101
|
Eftekharzadeh M, Simorgh S, Doshmanziari M, Hassanzadeh L, Shariatpanahi M. Human adipose-derived stem cells reduce receptor-interacting protein 1, receptor-interacting protein 3, and mixed lineage kinase domain-like pseudokinase as necroptotic markers in rat model of Alzheimer's disease. Indian J Pharmacol 2020; 52:392-401. [PMID: 33283771 PMCID: PMC8025767 DOI: 10.4103/ijp.ijp_545_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/21/2020] [Accepted: 10/05/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Alzheimer's disease (AD) is a constant, developing brain impairment that is described as the aggregation of misfolded amyloid-beta-peptide (Ab) and abnormal tau protein in the brain. Stem cell therapy became a favorable candidate for the regeneration of neurodegenerative disorders like AD, but there is still shortage of knowledge about the underlying mechanisms. The goal of this survey was the determination of the necroptotic pathway as the possible mechanism for the effect of human adipose-derived stem cells (hADSCs) in the rat model of AD. MATERIALS AND METHODS Twelve rats were consumed, dividing into four groups: Control, sham, AD model and AD + stem cell groups. We utilized Nissl and Thioflavin S staining for determining histological changes and immunofluorescent techniques for evaluating necroptotic markers in different regions of the hippocampus. RESULTS The confirmation of AD model was approved with histological examination. The findings indicated more distinct Thio-S stain and an increased number of dead cells in AD rats comparing to other groups. Alternatively, the dead cells number in the CA3 area significantly lessened in AD + stem cell group comparing to AD group. Data showed that hADSCs significantly decreased the expression of necroptotic markers (receptor-interacting protein 1, receptor-interacting protein 3 and mixed lineage kinase domain-like pseudokinase (MLKL)) in AD + stem cell group compared to AD group in different regions of the hippocampus. CONCLUSION Our findings revealed that the intravenous injection of hADSCs reduced necroptosis and consequently declined the death of neuronal cells in the hippocampus of AD rats.
Collapse
Affiliation(s)
- Mina Eftekharzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Doshmanziari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical and Research Center, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
102
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
103
|
Zhang X, Liu Z, Wu S, Sun M, Wei J, Qin Q. Fish RIP1 Mediates Innate Antiviral Immune Responses Induced by SGIV and RGNNV Infection. Front Immunol 2020; 11:1718. [PMID: 32849607 PMCID: PMC7417445 DOI: 10.3389/fimmu.2020.01718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Receptor interacting protein 1 (RIP1) is an essential sensor of cellular stress, which may respond to apoptosis or cell survival and participate in antiviral pathways. To investigate the roles of fish RIP1 in Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection, a RIP1 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP1) was cloned and characterized. EcRIP1 encoded a 679 amino acid protein that shares 83.28% identity with that of Perca flavescens and contained a homologous N-terminal kinase (S-TKc) domain, a RIP isotype interaction motif (RHIM), and a C-terminal domain (DD). EcRIP1 was predominantly detected in immune tissues, and its expression was induced by RGNNV or SGIV infection in vitro. Subcellular localization showed that EcRIP1 was distributed in the cytoplasm with point-like uniform and dot-like aggregation forms. Overexpression of EcRIP1 inhibited SGIV and RGNNV replication and positively regulated the expression levels of interferon (IFN) and IFN-stimulated genes and pro-inflammatory factors. EcRIP1 may interact with grouper tumor necrosis factor receptor type 1-associated DEATH domain protein (EcTRADD) to promote SGIV-induced apoptosis, and interact with grouper Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (EcTRIF) and participate in Myeloid Differentiation Factor 88 (MyD88)-independent toll-like receptor (TLR) signaling. EcRIP1 may also interact with grouper tumor necrosis factor receptor-associated factors (TRAFs) as intracellular linker proteins and mediate the signaling of various downstream signaling pathways, including NF-κB and IFN. These results suggest that EcRIP1 may inhibit SGIV and RGNNV infection by regulating apoptosis and various signaling molecules. Our study offers new insights into the regulatory mechanism of RIP1-related signaling, and provides a novel perspective on fish diseases mediated by RIP1.
Collapse
Affiliation(s)
- Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
104
|
Murphy JM. The Killer Pseudokinase Mixed Lineage Kinase Domain-Like Protein (MLKL). Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036376. [PMID: 31712266 DOI: 10.1101/cshperspect.a036376] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whereas the apoptosis cell death pathway typically enables cells to undergo death in an immunologically silent manner, cell death by necroptosis induces cell lysis and release of cellular constituents known to elicit an immune response. Consequently, the origins of necroptosis likely originated in host defense against pathogens, although recently it has emerged that dysregulation of the pathway underlies many human pathologies. The past decade has seen a rapid advance in our understanding of the molecular mechanisms underlying necroptotic cell death, including the implication of the pseudokinase, mixed lineage kinase domain-like protein (MLKL), as the terminal effector in the pathway. Here, I review our current understanding of how MLKL is activated by the upstream receptor interacting protein kinase (RIPK)3, the proposed mechanism(s) by which MLKL kills cells, and recently described layers of regulation that tune MLKL's killing activity.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
105
|
Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. PLoS Pathog 2020; 16:e1008473. [PMID: 32649716 PMCID: PMC7375649 DOI: 10.1371/journal.ppat.1008473] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/22/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses are known to encode a number of inhibitors of host cell death, including RIP Homotypic Interaction Motif (RHIM)-containing proteins. Varicella zoster virus (VZV) is a member of the alphaherpesvirus subfamily and is responsible for causing chickenpox and shingles. We have identified a novel viral RHIM in the VZV capsid triplex protein, open reading frame (ORF) 20, that acts as a host cell death inhibitor. Like the human cellular RHIMs in RIPK1 and RIPK3 that stabilise the necrosome in TNF-induced necroptosis, and the viral RHIM in M45 from murine cytomegalovirus that inhibits cell death, the ORF20 RHIM is capable of forming fibrillar functional amyloid complexes. Notably, the ORF20 RHIM forms hybrid amyloid complexes with human ZBP1, a cytoplasmic sensor of viral nucleic acid. Although VZV can inhibit TNF-induced necroptosis, the ORF20 RHIM does not appear to be responsible for this inhibition. In contrast, the ZBP1 pathway is identified as important for VZV infection. Mutation of the ORF20 RHIM renders the virus incapable of efficient spread in ZBP1-expressing HT-29 cells, an effect which can be reversed by the inhibition of caspases. Therefore we conclude that the VZV ORF20 RHIM is important for preventing ZBP1-driven apoptosis during VZV infection, and propose that it mediates this effect by sequestering ZBP1 into decoy amyloid assemblies. RIP homotypic interaction motifs (RHIMs) are found in host proteins that can signal for programmed cell death and in viral proteins that can prevent it. Complexes stabilized by intermolecular interactions involving RHIMs have a fibrillar amyloid structure. We have identified a novel RHIM within the ORF20 protein expressed by Varicella zoster virus (VZV) that forms amyloid-based complexes with human cellular RHIMs. Whereas other herpesvirus RHIMs inhibit necroptosis, this new VZV RHIM targets the host RHIM-containing protein ZBP1 to inhibit apoptosis during infection. This is the first study to demonstrate the importance of the ZBP1 pathway in VZV infection and to identify the role of a viral RHIM in apoptosis inhibition. It broadens our understanding of host defense pathways and demonstrates how a decoy amyloid strategy is employed by pathogens to circumvent the host response.
