101
|
Mosi RM, Anastassova V, Cox J, Darkes MC, Idzan SR, Labrecque J, Lau G, Nelson KL, Patel K, Santucci Z, Wong RSY, Skerlj RT, Bridger GJ, Huskens D, Schols D, Fricker SP. The molecular pharmacology of AMD11070: an orally bioavailable CXCR4 HIV entry inhibitor. Biochem Pharmacol 2011; 83:472-9. [PMID: 22146583 DOI: 10.1016/j.bcp.2011.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 10/15/2022]
Abstract
In order to enter and infect human cells HIV must bind to CD4 in addition to either the CXCR4 or the CCR5 chemokine receptor. AMD11070 was the first orally available small molecule antagonist of CXCR4 to enter the clinic. Herein we report the molecular pharmacology of AMD11070 which is a potent inhibitor of X4 HIV-1 replication and the gp120/CXCR4 interaction. Using the CCRF-CEM T cell line that endogenously expresses CXCR4 we have demonstrated that AMD11070 is an antagonist of SDF-1α ligand binding (IC50 = 12.5 ± 1.3 nM), inhibits SDF-1 mediated calcium flux (IC50 = 9.0 ± 2.0 nM) and SDF-1α mediated activation of the CXCR4 receptor as measured by a Eu-GTP binding assay (IC50 =39.8 ± 2.5 nM) or a [(35)S]-GTPγS binding assay (IC50 =19.0 ± 4.1 nM), and inhibits SDF-1α stimulated chemotaxis (IC50 =19.0 ± 4.0 nM). AMD11070 does not inhibit calcium flux of cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7, or ligand binding to CXCR7 and BLT1, demonstrating selectivity for CXCR4. In addition AMD11070 is able to inhibit the SDF-1β isoform interactions with CXCR4; and N-terminal truncated variants of CXCR4 with equal potency to wild type receptor. Further mechanistic studies indicate that AMD11070 is an allosteric inhibitor of CXCR4.
Collapse
Affiliation(s)
- Renee M Mosi
- AnorMED Inc., #200 - 20353 64th Avenue, Langley, BC V2Y 1N5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Herschhorn A, Finzi A, Jones DM, Courter JR, Sugawara A, Smith AB, Sodroski JG. An inducible cell-cell fusion system with integrated ability to measure the efficiency and specificity of HIV-1 entry inhibitors. PLoS One 2011; 6:e26731. [PMID: 22069466 PMCID: PMC3206054 DOI: 10.1371/journal.pone.0026731] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/03/2011] [Indexed: 11/19/2022] Open
Abstract
HIV-1 envelope glycoproteins (Envs) mediate virus entry by fusing the viral and target cell membranes, a multi-step process that represents an attractive target for inhibition. Entry inhibitors with broad-range activity against diverse isolates of HIV-1 may be extremely useful as lead compounds for the development of therapies or prophylactic microbicides. To facilitate the identification of such inhibitors, we have constructed a cell-cell fusion system capable of simultaneously monitoring inhibition efficiency and specificity. In this system, effector cells stably express a tetracycline-controlled transactivator (tTA) that enables tightly inducible expression of both HIV-1 Env and the Renilla luciferase (R-Luc) reporter protein. Target cells express the HIV-1 receptors, CD4 and CCR5, and carry the firefly luciferase (F-Luc) reporter gene under the control of a tTA-responsive promoter. Thus, Env-mediated fusion of these two cell types allows the tTA to diffuse to the target cell and activate the expression of the F-Luc protein. The efficiency with which an inhibitor blocks cell-cell fusion is measured by a decrease in the F-Luc activity, while the specificity of the inhibitor is evaluated by its effect on the R-Luc activity. The system exhibited a high dynamic range and high Z'-factor values. The assay was validated with a reference panel of inhibitors that target different steps in HIV-1 entry, yielding inhibitory concentrations comparable to published virus inhibition data. Our system is suitable for large-scale screening of chemical libraries and can also be used for detailed characterization of inhibitory and cytotoxic properties of known entry inhibitors.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andres Finzi
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph G. Sodroski
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
103
|
Konoplev S, Jorgensen JL, Thomas DA, Lin E, Burger J, Kantarjian HM, Andreeff M, Medeiros LJ, Konopleva M. Phosphorylated CXCR4 is associated with poor survival in adults with B-acute lymphoblastic leukemia. Cancer 2011; 117:4689-95. [PMID: 21456010 DOI: 10.1002/cncr.26113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND CXC chemokine receptor 4 (CXCR4) is activated by phosphorylation (pCXCR4) and is essential for the migration of hematopoietic precursors to bone marrow. CXCR4 overexpression predicts a poor prognosis in patients with acute myeloid leukemia. Data regarding the prognostic impact of CXCR4 in patients with B-acute lymphoblastic leukemia (B-ALL) are sparse and limited to the pediatric population. METHODS The authors analyzed CXCR4 and pCXCR4 expression in 54 adults with newly diagnosed B-ALL. CXCR4 was assessed by flow cytometry (FC) and immunohistochemistry (IHC) using an anti-CXCR4 antibody. pCXCR4 expression was assessed using an anti-pCXCR4 antibody. RESULTS The study group included 30 men and 24 women with a median age of 42 years (range, 17-84 years). Philadelphia chromosome was present in 19 patients. The median follow-up was 16 months (range, 17-84 months). Forty-nine patients had a complete response, and 12 patients relapsed with a median relapse free survival >120 weeks. Fifteen patients (28%) died with a median survival >125 weeks. CXCR4 detected by FC and IHC was highly correlated (P < .001). CXCR4 was not associated with clinical or laboratory findings or survival. In contrast, pCXCR4 was associated with higher leukocyte count (P = .006) and serum bilirubin level (P = .03). In multivariate analysis, pCXCR4 expression (P = .027), high serum creatinine level (P < .01), presence of the Philadelphia chromosome (P = .017), and late clinical response (P < .001) were associated with worse overall survival. CONCLUSIONS The current results indicated that detection of the activated form of CXCR4, pCXCR4, provides independent prognostic information in adult patients with B-ALL.
Collapse
Affiliation(s)
- Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Berchanski A, Kalinkovich A, Ludin A, Lapidot T, Lapidot A. Insights into the mechanism of enhanced mobilization of hematopoietic progenitor cells and release of CXCL12 by a combination of AMD3100 and aminoglycoside-polyarginine conjugates. FEBS J 2011; 278:4150-65. [PMID: 21910828 DOI: 10.1111/j.1742-4658.2011.08348.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow to the peripheral blood is utilized in clinical HSPC transplantation protocols. Retention of HSPCs in the bone marrow is determined by relationships between the chemokine chemokine (C-X-C motif) ligand 12 (CXCL12) and its major receptor C-X-C chemokine receptor type 4 (CXCR4), and disruption of this retention by CXCR4 antagonists such as AMD3100 induces rapid HSPC mobilization. Here, we report that aminoglycoside-polyarginine conjugates (APACs) and N-α-acetyl-nona-D-arginine (r9) induce mobilization of white blood cells and, preferentially, immature hematopoietic progenitor cells (HPCs) in mice, similarly to AMD3100. Remarkably, administration of AMD3100 with each one of the APACs or r9 caused additional HPC mobilization. The mobilizing activity of APACs and r9 was accompanied by a significant elevation in plasma CXCL12 levels. To further understand how APACs, r9 and their combinations with AMD3100 compete with CXCL12 binding to CXCR4, as well with antibody against CXCR4 for CXCR4 binding, we have undertaken an approach combining experimental validation and docking to determine plausible binding modes for these ligands. On the basis of our biological and docking findings, and recently published NMR data, we suggest that combination of pairs of compounds such as APACs (or r9) with AMD3100 induces more efficient disruption of the CXCL12-CXCR4 interaction than AMD3100 alone, resulting in enhanced HPC mobilization.
