101
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
102
|
Li M, Shao ZQ, Guo Y, Wang L, Hou T, Hu D, Zheng F, Tang J, Wang C, Feng Y, Gao J, Pan X. The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence. Virulence 2016; 6:631-41. [PMID: 26151575 PMCID: PMC4720241 DOI: 10.1080/21505594.2015.1056971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcal histidine triad proteins HTPs are widely distributed within the Streptococcus genus. Based on the phylogenetic relationship and domain composition, HTPs are classified into type I and type II subfamilies. Previous studies revealed that several pathogenic streptococci contain more than one htp gene. We found that the highly virulent strain of Streptococcus suis 2 (S. suis 2), 05ZYH33 encodes 3 HTPs, designated HtpsA (previously described as HtpS), HtpsB, and HtpsC. Among them, HtpsC is the only member that contains leucine-rich repeat (LRR) domains at the C-terminal. In this study, we demonstrated that the recombinant HtpsC could bind to 2 different components of human ECM complex laminin and fibronectin in vitro, suggesting that it is a novel adhesin of S. suis 2. Having constructed an htpsC mutant, we evaluated its role in the pathogenesis of the highly virulent S. suis 2 strain 05ZYH33. Our data showed that inactivation of htpsC significantly affected adherence of S. suis 2 to Hep-2 cells and shortened the survival of the bacteria in whole blood. Furthermore, deletion of htpsC significantly attenuated the virulence of S. suis 2 in mice. These results demonstrated that htpsC was involved in the pathogenesis of the highly virulent S. suis 2 strain 05ZYH33. In line with the observation, immunization with HtpsC significantly prolonged mice's survival after S. suis 05ZYH33 challenge, indicating its potential use in the vaccine development against S. suis.
Collapse
Affiliation(s)
- Min Li
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China.,b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Zhu-Qing Shao
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China.,c State Key Laboratory of Pharmaceutical Biotechnology ; School of Life Sciences ; Nanjing University ; Nanjing , China
| | - Yuqing Guo
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China.,b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Ling Wang
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China.,d School of Life Sciences ; Nanjing Normal University ; Nanjing , China
| | - Tianqing Hou
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Dan Hu
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Feng Zheng
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Jiaqi Tang
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China.,e Institute of Laboratory Medicine ; Jinling Hospital ; Nanjing , China
| | - Changjun Wang
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Youjun Feng
- f Center for Infection & Immunity ; Department of Medical Microbiology & Parasitology ; Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China
| | - Jimin Gao
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China
| | - Xiuzhen Pan
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China.,b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| |
Collapse
|
103
|
Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. J Proteomics 2016; 148:1-11. [PMID: 27169933 DOI: 10.1016/j.jprot.2016.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
Abstract
UNLABELLED Fusarium proliferatum as a filamentous fungal pathogen can produce mycotoxins that can contaminate postharvest fruits and thus impact risks on human health. The extracellular proteomes of F. proliferatum grown in the absence and presence of butylated hydroxyanisole (BHA) were analyzed comparatively. A total of 66 significantly different expressed secreted proteins were identified by LC-ESI-MS/MS analysis. The BHA treatment suppressed the accumulation of some pathogenic factors such as aspartic protease, cell wall degradation enzymes, porin, superoxide dismutase and glyceraldehyde-3-phosphate dehydrogenase. On the contrary, the BHA treatment increased the abundances of some proteins, such as ATP binding cassette transporter substrate-binding protein and lipopolysaccharide-assembly lipoprotein, involved in the growth of F. proliferatum. These findings suggest that BHA treatment could influence the pathogenic ability of F. proliferatum via inhibiting the levels of virulence factors and cell wall degradation-associated enzymes. Moreover, the induction of the growth-related proteins after the BHA treatment suggests that the livelihood of F. proliferatum might depend on the cost of reduced pathogenic ability. This study has provided some evidence for understanding the complicated mechanisms of F. proliferatum infection in an effort to develop new targets for the control of this fungal pathogen. BIOLOGICAL SIGNIFICANCE To better understand the inhibitory mechanism of F. proliferatum by butylated hydroxyanisole (BHA) treatment, a comprehensive proteomic analysis of the secreted proteins of F. proliferatum was firstly conducted. Among the 66 identified spots, 34 and 32 proteins were down- and up-accumulated significantly by BHA treatment, respectively. Many of the identified key protein species were involved in the pathogenic ability and the growth of F. proliferatum. This study is helpful for broadening our knowledge of the pathogenic mechanism of F. proliferatum.
Collapse
|
104
|
Exploiting death: apoptotic immunity in microbial pathogenesis. Cell Death Differ 2016; 23:990-6. [PMID: 26943319 DOI: 10.1038/cdd.2016.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022] Open
Abstract
Innate immunity typically is responsible for initial host responses against infections. Independently, nucleated cells that die normally as part of the physiological process of homeostasis in mammals (including humans) suppress immunity. Specifically, the physiological process of cell death (apoptosis) generates cells that are recognized specifically by viable cells of all types and elicit a profound transient suppression of host immunity (termed 'innate apoptotic immunity' (IAI)). IAI appears to be important normally for the maintenance of self-tolerance and for the resolution of inflammation. In addition, pathogens are able to take advantage of IAI through a variety of distinct mechanisms, to enable their proliferation within the host and enhance pathogenicity. For example, the protist pathogen Leishmania amazonensis, at its infective stage, mimics apoptotic cells by expressing apoptotic-like protein determinants on the cell surface, triggering immunosuppression directly. In contrast, the pathogenic bacterium Listeria monocytogenes triggers cell death in host lymphocytes, relying on those apoptotic cells to suppress host immune control and facilitate bacterial expansion. Finally, although the inhibition of apoptotic cell death is a common attribute of many viruses which facilitates their extended replication, it is clear that adenoviruses also reprogram the non-apoptotic dead cells that arise subsequently to manifest apoptotic-like immunosuppressive properties. These three instances represent diverse strategies used by microbial pathogens to exploit IAI, focusing attention on the potency of this facet of host immune control. Further examination of these cases will be revealing both of varied mechanisms of pathogenesis and the processes involved in IAI control.
Collapse
|
105
|
Ji H, Wang J, Guo J, Li Y, Lian S, Guo W, Yang H, Kong F, Zhen L, Guo L, Liu Y. Progress in the biological function of alpha-enolase. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2016; 2:12-17. [PMID: 29767008 PMCID: PMC5941012 DOI: 10.1016/j.aninu.2016.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. It is a multifunctional glycolytic enzyme involved in cellular stress, bacterial and fungal infections, autoantigen activities, the occurrence and metastasis of cancer, parasitic infections, and the growth, development and reproduction of organisms. This article mainly reviews the basic characteristics and biological functions of ENO1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | | | | | | | | |
Collapse
|
106
|
Sumitomo T, Nakata M, Higashino M, Yamaguchi M, Kawabata S. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions. Sci Rep 2016; 7:20069. [PMID: 26822058 PMCID: PMC4731814 DOI: 10.1038/srep20069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miharu Higashino
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
107
|
Protective efficacy of Streptococcus iniae derived enolase against Streptococcal infection in a zebrafish model. Vet Immunol Immunopathol 2016; 170:25-9. [PMID: 26872628 DOI: 10.1016/j.vetimm.2016.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 11/23/2022]
Abstract
Enolase (ENO) is one of the surface-exposed proteins of Streptococcus iniae, which previously had been identified as a plasminogen-binding protein. In this study, ENO was evaluated to induce cross-protective immunity against S. iniae and Streptococcus parauberis which are major pathogens causing streptococcosis in fish. Immunoblot analysis shows that S. iniae recombinant ENO (rENO) produced in Escherichia coli was cross-reactive with antisera against S. iniae, and S. parauberis serotype I and II. In the challenge experiment of streptococcal infection after vaccination in zebrafish, rENO elicited a similar protection with a whole cell bacterin against S. iniae and S. parauberis, which suggests its feasibility as an efficient vaccine against streptococcosis.
