brain tissues of the cerebrum isolated from the PrP(-)(/-) mice. These results indicate that the disruption of the PrP gene resulted in an aberrant regulation of a battery of genes important for cell proliferation, differentiation, and survival, including those located in the Ras and Rac signaling pathways.
Collapse
Affiliation(s)
- J Satoh
- Division of Neurology, Department of Internal Medicine, Saga Medical School, Japan.
| | | | | |
Collapse
|