Collapse
Affiliation(s)
- Alexander Berchanski
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
105
|
Heckmann D, Laufs S, Maier P, Zucknick M, Giordano FA, Veldwijk MR, Eckstein V, Wenz F, Zeller WJ, Fruehauf S, Allgayer H. A Lentiviral CXCR4 overexpression and knockdown model in colorectal cancer cell lines reveals plerixafor-dependent suppression of SDF-1α-induced migration and invasion. Oncol Res Treat 2011; 34:502-8. [PMID: 21985848 DOI: 10.1159/000332390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The development of distant metastasis is associated with poor outcome in patients with colorectal cancer (CRC). The stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) have pivotal roles in the chemotaxis of migrating tumor cells during metastasis. Thus, hampering the SDF-1/CXCR4 cross-talk is a promising strategy to suppress metastasis. METHODS We investigated the invasive behavior of the lentivirally CXCR4 overexpressing CRC cell lines SW480, SW620 and RKO in chemotaxis and invasion assays toward an SDF-1α gradient. Low endogenous CXCR4 expression levels were determined by quantitative realtime polymerase chain reaction (PCR) and fluorescence-activated cell sorting (FACS) analyses. RESULTS A lentiviral CXCR4 overexpression and knockdown model was established in these CRC cells. In transwell migration assays, CXCR4 overexpression favored chemotaxis and invasion of cells in all 3 lines depending on an SDF-1α gradient (p < 0.001 vs. untransduced cells). Functional CXCR4 knockdown using lentiviral short hairpin RNA (shRNA) vectors significantly decreased the migration behavior in CRC cell lines (p < 0.001), confirming a CXCR4-specific effect. Pharmacologic inhibition of the SDF-1α/CXCR4 interaction by the bicyclam Plerixafor(TM) at 100 μM significantly abrogated CXCR4-dependent migration and invasion through Matrigel(TM) (SW480, SW620, RKO; p < 0.05). CONCLUSION Our results indicate that a CXCR4-antagonistic therapy might prevent tumor cell dissemination and metastasis in CRC patients, consequently improving survival.
Collapse
Affiliation(s)
- Doreen Heckmann
- Molecular Oncology of Solid Tumors, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Novel agents and approaches for stem cell mobilization in normal donors and patients. Bone Marrow Transplant 2011; 47:1154-63. [DOI: 10.1038/bmt.2011.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
107
|
Hübel K, Fresen MM, Salwender H, Basara N, Beier R, Theurich S, Christopeit M, Bogner C, Galm O, Hartwig R, Heits F, Lordick F, Rösler W, Wehler D, Zander AR, Albert MH, Dressler S, Ebinger M, Frickhofen N, Hertenstein B, Kiehl M, Liebler S, von Lilienfeld-Toal M, Weidmann E, Weigelt C, Lange F, Kröger N. Plerixafor with and without chemotherapy in poor mobilizers: results from the German compassionate use program. Bone Marrow Transplant 2011; 46:1045-52. [PMID: 20972470 DOI: 10.1038/bmt.2010.249] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/28/2010] [Accepted: 08/23/2010] [Indexed: 11/09/2022]
Abstract
The CXCR4-inhibitor plerixafor mobilizes hematopoietic stem cells amplifying the effects of granulocyte-CSF (G-CSF). Before approval plerixafor was used in a compassionate use program (CUP) for patients who failed a previous mobilization. In the German CUP 60 patients from 23 centers (median age 56.5 years (2-75)) were given 240 μg/kg plerixafor SC 9-11 h before apheresis. A total of 78.3% (47/60) received G-CSF for 4 days before plerixafor administration; 76.6% of those (36/47) yielded at least 2.0 × 10(6) CD34(+) cells/μL. The median cell yield was 3.35 × 10(6) CD34+ cells/kg (0-29.53). Nine patients received plerixafor alone or with G-CSF for less than 4 days mobilizing a median of 3.30 × 10(6) CD34+ cells/kg (1.6-5.6). There was no significant difference between G-CSF application for 4 days and for a shorter period of time (P=0.157). A total of 47 patients received plerixafor plus G-CSF combined with chemotherapy yielding a median of 3.28 × 10(6) CD34+ cells/kg (0-24.79). In all, 40 of 60 patients (66.7%) proceeded to transplantation, and achieved a timely and stable engraftment. Side effects were rare and manageable. In conclusion, mobilization with plerixafor in poor mobilizers is safe and results in a sufficient stem cell harvest in the majority of patients.
Collapse
Affiliation(s)
- K Hübel
- University Hospital of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Kawatkar SP, Yan M, Gevariya H, Lim MY, Eisold S, Zhu X, Huang Z, An J. Computational analysis of the structural mechanism of inhibition of chemokine receptor CXCR4 by small molecule antagonists. Exp Biol Med (Maywood) 2011; 236:844-50. [PMID: 21697335 DOI: 10.1258/ebm.2011.010345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the structural mechanism of receptor-ligand interactions for the chemokine receptor CXCR4 is essential for determining its physiological and pathological functions and for developing new therapies targeted to CXCR4. We have recently reported a structural mechanism for CXCR4 antagonism by a novel synthetic CXCR4 antagonist RCP168 and compared its effectiveness against the natural agonist SDF-1α. In the present study, using molecular docking, we further investigate the binding modes of another seven small molecules known to act as CXCR4 antagonists. The predicted binding modes were compared with previously published mutagenesis data for two of these (AMD3100 and AMD11070). Four antagonists, including AMD3100, AMD11070, FC131 and KRH-1636, bound in a similar fashion to CXCR4. Two important acidic amino acid residues (Asp262 and Glu288) on CXCR4, previously found essential for AMD3100 binding, were also involved in binding of the other ligands. These four antagonists use a binding site in common with that used by RCP168, which is a novel synthetic derivative of vMIP-II in which the first 10 residues are replaced by D-amino acids. Comparison of binding modes suggested that this binding site is different from the binding region occupied by the N-terminus of SDF-1α, the only known natural ligand of CXCR4. These observations suggest the presence of a ligand-binding site (site A) that co-exists with the agonist (SDF-1α) binding site (site B). The other three antagonists, including MSX123, MSX202 and WZ811, are smaller in size and had very similar binding poses, but binding was quite different from that of AMD3100. These three antagonists bound at both sites A and B, thereby blocking both binding and signaling by SDF-1α.
Collapse
Affiliation(s)
- Sameer P Kawatkar
- Raylight Corporation, Chemokine Pharmaceutical Inc, San Diego, CA 92126, USA.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
De Silva RA, Peyre K, Pullambhatla M, Fox JJ, Pomper MG, Nimmagadda S. Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med 2011; 52:986-93. [PMID: 21622896 PMCID: PMC3155288 DOI: 10.2967/jnumed.110.085613] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chemokine receptor 4 (CXCR4) is overexpressed in several cancers and metastases and as such presents an enticing target for molecular imaging of metastases and metastatic potential of the primary tumor. CXCR4-based imaging agents could also be useful for diagnosis, staging, and therapeutic monitoring. Here we evaluated a positron-emitting monocyclam analog, (64)Cu-{N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethyl)pyridine} ((64)Cu-AMD3465), in subcutaneous U87 brain tumors and U87 tumors stably expressing CXCR4 (U87-stb-CXCR4) and in colon tumors (HT-29) using dynamic and whole-body PET supported by ex vivo biodistribution studies. Both dynamic and whole-body PET/CT studies show specific accumulation of radioactivity in U87-stb-CXCR4 tumors, with the percentage injected dose per gram reaching a maximum of 102.70 ± 20.80 at 60 min and tumor-to-muscle ratios reaching a maximum of 362.56 ± 153.51 at 90 min after injection of the radiotracer. Similar specificity was also observed in the HT-29 colon tumor model. Treatment with AMD3465 inhibited uptake of radioactivity by the tumors in both models. Our results show that (64)Cu-AMD3465 is capable of detecting lesions in a CXCR4-dependent fashion, with high target selectivity, and may offer a scaffold for the synthesis of clinically translatable agents.
Collapse
Affiliation(s)
- Ravindra A De Silva
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
110
|
Labrecque J, Metz M, Lau G, Darkes MC, Wong RSY, Bogucki D, Carpenter B, Chen G, Li T, Nan S, Schols D, Bridger GJ, Fricker SP, Skerlj RT. HIV-1 entry inhibition by small-molecule CCR5 antagonists: a combined molecular modeling and mutant study using a high-throughput assay. Virology 2011; 413:231-43. [PMID: 21388649 DOI: 10.1016/j.virol.2011.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/13/2011] [Accepted: 02/18/2011] [Indexed: 02/01/2023]
Abstract
Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.