Collapse
|
106
|
Shi Y, Chen X, Huang C, Pollock C. RIPK3: A New Player in Renal Fibrosis. Front Cell Dev Biol 2020; 8:502. [PMID: 32613000 PMCID: PMC7308494 DOI: 10.3389/fcell.2020.00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is the end result of a plethora of renal insults, including repeated episodes of acute or toxic kidney injury, glomerular, or diabetic kidney disease. It affects a large number of the population worldwide, resulting in significant personal morbidity and mortality and economic cost to the community. Hence it is appropriate to focus on treatment strategies that interrupt the development of kidney fibrosis, the end result of all forms of CKD, in addition to upstream factors that may be specific to certain diseases. However, the current clinical approach to prevent or manage renal fibrosis remains unsatisfactory. The rising importance of receptor-interacting serine/threonine-protein kinase (RIPK) 3 in the inflammatory response and TGF-β1 signaling is increasingly recognized. We discuss here the biological functions of RIPK3 and its role in the development of renal fibrosis.
Collapse
Affiliation(s)
- Ying Shi
- Nephrology, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Xinming Chen
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Chunling Huang
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
107
|
Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020; 8:365. [PMID: 32671059 PMCID: PMC7326080 DOI: 10.3389/fcell.2020.00365] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF; TNFα) is a critical regulator of immune responses in healthy organisms and in disease. TNF is involved in the development and proper functioning of the immune system by mediating cell survival and cell death inducing signaling. TNF stimulated signaling pathways are tightly regulated by a series of phosphorylation and ubiquitination events, which enable timely association of TNF receptors-associated intracellular signaling complexes. Disruption of these signaling events can disturb the balance and the composition of signaling complexes, potentially resulting in severe inflammatory diseases.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| | - Domagoj Vucic
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| |
Collapse
|
108
|
Guo LM, Wang Z, Li SP, Wang M, Yan WT, Liu FX, Wang CD, Zhang XD, Chen D, Yan J, Xiong K. RIP3/MLKL-mediated neuronal necroptosis induced by methamphetamine at 39°C. Neural Regen Res 2020; 15:865-874. [PMID: 31719251 PMCID: PMC6990769 DOI: 10.4103/1673-5374.268902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine is one of the most prevalent drugs abused in the world. Methamphetamine abusers usually present with hyperpyrexia (39°C), hallucination and other psychiatric symptoms. However, the detailed mechanism underlying its neurotoxic action remains elusive. This study investigated the effects of methamphetamine + 39°C on primary cortical neurons from the cortex of embryonic Sprague-Dawley rats. Primary cortex neurons were exposed to 1 mM methamphetamine + 39°C. Propidium iodide staining and lactate dehydrogenase release detection showed that methamphetamine + 39°C triggered obvious necrosis-like death in cultured primary cortical neurons, which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially. Western blot assay results showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39°C for 3 hours. After pre-treatment with RIP3 inhibitor GSK'872, propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly decreased; RIP3 and MLKL protein expression significantly decreased. Immunohistochemistry staining results also showed that the expressions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse. Taken together, the above results suggest that methamphetamine + 39°C can induce RIP3/MLKL regulated necroptosis, thereby resulting in neurotoxicity. The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University, China (approval numbers: 2017-S026 and 2017-S033) on March 7, 2017.
Collapse
Affiliation(s)
- Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shi-Ping Li
- Department of Neurology, People's Hospital of Lianhua, Pingxiang, Jiangxi Province, China
| | - Mi Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chu-Dong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xu-Dong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
109
|
Shi M, Zhang P, Vora SM, Wu H. Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cell biology. Curr Opin Cell Biol 2020; 63:194-203. [PMID: 32272435 DOI: 10.1016/j.ceb.2020.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Higher-order supramolecular complexes-dubbed signalosomes carry out key signaling and effector functions in innate immunity and inflammation. In this review, we present several recently discovered signalosomes that are formed either by stable protein-protein interactions or by dynamic liquid-liquid phase separation. Structural features of these signalosomes are highlighted to elucidate their functions and biological insights.
Collapse
Affiliation(s)
- Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Pengfei Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
110
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
111
|
Newton K. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036368. [PMID: 31427374 DOI: 10.1101/cshperspect.a036368] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor-interacting serine threonine kinase 1 (RIPK1) is a widely expressed kinase that is essential for limiting inflammation in both mice and humans. Mice lacking RIPK1 die at birth from multiorgan inflammation and aberrant cell death, whereas humans lacking RIPK1 are immunodeficient and develop very early-onset inflammatory bowel disease. In contrast to complete loss of RIPK1, inhibiting the kinase activity of RIPK1 genetically or pharmacologically prevents cell death and inflammation in several mouse disease models. Indeed, small molecule inhibitors of RIPK1 are in phase I clinical trials for amyotrophic lateral sclerosis, and phase II clinical trials for psoriasis, rheumatoid arthritis, and ulcerative colitis. This review focuses on which signaling pathways use RIPK1, how activation of RIPK1 is regulated, and when activation of RIPK1 appears to be an important driver of inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
112
|
CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proc Natl Acad Sci U S A 2020; 117:1962-1970. [PMID: 31932442 DOI: 10.1073/pnas.1917112117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Necroptosis is a regulated necrotic cell death pathway, mediated by a supermolecular complex called the necrosome, which contains receptor-interacting protein kinase 1 and 3 (RIPK1, RIPK3) and mixed-lineage kinase domain-like protein (MLKL). Phosphorylation of human RIPK3 at serine 227 (S227) has been shown to be required for downstream MLKL binding and necroptosis progression. Tandem immunoprecipitation of RIPK3 reveals that casein kinase 1 (CK1) family proteins associate with the necrosome upon necroptosis induction, and this interaction depends on the kinase activity of RIPK3. In addition, CK1 proteins colocalize with RIPK3 puncta during necroptosis. Importantly, CK1 proteins directly phosphorylate RIPK3 at S227 in vitro and in vivo. Loss of CK1 proteins abolishes S227 phosphorylation and blocks necroptosis. Furthermore, a RIPK3 mutant with mutations in the CK1 recognition motif fails to be phosphorylated at S227, does not bind or phosphorylate MLKL, and is unable to activate necroptosis. These results strongly suggest that CK1 proteins are necrosome components which are responsible for RIPK3-S227 phosphorylation.
