101
|
Zaouali MA, Panisello A, Lopez A, Castro C, Folch E, Carbonell T, Rolo A, Palmeira CM, Garcia-Gil A, Adam R, Roselló-Catafau J. GSK3β and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. Int J Mol Sci 2017; 18:591. [PMID: 28282906 PMCID: PMC5372607 DOI: 10.3390/ijms18030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the involvement of glycogen synthase kinase-3β (GSK3β) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia-reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3β and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3β. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3β and VDAC, contributing to ER stress reduction and cell death prevention.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
- Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia.
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Arnau Panisello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Alexandre Lopez
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Carlos Castro
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Emma Folch
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain.
| | - Anabela Rolo
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos Marques Palmeira
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | | | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Joan Roselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| |
Collapse
|
102
|
Luan X, Ma C, Wang P, Lou F. HMGB1 is negatively correlated with the development of endometrial carcinoma and prevents cancer cell invasion and metastasis by inhibiting the process of epithelial-to-mesenchymal transition. Onco Targets Ther 2017; 10:1389-1402. [PMID: 28424555 PMCID: PMC5344438 DOI: 10.2147/ott.s123085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High-mobility group box protein 1 (HMGB1), a nuclear protein that plays a significant role in DNA architecture and transcription, was correlated with the progression of some types of cancer. However, the role of HMGB1 in endometrial cancer cell invasion and metastasis remains unexplored. HMGB1 expression was initially assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in normal endometrial tissue and endometrial carcinoma tissue. High expressions of HMGB1 protein were detected in normal endometrial tissues; however, in endometrial cancer tissues, the expressions of HMGB1 were found to be very weak. Furthermore, HMGB1 expressions were negatively correlated with advanced stage and lymph node metastasis in endometrial cancer. Then by RT-qPCR, Western blot and immunocytochemistry, HMGB1 was also detected in primary cultured endometrial cells and four kinds of endometrial cancer cell lines (Ishikawa, HEC-1A, HEC-1B and KLE). We found that the expression of HMGB1 was much higher in normal endometrial cells than in endometrial cancer cells, and reduced expression levels of HMGB1 were observed especially in the highly metastatic cell lines. Using lentivirus transfection, HMGB1 small hairpin RNA was constructed, and this infected the lowly invasive endometrial cancer cell lines, Ishikawa and HEC-1B. HMGB1 knockdown significantly enhanced the proliferation, invasion and metastasis of endometrial cancer cells and induced the process of epithelial-to-mesenchymal transition. These results can contribute to the development of a new potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Xiaorong Luan
- Nursing College, Shandong University.,Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Chunjing Ma
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ping Wang
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | | |
Collapse
|
103
|
Kaneko Y, Pappas C, Malapira T, Vale FĹ, Tajiri N, Borlongan CV. Extracellular HMGB1 Modulates Glutamate Metabolism Associated with Kainic Acid-Induced Epilepsy-Like Hyperactivity in Primary Rat Neural Cells. Cell Physiol Biochem 2017; 41:947-959. [PMID: 28222432 DOI: 10.1159/000460513] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Neuroinflammatory processes have been implicated in the pathophysiology of seizure/epilepsy. High mobility group box 1 (HMGB1), a non-histone DNA binding protein, behaves like an inflammatory cytokine in response to epileptogenic insults. Kainic acid (KA) is an excitotoxic reagent commonly used to induce epilepsy in rodents. However, the molecular mechanism by which KA-induced HMGB1 affords the initiation of epilepsy, especially the role of extracellular HMGB1 in neurotransmitter expression, remains to be elucidated. METHODS Experimental early stage of epilepsy-related hyperexcitability was induced in primary rat neural cells (PRNCs) by KA administration. We measured the localization of HMGB1, cell viability, mitochondrial activity, and expression level of glutamate metabolism-associated enzymes. RESULTS KA induced the translocation of HMGB1 from nucleus to cytosol, and its release from the neural cells. The translocation is associated with post-translational modifications. An increase in extracellular HMGB1 decreased PRNC cell viability and mitochondrial activity, downregulated expression of glutamate decarboxylase67 (GAD67) and glutamate dehydrogenase (GLUD1/2), and increased intracellular glutamate concentration and major histocompatibility complex II (MHC II) level. CONCLUSIONS That a surge in extracellular HMGB1 approximated seizure initiation suggests a key pathophysiological contribution of HMGB1 to the onset of epilepsy-related hyperexcitability.
Collapse
|
104
|
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol 2017; 8:81. [PMID: 28220120 PMCID: PMC5292617 DOI: 10.3389/fimmu.2017.00081] [Citation(s) in RCA: 462] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.