Collapse
|
108
|
Shams F, Oldfield NJ, Lai SK, Tunio SA, Wooldridge KG, Turner DPJ. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue. Microbiologyopen 2016; 5:340-50. [PMID: 26732512 PMCID: PMC4831477 DOI: 10.1002/mbo3.331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/10/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence‐related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose‐1,6‐bisphosphate aldolase (FBA) was previously shown to be surface‐exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu‐plasminogen in a dose‐dependent manner. Site‐directed mutagenesis demonstrated that the C‐terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved.
Collapse
Affiliation(s)
- Fariza Shams
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Neil J Oldfield
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Si Kei Lai
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sarfraz A Tunio
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Karl G Wooldridge
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David P J Turner
- School of Life Sciences, Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
109
|
Wang W, Jeffery CJ. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. MOLECULAR BIOSYSTEMS 2016; 12:1420-31. [DOI: 10.1039/c5mb00550g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dozens of intracellular proteins have a second function on the cell surface, referred to as “intracellular/surface moonlighting proteins”. An analysis of the results of 22 cell surface proteomics studies was performed to address whether the hundreds of intracellular proteins found on the cell surface could be candidates for being additional intracellular/surface moonlighting proteins.
Collapse
Affiliation(s)
- Wangfei Wang
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Constance J. Jeffery
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
- Department of Biological Sciences
| |
Collapse
|
110
|
Funk J, Schaarschmidt B, Slesiona S, Hallström T, Horn U, Brock M. The glycolytic enzyme enolase represents a plasminogen-binding protein on the surface of a wide variety of medically important fungal species. Int J Med Microbiol 2015; 306:59-68. [PMID: 26679571 DOI: 10.1016/j.ijmm.2015.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/27/2015] [Accepted: 11/29/2015] [Indexed: 11/26/2022] Open
Abstract
Allergies are an increasing issue in human health and can, eventually, cause severe anaphylactic shock. Aspergillus fumigatus and Candida albicans are leading causes of life-threatening invasive fungal infections in immunocompromised patients, but can also cause severe allergic responses in otherwise healthy individuals. The glycolytic enzyme enolase is known as a major allergen despite its function in intracellular metabolism. Therefore, its presentation on surfaces of different fungal species was investigated by using antibodies raised against recombinant enolases from A. fumigatus and C. albicans. Examination of antibody specificity revealed cross-reactivity to cell-free extracts from Aspergillus terreus, Aspergillus flavus, Aspergillus nidulans and Candida glabrata, but not against any of the three human enolases. Antibody specificity was further confirmed by hybridization with other recombinant fungal enolases, where the antibodies recognized different subsets of fungal enolases. When surface presentation of enolase was tested on intact fungal cells, a positive staining was obtained with those antibodies that also recognized the enzyme from the respective cell-free extract. This implies a general surface presentation of this glycolytic enzyme among fungal species and provides hints for its predominant recognition as an allergen. Additionally, A. fumigatus and C. albicans enolase bound to human plasminogen, which remained accessible for the plasminogen activator uPA. This implies a potential role of enolase in the invasion and dissemination process during fungal infections.
Collapse
Affiliation(s)
- Jana Funk
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Barbara Schaarschmidt
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Silvia Slesiona
- Microbial Immunology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Teresia Hallström
- Infection Biology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Uwe Horn
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Matthias Brock
- Microbial Biochemistry and Physiology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany; Institute for Microbiology, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
111
|
Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 2015; 42:866-82. [PMID: 26485450 DOI: 10.3109/1040841x.2015.1080214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both coagulation and fibrinolysis are tightly connected with the innate immune system. Infection and inflammation cause profound alterations in the otherwise well-controlled balance between coagulation and fibrinolysis. Many pathogenic bacteria directly exploit the host's hemostatic system to increase their virulence. Here, we review the capacity of bacteria to activate plasminogen. The resulting proteolytic activity allows them to breach tissue barriers and evade innate immune defense, thus promoting bacterial spreading. Yersinia pestis, streptococci of group A, C and G and Staphylococcus aureus produce a specific bacterial plasminogen activator. Moreover, surface plasminogen receptors play an established role in pneumococcal, borrelial and group B streptococcal infections. This review summarizes the mechanisms of bacterial activation of host plasminogen and the role of the fibrinolytic system in infections caused by these pathogens.
Collapse
Affiliation(s)
- Marijke Peetermans
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Thomas Vanassche
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | | | - Roger H Lijnen
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Peter Verhamme
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
112
|
The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus. PLoS One 2015; 10:e0135754. [PMID: 26287818 PMCID: PMC4546058 DOI: 10.1371/journal.pone.0135754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/25/2015] [Indexed: 11/25/2022] Open
Abstract
The enolase produced by Streptococcus pyogenes is a homo-octamer whose overall shape resembles that of a donut. The octamer is best described as a tetramer of dimers. As such, it contains two types of interfaces. The first is common to almost all enolases as most enolases that have been studied are dimers. The second is unique to the octamers and includes residues near the carboxy-terminus. The primary sequence of the enolase contains 435 residues with an added 19 as an N-terminal hexahistine tag. We have systematically truncated the carboxy-terminus, individually removing the first 8 residues. This gave rise to a series of eight structures containing respectively, 435, 434, 433, 432, 431, 430, 429 and 427 residues. The truncations cause the protein to gradually dissociate from octamers to enzymatically inactive monomers with very small amounts of intermediate tetramers and dimers. We have evaluated the contributions of the missing residues to the monomer/octamer equilibrium using a combination of analytical ultracentrifugation and activity assays. For the dissociation reaction,
octamer ⇐⇒ 8 monomer
truncation of all eight C-terminal residues resulted in a diminution in the standard Gibbs energy of dissociation of about 59 kJ/mole of octamer relative to the full length protein. Considering that this change is spread over eight subunits, this translates to a change in standard Gibbs interaction energy of less than 8 kJ/mole of monomer distributed over the eight monomers. The resulting proteins, containing 434, 433, 432, 431, 430, 429 and 427 residues per monomer, showed intermediate free energies of dissociation. Finally, three other mutations were introduced into our reference protein to establish how they influenced the equilibrium. The main importance of this work is it shows that for homo-multimeric proteins a small change in the standard Gibbs interaction energy between subunits can have major physiological effects.