Collapse
Affiliation(s)
- Jean Labrecque
- Department of Biology, AnorMED Inc. now Genzyme Corporation, 500 Kendall Street, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Jain V, Saravanan P, Arvind A, Mohan CG. First pharmacophore model of CCR3 receptor antagonists and its homology model-assisted, stepwise virtual screening. Chem Biol Drug Des 2011; 77:373-87. [PMID: 21284830 DOI: 10.1111/j.1747-0285.2011.01088.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CCR3, a G protein-coupled receptor, plays a central role in allergic inflammation and is an important drug target for inflammatory diseases. To understand the structure-function relationship of CCR3 receptor, different computational techniques were employed, which mainly include: (i) homology modeling of CCR3 receptor, (ii) 3D-quantitative pharmacophore model of CCR3 antagonists, (iii) virtual screening of small compound databases, and (iv) finally, molecular docking at the binding site of the CCR3 receptor homology model. Pharmacophore model was developed for the first time, on a training data set of 22 CCR3 antagonists, using CATALYST HypoRefine program. Best hypothesis (Hypo1) has three different chemical features: two hydrogen-bond acceptors, one hydrophobic, and one ring aromatic. Hypo1 model was further validated using (i) 87 test set CCR3 antagonists, (ii) Cat Scramble randomization technique, and (iii) Decoy data set. Molecular docking studies were performed on modeled CCR3 receptor using 303 virtually screened hits, obtained from small compound database virtual screening. Finally, five hits were identified as potential leads against CCR3 receptor, which exhibited good estimated activities, favorable binding interactions, and high docking scores. These studies provided useful information on the structurally vital residues of CCR3 receptor involved in the antagonist binding, and their unexplored potential for the future development of potent CCR3 receptor antagonists.
Collapse
Affiliation(s)
- Vaibhav Jain
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar- 160 062, Punjab, India
| | | | | | | |
Collapse
|
112
|
Pelus LM, Farag SS. Increased mobilization and yield of stem cells using plerixafor in combination with granulocyte-colony stimulating factor for the treatment of non-Hodgkin's lymphoma and multiple myeloma. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2011; 4:11-22. [PMID: 24198526 PMCID: PMC3781755 DOI: 10.2147/sccaa.s6713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple myeloma and non-Hodgkin’s lymphoma remain the most common indications for high-dose chemotherapy and autologous peripheral blood stem cell rescue. While a CD34+ cell dose of 1 × 106/kg is considered the minimum required for engraftment, higher CD34+ doses correlate with improved outcome. Numerous studies, however, support targeting a minimum CD34+ cell dose of 2.0 × 106/kg, and an “optimal” dose of 4 to 6 × 106/kg for a single transplant. Unfortunately, up to 40% of patients fail to mobilize an optimal CD34+ cell dose using myeloid growth factors alone. Plerixafor is a novel reversible inhibitor of CXCR4 that significantly increases the mobilization and collection of higher numbers of hematopoietic progenitor cells. Two randomized multi-center clinical trials in patients with non-Hodgkin’s lymphoma and multiple myeloma have demonstrated that the addition of plerixafor to granulocyte-colony stimulating factor increases the mobilization and yield of CD34+ cells in fewer apheresis days, which results in durable engraftment. This review summarizes the pharmacology and evidence for the clinical efficacy of plerixafor in mobilizing hematopoietic stem and progenitor cells, and discusses potential ways to utilize plerixafor in a cost-effective manner in patients with these diseases.
Collapse
Affiliation(s)
- Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
113
|
Pérez‐Nueno VI, Ritchie DW. Applying in silico tools to the discovery of novel CXCR4 inhibitors. Drug Dev Res 2010. [DOI: 10.1002/ddr.20406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Violeta I. Pérez‐Nueno
- INRIA Nancy – Grand Est, LORIA (Laboratoire Lorrain de Recherche en Informatique et ses Applications), Vandoeuvre‐les‐Nancy, France
| | - David W. Ritchie
- INRIA Nancy – Grand Est, LORIA (Laboratoire Lorrain de Recherche en Informatique et ses Applications), Vandoeuvre‐les‐Nancy, France
| |
Collapse
|
114
|
Lam AR, Bhattacharya S, Patel K, Hall SE, Mao A, Vaidehi N. Importance of receptor flexibility in binding of cyclam compounds to the chemokine receptor CXCR4. J Chem Inf Model 2010; 51:139-47. [PMID: 21158459 DOI: 10.1021/ci1003027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have elucidated the binding sites of four moncyclam and one bicyclam antagonist AMD3100, in the human chemokine receptor CXCR4. Using the predicted structural models of CXCR4, we have further predicted the binding sites of these cyclam compounds. We used the computational method LITiCon to map the differences in receptor structure stabilized by the mono and bicyclam compounds. Accounting for the receptor flexibility lead to a single binding mode for the cyclam compounds, that has not been possible previously using a single receptor structural model and fixed receptor docking algorithms. There are several notable differences in the receptor conformations stabilized by monocyclam antagonist compared to a bicylam antagonist. The loading of the Cu(2+) ions in the cyclam compounds, shrinks the size of the cyclam rings and the residue D262(6.58) plays an important role in bonding to the copper ion in the monocylam compounds while residue E288(7.39) is important for the bicyclam compound.
Collapse
Affiliation(s)
- Alfonso R Lam
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | | | | | | | | | | |
Collapse
|
115
|
Pettersson S, Pérez-Nueno VI, Mena MP, Clotet B, Esté JA, Borrell JI, Teixidó J. Novel monocyclam derivatives as HIV entry inhibitors: Design, synthesis, anti-HIV evaluation, and their interaction with the CXCR4 co-receptor. ChemMedChem 2010; 5:1272-81. [PMID: 20533501 DOI: 10.1002/cmdc.201000124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The CXCR4 receptor has been shown to interact with the human immunodeficiency virus (HIV) envelope glycoprotein gp120, leading to fusion of viral and cell membranes. Therefore, ligands that can attach to this receptor represent an important class of therapeutic agents against HIV, thus inhibiting the first step in the cycle of viral infection: the virus-cell entry/fusion. Herein we describe the in silico design, synthesis, and biological evaluation of novel monocyclam derivatives as HIV entry inhibitors. In vitro activity testing of these compounds in cell cultures against HIV strains revealed EC(50) values in the low micromolar range without cytotoxicity at the concentrations tested. Docking and molecular dynamics simulations were performed to predict the binding interactions between CXCR4 and the novel monocyclam derivatives. A binding mode of these compounds is proposed which is consistent with the main existing site-directed mutagenesis data on the CXCR4 co-receptor. Moreover, molecular modeling comparisons were performed between these novel monocyclams, previously reported non-cyclam compounds from which the monocyclams are derived, and the well-known AMD3100 bicyclam CXCR4 inhibitors. Our results suggest that these three structurally diverse CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor.
Collapse
Affiliation(s)
- Sofia Pettersson
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
116
|
Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Yverneau P, Charrier-Savournin F, Fink M, Trinquet E. A fluorescent ligand-binding alternative using Tag-lite® technology. ACTA ACUST UNITED AC 2010; 15:1248-59. [PMID: 20974902 DOI: 10.1177/1087057110384611] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein-coupled receptors (GPCRs) are crucial cell surface receptors that transmit signals from a wide range of extracellular ligands. Indeed, 40% to 50% of all marketed drugs are thought to modulate GPCR activity, making them the major class of targets in the drug discovery process. Binding assays are widely used to identify high-affinity, selective, and potent GPCR drugs. In this field, the use of radiolabeled ligands has remained so far the gold-standard method. Here the authors report a less hazardous alternative for high-throughput screening (HTS) applications by the setup of a nonradioactive fluorescence-based technology named Tag-lite(®). Selective binding of various fluorescent ligands, either peptidic or not, covering a large panel of GPCRs from different classes is illustrated, particularly for chemokine (CXCR4), opioid (δ, µ, and κ), and cholecystokinin (CCK1 and CCK2) receptors. Affinity constants of well-known pharmacological agents of numerous GPCRs are in line with values published in the literature. The authors clearly demonstrate that the Tag-lite binding assay format can be successfully and reproducibly applied by using different cellular materials such as transient or stable recombinant cells lines expressing SNAP-tagged GPCR. Such fluorescent-based binding assays can be performed with adherent cells or cells in suspension, in 96- or 384-well plates. Altogether, this new technology offers great advantages in terms of flexibility, rapidity, and user-friendliness; allows easy miniaturization; and makes it completely suitable for HTS applications.
Collapse
|
117
|
Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des 2010; 24:1023-33. [PMID: 20960031 DOI: 10.1007/s10822-010-9393-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
CXCR4 is a G-protein coupled receptor for CXCL12 that plays an important role in human immunodeficiency virus infection, cancer growth and metastasization, immune cell trafficking and WHIM syndrome. In the absence of an X-ray crystal structure, theoretical modeling of the CXCR4 receptor remains an important tool for structure-function analysis and to guide the discovery of new antagonists with potential clinical use. In this study, the combination of experimental data and molecular modeling approaches allowed the development of optimized ligand-receptor models useful for elucidation of the molecular determinants of small molecule binding and functional antagonism. The ligand-guided homology modeling approach used in this study explicitly re-shaped the CXCR4 binding pocket in order to improve discrimination between known CXCR4 antagonists and random decoys. Refinement based on multiple test-sets with small compounds from single chemotypes provided the best early enrichment performance. These results provide an important tool for structure-based drug design and virtual ligand screening of new CXCR4 antagonists.