Collapse
|
105
|
Daniels MJD, Brough D. Unconventional Pathways of Secretion Contribute to Inflammation. Int J Mol Sci 2017; 18:E102. [PMID: 28067797 PMCID: PMC5297736 DOI: 10.3390/ijms18010102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
In the conventional pathway of protein secretion, leader sequence-containing proteins leave the cell following processing through the endoplasmic reticulum (ER) and Golgi body. However, leaderless proteins also enter the extracellular space through mechanisms collectively known as unconventional secretion. Unconventionally secreted proteins often have vital roles in cell and organism function such as inflammation. Amongst the best-studied inflammatory unconventionally secreted proteins are interleukin (IL)-1β, IL-1α, IL-33 and high-mobility group box 1 (HMGB1). In this review we discuss the current understanding of the unconventional secretion of these proteins and highlight future areas of research such as the role of nuclear localisation.
Collapse
Affiliation(s)
- Michael J D Daniels
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
106
|
Bai Y, Du S, Li F, Huang F, Deng R, Zhou J, Chen D. Histone deacetylase-high mobility group box-1 pathway targeted by hypaconitine suppresses the apoptosis of endothelial cells. Exp Biol Med (Maywood) 2017; 242:527-535. [PMID: 28056545 DOI: 10.1177/1535370216685433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypaconitine is an active component of Aconitum carmichaelii Debx, a Chinese medicinal herb for the treatment of cardiovascular diseases, but the mechanism underlying its effect remains elusive. In this study, we found that hypaconitine, rather than aconitum alkaloids in A. carmichaelii (e.g. aconitine, mesaconitine and benzoylaconitine), prevented endothelial cells from damage due to oxidized low-density lipoprotein (oxLDL) challenge. Cleaved caspase 3 expression in endothelial cells was up-regulated by oxLDL and markedly attenuated by hypaconitine, suggesting that hypaconitine inhibited the oxLDL-induced cell apoptosis. Microarray analysis revealed that histone deacetylase 3 (HDAC3) was significantly increased by hypaconitine. The cytoplasmic relocation and extracellular release of high-mobility group box 1 (HMGB1, an HDAC3 downstream effector) in endothelial cells were significantly increased by oxLDL and markedly decreased by hypaconitine. The effect of hypaconitine on the oxLDL-induced apoptosis and HMGB1 release in endothelial cells was significantly reduced by the suppression of HDAC3 by siRNA or a specific inhibitor. Thus, this study proves that the histone deacetylase-HMGB1 pathway targeted by hypaconitine suppresses the apoptosis of endothelial cells. Our findings are of therapeutic significance and provide the potential of hypaconitine exploitation. Impact statement First, our study shows the antiapoptosis effect of Aconitum carmichaelii and its active component hypaconitine on endothelial cells. It may provide new strategies for the treatment of diseases involving endothelium damage. Second, this finding indicates the function of hypaconitine in regulating HDAC3-HMGB1 pathway, which suggests a new anti-inflammatory therapy. Third, due to its poisonousness, A. carmichaelii is always used with caution in clinics. Thus, the identification of hypaconitine as an active component of A. carmichaelii could contribute to the development of toxicity-decreasing procedure for A. carmichaelii.
Collapse
Affiliation(s)
- Ye Bai
- 1 Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shaohui Du
- 2 Department of Internal Medicine, Affiliated Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Fei Li
- 1 Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fengyuan Huang
- 1 Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rudong Deng
- 1 Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianhong Zhou
- 1 Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dongfeng Chen
- 1 Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
107
|
Kadono K, Uchida Y, Hirao H, Miyauchi T, Watanabe T, Iida T, Ueda S, Kanazawa A, Mori A, Okajima H, Terajima H, Uemoto S. Thrombomodulin Attenuates Inflammatory Damage Due to Liver Ischemia and Reperfusion Injury in Mice in Toll-Like Receptor 4-Dependent Manner. Am J Transplant 2017; 17:69-80. [PMID: 27467205 DOI: 10.1111/ajt.13991] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023]
Abstract
Liver ischemia reperfusion injury (IRI) is an important problem in liver transplantation. Thrombomodulin (TM), an effective drug for disseminated intravascular coagulation, is also known to exhibit an anti-inflammatory effect through binding to the high-mobility group box 1 protein (HMGB-1) known as a proinflammatory mediator. We examined the effect of recombinant human TM (rTM) on a partial warm hepatic IRI model in wild-type (WT) and toll-like receptor 4 (TLR-4) KO mice focusing on the HMGB-1/TLR-4 axis. As in vitro experiments, peritoneal macrophages were stimulated with recombinant HMGB-1 protein. The rTM showed a protective effect on liver IRI. The rTM diminished the downstream signals of TLR-4 and also HMGB-1 expression in liver cells, as well as release of HMGB-1 from the liver. Interestingly, neither rTM treatment in vivo nor HMGB-1 treatment in vitro showed any effect on TLR-4 KO mice. Parallel in vitro studies have confirmed that rTM interfered with the interaction between HMGB-1 and TLR-4. Furthermore, the recombinant N-terminal lectin-like domain 1 (D1) subunit of TM (rTMD1) also ameliorated liver IRI to the same extent as whole rTM. Not only rTM but also rTMD1 might be a novel and useful medicine for liver transplantation. This is the first report clarifying that rTM ameliorates inflammation such as IRI in a TLR-4 pathway-dependent manner.