Collapse
|
113
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence. Anaerobe 2015; 35:77-91. [PMID: 26238688 DOI: 10.1016/j.anaerobe.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023]
Abstract
The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat.
Collapse
Affiliation(s)
- Pratistha Dwivedi
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Om Kumar
- Defence Research and Development Organisation, New Delhi, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| |
Collapse
|
114
|
Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis. Curr Genet 2015; 62:19-23. [DOI: 10.1007/s00294-015-0504-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 01/02/2023]
|
115
|
Amblee V, Jeffery CJ. Physical Features of Intracellular Proteins that Moonlight on the Cell Surface. PLoS One 2015; 10:e0130575. [PMID: 26110848 PMCID: PMC4481411 DOI: 10.1371/journal.pone.0130575] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more biochemical functions that are not due to gene fusions, multiple splice variants, proteolytic fragments, or promiscuous enzyme activities. The project described herein focuses on a sub-set of moonlighting proteins that have a canonical biochemical function inside the cell and perform a second biochemical function on the cell surface in at least one species. The goal of this project is to consider the biophysical features of these moonlighting proteins to determine whether they have shared characteristics or defining features that might suggest why these particular proteins were adopted for a second function on the cell surface, or if these proteins resemble typical intracellular proteins. The latter might suggest that many other normally intracellular proteins found on the cell surface might also be moonlighting in this fashion. We have identified 30 types of proteins that have different functions inside the cell and on the cell surface. Some of these proteins are found to moonlight on the surface of multiple species, sometimes with different extracellular functions in different species, so there are a total of 98 proteins in the study set. Although a variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most part, these proteins were found to have physical characteristics typical of intracellular proteins. Many other intracellular proteins have also been found on the surface of bacterial pathogens and other organisms in proteomics experiments. It is quite possible that many of those proteins also have a moonlighting function on the cell surface. The increasing number and variety of known moonlighting proteins suggest that there may be more moonlighting proteins than previously thought, and moonlighting might be a common feature of many more proteins.
Collapse
Affiliation(s)
- Vaishak Amblee
- Department of Biological Sciences, University of Illinois at Chicago, MC567, 900 S. Ashland Ave., Chicago, IL 60607, United States of America
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, MC567, 900 S. Ashland Ave., Chicago, IL 60607, United States of America
- * E-mail:
| |
Collapse
|
116
|
Cloning and Characterization of Surface-Localized α-Enolase of Streptococcus iniae, an Effective Protective Antigen in Mice. Int J Mol Sci 2015; 16:14490-510. [PMID: 26121302 PMCID: PMC4519854 DOI: 10.3390/ijms160714490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that can also cause human bacteremia, cellulitis and meningitis. Screening for and identification of protective antigens plays an important role in developing therapies against S. iniae infections. In this study, we indicated that the α-enolase of S. iniae was not only distributed in the cytoplasm and associated to cell walls, but was also secreted to the bacterial cell surface. The functional identity of the purified recombinant α-enolase protein was verified by its ability to catalyze the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP), and both the recombinant and native proteins interacted with human plasminogen. The rabbit anti-rENO serum blockade assay shows that α-enolase participates in S. iniae adhesion to and invasion of BHK-21 cells. In addition, the recombinant α-enolase can confer effective protection against S. iniae infection in mice, which suggests that α-enolase has potential as a vaccine candidate in mammals. We conclude that S. iniae α-enolase is a moonlighting protein that also associates with the bacterial outer surface and functions as a protective antigen in mice.
Collapse
|
117
|
Ebner P, Prax M, Nega M, Koch I, Dube L, Yu W, Rinker J, Popella P, Flötenmeyer M, Götz F. Excretion of cytoplasmic proteins (ECP) inStaphylococcus aureus. Mol Microbiol 2015; 97:775-89. [DOI: 10.1111/mmi.13065] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Marcel Prax
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Iris Koch
- Max Planck Institute for Developmental Biology; Spemannstr. 35 72076 Tübingen Germany
| | - Linda Dube
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Wenqi Yu
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Janina Rinker
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Peter Popella
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Matthias Flötenmeyer
- Max Planck Institute for Developmental Biology; Spemannstr. 35 72076 Tübingen Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| |
Collapse
|
118
|
De Oliveira DMP, Law RHP, Ly D, Cook SM, Quek AJ, McArthur JD, Whisstock JC, Sanderson-Smith ML. Preferential Acquisition and Activation of Plasminogen Glycoform II by PAM Positive Group A Streptococcal Isolates. Biochemistry 2015; 54:3960-8. [PMID: 26029848 DOI: 10.1021/acs.biochem.5b00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasminogen (Plg) circulates in the host as two predominant glycoforms. Glycoform I Plg (GI-Plg) contains glycosylation sites at Asn289 and Thr346, whereas glycoform II Plg (GII-Plg) is exclusively glycosylated at Thr346. Surface plasmon resonance experiments demonstrated that Plg binding group A streptococcal M protein (PAM) exhibits comparative equal affinity for GI- and GII-Plg in the "closed" conformation (for GII-Plg, KD = 27.4 nM; for GI-Plg, KD = 37.0 nM). When Plg was in the "open" conformation, PAM exhibited an 11-fold increase in affinity for GII-Plg (KD = 2.8 nM) compared with that for GI-Plg (KD = 33.2 nM). The interaction of PAM with Plg is believed to be mediated by lysine binding sites within kringle (KR) 2 of Plg. PAM-GI-Plg interactions were fully inhibited with 100 mM lysine analogue ε-aminocaproic acid (εACA), whereas PAM-GII-Plg interactions were shown to be weakened but not inhibited in the presence of 400 mM εACA. In contrast, binding to the KR1-3 domains of GII-Plg (angiostatin) by PAM was completely inhibited in the presence 5 mM εACA. Along with PAM, emm pattern D GAS isolates express a phenotypically distinct SK variant (type 2b SK) that requires Plg ligands such as PAM to activate Plg. Type 2b SK was able to generate an active site and activate GII-Plg at a rate significantly higher than that of GI-Plg when bound to PAM. Taken together, these data suggest that GAS selectively recruits and activates GII-Plg. Furthermore, we propose that the interaction between PAM and Plg may be partially mediated by a secondary binding site outside of KR2, affected by glycosylation at Asn289.
Collapse
Affiliation(s)
- David M P De Oliveira
- †Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia
| | - Ruby H P Law
- ‡Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3168, Australia
| | - Diane Ly
- †Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia
| | - Simon M Cook
- †Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia
| | - Adam J Quek
- ‡Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3168, Australia
| | - Jason D McArthur
- †Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia
| | - James C Whisstock
- ‡Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3168, Australia
| | - Martina L Sanderson-Smith
- †Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia
| |
Collapse
|
119
|
Gründel A, Friedrich K, Pfeiffer M, Jacobs E, Dumke R. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen. PLoS One 2015; 10:e0126600. [PMID: 25978044 PMCID: PMC4433191 DOI: 10.1371/journal.pone.0126600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023] Open
Abstract
The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen.