Collapse
|
118
|
Gravel S, Malouf C, Boulais PE, Berchiche YA, Oishi S, Fujii N, Leduc R, Sinnett D, Heveker N. The peptidomimetic CXCR4 antagonist TC14012 recruits beta-arrestin to CXCR7: roles of receptor domains. J Biol Chem 2010; 285:37939-43. [PMID: 20956518 DOI: 10.1074/jbc.c110.147470] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CXCR7 is an atypical chemokine receptor that signals through β-arrestin in response to agonists without detectable activation of heterotrimeric G-proteins. Its cognate chemokine ligand CXCL12 also binds CXCR4, a chemokine receptor of considerable clinical interest. Here we report that TC14012, a peptidomimetic inverse agonist of CXCR4, is an agonist on CXCR7. The potency of β-arrestin recruitment to CXCR7 by TC14012 is much higher than that of the previously reported CXCR4 antagonist AMD3100 and differs only by one log from that of the natural ligand CXCL12 (EC(50) 350 nM for TC14012, as compared with 30 nM for CXCL12 and 140 μM for AMD3100). Moreover, like CXCL12, TC14012 leads to Erk 1/2 activation in U373 glioma cells that express only CXCR7, but not CXCR4. Given that with TC14012 and AMD3100 two structurally unrelated CXCR4 antagonists turn out to be agonists on CXCR7, this likely reflects differences in the activation mechanism of the arrestin pathway by both receptors. To identify the receptor domain responsible for these opposed effects, we investigated CXCR4 and CXCR7 C terminus-swapping chimeras. Using quantitative bioluminescence resonance energy transfer, we find that the CXCR7 receptor core formed by the seven-transmembrane domains and the connecting loops determines the agonistic activity of both TC14012 and AMD3100. Moreover, we find that the CXCR7 chimera bearing the CXCR4 C-terminal constitutively associates with arrestin in the absence of ligands. Our data suggest that the CXCR4 and CXCR7 cores share ligand-binding surfaces for the binding of the synthetic ligands, indicating that CXCR4 inhibitors should be tested also on CXCR7.
Collapse
Affiliation(s)
- Stéphanie Gravel
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Novel compounds containing multiple guanide groups that bind the HIV coreceptor CXCR4. Antimicrob Agents Chemother 2010; 55:255-63. [PMID: 20937786 DOI: 10.1128/aac.00709-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G-protein-coupled receptor CXCR4 acts as a coreceptor for human immunodeficiency virus type 1 (HIV-1) infection, as well as being involved in signaling cell migration and proliferation. Compounds that block CXCR4 interactions have potential uses as HIV entry inhibitors to complement drugs such as maraviroc that block the alternate coreceptor CCR5 or in cancer therapy. The peptide T140, which contains five arginine residues, is the most potent antagonist of CXCR4 developed to date. In a search for nonpeptide CXCR4 ligands that could inhibit HIV entry, three series of compounds were synthesized from 12 linear and branched polyamines with 2, 3, 4, 6, or 8 amino groups, which were substituted to produce the corresponding guanidines, biguanides, or phenylguanides. The resulting compounds were tested for their ability to compete with T140 for binding to the human CXCR4 receptor expressed on mammalian cells. The most effective compounds bound CXCR4 with a 50% inhibitory concentration of 200 nM, and all of the compounds had very low cytotoxicity. Two series of compounds were then tested for their ability to inhibit the infection of TZM-bl cells with X4 and R5 strains of HIV-1. Spermine phenylguanide and spermidine phenylguanide inhibited infection by X4 strains, but not by R5 strains, at low micromolar concentrations. These results support further investigation and development of these compounds as HIV entry inhibitors.
Collapse
|
120
|
Murakami T, Yamamoto N. Role of CXCR4 in HIV infection and its potential as a therapeutic target. Future Microbiol 2010; 5:1025-39. [DOI: 10.2217/fmb.10.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chemokine receptors CCR5 and CXCR4 are the two major coreceptors for HIV entry. Numerous efforts have been made to develop a new class of anti-HIV agents that target these coreceptors as an additional or alternative therapy to standard HAART. Among the CCR5 inhibitors developed so far, maraviroc is the first drug that has been approved by the US FDA for treating patients with R5 HIV-1. Although many CXCR4 inhibitors, some of which are highly active and orally bioavailable, have also been studied, they are still at preclinical stages or have been suspended during development. Importantly, the interaction between CXCR4 and its ligand SDF-1 is involved in various disease conditions, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis and pulmonary fibrosis. Therefore, CXCR4 inhibitors have potential as novel therapeutics for the treatment of these diseases as well as HIV infection.
Collapse
Affiliation(s)
- Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1–23–1 Toyama, Shinjuku-ku, Tokyo 162–8640 Japan
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore 5 Science Drive 2, Blk MD4A, Level 5, 117597 Singapore
| |
Collapse
|
121
|
Distinct molecular pathways to X4 tropism for a V3-truncated human immunodeficiency virus type 1 lead to differential coreceptor interactions and sensitivity to a CXCR4 antagonist. J Virol 2010; 84:8777-89. [PMID: 20573813 DOI: 10.1128/jvi.00333-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the course of infection, transmitted HIV-1 isolates that initially use CCR5 can acquire the ability to use CXCR4, which is associated with an accelerated progression to AIDS. Although this coreceptor switch is often associated with mutations in the stem of the viral envelope (Env) V3 loop, domains outside V3 can also play a role, and the underlying mechanisms and structural basis for how X4 tropism is acquired remain unknown. In this study we used a V3 truncated R5-tropic Env as a starting point to derive two X4-tropic Envs, termed DeltaV3-X4A.c5 and DeltaV3-X4B.c7, which took distinct molecular pathways for this change. The DeltaV3-X4A.c5 Env clone acquired a 7-amino-acid insertion in V3 that included three positively charged residues, reestablishing an interaction with the CXCR4 extracellular loops (ECLs) and rendering it highly susceptible to the CXCR4 antagonist AMD3100. In contrast, the DeltaV3-X4B.c7 Env maintained the V3 truncation but acquired mutations outside V3 that were critical for X4 tropism. In contrast to DeltaV3-X4A.c5, DeltaV3-X4B.c7 showed increased dependence on the CXCR4 N terminus (NT) and was completely resistant to AMD3100. These results indicate that HIV-1 X4 coreceptor switching can involve (i) V3 loop mutations that establish interactions with the CXCR4 ECLs, and/or (ii) mutations outside V3 that enhance interactions with the CXCR4 NT. The cooperative contributions of CXCR4 NT and ECL interactions with gp120 in acquiring X4 tropism likely impart flexibility on pathways for viral evolution and suggest novel approaches to isolate these interactions for drug discovery.
Collapse
|
122
|
Abstract
Chemokines, small proinflammatory chemoattractant cytokines that bind to specific G-protein-coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The chemokine CXCL12 [stromal cell-derived factor-1 (SDF-1)] binds primarily to CXC receptor 4 (CXCR4; CD184). The binding of CXCL12 to CXCR4 induces intracellular signaling through several divergent pathways initiating signals related to chemotaxis, cell survival and/or proliferation, increase in intracellular calcium, and gene transcription. CXCR4 is expressed on multiple cell types including lymphocytes, hematopoietic stem cells, endothelial and epithelial cells, and cancer cells. The CXCL12/CXCR4 axis is involved in tumor progression, angiogenesis, metastasis, and survival. This pathway is a target for therapeutics that can block the CXCL12/CXCR4 interaction or inhibit downstream intracellular signaling.
Collapse
|
123
|
Nimmagadda S, Pullambhatla M, Stone K, Green G, Bhujwalla ZM, Pomper MG. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res 2010; 70:3935-44. [PMID: 20460522 PMCID: PMC2874192 DOI: 10.1158/0008-5472.can-09-4396] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemokine receptor CXCR4 and its cognate ligand CXCL12 are pivotal for establishing metastases from many tumor types. Thus, CXCR4 may offer a cell surface target for molecular imaging of metastases, assisting diagnosis, staging, and therapeutic monitoring. Furthermore, noninvasive detection of CXCR4 status of a primary tumor may provide an index of the metastatic potential of the lesion. Here, we report the development and evaluation of [(64)Cu]AMD3100, a positron-emitting analogue of the stem cell mobilizing agent plerixafor to image CXCR4 in human tumor xenografts preselected for graded expression of this receptor. This imaging method was evaluated in lung metastases derived from human MDA-MB-231 breast cancer cells. Ex vivo biodistribution studies, performed to validate the in vivo imaging data, confirmed the ability of [(64)Cu]AMD3100 to image CXCR4 expression. Our findings show the feasibility of imaging CXCR4 by positron emission tomography using a clinically approved agent as a molecular scaffold.