Collapse
|
113
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
114
|
Abstract
Necroptosis is a tightly regulated form of necrosis that requires the activation of receptor-interacting protein (RIP) kinases RIPK1 and RIPK3, as well as the RIPK3 substrate mixed lineage kinase domain-like protein (MLKL). Because of membrane rupture, necroptotic cells release damage-associated molecular patterns (DAMPs) that evoke immune responses. Necroptosis is emerging as an important cellular response in the modulation of cancer initiation, progression, and metastasis. Necroptosis of cancer cells is considered to be an immunogenic cell death capable of activating anti-tumor immunity. Necroptosis also participates in the promotion of myeloid cell-induced adaptive immune suppression and thus contributes to oncogenesis. In addition, necroptosis of endothelial cells and tumor cells is conducive to tumor metastasis. In this review, we summarize the current knowledge of the complex role of necroptosis in cancer and discuss the potential of targeting necroptosis components for cancer therapies.
Collapse
Affiliation(s)
- Fang Zhu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Wei Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Tao Yang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Su-Dan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| |
Collapse
|
115
|
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019; 44:771-786. [PMID: 31198981 PMCID: PMC6658002 DOI: 10.3892/ijmm.2019.4244] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor‑interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3‑dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3‑mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3‑mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Yuping Liu
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Dingding Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
- Key Laboratory for Genetics of Human Disease, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Lea Girani
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Chen Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
116
|
Yuan S, Yu Z, Zhang Z, Zhang J, Zhang P, Li X, Li H, Shen H, Chen G. RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiol Dis 2019; 129:144-158. [PMID: 31082470 DOI: 10.1016/j.nbd.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Necroptosis is a regulated form of necrosis that is mediated by a variety of proteins including tumor necrosis factor-α (TNF-α) and receptor-interacting proteins (RIPs). TNF-α, a critical inflammatory molecule, is one of the initiating signals in the necroptosis pathway, and RIP3 acts as a switch that commits the cell to necroptosis. Subarachnoid hemorrhage (SAH) is a common type of hemorrhagic stroke with high mortality and disability rates. RIP3 has been studied in many central nervous system (CNS) diseases, but its role in SAH has not been investigated in depth. Here, we used an autologous-blood injection model to study the role of RIP3 in brain injury induced by SAH in rats. Several indexes such as brain edema, loss of blood-brain barrier (BBB) integrity, and behavioral tests of neurological function were used to evaluate brain damage in SAH-injured rats. We found that the expression of RIP3 was increased in the rat brain after SAH, reaching the highest point 24 h post-injury. We also showed that genetic or pharmacological inhibition of RIP3 or TNF-α reduced the brain damage induced by SAH, whereas overexpression of RIP3 aggravated brain injury and neurological damage. Additionally, we verified the presence of RIP3-mediated necroptosis in an in vitro SAH model of primary cultured neurons treated with conditioned medium from primary microglia activated by oxygen hemoglobin (OxyHb). Collectively, our findings indicated that RIP3 contributed to brain damage after SAH by inducing necroptosis.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhuwei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
117
|
Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 2019; 4:128834. [PMID: 31391333 DOI: 10.1172/jci.insight.128834] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Necroptosis is a genetically regulated form of necrotic cell death that has emerged as an important pathway in human disease. The necroptosis pathway is induced by a variety of signals, including death receptor ligands, and regulated by receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), which form a regulatory necrosome complex. RIPK3-mediated phosphorylation of MLKL executes necroptosis. Recent studies, using animal models of tissue injury, have revealed that RIPK3 and MLKL are key effectors of injury propagation. This Review explores the functional roles of RIPK3 and MLKL as crucial pathogenic determinants and markers of disease progression and severity in experimental models of human disease, including acute and chronic pulmonary diseases; renal, hepatic, cardiovascular, and neurodegenerative diseases; cancer; and critical illness.
Collapse
Affiliation(s)
- Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, USA
| | - David R Price
- NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, USA.,Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Augustine M K Choi
- NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, USA.,Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
118
|
Deng XX, Li SS, Sun FY. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling. Aging Dis 2019; 10:807-817. [PMID: 31440386 PMCID: PMC6675533 DOI: 10.14336/ad.2018.0728] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
Pharmacological studies have indirectly shown that necroptosis participates in ischemic neuronal death. However, its mechanism has yet to be elucidated in the ischemic brain. TNFα-triggered RIPK1 kinase activation could initiate RIPK3/MLKL-mediated necroptosis under inhibition of caspase-8. In the present study, we performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia in rats and used immunoblotting and immunostaining combined with pharmacological analysis to study the mechanism of necroptosis in ischemic brains. In the ipsilateral hemisphere, we found that ischemia induced the increase of (i) RIPK1 phosphorylation at the Ser166 residue (p-RIPK1), representing active RIPK1 kinase and (ii) the number of cells that were double stained with P-RIPK1 (Ser166) (p-RIPK1+) and TUNEL, a label of DNA double-strand breaks, indicating cell death. Furthermore, ischemia induced activation of downstream signaling factors of RIPK1, RIPK3 and MLKL, as well as the formation of mature interleukin-1β (IL-1β). Treatment with necrostatin-1 (Nec-1), an inhibitor of necroptosis, significantly decreased ischemia-induced increase of p-RIPK1 expression and p-RIPK1+ neurons, which showed protection from brain damage. Meanwhile, Nec-1 reduced RIPK3, MLKL and p-MLKL expression levels and mature IL-1β formation in Nec-1 treated ischemic brains. Our results clearly demonstrated that phosphorylation of RIPK1 at the Ser166 residue was involved in the pathogenesis of necroptosis in the brains after ischemic injury. Nec-1 treatment protected brains against ischemic necroptosis by reducing the activation of RIPK1 and inhibiting its downstream signaling pathways. These results provide direct in vivo evidence that phosphorylated RIPK1 (Ser 166) plays an important role in the initiation of RIPK3/MLKL-dependent necroptosis in the pathogenesis of ischemic stroke in the rodent brain.