Collapse
Affiliation(s)
- Anne Gründel
- TU Dresden, Institute of Medical Microbiology and Hygiene, Dresden, Germany
| | - Kathleen Friedrich
- TU Dresden, Institute of Medical Microbiology and Hygiene, Dresden, Germany
| | - Melanie Pfeiffer
- TU Dresden, Institute of Medical Microbiology and Hygiene, Dresden, Germany
| | - Enno Jacobs
- TU Dresden, Institute of Medical Microbiology and Hygiene, Dresden, Germany
| | - Roger Dumke
- TU Dresden, Institute of Medical Microbiology and Hygiene, Dresden, Germany
- * E-mail:
| |
Collapse
|
120
|
Terrasse R, Amoroso A, Vernet T, Di Guilmi AM. Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and Interacts with Peptidoglycan. PLoS One 2015; 10:e0125377. [PMID: 25927608 PMCID: PMC4415926 DOI: 10.1371/journal.pone.0125377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 11/26/2022] Open
Abstract
Release of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation. However, GAPDH, like other moonlighting proteins, cannot be secreted through active secretion systems since they do not contain an N-terminal predicted signal peptide. In this work, we investigated the mechanism of GAPDH export and surface retention in Streptococcus pneumoniae, a major human pathogen. We addressed the role of the major autolysin LytA in the delivery process of GAPDH to the cell surface. Pneumococcal lysis is abolished in the ΔlytA mutant strain or when 1% choline chloride is added in the culture media. We showed that these conditions induce a marked reduction in the amount of surface-associated GAPDH. These data suggest that the presence of GAPDH at the surface of pneumococcal cells depends on the LytA-mediated lysis of a fraction of the cell population. Moreover, we demonstrated that pneumococcal GAPDH binds to the bacterial cell wall independently of the presence of the teichoic acids component, supporting peptidoglycan as a ligand to surface GAPDH. Finally, we showed that peptidoglycan-associated GAPDH recruits C1q from human serum but does not activate the complement pathway.
Collapse
Affiliation(s)
- Rémi Terrasse
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044 Grenoble, France
- CNRS UMR5075, IBS, F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
| | - Ana Amoroso
- Centre for Protein Engineering, Department of Life Sciences, University of Liege, Liege, Belgium
| | - Thierry Vernet
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044 Grenoble, France
- CNRS UMR5075, IBS, F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
| | - Anne Marie Di Guilmi
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044 Grenoble, France
- CNRS UMR5075, IBS, F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- * E-mail:
| |
Collapse
|
121
|
Comparative immunoprophylactic efficacy of Haemonchus contortus recombinant enolase (rHcENO) and Con A purified native glycoproteins in sheep. Exp Parasitol 2015; 154:98-107. [PMID: 25913090 DOI: 10.1016/j.exppara.2015.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 04/07/2015] [Accepted: 04/19/2015] [Indexed: 01/13/2023]
Abstract
Haemonchus contortus is the most economically important blood feeding nematode parasite of sheep and goats all over the world. Enolase in helminth parasites is a multi-functional enzyme which involves in glycolysis and host tissue invasion. In this study, the recombinant H. contortus enolase (rHcENO) was evaluated for its immunoprophylactic efficacy in sheep along with Con A purified native glycoproteins in a vaccine challenge trial. Group I and Group II experimental sheep were immunized thrice with rHcENO and Con A purified native glycoproteins along with Montanide ISA 61 VG adjuvant. The animals were challenged with 5000 L3 stage active H. contortus larvae after 21 days of third immunization. A significant increase in the IgG titre was observed in rHcENO and Con A purified native glycoproteins immunized animals as compared to the control animals. Immunoprotective efficacy of Con A purified native glycoproteins was comparatively higher than rHcENO antigen.
Collapse
|
122
|
Yu J, Chen T, Xie Z, Liang P, Qu H, Shang M, Mao Q, Ning D, Tang Z, Shi M, Zhou L, Huang Y, Yu X. Oral delivery of Bacillus subtilis spore expressing enolase of Clonorchis sinensis in rat model: induce systemic and local mucosal immune responses and has no side effect on liver function. Parasitol Res 2015; 114:2499-505. [PMID: 25877387 DOI: 10.1007/s00436-015-4449-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022]
Abstract
Caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensis, human clonorchiasis remains a major public health problem in China. In previous study, we had expressed enolase from C. sinensis (CsENO) on the surface of Bacillus subtilis spore and the recombinant spore induced a pronounced protection in terms of reduced worm burden and eggs per gram feces, suggesting B. subtilis spore as an ideal vehicle for antigen delivery by oral treatment and CsENO as a promising vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgG and IgA levels both in serum and in intestinal mucus from rats orally administrated with B. subtilis spore surface expressing CsENO by ELISA. Lysozyme levels in serum and in intestinal mucus were analyzed too. In addition, IgA-secreting cells in intestine epithelium of the rats were detected by immunohistochemistry assay. The intestinal villi lengths of duodenum, jejunum, and ileum were also measured. Rats orally treated with B. subtilis spore or normal saline were used as controls. Our results showed that, compared with the control groups, oral administration of B. subtilis spore expressing CsENO induced both systemic and local mucosal immune response. The recombinant spores also enhanced non-specific immune response in rats. The spores had no side effect on liver function. Moreover, it might facilitate food utilization and digestion of the rats. Our work will pave the way to clarify the involved mechanisms of protective efficacy elicited by B. subtilis spore expressing CsENO and encourage us to carry out more assessment trails of the oral treated spore to develop vaccine against clonorchiasis.
Collapse
Affiliation(s)
- Jinyun Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, Wicks IP. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev 2015; 14:710-25. [PMID: 25891492 DOI: 10.1016/j.autrev.2015.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
There is a pressing need to reduce the high global disease burden of rheumatic heart disease (RHD) and its harbinger, acute rheumatic fever (ARF). ARF is a classical example of an autoimmune syndrome and is of particular immunological interest because it follows a known antecedent infection with group A streptococcus (GAS). However, the poorly understood immunopathology of these post-infectious diseases means that, compared to much progress in other immune-mediated diseases, we still lack useful biomarkers, new therapies or an effective vaccine in ARF and RHD. Here, we summarise recent literature on the complex interaction between GAS and the human host that culminates in ARF and the subsequent development of RHD. We contrast ARF with other post-infectious streptococcal immune syndromes - post-streptococcal glomerulonephritis (PSGN) and the still controversial paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS), in order to highlight the potential significance of variations in the host immune response to GAS. We discuss a model for the pathogenesis of ARF and RHD in terms of current immunological concepts and the potential for application of in depth "omics" technologies to these ancient scourges.