Collapse
Affiliation(s)
- Sridhar Nimmagadda
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Skerlj RT, Bridger GJ, Kaller A, McEachern EJ, Crawford JB, Zhou Y, Atsma B, Langille J, Nan S, Veale D, Wilson T, Harwig C, Hatse S, Princen K, De Clercq E, Schols D. Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J Med Chem 2010; 53:3376-88. [PMID: 20297846 DOI: 10.1021/jm100073m] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The redesign of azamacrocyclic CXCR4 chemokine receptor antagonists resulted in the discovery of novel, small molecule, orally bioavailable compounds that retained T-tropic (CXCR4 using, X4) anti-HIV-1 activity. A structure-activity relationship (SAR) was determined on the basis of the inhibition of replication of X4 HIV-1 NL4.3 in MT-4 cells. As a result of lead optimization, we identified (S)-N'-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butane-1,4-diamine (AMD070) 2 as a potent and selective antagonist of CXCR4 with an IC(50) value of 13 nM in a CXCR4 125I-SDF inhibition binding assay. Compound 2 inhibited the replication of T-tropic HIV-1 (NL4.3 strain) in MT-4 cells and PBMCs with an IC(50) of 2 and 26 nM, respectively, while remaining noncytotoxic to cells at concentrations exceeding 23 microM. The pharmacokinetics of 2 was evaluated in rat and dog, and good oral bioavailability was observed in both species. This compound represents the first small molecule orally bioavailable CXCR4 antagonist that was developed for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Renato T Skerlj
- Genzyme Corp., 153 Second Avenue, Waltham, Massachusetts 02451, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Bridger GJ, Skerlj RT, Hernandez-Abad PE, Bogucki DE, Wang Z, Zhou Y, Nan S, Boehringer EM, Wilson T, Crawford J, Metz M, Hatse S, Princen K, De Clercq E, Schols D. Synthesis and structure-activity relationships of azamacrocyclic C-X-C chemokine receptor 4 antagonists: analogues containing a single azamacrocyclic ring are potent inhibitors of T-cell tropic (X4) HIV-1 replication. J Med Chem 2010; 53:1250-60. [PMID: 20043638 DOI: 10.1021/jm901530b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bis-tetraazamacrocycles such as the bicyclam AMD3100 (1) are a class of potent and selective anti-HIV-1 agents that inhibit virus replication by binding to the chemokine receptor CXCR4, the coreceptor for entry of X4 viruses. By sequential replacement and/or deletion of the amino groups within the azamacrocyclic ring systems, we have determined the minimum structural features required for potent antiviral activity in this class of compounds. All eight amino groups are not required for activity, the critical amino groups on a per ring basis are nonidentical, and the overall charge at physiological pH can be reduced without compromising potency. This approach led to the identification of several single ring azamacrocyclic analogues such as AMD3465 (3d), 36, and 40, which exhibit EC(50)'s against the cytopathic effects of HIV-1 of 9.0, 1.0, and 4.0 nM, respectively, antiviral potencies that are comparable to 1 (EC(50) against HIV-1 of 4.0 nM). More importantly, however, the key structural elements of 1 required for antiviral activity may facilitate the design of nonmacrocyclic CXCR4 antagonists suitable for HIV treatment via oral administration.
Collapse
Affiliation(s)
- Gary J Bridger
- AnorMED Inc. now Genzyme Corporation, 500 Kendall Street, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 2010; 120:694-705. [PMID: 20179352 DOI: 10.1172/jci40283] [Citation(s) in RCA: 623] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/13/2010] [Indexed: 01/06/2023] Open
Abstract
Despite the high doses of radiation delivered in the treatment of patients with glioblastoma multiforme (GBM), the tumors invariably recur within the irradiation field, resulting in a low cure rate. Understanding the mechanism of such recurrence is therefore important. Here we have shown in an intracranial GBM xenograft model that irradiation induces recruitment of bone marrow-derived cells (BMDCs) into the tumors, restoring the radiation-damaged vasculature by vasculogenesis and thereby allowing the growth of surviving tumor cells. BMDC influx was initiated by induction of HIF-1 in the irradiated tumors, and blocking this influx prevented tumor recurrence. Previous studies have indicated that BMDCs are recruited to tumors in part through the interaction between the HIF-1-dependent stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4. Pharmacologic inhibition of HIF-1 or of the SDF-1/CXCR4 interaction prevented the influx of BMDCs, primarily CD11b+ myelomonocytes, and the postirradiation development of functional tumor vasculature, resulting in abrogation of tumor regrowth. Similar results were found using neutralizing antibodies against CXCR4. Our data therefore suggest a novel approach for the treatment of GBM: in addition to radiotherapy, the vasculogenesis pathway needs to be blocked, and this can be accomplished using the clinically approved drug AMD3100, a small molecule inhibitor of SDF-1/CXCR4 interactions.
Collapse
Affiliation(s)
- Mitomu Kioi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, California 94305-5152, USA
| | | | | | | | | | | |
Collapse
|
127
|
Comparison of unmobilized and mobilized graft characteristics and the implications of cell subsets on autologous and allogeneic transplantation outcomes. Biol Blood Marrow Transplant 2010; 16:1629-48. [PMID: 20144908 DOI: 10.1016/j.bbmt.2010.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/02/2010] [Indexed: 11/20/2022]
Abstract
Autologous and allogeneic hematopoietic stem cell transplantation (HSCT) are considered the standard of care for many malignancies, including lymphoma, myeloma, and some leukemias. In many cases, mobilized peripheral blood has become the preferred source of hematopoietic stem cells. The efficacy of different mobilization regimens and transplantation outcomes based on cell doses has been well studied; however, the characteristics of the stem cell graft may be of equal importance with respect to patient outcomes following autologous or allogeneic HSCT. This review summarizes available preclinical and clinical data for bone marrow and mobilized peripheral blood HSCT characteristics, defined as the cell types found in the graft as well as their gene expression profiles. It also explores how graft characteristics can affect bone marrow homing, engraftment, immune reconstitution, and other posttransplantation outcomes in both the allogeneic and autologous HSCT settings.
Collapse
|
128
|
Abstract
Pharmacological manipulation of CXCR4 has proven clinically useful for mobilization of stem and progenitor cells and in several preclinical models of disease. It is a key component in the localization of leukocytes and stem cells. For patients with multiple myeloma and non-Hodgkin's Lymphoma, treatment with plerixafor, an inhibitor of CXCL12 binding to CXCR4, plus G-CSF mobilizes stem cells for autologous transplantation to a greater degree than the treatment with G-CSF alone, and in some cases when patients could not be mobilized with cytokines, chemotherapy, or the combination. Stem cells from healthy donors mobilized with single agent plerixafor have been used for allogeneic transplantation in acute myelogenous leukemia (AML) patients, although this is still in the early phase of clinical development. Plerixafor is also undergoing evaluation to mobilize tumor cells in patients with AML and chronic lymphocytic leukemia (CLL) to enhance the effectiveness of chemotherapy regimens. Plerixafor's effect on neutrophils may also restore circulating neutrophil counts to normal levels in patients with chronic neutropenias such as in WHIMs syndrome. Other areas where inhibition of CXCR4 may be useful based upon preclinical or clinical data include peripheral vascular disease, autoimmune diseases such as rheumatoid arthritis, pulmonary inflammation, and HIV.
Collapse
|
129
|
Kofuku Y, Yoshiura C, Ueda T, Terasawa H, Hirai T, Tominaga S, Hirose M, Maeda Y, Takahashi H, Terashima Y, Matsushima K, Shimada I. Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J Biol Chem 2009; 284:35240-50. [PMID: 19837984 DOI: 10.1074/jbc.m109.024851] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its G-protein-coupled receptor (GPCR) CXCR4 play fundamental roles in many physiological processes, and CXCR4 is a drug target for various diseases such as cancer metastasis and human immunodeficiency virus, type 1, infection. However, almost no structural information about the SDF-1-CXCR4 interaction is available, mainly because of the difficulties in expression, purification, and crystallization of CXCR4. In this study, an extensive investigation of the preparation of CXCR4 and optimization of the experimental conditions enables NMR analyses of the interaction between the full-length CXCR4 and SDF-1. We demonstrated that the binding of an extended surface on the SDF-1 beta-sheet, 50-s loop, and N-loop to the CXCR4 extracellular region and that of the SDF-1 N terminus to the CXCR4 transmembrane region, which is critical for G-protein signaling, take place independently by methyl-utilizing transferred cross-saturation experiments along with the usage of the CXCR4-selective antagonist AMD3100. Furthermore, based upon the data, we conclude that the highly dynamic SDF-1 N terminus in the 1st step bound state plays a crucial role in efficiently searching the deeply buried binding pocket in the CXCR4 transmembrane region by the "fly-casting" mechanism. This is the first structural analyses of the interaction between a full-length GPCR and its chemokine, and our methodology would be applicable to other GPCR-ligand systems, for which the structural studies are still challenging.