Collapse
Affiliation(s)
- Xu-Xu Deng
- 1Department of Neurobiology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,2Institute for Basic Research on Aging and Medicine, the State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shan-Shan Li
- 1Department of Neurobiology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,2Institute for Basic Research on Aging and Medicine, the State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng-Yan Sun
- 1Department of Neurobiology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,2Institute for Basic Research on Aging and Medicine, the State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,3Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
119
|
Liang YX, Wang NN, Zhang ZY, Juan ZD, Zhang C. Necrostatin-1 Ameliorates Peripheral Nerve Injury-Induced Neuropathic Pain by Inhibiting the RIP1/RIP3 Pathway. Front Cell Neurosci 2019; 13:211. [PMID: 31156396 PMCID: PMC6529821 DOI: 10.3389/fncel.2019.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Necrostatin-1 is an inhibitor of necroptosis, a form of programmed cell death that has been reported to be involved in various neurological diseases. Presently, the role of necroptosis in neuropathic pain induced by peripheral nerve injury is still unclear. This study was focused on investigating the potential effects of necroptosis in the development and progression of neuropathic pain in a rat model and the possible neuroprotective effects of necrostatin-1 in neuropathic pain. The results indicated that the necroptosis-related proteins RIP1 and RIP3 significantly increased postoperation in the spinal cord in a neuropathic pain model and peaked 7 days postoperation, which was consistent with the time-dependent changes of hyperalgesia. Additionally, we found that peripheral nerve injury-related behavioral and biochemical changes were significantly reduced by necrostatin-1. In particular, hyperalgesia was attenuated, and the levels of RIP1 and RIP3 were decreased. Furthermore, the ultrastructure of necrotic cell death and neuroinflammation were alleviated by necrostatin-1. Collectively, these results suggest that necroptosis is an important mechanism of cell death in neuropathic pain induced by peripheral nerve injury and that necrostatin-1 may be a promising neuroprotective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Ying-Xia Liang
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China.,Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Nan-Nan Wang
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Zhi-Yu Zhang
- Department of Microsurgery, Shouguang People's Hospital, Weifang, China
| | - Zhao-Dong Juan
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
120
|
Gentle IE. Supramolecular Complexes in Cell Death and Inflammation and Their Regulation by Autophagy. Front Cell Dev Biol 2019; 7:73. [PMID: 31131275 PMCID: PMC6509160 DOI: 10.3389/fcell.2019.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Signaling activation is a tightly regulated process involving myriad posttranslational modifications such as phosphorylation/dephosphorylation, ubiquitylation/deubiquitylation, proteolytical cleavage events as well as translocation of proteins to new compartments within the cell. In addition to each of these events potentially regulating individual proteins, the assembly of very large supramolecular complexes has emerged as a common theme in signal transduction and is now known to regulate many signaling events. This is particularly evident in pathways regulating both inflammation and cell death/survival. Regulation of the assembly and silencing of these complexes plays important roles in immune signaling and inflammation and the fate of cells to either die or survive. Here we will give a summary of some of the better studied supramolecular complexes involved in inflammation and cell death, particularly with a focus on diseases caused by their autoactivation and the role autophagy either plays or may be playing in their regulation.
Collapse
Affiliation(s)
- Ian E Gentle
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
121
|
Kleino A, Silverman N. Regulation of the Drosophila Imd pathway by signaling amyloids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:16-23. [PMID: 30857831 PMCID: PMC6474834 DOI: 10.1016/j.ibmb.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 05/09/2023]
Abstract
Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-κB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.
Collapse
Affiliation(s)
- Anni Kleino
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000, Aarhus C, Denmark
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
122
|
Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking Outside the Bug: Molecular Targets and Strategies to Overcome Antibiotic Resistance. Int J Mol Sci 2019; 20:E1255. [PMID: 30871132 PMCID: PMC6470534 DOI: 10.3390/ijms20061255] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.
Collapse
Affiliation(s)
- Ana Monserrat-Martinez
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| | - Yann Gambin
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| | - Emma Sierecki
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| |
Collapse
|
123
|
Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ 2019; 26:2046-2060. [PMID: 30742091 DOI: 10.1038/s41418-019-0298-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Resistance to apoptosis is a hallmark of cancer and deregulation of apoptosis often leads to chemoresistance. Therefore, new approaches to target apoptosis-resistant cancer cells are crucial for the development of directed cancer therapies. In the present study, we investigated the effect of cell cycle regulators on interferon (IFN)-induced necroptosis as an alternative cell death mechanism to overcome apoptosis resistance. Here, we report a novel combination treatment of IFNs with cell cycle arrest-inducing compounds that induce necroptosis in apoptosis-resistant cancer cells and elucidate the underlying molecular mechanisms. Combination treatment of IFNs (i.e. IFNβ) with inhibitors of the cell cycle (e.g. vinorelbine (VNR), nocodazole (Noc), polo-like kinase-1 (Plk-1) inhibitor BI 6727) co-operate to induce necroptotic cell death upon caspase inactivation. The mode of cell death was confirmed by pharmacological inhibition and siRNA-mediated downregulation of the key necroptotic factors receptor-interacting protein (RIP) kinase 3 (RIP3) and mixed-lineage kinase-like (MLKL) in various cell lines. Mechanistically, we show that necroptosis upon VNR/IFNβ/zVAD.fmk treatment is RIP1-independent but relies on IFNβ-induced gene expression of Z-DNA-binding protein 1 (ZBP1) as shown by quantitative RT-PCR and genetic knockdown experiments. Interestingly, we find that RIP3 is phosphorylated in response to compounds that trigger mitotic arrest, even in the absence of IFNβ signaling and necroptosis induction. Together, the identification of a novel combination treatment that triggers necroptosis has implications for the development of molecular-targeted therapies to circumvent apoptosis resistance and point to an underestimated role of cell cycle regulation in cell death signaling.
Collapse
|
124
|
Interview: a conversation with Vishva M Dixit on his journey from remote African village to apoptosis, necroptosis and the inflammasome. Cell Death Differ 2019; 26:597-604. [PMID: 30737474 PMCID: PMC6460394 DOI: 10.1038/s41418-019-0294-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vishva M. Dixit, M.D., Vice President of Physiological Chemistry at Genentech, Inc. has made many contributions to biomedicine, and his early work on apoptosis is prominent in introductory textbooks of biology and medicine. He is a member of the National Academy of Sciences, the National Academy of Medicine, the American Academy of Arts and Sciences, and a Foreign Member, European Molecular Biology Organization. Additionally, he serves on the Boards of the Gates Foundation, Howard Hughes Medical Institute, and Keystone Symposia.