Collapse
Affiliation(s)
- William John Martin
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Andrew C Steer
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Pierre Robert Smeesters
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Joanne Keeble
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology and Immunology, University of Melbourne, VIC 3010, Australia
| | | | - Ian P Wicks
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3052, Australia.
| |
Collapse
|
124
|
Zhang S, Guo A, Zhu X, You Y, Hou J, Wang Q, Luo X, Cai X. Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode. Acta Trop 2015; 144:31-40. [PMID: 25623259 DOI: 10.1016/j.actatropica.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Enolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced. Western blot indicated that both rTpeno and the native protein in excretion-secretion antigens from the larvae were recognized by anti-rTpeno monoclonal antibodies (MAbs). The primary structure of Tpeno showed the presence of a highly conserved catalytic site for substrate binding and an enolase signature motif. rTpeno enzymatic activities of catalyzing the reversible dehydration of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP) and vice versa were shown to be 30.71 ± 2.15 U/mg (2-PGA to PEP) and 11.29 ± 2.38 U/mg (PEP to 2-PGA), respectively. Far-Western blotting showed that rTpeno could bind to plasminogen, however its binding ability was inhibited by ϵ-aminocaproic acid (ϵACA) in a competitive ELISA test. Plasminogen activation assay showed that plasminogen bound to rTpeno could be converted into active plasmin using host-derived activators. Immunohistochemistry and immunofluorescence indicated that Tpeno was distributed in the bladder wall of the metacestode and the periphery of calcareous corpuscles. In addition, a vaccine trial showed that the enzyme could produce a 36.4% protection rate in vaccinated rabbits against experimental challenges from T. pisiformis eggs. These results suggest that Tpeno with multiple functions may play significant roles in the migration, growth, development and adaptation of T. pisiformis for survival in the host environment.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yanan You
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Junling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Qiuxia Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
125
|
Jeong JM, Kim JW, Kim DH, Park CI. First molecular cloning and gene expression analysis of teleost CD42 (glycoprotein Ib beta chain) GPIb-IX-V subunit from rock bream, Oplegnathus fasciatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:298-302. [PMID: 25445900 DOI: 10.1016/j.dci.2014.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
CD42 is a platelet membrane glycoprotein Ib that plays a key role in haemostasis and thrombin-induced platelet activation. Here, we report the molecular cloning and sequence analysis of the CD42c gene from rock bream (Oplegnathus fasciatus). Rock bream CD42 (RbCD42c) gene expression profiles were determined after infection with Streptococcus iniae, Edwardsiella tarda and red seabream iridovirus (RSIV). The full-length RbCD42c cDNA contained an open reading frame of 624 bp encoding 207 amino acids. The deduced amino acid sequences of the leucine-rich repeat (LRR)-N terminal and LRR-C terminal were conserved between fish and mammals. RbCD42c was highly expressed in red blood cells, spleen, gill, liver and kidney of healthy rock bream. The RbCD42c gene was not significantly up- or downregulated after E. tarda exposure. However, RbCD42c gene expression was upregulated in kidney, spleen and gill after S. iniae infection. RbCD42c was upregulated in spleen, liver and gill, but downregulated in kidney 24 and 48 h after RSIV infection. These results suggest that RbCD42c has different expression patterns after infection with bacterial or viral pathogens. This gene may be directly involved in haemostasis.
Collapse
Affiliation(s)
- Ji-Min Jeong
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, South Korea
| | - Ju-Won Kim
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Nam-gu 599-1, Busan 608-737, South Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, South Korea.
| |
Collapse
|
126
|
Cork AJ, Ericsson DJ, Law RHP, Casey LW, Valkov E, Bertozzi C, Stamp A, Jovcevski B, Aquilina JA, Whisstock JC, Walker MJ, Kobe B. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase. PLoS One 2015; 10:e0121764. [PMID: 25807546 PMCID: PMC4373793 DOI: 10.1371/journal.pone.0121764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation.
Collapse
Affiliation(s)
- Amanda J. Cork
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel J. Ericsson
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology and the ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Melbourne, VIC, 3800, Australia
| | - Lachlan W. Casey
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Carlo Bertozzi
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Blagojce Jovcevski
- School of Biological Sciences and Illawarra Health and Medical Research, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - J. Andrew Aquilina
- School of Biological Sciences and Illawarra Health and Medical Research, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology and the ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Melbourne, VIC, 3800, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- * E-mail: (BK); (MJW)
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- * E-mail: (BK); (MJW)
| |
Collapse
|
127
|
Pian Y, Wang P, Liu P, Zheng Y, Zhu L, Wang H, Xu B, Yuan Y, Jiang Y. Proteomics identification of novel fibrinogen-binding proteins of Streptococcus suis contributing to antiphagocytosis. Front Cell Infect Microbiol 2015; 5:19. [PMID: 25789245 PMCID: PMC4349166 DOI: 10.3389/fcimb.2015.00019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/17/2015] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) induced sepsis and meningitis are often accompanied by bacteremia. However, the mechanism whereby it helps S. suis to evade PMN-mediated phagocytosis remain unclear. Because of the central roles of bacteria-human fibrinogen (hFg) interaction in innate immunity, here, a proteomics based Far-western blotting (PBFWB) was developed to identify the fibrinogen-binding surface proteins of S. suis (SsFBPs) on a large-scale. And then thirteen potential SsFBPs were identified by PBFWB and we selected seven potential surface proteins to further confirm their binding ability to hFg, of which the gene mutant strains of MRP displayed significantly decrease in binding to immobilized hFg. Additionally, the polyclonal antibodies against Enolase were found to significantly inhibit the binding of SS2 to hFg. Strikingly, MRP and Enolase were found to improve the antiphagocytic ability of SS2 to PMNs by interacting with hFg and enhance the survival of SS2 in human blood. Taken together, the PBFWB method provides useful clues to the bacteria-host interactions. These studies firstly disclose MRP and Enolase were involved in immune evasion of SS2 at least in part by binding to Fg, which make them potential targets for therapies for SS2 infection.
Collapse
Affiliation(s)
- Yaya Pian
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Pingping Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Bin Xu
- National Center of Biomedical Analysis, Academy of Military Medical Sciences Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing Institute of Microbiology and Epidemiology Beijing China
| |
Collapse
|
128
|
Götz F, Yu W, Dube L, Prax M, Ebner P. Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol 2014; 305:230-7. [PMID: 25596889 DOI: 10.1016/j.ijmm.2014.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excretion of cytosolic proteins (ECP) has been reported in bacteria and eukaryotes. As none of the classical signal peptide (SP) dependent or SP-independent pathways could be associated with ECP, it has been also referred to as 'non-classical protein export'. When microbiologists first began to study this subject in 1990, mainly singular cytoplasmic proteins were investigated, such as GAPDH at the cell surface and in the supernatant of pathogenic streptococci or glutamine synthetase (GlnA) as a major extracellular protein in pathogenic mycobacteria. Later, with the rising popularity of proteomics, it became obvious that the secretome of most bacteria contained a copious amount of cytosolic proteins. In particular ancient proteins such as glycolytic enzymes, chaperones, translation factors or enzymes involved in detoxification of reactive oxygen were found in the supernatants. As the excreted proteins do not possess a common motive, the most widespread opinion is that ECP is due to cell lysis. Indeed, upregulation of autolysins or distortion of the murein structure increased ECP, suggesting that enhanced ECP is some sort of survival strategy to counteract osmotic stress. However, in the meantime there are mounting evidences and hints that speak against cell lysis as a primary mechanism for ECP. Very likely, ECP belongs to the normal life cycle of bacteria and involves a programmed process. This review provides a brief overview of the 'non-classical protein export'.