Collapse
Affiliation(s)
- Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Transplantation with bone marrow (BM) hematopoietic stem cells (HSC) has been used for curative therapy of hematologic diseases and inborn errors of metabolism for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow and traffic to peripheral blood in response to external stimuli, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. Although a variety of agents can mobilize stem cells with different kinetics and efficiencies and these agents can be additive or synergistic when used in combination, currently G-CSF is the predominant stem cell mobilizer used clinically based upon potency, predictability and safety. Recent studies have demonstrated that the interaction between the chemokine stromal-derived factor 1 (SDF-1/CXCL12) and its receptor CXCR4 serves as a key regulator of HSC trafficking. AMD3100, a novel bicyclam CXCR4 antagonist, induces the rapid mobilization of HSC with both short- and long-term repopulation capacity. Mobilization with G-CSF and AMD3100 in clinical trials resulted in more patients achieving sufficient PBSC for transplantation than with G-CSF alone. Thus, chemokine axis-mobilization could allow rapid PBSC harvests with increased cell yields in difficult-to mobilize patients. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts demonstrated prompt and stable engraftment. Enhanced homing properties of chemokine axis-mobilized PBSC suggest that these cells may have greater therapeutic utility in other areas including tissue repair and regeneration.
Collapse
|
131
|
Song N, Huang Y, Shi H, Yuan S, Ding Y, Song X, Fu Y, Luo Y. Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/CXCR4 axis. Cancer Res 2009; 69:6057-64. [PMID: 19584297 DOI: 10.1158/0008-5472.can-08-2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a well-characterized growth factor displaying potent biological effects on angiogenesis. Recent studies reveal that overexpression of PDGF-BB within tumors results in increased pericyte coverage, suggesting that PDGF-BB signaling is also essential for the cancerous pericyte recruitment process. However, the molecular mechanism underlying this regulation remains obscure. In the current study, we show that tumor-derived PDGF-BB induces SDF-1alpha expression in endothelial cells (EC), resulting in the formation of SDF-1alpha chemotaxis gradient, which coincides with the PDGF-BB-induced pericyte recruitment during angiogenesis. PDGF-BB dramatically up-regulates SDF-1alpha secretion through the activation of PDGFRbeta in tumor-associated ECs, whereas this up-regulation can be substantially inhibited by either blockade of the phosphatidylinositol 3-kinase/Akt/mTOR pathway with chemical inhibitors or the inactivation of HIF-1alpha through small interfering RNA interference. On the other hand, we reveal that SDF-1alpha can increase pericytes motility in vitro. Blockade of the SDF-1alpha/CXCR4 axis prevents the PDGF-BB-induced pericyte recruitment not only in three in vitro recruitment models but also in the PDGF-BB-overexpressing tumor xenograft models. These results highlight that the involvement of SDF-1alpha/CXCR4 axis is essential for the pericyte recruitment within the PDGF-BB-overexpressing tumors and raise the possibility that blockade of the SDF-1alpha/CXCR4 axis may provide a therapeutic synergy with antiangiogenic molecules that selectively target ECs.
Collapse
Affiliation(s)
- Nan Song
- Department of Biological Sciences and Biotechnology, National Engineering Laboratory for Antitumor Protein Therapeutics, Tsinghua University, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Bodart V, Anastassov V, Darkes MC, Idzan SR, Labrecque J, Lau G, Mosi RM, Neff KS, Nelson KL, Ruzek MC, Patel K, Santucci Z, Scarborough R, Wong RSY, Bridger GJ, Macfarland RT, Fricker SP. Pharmacology of AMD3465: a small molecule antagonist of the chemokine receptor CXCR4. Biochem Pharmacol 2009; 78:993-1000. [PMID: 19540208 DOI: 10.1016/j.bcp.2009.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 01/23/2023]
Abstract
CXCR4 is widely expressed in multiple cell types, and is involved in neonatal development, hematopoiesis, and lymphocyte trafficking and homing. Disruption of the CXCL12/CXCR4 interaction has been implicated in stem cell mobilization. Additionally CXCR4 is a co-receptor for HIV. Selective small molecule antagonists of CXCR4 therefore have therapeutic potential. AMD3465 is an N-pyridinylmethylene monocyclam CXCR4 antagonist which can block infection of T-tropic, CXCR4-using HIV. Using the CCRF-CEM T-cell line which expresses CXCR4 we have demonstrated that AMD3465 is an antagonist of SDF-1 ligand binding (K(i) of 41.7+/-1.2nM), and inhibits SDF-1 mediated signaling as shown by inhibition of GTP binding, calcium flux, and inhibition of chemotaxis. AMD3465 is selective for CXCR4 and does not inhibit chemokine-stimulated calcium flux in cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7, nor does it inhibit binding of LTB(4) to its receptor, BLT1. The pharmacokinetics of AMD3465 was investigated in mice and dogs. Absorption was rapid following subcutaneous administration. AMD3465 was cleared from dog plasma in a biphasic manner with a terminal half-life of 1.56-4.63h. Comparison of exposure to the intravenous and subcutaneous doses indicated 100% bioavailability following subcutaneous administration. AMD3465 caused leukocytosis when administered subcutaneously in mice and dogs, with peak mobilization occurring between 0.5 and 1.5h following subcutaneous dosing in mice and with maximum peak plasma concentration of compound preceding peak mobilization in dogs, indicating that AMD3465 has the potential to mobilize hematopoietic stem cells. These data demonstrate the therapeutic potential for the CXCR4 antagonist AMD3465.
Collapse
|
133
|
The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: comparative studies with AMD3100. Antimicrob Agents Chemother 2009; 53:2940-8. [PMID: 19451305 DOI: 10.1128/aac.01727-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The previously reported CXCR4 antagonist KRH-1636 was a potent and selective inhibitor of CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) but could not be further developed as an anti-HIV-1 agent because of its poor oral bioavailability. Newly developed KRH-3955 is a KRH-1636 derivative that is bioavailable when administered orally with much more potent anti-HIV-1 activity than AMD3100 and KRH-1636. The compound very potently inhibits the replication of X4 HIV-1, including clinical isolates in activated peripheral blood mononuclear cells from different donors. It is also active against recombinant X4 HIV-1 containing resistance mutations in reverse transcriptase and protease and envelope with enfuvirtide resistance mutations. KRH-3955 inhibits both SDF-1alpha binding to CXCR4 and Ca(2+) signaling through the receptor. KRH-3955 inhibits the binding of anti-CXCR4 monoclonal antibodies that recognize the first, second, or third extracellular loop of CXCR4. The compound shows an oral bioavailability of 25.6% in rats, and its oral administration blocks X4 HIV-1 replication in the human peripheral blood lymphocyte-severe combined immunodeficiency mouse system. Thus, KRH-3955 is a new promising agent for HIV-1 infection and AIDS.
Collapse
|
134
|
Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N. AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 2009; 75:1240-7. [PMID: 19255243 DOI: 10.1124/mol.108.053389] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bicyclam AMD3100 is known as a small synthetic inhibitor of the CXCL12-binding chemokine receptor CXCR4. Here, we show that AMD3100 also binds to the alternative CXCL12 receptor CXCR7. CXCL12 or AMD3100 alone activate beta-arrestin recruitment to CXCR7, which we identify as a previously unreported signaling pathway of CXCR7. In addition, AMD3100 increases CXCL12 binding to CXCR7 and CXCL12-induced conformational rearrangements in the receptor dimer as measured by bioluminescence resonance energy transfer. Moreover, small but reproducible increases in the potency of CXCL12-induced arrestin recruitment to CXCR7 by AMD3100 are observed. Taken together, our data suggest that AMD3100 is an allosteric agonist of CXCR7. The finding that AMD3100 not only binds CXCR4, but also to CXCR7, with opposite effects on the two receptors, calls for caution in the use of the compound as a tool to dissect CXCL12 effects on the respective receptors in vitro and in vivo.