Collapse
|
125
|
Delgado ME, Brunner T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun 2019; 20:609-626. [DOI: 10.1038/s41435-019-0057-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
126
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Pandey AN, Pandey AK, Chaube SK. Necroptosis in stressed ovary. J Biomed Sci 2019; 26:11. [PMID: 30665407 PMCID: PMC6340166 DOI: 10.1186/s12929-019-0504-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Stress is deeply rooted in the modern society due to limited resources and large competition to achieve the desired goal. Women are more frequently exposed to several stressors during their reproductive age that trigger generation of reactive oxygen species (ROS). Accumulation of ROS in the body causes oxidative stress (OS) and adversely affects ovarian functions. The increased OS triggers various cell death pathways in the ovary. Beside apoptosis and autophagy, OS trigger necroptosis in granulosa cell as well as in follicular oocyte. The OS could activate receptor interacting protein kinase-1(RIPK1), receptor interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) to trigger necroptosis in mammalian ovary. The granulosa cell necroptosis may deprive follicular oocyte from nutrients, growth factors and survival factors. Under these conditions, oocyte becomes more susceptible towards OS-mediated necroptosis in the follicular oocytes. Induction of necroptosis in encircling granulosa cell and oocyte may lead to follicular atresia. Indeed, follicular atresia is one of the major events responsible for the elimination of majority of germ cells from cohort of ovary. Thus, the inhibition of necroptosis could prevent precautious germ cell depletion from ovary that may cause reproductive senescence and early menopause in several mammalian species including human.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, 221005, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
127
|
Nanson JD, Kobe B, Ve T. Death, TIR, and RHIM: Self-assembling domains involved in innate immunity and cell-death signaling. J Leukoc Biol 2018; 105:363-375. [PMID: 30517972 DOI: 10.1002/jlb.mr0318-123r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
The innate immune system consists of pattern recognition receptors (PRRs) that detect pathogen- and endogenous danger-associated molecular patterns (PAMPs and DAMPs), initiating signaling pathways that lead to the induction of cytokine expression, processing of pro-inflammatory cytokines, and induction of cell-death responses. An emerging concept in these pathways and associated processes is signaling by cooperative assembly formation (SCAF), which involves formation of higher order oligomeric complexes, and enables rapid and strongly amplified signaling responses to minute amounts of stimulus. Many of these signalosomes assemble through homotypic interactions of members of the death-fold (DF) superfamily, Toll/IL-1 receptor (TIR) domains, or the RIP homotypic interaction motifs (RHIM). We review the current understanding of the structure and function of these domains and their molecular interactions with a particular focus on higher order assemblies.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
128
|
Khan S, Godfrey V, Zaki MH. Cytosolic Nucleic Acid Sensors in Inflammatory and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:215-253. [PMID: 30798989 DOI: 10.1016/bs.ircmb.2018.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immunity employs germline-encoded pattern recognition receptors (PRRs) to sense microbial pattern molecules. Recognition of pathogen-associated molecular patterns (PAMPs) by various PPRs located on the cell membrane or in the cytosol leads to the activation of cell signaling pathways and production of inflammatory mediators. Nucleic acids including DNA, RNA, and their derivatives are potent PAMPs which can be recognized by multiple PRRs to induce inflammatory responses. While nucleic acid sensors can also sense endogenous nucleic acids, they are capable of discriminating self from non-self. However, defects in nucleic acid sensing PRRs or dysregulation of nucleic acid sensing signaling pathways may cause excessive activation of the immune system resulting in the development of inflammatory and autoimmune diseases. This review will discuss the major pathways for sensing intracellular nucleic acids and how defects in these nucleic acid sensing are associated with different kinds of autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Shahanshah Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Victoria Godfrey
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Md Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
129
|
Petrie EJ, Czabotar PE, Murphy JM. The Structural Basis of Necroptotic Cell Death Signaling. Trends Biochem Sci 2018; 44:53-63. [PMID: 30509860 DOI: 10.1016/j.tibs.2018.11.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Abstract
The recent implication of the cell death pathway, necroptosis, in innate immunity and a range of human pathologies has led to intense interest in the underlying molecular mechanism. Unlike the better-understood apoptosis pathway, necroptosis is a caspase-independent pathway that leads to cell lysis and release of immunogens downstream of death receptor and Toll-like receptor (TLR) ligation. Here we review the role of recent structural studies of the core machinery of the pathway, the protein kinases receptor-interacting protein kinase (RIPK)1 and RIPK3, and the terminal effector, the pseudokinase mixed lineage kinase domain-like protein (MLKL), in shaping our mechanistic understanding of necroptotic signaling. Structural studies have played a key role in establishing models that describe MLKL's transition from a dormant monomer to a killer oligomer and revealing important interspecies differences.
Collapse
Affiliation(s)
- Emma J Petrie
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
130
|
Pham CL, Shanmugam N, Strange M, O'Carroll A, Brown JW, Sierecki E, Gambin Y, Steain M, Sunde M. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies. EMBO Rep 2018; 20:embr.201846518. [PMID: 30498077 DOI: 10.15252/embr.201846518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
The murine cytomegalovirus protein M45 protects infected mouse cells from necroptotic death and, when heterologously expressed, can protect human cells from necroptosis induced by tumour necrosis factor receptor (TNFR) activation. Here, we show that the N-terminal 90 residues of the M45 protein, which contain a RIP homotypic interaction motif (RHIM), are sufficient to confer protection against TNFR-induced necroptosis. This N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils and interacts with the RHIMs of the human kinases RIPK1 and RIPK3, and the Z-DNA binding protein 1 (ZBP1), to form heteromeric amyloid fibrils in vitro Mutation of the tetrad residues in the M45 RHIM attenuates homo- and hetero-amyloid assembly by M45, suggesting that the amyloidogenic nature of the M45 RHIM underlies its biological activity. The M45 RHIM preferentially interacts with RIPK3 and ZBP1 over RIPK1 and alters the properties of the host RHIM protein assemblies. Our results indicate that M45 mimics the interactions made by RIPK1 or ZBP1 with RIPK3, thereby forming heteromeric amyloid structures, which may explain its ability to inhibit necroptosis.