Collapse
Affiliation(s)
- Friedrich Götz
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany.
| | - Wenqi Yu
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Linda Dube
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Marcel Prax
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
129
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
130
|
Romero-Saavedra F, Laverde D, Wobser D, Michaux C, Budin-Verneuil A, Bernay B, Benachour A, Hartke A, Huebner J. Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections. PLoS One 2014; 9:e111880. [PMID: 25369230 PMCID: PMC4219796 DOI: 10.1371/journal.pone.0111880] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/02/2014] [Indexed: 01/17/2023] Open
Abstract
Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10%) by trypsin shaving, in 47 (15%) by elution at high pH, and 27 (63%) by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc) allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5), a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM), a D-alanyl-D-alanine carboxypeptidase (DdcP) and the peptidyl-prolyl cis-trans isomerase (PpiC). Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins reduced significantly the colony counts of E. faecium E155 in mice, indicating the effectiveness of these surface-related proteins as promising vaccine candidates to target different enterococcal pathogens.
Collapse
Affiliation(s)
- Felipe Romero-Saavedra
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Diana Laverde
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Charlotte Michaux
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | | | - Benoit Bernay
- Proteogen platform SFR ICORE 4206, University of Caen Lower-Normandy, Caen, France
| | - Abdellah Benachour
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Axel Hartke
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
131
|
Abstract
PURPOSE OF REVIEW Increasing disease caused by beta-haemolytic streptococci indicates the need for improved understanding of pathogenesis. RECENT FINDINGS Streptococcus pyogenes, or group A Streptococcus (GAS), causes significant disease worldwide. The closely related Streptococcus dysgalactiae subspecies equisimilis (SDSE) is increasingly recognized as causing a similar disease spectrum. Whole-genome sequencing applied to the study of outbreaks may reveal factors that contribute to pathogenesis and changes in epidemiology. The role of quorum sensing in biofilm formation, and interspecies communication with other streptococci, is discussed. GAS has evolved multiple mechanisms to evade the humoral arm of innate immunity, including complement, which is well known in protecting the host from bacteria, and the coagulation-fibrinolytic system, which is increasingly recognized as an innate immune effector. SUMMARY Molecular biology has enhanced our understanding of the intricate balance of host-pathogen interactions that result in clearance or establishment of invasive streptococcal infection. Although the skin and oropharynx remain the usual ecological niche of GAS and SDSE, occasionally the bacteria find themselves within deeper tissues and blood. Recent research has armed us with better knowledge of bacterial adaptations to this alternative environment. However, the challenge is to translate this knowledge into clinical practice, through the development of novel therapeutic options and ultimately a vaccine against GAS.
Collapse
|
132
|
Henningham A, Yamaguchi M, Aziz RK, Kuipers K, Buffalo CZ, Dahesh S, Choudhury B, Van Vleet J, Yamaguchi Y, Seymour LM, Ben Zakour NL, He L, Smith HV, Grimwood K, Beatson SA, Ghosh P, Walker MJ, Nizet V, Cole JN. Mutual exclusivity of hyaluronan and hyaluronidase in invasive group A Streptococcus. J Biol Chem 2014; 289:32303-32315. [PMID: 25266727 PMCID: PMC4231703 DOI: 10.1074/jbc.m114.602847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Masaya Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Ramy K Aziz
- Systems Biology Research Group, University of California San Diego, La Jolla, California 92093; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HC Nijmegen, The Netherlands
| | - Cosmo Z Buffalo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Jeremy Van Vleet
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Yuka Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Lisa M Seymour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nouri L Ben Zakour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lingjun He
- Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182
| | - Helen V Smith
- Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Herston, Queensland 4029, Australia, and
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, and University of California San Diego, La Jolla, California 92093; Rady Children's Hospital, San Diego, California 92123
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia,.
| |
Collapse
|
133
|
Bao S, Guo X, Yu S, Ding J, Tan L, Zhang F, Sun Y, Qiu X, Chen G, Ding C. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein. BMC Vet Res 2014; 10:223. [PMID: 25253294 PMCID: PMC4189797 DOI: 10.1186/s12917-014-0223-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated. Results We demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10−3 M and 0.739 μmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti–rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum. Conclusion These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti–rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0223-6) contains supplementary material, which is available to authorized users.
Collapse
|
134
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
135
|
Polle JEW, Neofotis P, Huang A, Chang W, Sury K, Wiech EM. Carbon partitioning in green algae (chlorophyta) and the enolase enzyme. Metabolites 2014; 4:612-28. [PMID: 25093929 PMCID: PMC4192683 DOI: 10.3390/metabo4030612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023] Open
Abstract
The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.
Collapse
Affiliation(s)
- Jürgen E W Polle
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Peter Neofotis
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Andy Huang
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - William Chang
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Kiran Sury
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Eliza M Wiech
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| |
Collapse
|
136
|
Liu M, Jia L, Li J, Xue S, Gao X, Yu L, Zhang S. Interactive host cells related to Mycoplasma suis α-enolase by yeast two-hybrid analysis. Res Vet Sci 2014; 97:282-7. [PMID: 25085536 DOI: 10.1016/j.rvsc.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022]
Abstract
Mycoplasma suis belongs to the haemotrophic mycoplasmas, which colonise the red blood cells of a wide range of vertebrates. Adhesion to red blood cells is the crucial step in the unique lifecycle of M. suis. In addition to MSG1 protein, α-enolase is the second adhesion protein of M. suis, and may be involved in the adhesion of M. suis to porcine red blood cells (RBC). To simulate the environment of the RBC, we established the cDNA library of swine peripheral blood mononuclear cells (PBMC). The yeast two-hybrid (Y2H) system was adopted to screen α-enolase interactive proteins in the PBMC line. Alignment with the NCBI database revealed four interactive proteins: beta-actin, 60S ribosomal protein L11, clusterin precursor and endonuclease/reverse transcriptase. However, the M. suis α-enolase interactive proteins in the PBMC cDNA library obtained in the current study provide valuable information about the host cell interactions of the M. suis α-enolase protein.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China
| | - Lijun Jia
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China
| | - Jixu Li
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China
| | - Shujiang Xue
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China
| | - Xu Gao
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China
| | - Longzheng Yu
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China
| | - Shoufa Zhang
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133002, China.
| |
Collapse
|
137
|
The interaction of enolase-1 with caveolae-associated proteins regulates its subcellular localization. Biochem J 2014; 460:295-307. [PMID: 24628430 DOI: 10.1042/bj20130945] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell-surface-associated proteolysis plays a crucial role in embryonic development, monocyte/macrophage recruitment and tumour cell invasion. The glycolytic enzyme ENO-1 (enolase-1) is translocated from the cytoplasm to the cell surface, where it binds PLG (plasminogen) to enhance pericellular plasmin production and cell motility. In the present study, ENO-1 was found to localize to a specialized subset of lipid rafts called caveolae as demonstrated by fluorescence confocal microscopy and sucrose gradient ultracentrifugation. Co-immunoprecipitation studies revealed that ENO-1 interacts with Cav-1 (caveolin-1), but not with Cav-2, via the CSD (Cav-scaffolding domain). Moreover, an evolutionarily conserved CBM (Cav-binding motif) F296DQDDWGAW304 was identified within ENO-1. The point mutation W301A within the ENO-1 CBM was, however, not sufficient to disrupt ENO-1-Cav-1 interaction, whereas the mutations F296A and W304A markedly affected ENO-1 protein expression. Furthermore, ENO-1 was found associated with Annx2 (annexin 2), representing another caveolar protein, and this interaction was dependent on Cav-1 expression. Knockdown of Cav-1 and Annx2 markedly decreased cell surface expression of ENO-1. ENO-1 overexpression increased cell migration and invasion in a Cav-1-dependent manner. Thus the differential association of ENO-1 with caveolar proteins regulates ENO-1 subcellular localization and, consequently, ENO-1-dependent cell migration and invasion.