Collapse
Affiliation(s)
- Irina Kalatskaya
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
135
|
Shim H, Oishi S, Fujii N. Chemokine receptor CXCR4 as a therapeutic target for neuroectodermal tumors. Semin Cancer Biol 2009; 19:123-34. [PMID: 19084067 PMCID: PMC3091135 DOI: 10.1016/j.semcancer.2008.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 12/20/2022]
Abstract
Chemokines (chemotactic cytokines) are a family of proteins associated with the trafficking and activation of leukocytes and other cell types in immune surveillance and inflammatory response. Besides their roles in the immune system, they play pleiotropic roles in tumor initiation, promotion, and progression. Chemokines can be classified into four subfamilies of chemokines, CXC, CC, C, or CX3C, based on their number and spacing of conserved cysteine residues near the N-terminus. This CXC subfamily can be further subclassified into two groups, depending on the presence or absence of a tripeptide motif glutamic acid-leucine-arginine (ELR) in the N-terminal domain. ELR(-)CXCL12, which binds to CXCR4 has been frequently implicated in various cancers. Over the past several years, studies have increasingly shown that the CXCR4/CXCL12 axis plays critical roles in tumor progression, such as invasion, angiogenesis, survival, homing to metastatic sites. This review focuses on involvement of CXCR4/CXCL12 interaction in neuroectodermal cancers and their therapeutic potentials. As an attractive therapeutic target of CXCR4/CXCL12 axis for cancer chemotherapy, development history and application of CXCR4 antagonists are described.
Collapse
Affiliation(s)
- Hyunsuk Shim
- Department of Radiology, Emory University, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
136
|
Pettersson S, Pérez-Nueno VI, Ros-Blanco L, Puig de La Bellacasa R, Rabal MO, Batllori X, Clotet B, Clotet-Codina I, Armand-Ugón M, Esté J, Borrell JI, Teixidó J. Discovery of novel non-cyclam polynitrogenated CXCR4 coreceptor inhibitors. ChemMedChem 2009; 3:1549-57. [PMID: 18671217 DOI: 10.1002/cmdc.200800145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV cell fusion and entry have been validated as targets for therapeutic intervention against infection. Bicyclams were the first low-molecular-weight compounds to show specific interaction with CXCR4. The most potent bicyclam was AMD3100, in which the two cyclam moieties are tethered by a 1,4-phenylenebis(methylene) bridge. It was withdrawn from clinical trials owing to its lack of oral bioavailability and cardiotoxicity. We have designed a combinatorial library of non-cyclam polynitrogenated compounds by preserving the main features of AMD3100. At least two nitrogen atoms on each side of the p-phenylene moiety, one in the benzylic position and the other(s) in the heterocyclic system were maintained, and the distances between them were similar to the nitrogen atom distances in cyclam. A selection of diverse compounds from this library were prepared, and their in vitro activity was tested in cell cultures against HIV strains. This led to the identification of novel potent CXCR4 coreceptor inhibitors without cytotoxicity at the tested concentrations.
Collapse
Affiliation(s)
- Sofia Pettersson
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
|
138
|
Rescue from failed growth factor and/or chemotherapy HSC mobilization with G-CSF and plerixafor (AMD3100): an institutional experience. Bone Marrow Transplant 2009; 43:909-17. [PMID: 19182831 DOI: 10.1038/bmt.2008.409] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Auto-SCT has been shown to be a potentially curative treatment for a variety of hematological malignancies. Auto-SCT is dependent on the successful mobilization and collection of hematopoietic stem cells to ensure engraftment. The inability to mobilize sufficient number of hematopoietic stem cells using standard cytokine-assisted mobilization strategies excludes eligible patients from potentially curative auto-SCT. Plerixafor (AMD3100; Mozobil), a novel bicyclam antagonist of the SDF-1alpha/CXCR4 complex, has been reported previously to augment PBSC mobilization in patients undergoing their first planned stem cell mobilization and collection attempt. In our experience, 17 of 20 patients otherwise eligible for auto-SCT who failed previous mobilization attempts had successful mobilization of CD34(+) hematopoietic stem cells with one apheresis procedure, and an additional patient required two aphereses procedures, when treated with the combination of plerixafor and G-CSF on a compassionate use protocol available at our institution.
Collapse
|
139
|
Bensinger W, DiPersio JF, McCarty JM. Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 2009; 43:181-95. [DOI: 10.1038/bmt.2008.410] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
140
|
|
141
|
Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009; 8:41-54. [PMID: 19116626 PMCID: PMC2907734 DOI: 10.1038/nrd2760] [Citation(s) in RCA: 861] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite G-protein-coupled receptors (GPCRs) being among the most fruitful targets for marketed drugs, intense discovery efforts for several GPCR subtypes have failed to deliver selective drug candidates. Historically, drug discovery programmes for GPCR ligands have been dominated by efforts to develop agonists and antagonists that act at orthosteric sites for endogenous ligands. However, in recent years, there have been tremendous advances in the discovery of novel ligands for GPCRs that act at allosteric sites to regulate receptor function. These compounds provide high selectivity, novel modes of efficacy and may lead to novel therapeutic agents for the treatment of multiple psychiatric and neurological human disorders.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt Medical Center, 1215 Light Hall, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
142
|
Chapter 12 The Use of Receptor Homology Modeling to Facilitate the Design of Selective Chemokine Receptor Antagonists. Methods Enzymol 2009; 461:249-79. [DOI: 10.1016/s0076-6879(09)05412-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
143
|
Holst B, Frimurer TM, Mokrosinski J, Halkjaer T, Cullberg KB, Underwood CR, Schwartz TW. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor. Mol Pharmacol 2009; 75:44-59. [PMID: 18923064 DOI: 10.1124/mol.108.049189] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone secretagogue GHRP-6) plus four nonpeptide agonists-the original benzolactam L-692,429 [3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5-yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamide], the spiroindoline sulfonamide MK-677 [N-[1(R)-1, 2-dihydro-1-ethanesulfonylspiro-3H-indole-3,4'-piperidin)-1'-yl]carbonyl-2-(phenylmethoxy)-ethyl-2-amino-2-methylpropanamide], and two novel oxindole derivatives, SM-130686 [(+)-6-carbamoyl-3-(2-chlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole] and SM-157740 [(+/-)-6-carbamoyl-3-(2, 4-dichlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole)]. The strongest mutational effect with respect to decrease in potency for stimulation of inositol phosphate turnover was for all six agonists the GluIII:09-to-Gln substitution in the extracellular segment of TM-III. Likewise, all six agonists were affected by substitutions of PheVI:16, ArgVI:20, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common mutational map for agonism but it was not identical with the map for the agonist property of these small-molecule ligands. In molecular models, built over the inactive conformation of rhodopsin, low energy conformations of the nonpeptide agonists could be docked to satisfy many of their mutational hits. It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor.
Collapse
Affiliation(s)
- Birgitte Holst
- Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
144
|
Wong RSY, Bodart V, Metz M, Labrecque J, Bridger G, Fricker SP. Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol Pharmacol 2008; 74:1485-95. [PMID: 18768385 DOI: 10.1124/mol.108.049775] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CXC chemokine receptor (CXCR)4 is an HIV coreceptor and a chemokine receptor that plays an important role in several physiological and pathological processes, including hematopoiesis, leukocyte homing and trafficking, metastasis, and angiogenesis. This receptor belongs to the class A family of G protein-coupled receptors and is a validated target for the development of a new class of antiretroviral therapeutics. This study compares the interactions of three structurally diverse small-molecule CXCR4 inhibitors with the receptor and is the first report of the molecular interactions of the nonmacrocyclic CXCR4 inhibitor (S)-N'-(1H-benzimidazol-2-ylmethyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butene-1,4-diamine (AMD11070). Fourteen CXCR4 single-site mutants representing amino acid residues that span the entire putative ligand binding pocket were used in this study. These mutants were used in binding studies to examine how each single-site mutation affected the ability of the inhibitors to compete with (125)I-stromal-derived factor-1alpha binding. Our data suggest that these CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor. In addition, our results identified amino acid residues that are involved in unique interactions with two of the CXCR4 inhibitors studied. These data suggest an extended binding pocket in the transmembrane regions close to the second extracellular loop of the receptor. Based on site-directed mutagenesis and molecular modeling, several potential binding modes were proposed for each inhibitor. These mechanistic studies might prove to be useful for the development of future generations of CXCR4 inhibitors with improved clinical pharmacology and safety profiles.