Collapse
Affiliation(s)
- Chi Ll Pham
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, Australia
| | - Nirukshan Shanmugam
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, Australia
| | - Merryn Strange
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, Australia
| | - Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - James Wp Brown
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
131
|
Seo J, Kim MW, Bae KH, Lee SC, Song J, Lee EW. The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochem Pharmacol 2018; 162:21-40. [PMID: 30452908 DOI: 10.1016/j.bcp.2018.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023]
Abstract
Regulation of cell survival and death, including apoptosis and necroptosis, is important for normal development and tissue homeostasis, and disruption of these processes can cause cancer, inflammatory diseases, and degenerative diseases. Ubiquitination is a cellular process that induces proteasomal degradation by covalently attaching ubiquitin to the substrate protein. In addition to proteolytic ubiquitination, nonproteolytic ubiquitination, such as M1-linked and K63-linked ubiquitination, has been shown to be important in recent studies, which have demonstrated its function in cell signaling pathways that regulate inflammation and cell death pathways. In this review, we summarize the TRAIL- and TNF-induced death receptor signaling pathways along with recent advances in this field and illustrate how different types of ubiquitination control cell death and survival. In particular, we provide an overview of the different types of ubiquitination, target residues, and modifying enzymes, including E3 ligases and deubiquitinating enzymes. Given the relevance of these regulatory pathways in human disease, we hope that a better understanding of the regulatory mechanisms of cell death pathways will provide insights into and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
132
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Sahu K, Pandey AN, Pandey AK, Chaube SK. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J Cell Physiol 2018; 234:8019-8027. [PMID: 30341907 DOI: 10.1002/jcp.27562] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Kankshi Sahu
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
133
|
Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol 2018; 9:2379. [PMID: 30459758 PMCID: PMC6232773 DOI: 10.3389/fimmu.2018.02379] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern Recognition Receptors (PRRs) are proteins capable of recognizing molecules frequently found in pathogens (the so-called Pathogen-Associated Molecular Patterns—PAMPs), or molecules released by damaged cells (the Damage-Associated Molecular Patterns—DAMPs). They emerged phylogenetically prior to the appearance of the adaptive immunity and, therefore, are considered part of the innate immune system. Signals derived from the engagement of PRRs on the immune cells activate microbicidal and pro-inflammatory responses required to eliminate or, at least, to contain infectious agents. Molecularly controlled forms of cell death are also part of a very ancestral mechanism involved in key aspects of the physiology of multicellular organism, including the elimination of unwanted, damaged or infected cells. Interestingly, each form of cell death has its particular effect on inflammation and on the development of innate and adaptive immune responses. In this review article, we discuss some aspects of the molecular interplay between the cell death machinery and signals initiated by the activation of PRRs by PAMPs and DAMPs.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Sandy Adjemian
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Migliari Branco
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil.,Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Larissa C Zanetti
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Karina R Bortoluci
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil.,Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
134
|
Deficiency of receptor-interacting protein kinase 3 (RIPK3) attenuates inflammation and organ injury in neonatal sepsis. J Pediatr Surg 2018; 53:1699-1705. [PMID: 29248164 PMCID: PMC5966335 DOI: 10.1016/j.jpedsurg.2017.11.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/10/2017] [Accepted: 11/18/2017] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Sepsis is the third leading cause of morbidity and mortality in neonates. Sepsis in neonates is characterized as the systemic inflammation owing to infection within the first 28days after birth. The molecular mechanism causing the exaggerated inflammation phenotype in neonates has not been completely elucidated. Receptor interacting protein kinase 3 (RIPK3) is a protein identified as a mediator in programmed necrosis or necroptosis. We hypothesize that RIPK3 could be responsible for the inflammatory response in neonates and that deficiency in the RIPK3 protein attenuates inflammation and organ injury in neonatal sepsis. METHODS Male and female C57BL6 wild-type (WT) and RIPK3 knock-out (KO) newborn mice aged 5-7days (3-4g body weight) were injected intraperitoneally with 0.9mg/g cecal slurry (CS). At 10h after injection, the newborns were euthanized and blood, the lungs and gut tissues were collected. RESULTS At 10h after CS injection, serum cytokines IL-6 and IL-1β in the WT mice were increased by 511- and 43-fold whereas in KO mice, these levels were increased by 166-fold and 22-fold, respectively. Lung IL-1β in the WT mice increased by 7-fold after CS injection whereas only a 4-fold increase was seen in the KO mice. In the lungs of CS injected KO mice, the injury score, MIP-2 mRNA, myeloperoxidase (MPO) activity and TUNEL staining were significantly reduced by 76%, 70%, 26% and 74%, respectively compared to the CS WT mice. Gut TUNEL staining was also reduced by 80%. CONCLUSION The deficiency in RIPK3 attenuated serum and lung cytokines, lung injury and neutrophil infiltration and lung and gut apoptosis. These data suggest that RIPK3, in part, is responsible for the systemic inflammatory response in neonatal sepsis.
Collapse
|
135
|
RIP kinases as modulators of inflammation and immunity. Nat Immunol 2018; 19:912-922. [DOI: 10.1038/s41590-018-0188-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
136
|
Necroptosis in anti-viral inflammation. Cell Death Differ 2018; 26:4-13. [PMID: 30050058 PMCID: PMC6294789 DOI: 10.1038/s41418-018-0172-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
The primary function of the immune system is to protect the host from invading pathogens. In response, microbial pathogens have developed various strategies to evade detection and destruction by the immune system. This tug-of-war between the host and the pathogen is a powerful force that shapes organismal evolution. Regulated cell death (RCD) is a host response that limits the reservoir for intracellular pathogens such as viruses. Since pathogen-specific T cell and B cell responses typically take several days and is therefore slow-developing, RCD of infected cells during the first few days of the infection is critical for organismal survival. This innate immune response not only restricts viral replication, but also serves to promote anti-viral inflammation through cell death-associated release of damage-associated molecular patterns (DAMPs). In recent years, necroptosis has been recognized as an important response against many viruses. The central adaptor for necroptosis, RIPK3, also exerts anti-viral effects through cell death-independent activities such as promoting cytokine gene expression. Here, we will discuss recent advances on how viruses counteract this host defense mechanism and the effect of necroptosis on the anti-viral inflammatory reaction. Necroptosis facilitates anti-viral inflammation, which is countered by virally-encoded inhibitors. ![]()
Collapse
|
137
|
Abstract
This review by Shan et al. discusses necroptosis, a form of regulated necrotic cell death mediated by RIPK1 kinase activity, RIPK3, and MLKL, which can be activated under apoptosis-deficient conditions. Both necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of defective embryos and during human inflammatory and neurodegenerative pathologies. Necroptosis, a form of regulated necrotic cell death mediated by RIPK1 (receptor-interacting protein kinase 1) kinase activity, RIPK3, and MLKL (mixed-lineage kinase domain-like pseudokinase), can be activated under apoptosis-deficient conditions. Modulating the activation of RIPK1 by ubiquitination and phosphorylation is critical to control both necroptosis and apoptosis. Mutant mice with kinase-dead RIPK1 or RIPK3 and MLKL deficiency show no detrimental phenotype in regard to development and adult homeostasis. However, necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of the defective embryos and human inflammatory and neurodegenerative pathologies. RIPK1 inhibition represents a key therapeutic strategy for treatment of diseases where blocking both necroptosis and apoptosis can be beneficial.