Collapse
|
138
|
|
139
|
Perry E, Kelly C, Eggleton P, De Soyza A, Hutchinson D. The lung in ACPA-positive rheumatoid arthritis: an initiating site of injury? Rheumatology (Oxford) 2014; 53:1940-50. [DOI: 10.1093/rheumatology/keu195] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
140
|
Yang CK, Zhang XZ, Lu CD, Tai PC. An internal hydrophobic helical domain of Bacillus subtilis enolase is essential but not sufficient as a non-cleavable signal for its secretion. Biochem Biophys Res Commun 2014; 446:901-5. [PMID: 24642254 PMCID: PMC4036616 DOI: 10.1016/j.bbrc.2014.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/09/2014] [Indexed: 11/21/2022]
Abstract
Many cytoplasmic proteins without a cleavable signal peptide, including enolase, are secreted during the stationary phase in Bacillus subtilis but the molecular mechanism is not yet clear. We previously identified a highly conserved embedded membrane domain in an internal hydrophobic α-helix of enolase that plays an important role in its secretion. In this study, we examined the role of the helix in more detail for the secretion of enolase. Altering this helix by mutations showed that many mutated forms in this domain were not secreted, some of which were not stable as a soluble form in the cytoplasm. On the other hand, mutations on the flanking regions of the helix or the conserved basic residues showed no deleterious effect. Bacillus enolase with the proper hydrophobic helical domain was also exported extracellularly in Escherichia coli, indicating that the requirement of the helix for the secretion of enolase is conserved in these species. GFP fusions with enolase regions showed that the hydrophobic helix domain itself was not sufficient to serve as a functional secretion signal; a minimal length of N-terminus 140 amino acids was required to mediate the secretion of the fused reporter GFP. We conclude that the internal hydrophobic helix of enolase is essential but is not sufficient as a signal for secretion; the intact long N-terminus including the hydrophobic helix domain is required to serve as a non-cleavable signal for the secretion of Bacillus enolase.
Collapse
Affiliation(s)
- Chun-Kai Yang
- Department of Biology, and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Xiao-Zhou Zhang
- Department of Biology, and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Chung-Dar Lu
- Department of Biology, and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Phang C Tai
- Department of Biology, and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
141
|
Papadimitriou K, Anastasiou R, Mavrogonatou E, Blom J, Papandreou NC, Hamodrakas SJ, Ferreira S, Renault P, Supply P, Pot B, Tsakalidou E. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex. BMC Genomics 2014; 15:272. [PMID: 24713045 PMCID: PMC4051162 DOI: 10.1186/1471-2164-15-272] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022] Open
Abstract
Background Within the genus Streptococcus, only Streptococcus
thermophilus is used as a starter culture in food fermentations.
Streptococcus macedonicus though, which belongs to the
Streptococcus bovis/Streptococcus equinus complex
(SBSEC), is also frequently isolated from fermented foods mainly of dairy
origin. Members of the SBSEC have been implicated in human endocarditis and
colon cancer. Here we compare the genome sequence of the dairy isolate
S. macedonicus ACA-DC 198 to the other SBSEC genomes in order
to assess in silico its potential adaptation to milk and its
pathogenicity status. Results Despite the fact that the SBSEC species were found tightly related based on
whole genome phylogeny of streptococci, two distinct patterns of evolution
were identified among them. Streptococcus macedonicus, Streptococcus
infantarius CJ18 and Streptococcus pasteurianus ATCC 43144
seem to have undergone reductive evolution resulting in significantly
diminished genome sizes and increased percentages of potential pseudogenes
when compared to Streptococcus gallolyticus subsp.
gallolyticus. In addition, the three species seem to have lost
genes for catabolizing complex plant carbohydrates and for detoxifying toxic
substances previously linked to the ability of S. gallolyticus to
survive in the rumen. Analysis of the S. macedonicus genome
revealed features that could support adaptation to milk, including an extra
gene cluster for lactose and galactose metabolism, a proteolytic system for
casein hydrolysis, auxotrophy for several vitamins, an increased ability to
resist bacteriophages and horizontal gene transfer events with the dairy
Lactococcus lactis and S. thermophilus as potential
donors. In addition, S. macedonicus lacks several
pathogenicity-related genes found in S. gallolyticus. For example,
S. macedonicus has retained only one (i.e. the pil3)
of the three pilus gene clusters which may mediate the binding of S.
gallolyticus to the extracellular matrix. Unexpectedly, similar
findings were obtained not only for the dairy S. infantarius CJ18,
but also for the blood isolate S. pasteurianus ATCC 43144. Conclusions Our whole genome analyses suggest traits of adaptation of S.
macedonicus to the nutrient-rich dairy environment. During this
process the bacterium gained genes presumably important for this new
ecological niche. Finally, S. macedonicus carries a reduced number
of putative SBSEC virulence factors, which suggests a diminished pathogenic
potential.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Brissette CA, Gaultney RA. That's my story, and I'm sticking to it--an update on B. burgdorferi adhesins. Front Cell Infect Microbiol 2014; 4:41. [PMID: 24772392 PMCID: PMC3982108 DOI: 10.3389/fcimb.2014.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/18/2014] [Indexed: 11/25/2022] Open
Abstract
Adhesion is the initial event in the establishment of any infection. Borrelia burgdorferi, the etiological agent of Lyme disease, possesses myriad proteins termed adhesins that facilitate contact with its vertebrate hosts. B. burgdorferi adheres to host tissues through interactions with host cells and extracellular matrix, as well as other molecules present in serum and extracellular fluids. These interactions, both general and specific, are critical in the establishment of infection. Modulation of borrelial adhesion to host tissues affects the microorganisms's ability to colonize, disseminate, and persist. In this review, we update the current knowledge on structure, function, and role in pathogenesis of these “sticky” B. burgdorferi infection-associated proteins.
Collapse
Affiliation(s)
- Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| | - Robert A Gaultney
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| |
Collapse
|
143
|
Schulz C, Hammerschmidt S. Exploitation of physiology and metabolomics to identify pneumococcal vaccine candidates. Expert Rev Vaccines 2014; 12:1061-75. [PMID: 24053399 DOI: 10.1586/14760584.2013.824708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is the etiologic agent of community-acquired pneumonia and invasive pneumococcal diseases such as septicemia and bacterial meningitis. The increasing antibiotic resistance and the suboptimal efficacy or limited serotype coverage of currently available vaccines urgently requires novel approaches in exploring new antimicrobials, therapeutic intervention strategies and vaccines. The current vaccine development strategies rely on the hypothesis that surface-exposed proteins, which are essential for pneumococcal virulence, are the most suitable candidates for future protein-based vaccines. Since virulence is closely linked with bacterial fitness, the potential of a pathogen to colonize and infect the host depends further on its physiology. This review summarizes the application of genome-wide techniques and their exploitation to decipher fundamental insights into bacterial factors associated with fitness, metabolism and virulence, leading to the discovery of vaccine candidates or antimicrobials.