Collapse
|
145
|
Fricker SP. A novel CXCR4 antagonist for hematopoietic stem cell mobilization. Expert Opin Investig Drugs 2008; 17:1749-60. [DOI: 10.1517/13543784.17.11.1749] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
146
|
Yoder A, Yu D, Dong L, Iyer SR, Xu X, Kelly J, Liu J, Wang W, Vorster PJ, Agulto L, Stephany DA, Cooper JN, Marsh JW, Wu Y. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 2008; 134:782-92. [PMID: 18775311 PMCID: PMC2559857 DOI: 10.1016/j.cell.2008.06.036] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 03/17/2008] [Accepted: 06/14/2008] [Indexed: 01/29/2023]
Abstract
Binding of the HIV envelope to the chemokine coreceptors triggers membrane fusion and signal transduction. The fusion process has been well characterized, yet the role of coreceptor signaling remains elusive. Here, we describe a critical function of the chemokine coreceptor signaling in facilitating HIV infection of resting CD4 T cells. We find that static cortical actin in resting T cells represents a restriction and that HIV utilizes the Galphai-dependent signaling from the chemokine coreceptor CXCR4 to activate a cellular actin-depolymerizing factor, cofilin, to overcome this restriction. HIV envelope-mediated cofilin activation and actin dynamics are important for a postentry process that leads to viral nuclear localization. Inhibition of HIV-mediated actin rearrangement markedly diminishes viral latent infection of resting T cells. Conversely, induction of active cofilin greatly facilitates it. These findings shed light on viral exploitation of cellular machinery in resting T cells, where chemokine receptor signaling becomes obligatory.
Collapse
Affiliation(s)
- Alyson Yoder
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Dongyang Yu
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Li Dong
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Subashini R. Iyer
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Xuehua Xu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20851, USA
| | - Jeremy Kelly
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Juan Liu
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Weifeng Wang
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Paul J. Vorster
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Liane Agulto
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - David A. Stephany
- Flow Cytometry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James N. Cooper
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Jon W. Marsh
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, MD 20892, USA
| | - Yuntao Wu
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, MD 20892, USA
| |
Collapse
|
147
|
Kleemann P, Papa D, Vigil-Cruz S, Seifert R. Functional reconstitution of the human chemokine receptor CXCR4 with G(i)/G (o)-proteins in Sf9 insect cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 378:261-74. [PMID: 18523757 PMCID: PMC2574856 DOI: 10.1007/s00210-008-0313-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/06/2008] [Indexed: 01/10/2023]
Abstract
The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) binds to the chemokine receptor CXCR4 that couples to pertussis toxin-sensitive G-proteins of the G(i)/G(o)-family. CXCR4 plays a role in the pathogenesis of autoimmune diseases, human immunodeficiency virus infection and various tumors, fetal development as well as endothelial progenitor and T-cell recruitment. To this end, most CXCR4 studies have focused on the cellular level. The aim of this study was to establish a reconstitution system for the human CXCR4 that allows for the analysis of receptor/G-protein coupling at the membrane level. We wished to study specifically constitutive CXCR4 activity and the G-protein-specificity of CXCR4. We co-expressed N- and C-terminally epitope-tagged human CXCR4 with various G(i)/G(o)-proteins and regulator of G-protein signaling (RGS)-proteins in Sf9 insect cells. Expression of CXCR4, G-proteins, and RGS-proteins was verified by immunoblotting. CXCR4 coupled more effectively to Galpha(i1) and Galpha(i2) than to Galpha(i3) and Galpha(o) and insect cell G-proteins as assessed by SDF-1alpha-stimulated high-affinity steady-state GTP hydrolysis. The RGS-proteins RGS4 and GAIP enhanced SDF-1alpha-stimulated GTP hydrolysis. SDF-1alpha stimulated [(35)S]guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) binding to Galpha(i2). RGS4 did not enhance GTPgammaS binding. Na(+) salts of halides did not reduce basal GTPase activity. The bicyclam, 1-[[1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl]-1,4,8,11-tetrazacyclotetradecane (AMD3100), acted as CXCR4 antagonist but was devoid of inverse agonistic activity. Halides reduced the maximum SDF-1alpha-stimulated GTP hydrolysis in the order of efficacy I(-) > Br(-) > Cl(-). In addition, salts reduced the potency of SDF-1alpha at activating GTP hydrolysis. From our data, we conclude the following: (1) Sf9 cells are a suitable system for expression of functionally intact human CXCR4; (2) Human CXCR4 couples effectively to Galpha(i1) and Galpha(i2); (3) There is no evidence for constitutive activity of CXCR4; (4) RGS-proteins enhance agonist-stimulated GTP hydrolysis, showing that GTP hydrolysis becomes rate-limiting in the presence of SDF-1alpha; (5) By analogy to previous observations made for the beta(2)-adrenoceptor coupled to G(s), the inhibitory effects of halides on agonist-stimulated GTP hydrolysis may be due to increased GDP-affinity of G(i)-proteins, reducing the efficacy of CXCR4 at stimulating nucleotide exchange.
Collapse
Affiliation(s)
- Patrick Kleemann
- Lehrstuhl für Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
148
|
Snyder EL. Component therapy to cellular therapy and beyond- a Darwinian approach to transfusion medicine. Transfusion 2008; 48:2000-7. [PMID: 18694467 DOI: 10.1111/j.1537-2995.2008.01859.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward L Snyder
- Blood Bank, Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA.
| |
Collapse
|
149
|
Suppression of dualtropic human immunodeficiency virus type 1 by the CXCR4 antagonist AMD3100 is associated with efficiency of CXCR4 use and baseline virus composition. Antimicrob Agents Chemother 2008; 52:2608-15. [PMID: 18443125 DOI: 10.1128/aac.01226-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a phase I/II evaluation of the CXCR4 antagonist AMD3100, human immunodeficiency virus RNA levels were significantly reduced in a single study subject who harbored CXCR4 (X4)-tropic virus, but not in subjects who harbored either dual/mixed (DM)-tropic or CCR5 (R5)-tropic virus (C. W. Hendrix et al., J. Acquir. Immune Defic. Syndr. 37:1253-1262, 2004). In this study, we analyzed the envelope clones of DM-tropic virus in baseline and treated virus populations from 14 subjects. Ten subjects exhibited significant reductions in CXCR4-mediated infectivity after 10 days of AMD3100 therapy relative to baseline (X4 suppressor group), while four subjects had no reduction of CXCR4-mediated infectivity (X4 nonsuppressor group). The baseline viruses of the X4 suppressor group infected CXCR4-expressing cells less efficiently than those of the X4 nonsuppressor group. Clonal analysis indicated that the baseline viruses from the X4 suppressor group contained a higher proportion of R5-tropic variants mixed with CXCR4-using variants, while the X4 nonsuppressor group was enriched for CXCR4-using variants. AMD3100 suppressed X4-tropic variants in all subjects studied, but not all dualtropic variants. Furthermore, dualtropic variants that used CXCR4 efficiently were suppressed by AMD3100, while dualtropic variants that used CXCR4 poorly were not. This study demonstrated that AMD3100 has the ability to suppress both X4-tropic and certain dualtropic variants in vivo. The suppression of CXCR4-using variants by AMD3100 is dependent on both the tropism composition of the virus population and the efficiency of CXCR4 usage of individual variants.
Collapse
|
150
|
Sabado RL, Babcock E, Kavanagh DG, Tjomsland V, Walker BD, Lifson JD, Bhardwaj N, Larsson M. Pathways utilized by dendritic cells for binding, uptake, processing and presentation of antigens derived from HIV-1. Eur J Immunol 2007; 37:1752-63. [PMID: 17534864 DOI: 10.1002/eji.200636981] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The outcome following HIV infection depends on the nature and durability of the HIV-specific T cell response induced initially. The activation of protective T cell responses depends upon dendritic cells (DC), antigen-presenting cells which have the capacity to process and present viral antigens. DC pulsed with aldrithiol-2-inactivated HIV and delivered in vivo were reported to induce immune responses and promote virologic control in chronically HIV-1-infected subjects. To gain an understanding of this phenomenon, we characterized the steps involved in the presentation of antigens derived from aldrithiol-2-treated vs. infectious HIV-1 by DC. Antigen presentation, on both MHC class I and II, was independent of DC-specific ICAM-3-grabbing integrin, DEC-205 and macrophage mannose receptor, C-type lectins expressed by the DC. Inhibitor studies showed that presentation on MHC class I was dependent on viral fusion in a CD4/coreceptor-dependent manner, both at the cell surface and within endosomes, and access to the classical endosomal processing pathway. MHC class II presentation of HIV-associated antigens was dependent on active endocytosis, probably receptor-mediated, and subsequent degradation of virions in acidified endosomes in the DC. Our study brings forth new facts regarding the binding, uptake, and processing of chemically inactivated virions leading to efficient antigen presentation and should aid in the design of more effective HIV vaccines.
Collapse
Affiliation(s)
- Rachel L Sabado
- Department of Medicine and Pathology, School of Medicine, New York University, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|