Collapse
Affiliation(s)
- Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
138
|
RHIM-based protein:protein interactions in microbial defence against programmed cell death by necroptosis. Semin Cell Dev Biol 2018; 99:86-95. [PMID: 29738881 DOI: 10.1016/j.semcdb.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/16/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
The Receptor-interacting protein kinase Homotypic Interaction Motif (RHIM) is an amino acid sequence that mediates multiple protein:protein interactions in the mammalian programmed cell death pathway known as necroptosis. At least one key RHIM-based complex has been shown to have a functional amyloid fibril structure, which provides a stable hetero-oligomeric platform for downstream signaling. RHIMs and related motifs are present in immunity-related proteins across nature, from viruses to fungi to metazoans. Necroptosis is a hallmark feature of cellular clearance of infection. For this reason, numerous pathogens, including viruses and bacteria, have developed varied methods to modulate necroptosis, focusing on inhibiting RHIM:RHIM interactions, and thus their downstream cell death effects. This review will discuss current understanding of RHIM:RHIM interactions in normal cellular activation of necroptosis, from a structural and cell biology perspective. It will compare the mechanisms by which pathogens subvert these interactions in order to maintain their replicative and infective cycles and consider the similarities between RHIMs and other functional amyloid-forming proteins associated with cell death and innate immunity. It will discuss the implications of the heteromeric nature and structure of RHIM-based amyloid complexes in the context of other functional amyloids.
Collapse
|
139
|
Zeng F, Chen X, Cui W, Wen W, Lu F, Sun X, Ma D, Yuan Y, Li Z, Hou N, Zhao H, Bi X, Zhao J, Zhou J, Zhang Y, Xiao RP, Cai J, Zhang X. RIPK1 Binds MCU to Mediate Induction of Mitochondrial Ca 2+ Uptake and Promotes Colorectal Oncogenesis. Cancer Res 2018. [PMID: 29531160 DOI: 10.1158/0008-5472.can-17-3082] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is an essential signaling molecule in pathways for cell survival, apoptosis, and necroptosis. We report here that RIPK1 is upregulated in human colorectal cancer and promotes cell proliferation when overexpressed in a colon cancer cell line. RIPK1 interacts with mitochondrial Ca2+ uniporter (MCU) to promote proliferation by increasing mitochondrial Ca2+ uptake and energy metabolism. The ubiquitination site of RIPK1 (RIPK1-K377) was critical for this interaction with MCU and function in promoting cell proliferation. These findings identify the RIPK1-MCU pathway as a promising target to treat colorectal cancer.Significance: RIPK1-mediated cell proliferation through MCU is a central mechanism underlying colorectal cancer progression and may prove to be an important therapeutic target for colorectal cancer treatment. Cancer Res; 78(11); 2876-85. ©2018 AACR.
Collapse
Affiliation(s)
- Fanxin Zeng
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiyi Cui
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Wei Wen
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Fujian Lu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xueting Sun
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Dongwei Ma
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ye Yuan
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Zezhong Li
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China. .,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
140
|
Abstract
Contrary to the apoptosis-necrosis binary view of cell death, recent experimental evidence demonstrates that several forms of necrosis, represented by necroptosis, are regulated or programmed in nature. Multiple death stimuli known to be associated with cardiovascular disease are capable of causing either apoptosis or necroptosis. Whether a cell dies from apoptosis or necroptosis has distinct consequences on inflammation. It is known that apoptosis, a non-lytic form of death mediated by the caspase family of proteases, does not generally evoke an immune response. Necroptosis, on the other hand, is a lytic form of cell death. Due to the rapid loss of plasma membrane integrity, cells dying from necroptosis release proinflammatory intracellular contents and subsequently cause inflammation. Our review delineates various genetic and biochemical evidence that demonstrates a compelling role of necroptosis in the pathogenesis and/or progression of cardiovascular disease including myocardial infarction, atherosclerosis, and aortic aneurysm. Through recent studies of necroptosis in cardiovascular diseases, we attempt to discuss the role of necroptosis in vascular inflammation as well as the potential of necroptosis inhibitors in future clinical management of cardiovascular events. Inhibiting necroptosis in the vasculature has an overall protective role and necroptosis may represent a new therapeutic target to prevent the development and progression of cardiovascular diseases.
Collapse
|
141
|
Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol 2018; 116:125-134. [DOI: 10.1016/j.yjmcc.2018.01.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/24/2017] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
|
142
|
Lusthaus M, Mazkereth N, Donin N, Fishelson Z. Receptor-Interacting Protein Kinases 1 and 3, and Mixed Lineage Kinase Domain-Like Protein Are Activated by Sublytic Complement and Participate in Complement-Dependent Cytotoxicity. Front Immunol 2018. [PMID: 29527209 PMCID: PMC5829068 DOI: 10.3389/fimmu.2018.00306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The complement system participates in the pathogenesis of many diseases. Complement activation produces several active protein complexes and peptides, including the terminal C5b-9 complexes. It was reported that C5b-9 complexes insert into the plasma membrane and cause membrane perturbation, intracellular calcium surge, metabolic depletion, and osmotic lysis. Previously, we showed that complement-dependent cytotoxicity (CDC) is regulated by JNK and Bid. Here, we demonstrate that three mediators in TNFα-induced necroptosis (regulated necrosis), the receptor-interacting protein kinases, receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like protein (MLKL), are activated by complement and contribute to CDC. Cell treatment with necrostatin-1 (Nec-1), a RIPK1 inhibitor, GSK’872, a RIPK3 inhibitor, or necrosulfonamide and GW806742X, MLKL inhibitors, restrain CDC. These findings were confirmed by using specific siRNAs targeting the synthesis of these proteins. Mouse fibroblasts lacking RIPK3 or MLKL were found to be less sensitive to C5b-9 than were wild-type (WT) fibroblasts. Enhanced CDC was achieved by RIPK1 or RIPK3 overexpression but not by the overexpression of a RHIM-RIPK1 mutant nor by a kinase-dead RIPK3 mutant. Nec-1 reduces the CDC of WT but not of RIPK3-knockout fibroblasts. Cells treated with a sublytic dose of complement exhibit co-localization of RIPK3 with RIPK1 in the cytoplasm and co-localization of RIPK3 and MLKL with C5b-9 at the plasma membrane. Data supporting cooperation among the RIP kinases, MLKL, JNK, and Bid in CDC are presented. These results provide a deeper insight into the cell death process activated by complement and identify potential points of cross talk between complement and other inducers of inflammation and regulated necrosis.