Collapse
Affiliation(s)
- K Kadono
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Y Uchida
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - H Hirao
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - T Miyauchi
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - T Watanabe
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - T Iida
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - S Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - A Kanazawa
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - A Mori
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - H Okajima
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Terajima
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - S Uemoto
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
108
|
Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med 2016; 21:1046-1057. [PMID: 28039939 PMCID: PMC5431121 DOI: 10.1111/jcmm.13048] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
Abstract
Lung diseases remain a serious problem for public health. The immune status of the body is considered to be the main influencing factor for the progression of lung diseases. HMGB1 (high‐mobility group box 1) emerges as an important molecule of the body immune network. Accumulating data have demonstrated that HMGB1 is crucially implicated in lung diseases and acts as independent biomarker and therapeutic target for related lung diseases. This review provides an overview of updated understanding of HMGB1 structure, release styles, receptors and function. Furthermore, we discuss the potential role of HMGB1 in a variety of lung diseases. Further exploration of molecular mechanisms underlying the function of HMGB1 in lung diseases will provide novel preventive and therapeutic strategies for lung diseases.
Collapse
Affiliation(s)
- Junying Ding
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Xuran Cui
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
109
|
Carbon monoxide inhibits the nuclear-cytoplasmic translocation of HMGB1 in an in vitro oxidative stress injury model of mouse renal tubular epithelial cells. ACTA ACUST UNITED AC 2016; 36:791-795. [PMID: 27924516 DOI: 10.1007/s11596-016-1663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/16/2016] [Indexed: 01/03/2023]
Abstract
Carbon monoxide (CO), as a vital small molecule in signaling pathways, is found to be involved in ischemia-reperfusion injury (IRI) in renal transplantation. CO-releasing molecule-2 (CORM-2), a CO-releasing molecule, is a type of metal carbonyl complexes which can quickly release CO in vivo. In this study, an in vitro oxidative stress injury model was established to examine the effect of CORM-2 pretreatment on the nuclear-cytoplasmic translocation of high mobility group box 1 protein (HMGB1) in mouse primary renal proximal tubular epithelial cells (RPTECs). Immunofluorescence staining showed that HMGB1 in the medium- and CORM-2-treated groups was predominantly localized in the nucleus of the cells, whereas higher amounts of HMGB1 translocated to the cytoplasm in the H2O2- and inactive CORM-2 (iCORM-2)-treated groups. Western blotting of HMGB1 showed that the total amounts of cytoplasmic HMGB1 in the H2O2-treated (0.59±0.27) and iCORM-2-treated (0.57±0.22) groups were markedly higher than those in the medium-treated (0.19±0.05) and CORM-2-treated (0.21±0.10) groups (P<0.05). Co-immunoprecipitation showed that the levels of acetylated HMGB1 in the H2O2-treated (642.98±57.25) and iCORM-2-treated (342.11±131.25) groups were markedly increased as compared with the medium-treated (78.72±74.17) and CORM-2-treated (71.42±53.35) groups (P<0.05), and no significant difference was observed between the medium-treated and CORM-2-treated groups (P>0.05). In conclusion, our study demonstrated that in the in vitro oxidative stress injury model of primary RPTECs, CORM-2 can significantly inhibit the nuclear-cytoplasmic translocation of HMGB1, which is probably associated with the prevention of HMGB1 acetylation.