Collapse
Affiliation(s)
- Christian Schulz
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D 17487 Greifswald, Germany
| | | |
Collapse
|
144
|
Ceremuga I, Seweryn E, Bednarz-Misa I, Pietkiewicz J, Jermakow K, Banaś T, Gamian A. Enolase-like protein present on the outer membrane of Pseudomonas aeruginosa binds plasminogen. Folia Microbiol (Praha) 2014; 59:391-7. [PMID: 24671511 PMCID: PMC4133640 DOI: 10.1007/s12223-014-0311-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/18/2014] [Indexed: 11/27/2022]
Abstract
Pseudomonas aeruginosa is one of the pathogenic bacteria which utilize binding of the host plasminogen (Plg) to promote their invasion throughout the host tissues. In the present study, we confirmed that P. aeruginosa exhibits binding affinity for human plasminogen. Furthermore, we showed that the protein detected on the cell wall of P. aeruginosa and binding human plasminogen is an enolase-like protein. The hypothesis that alpha-enolase, a cytoplasmatic glycolytic enzyme, resides also on the cell surface of the bacterium was supported by electron microscopy analysis. The plasminogen-binding activity of bacterial cell wall outer membrane enolase-like protein was examined by immunoblotting assay.
Collapse
Affiliation(s)
- Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland,
| | | | | | | | | | | | | |
Collapse
|
145
|
Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. BIOLOGY 2014; 3:178-204. [PMID: 24833341 PMCID: PMC4009768 DOI: 10.3390/biology3010178] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions.
Collapse
Affiliation(s)
- Veera Kainulainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Timo K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
146
|
EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PLoS One 2014; 9:e91035. [PMID: 24608122 PMCID: PMC3946673 DOI: 10.1371/journal.pone.0091035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Glycosidases are widespread among bacteria. The opportunistic human pathogen Enterococcus faecalis encodes several putative glycosidases but little is known about their functions. The identified endo-β-N-acetylglucosaminidase EndoE has activity on the N-linked glycans of the human immunoglobulin G (IgG). In this report we identified the human glycoprotein lactoferrin (hLF) as a new substrate for EndoE. Hydrolysis of the N-glycans from hLF was investigated using lectin blot, UHPLC and mass spectrometry, showing that EndoE releases major glycoforms from this protein. hLF was shown to inhibit biofilm formation of E. faecalis in vitro. Glycans of hLF influence the binding to E. faecalis, and EndoE-hydrolyzed hLF inhibits biofilm formation to lesser extent than intact hLF indicating that EndoE prevents the inhibition of biofilm. In addition, hLF binds to a surface-associated enolase of E. faecalis. Culture experiments showed that the activity of EndoE enables E. faecalis to use the glycans derived from lactoferrin as a carbon source indicating that they could be used as nutrients in vivo when no other preferred carbon source is available. This report adds important information about the enzymatic activity of EndoE from the commensal and opportunist E. faecalis. The activity on the human glycoprotein hLF, and the functional consequences with reduced inhibition of biofilm formation highlights both innate immunity functions of hLF and a bacterial mechanism to evade this innate immunity function. Taken together, our results underline the importance of glycans in the interplay between bacteria and the human host, with possible implications for both commensalism and opportunism.
Collapse
|
147
|
Temporal–spatial expression of ENOLASE after acute spinal cord injury in adult rats. Neurosci Res 2014; 79:76-82. [DOI: 10.1016/j.neures.2013.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 02/03/2023]
|
148
|
In silico approach for the identification of immunological properties of enolase from Trypanosoma cruzi and its possible usefulness as vaccine in Chagas disease. Parasitol Res 2014; 113:1029-39. [PMID: 24442239 DOI: 10.1007/s00436-013-3737-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Nowadays, Chagas disease is a major health problem in Latin America that has been disseminated also into non-endemic countries. Currently, a vaccine against Chagas disease does not exist. In the present study, the gene encoding Trypanosoma cruzi enolase (TcENO) was amplified, cloned, and sequenced and the recombinant protein was purified. We used in silico and an experimental assay to investigate the immunological role of TcENO. The in silico assays showed that TcENO sequence contains characteristic motifs of enolase; additionally, a transmembranal region was identified, and this could indicate the potential membrane localization of TcENO. Moreover, both B lymphocyte and cytotoxic T lymphocytes (CTL) predicted epitopes were localized; these results suggest the possibility that TcENO can develop both humoral and cellular immune responses. Furthermore, the presence of antibodies was verified by western blot assays, showing that the purified recombinant protein was detected by sera from experimentally infected mice and sera of patients with Chagas disease. These results indicate that TcENO is immunogenic and could be used as a vaccine candidate.
Collapse
|
149
|
Abstract
Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.
Collapse
Affiliation(s)
- Paul T Heath
- Department of Child Health and Vaccine Institute, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
150
|
Ho LP, Chang CJ, Liu HC, Yang HL, Lin JHY. Evaluating the protective efficacy of antigen combinations against Photobacterium damselae ssp. piscicida infections in cobia, Rachycentron canadum L. JOURNAL OF FISH DISEASES 2014; 37:51-62. [PMID: 24206018 DOI: 10.1111/j.1365-2761.2012.01424.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/21/2012] [Accepted: 06/29/2012] [Indexed: 06/02/2023]
Abstract
Cobia, Rachycentron canadum L., is a very important aquatic fish that faces the risk of infection with the bacterial pathogen Photobacterium damselae ssp. piscicida, and there are few protective approaches available that use multiple antigens. In the present study, potent bivalent antigens from P. damselae ssp. piscicida showed more efficient protection than did single antigens used in isolation. In preparations of three antigens that included recombinant heat shock protein 60 (rHSP60), recombinant α-enolase (rENOLASE) and recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH), we analysed the doses that elicited the best immune responses and found that this occurred at a total of 30 μg of antigen per fish. Subsequently, vaccination of fish with rHSP60, rENOLASE and rGAPDH achieved 46.9, 52 and 25% relative per cent survival (RPS), respectively. In addition, bivalent subunit vaccines--combination I (rHSP60 + rENOLASE), combination II (rENOLASE + rGAPDH) and combination III (rHSP60 + rGAPDH)--were administered and the RPS in these groups (65.6, 64.0 and 48.4%, respectively), was higher than that achieved with single-antigen administration. Finally, in combination IV, the trivalent vaccine rHSP60 + rENOLASE + rGAPDH, the RPS was 1.6%. Taken together, our results suggest that combinations of two antigens may achieve a better efficiency than monovalent or trivalent antigens, and this may provide new insights into pathogen prevention strategies.
Collapse
Affiliation(s)
- L-P Ho
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|