Collapse
Affiliation(s)
- Michal Lusthaus
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Niv Mazkereth
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Donin
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
143
|
Abstract
The programmed self-destruction of infected cells is a powerful antimicrobial strategy in metazoans. For decades, apoptosis represented the dominant mechanism by which the virus-infected cell was thought to undergo programmed cell death. More recently, however, new mechanisms of cell death have been described that are also key to host defense. One such mechanism in vertebrates is programmed necrosis, or "necroptosis", driven by receptor-interacting protein kinase 3 (RIPK3). Once activated by innate immune stimuli, including virus infections, RIPK3 phosphorylates the mixed lineage kinase domain-like protein (MLKL), which then disrupts cellular membranes to effect necroptosis. Emerging evidence demonstrates that RIPK3 can also mediate apoptosis and regulate inflammasomes. Here, we review studies on the mechanisms by which viruses activate RIPK3 and the pathways engaged by RIPK3 that drive cell death.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX, USA
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
144
|
Liu X, Li Y, Peng S, Yu X, Li W, Shi F, Luo X, Tang M, Tan Z, Bode AM, Cao Y. Epstein-Barr virus encoded latent membrane protein 1 suppresses necroptosis through targeting RIPK1/3 ubiquitination. Cell Death Dis 2018; 9:53. [PMID: 29352166 PMCID: PMC5833833 DOI: 10.1038/s41419-017-0081-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Necroptosis is an alternative programmed cell death pathway that is unleashed in the absence of apoptosis and mediated by signaling complexes containing receptor-interating protein kinase 1 (RIPK1) and RIPK3. This form of cell death has recently been implicated in host defense system to eliminate pathogen-infected cells. However, only a few viral species such as herpes simplex virus (HSV) and cytomegalovirus (CMV) have evolved mechanisms inhibiting necroptosis to overcome host antiviral defense, which is important for successful pathogenesis. Here, we show that the γ-herpesvirus Epstein-Barr virus (EBV) blocks necroptosis in EBV-infected human nasopharyngeal epithelial cells and nasopharyngeal carcinoma cells. Our findings indicate that EBV-encoded latent membrane protein 1 (LMP1), which lacks an RIP homotypic interaction motif (RHIM) domain, has mechanisms distinct from RHIM signaling competition to inhibit this necroptotic pathway. Intriguingly, LMP1 interacts directly with both RIPK1 and RIPK3 through its C-terminal activation region. More importantly, LMP1 can modulate the post-translational modification of the two receptor-interacting proteins. We then show that LMP1-mediated promotion of K63-polyubiquitinated RIPK1, suppression of RIPK1 protein expression and inhibition of K63-polyubiquitinated RIPK3 induced a switch in cell fate from necroptotic death to survival. These findings provide direct evidence for the suppression of necroptosis by EBV and define a mechanism of LMP1 to interrupt the initiation process of necroptosis before necrosome formation.
Collapse
Affiliation(s)
- Xiaolan Liu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - Songling Peng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China
| | - A M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, China.
| |
Collapse
|
145
|
Abstract
Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Jay P Garg
- Product Development, Departments of Immunology, Infectious Diseases, and Ophthalmology, Genentech, South San Francisco, CA
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, CA.
| |
Collapse
|
146
|
Abstract
Necroptosis is a caspase-independent form of programmed cell death that is induced by a variety of different signalling cascades-all culminating in the activation of the pseudokinase mixed lineage kinase domain-like (MLKL). TNF-induced necroptosis is the most intensively studied of these pathways. Here we describe reagents and cell-based techniques that can be used to investigate TNF-mediated necroptosis in the lab.
Collapse
|
147
|
Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine 2018; 101:26-32. [DOI: 10.1016/j.cyto.2016.08.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/27/2023]
|
148
|
Abstract
In multicellular organisms, regulated cell death plays a vital role in development, adult tissue homeostasis, and clearance of damaged or infected cells. Necroptosis is one such form of regulated cell death, characterized by its reliance on receptor-interacting protein kinase 3 (RIPK3). Once activated, RIPK3 nucleates a protein complex, termed the "necrosome," which includes the adaptors RIPK1 and FADD, and the effector protein MLKL. From the necrosome, RIPK3 phosphorylates MLKL to drive necroptosis, and can also induce RIPK1/FADD-mediated apoptosis, via caspase-8. Assembly of the necrosome thus serves as a useful readout of RIPK3 activation. In this chapter, we describe molecular methods for examining necrosome activation in response to the cytokines TNF-α, IFN-β, and IFN-γ, and upon infection with influenza A virus (IAV).
Collapse
|
149
|
Kuriakose T, Kanneganti TD. ZBP1: Innate Sensor Regulating Cell Death and Inflammation. Trends Immunol 2017; 39:123-134. [PMID: 29236673 DOI: 10.1016/j.it.2017.11.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Z-DNA-binding protein 1 (ZBP1), initially reported as an interferon (IFN)-inducible tumor-associated protein, harbors nucleic acid-binding domains for left-handed helix (Z-form) and receptor-interacting protein homotypic interaction motif (RHIM) domains for protein homotypic interactions. Recent studies have identified ZBP1 as an innate sensor of viral infections and a target of viral evasion strategies, regulating cell death, inflammasome activation, and proinflammatory responses. ZBP1 also functions during development and can trigger perinatal lethality when its RHIM-dependent interactions are not restricted. Here we review the history and emergence of ZBP1 as a pathogen sensor and a central regulator of cell death and inflammatory responses. We also discuss the gaps in our knowledge regarding the regulation and functions of ZBP1 and highlight potential avenues for future research.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
150
|
Kleino A, Ramia NF, Bozkurt G, Shen Y, Nailwal H, Huang J, Napetschnig J, Gangloff M, Chan FKM, Wu H, Li J, Silverman N. Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-κB Signaling. Immunity 2017; 47:635-647.e6. [PMID: 29045898 DOI: 10.1016/j.immuni.2017.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.
Collapse
Affiliation(s)
- Anni Kleino
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nancy F Ramia
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gunes Bozkurt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanfang Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Himani Nailwal
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Johanna Napetschnig
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Francis Ka-Ming Chan
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|