Collapse
|
110
|
Chen YD, Fang YT, Chang CP, Lin CF, Hsu LJ, Wu SR, Chiu YC, Anderson R, Lin YS. S100A10 Regulates ULK1 Localization to ER-Mitochondria Contact Sites in IFN-γ-Triggered Autophagy. J Mol Biol 2016; 429:142-157. [PMID: 27871932 DOI: 10.1016/j.jmb.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/07/2023]
Abstract
During the process of autophagy, the autophagy-related proteins are translocated to autophagosome formation sites. Here, we demonstrate that S100A10 is required for ULK1 localization to autophagosome formation sites. Silencing of S100A10 reduces IFN-γ-induced autophagosome formation. We also determined the role of annexin A2 (ANXA2), a binding partner of S100A10, which has been reported to promote phagophore assembly. Silencing of ANXA2 reduced S100A10 expression. However, overexpression of S100A10 in ANXA2-silenced cells was still able to enhance autophagosome formation, suggesting that ANXA2 regulates IFN-γ-induced autophagy through S100A10. We also observed that S100A10 interacted with ULK1 after IFN-γ stimulation, and S100A10 knockdown prevented ULK1 localization to autophagosome formation sites. Finally, the release of high mobility group protein B1, one of the functions mediated by IFN-γ-induced autophagy, was inhibited in S100A10 knockdown cells. These results elucidate the importance of S100A10 in autophagosome formation and reveal the relationship between S100A10 and ULK1 in IFN-γ-induced autophagy.
Collapse
Affiliation(s)
- Ying-Da Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Ting Fang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Chi Chiu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Robert Anderson
- Departments of Microbiology & Immunology and Pediatrics, and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
111
|
Kim YM, Park EJ, Kim JH, Park SW, Kim HJ, Chang KC. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages. Int Immunopharmacol 2016; 41:98-105. [PMID: 27865166 DOI: 10.1016/j.intimp.2016.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/31/2023]
Abstract
High mobility group box 1 (HMGB1), a cytokine present in the late phase of sepsis, may be a potential target for the treatment of sepsis. For HMGB1 to be actively secreted from macrophages during infections, it must be post-translationally modified. Although ethyl pyruvate (EP), a simple aliphatic ester derived from pyruvic acid, has been shown to inhibit the release of HMGB1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells, the underlying mechanism(s) are not yet clear. We investigated the hypothesis that the upregulation of SIRT1 by EP might promote the deacetylation of HMGB1, which reduces HMGB1 release in LPS-activated macrophages. Our results show that EP induced the expression of the SIRT1 protein in RAW264.7 cells and that it significantly inhibited the LPS-induced acetylation of HMGB1. Transfection with a SIRT1-overexpressing vector resulted in a significant decrease in the acetylation of HMGB1 in LPS-activated RAW264.7 cells relative to control cells. The genetic ablation or the pharmacological inhibition of SIRT1 by sirtinol increased LPS-induced HMGB1 acetylation. Moreover, EP inhibited the acetylation of HMGB1 in peritoneal macrophages treated with LPS. Interestingly, EP significantly reduced the LPS-induced phosphorylation of STAT1, which was significantly reversed by siSIRT1 transfection in RAW264.7 cells, indicating that SIRT1 negatively regulates the phosphorylation of STAT1. Overall, the results show that EP promotes the deacetylation of HMGB1 via the inhibition of STAT1 phosphorylation through the upregulation of SIRT1, which reduces HMGB1 release in LPS-activated RAW264.7 cells. In conclusion, EP might be useful in the treatment of diseases that target HMGB1, such as sepsis.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Eun Jung Park
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jung Hwan Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea.
| |
Collapse
|
112
|
Singh B, Biswas I, Bhagat S, Surya Kumari S, Khan GA. HMGB1 facilitates hypoxia-induced vWF upregulation through TLR2-MYD88-SP1 pathway. Eur J Immunol 2016; 46:2388-2400. [PMID: 27480067 DOI: 10.1002/eji.201646386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022]
Abstract
Increased plasma level of von Willebrand Factor (vWF) is associated with major cardiovascular diseases. We previously reported that multimeric vWF binds to NO synthase and inhibits insulin-induced production of NO, thus promoting insulin resistance during acute hypoxia (AH). However, the transcriptional regulation of vWF during AH is not clearly understood. Here, we investigated the mechanisms underlying the upregulation of vwf in mice. AH significantly upregulates the tlr2, tlr3, myd88, and vwf expression and phosphorylation of specificity protein 1 (SP1). Furthermore, AH significantly upregulates high mobility group box-1 (HMGB1) in a time-dependent manner. Moreover, a TLR2 agonist upregulates vWF but a TLR3 agonist does not. Pretreatment with an HMGB1 inhibitor, TLR2-immunoneutralizing antibody, or SP1 inhibitor significantly inhibits vWF expression. Furthermore, Tlr2 silencing completely inhibited MYD88, vWF expression, and SP1 phosphorylation. However, pretreatment with glycyrrhizic acid or silencing of Tlr2 completely blocks binding of Sp1 to the Vwf promoter, thus inhibiting its expression, and enhances insulin resistance during AH. Patients with type 2 diabetes mellitus also showed significantly elevated levels of HMGB1, TLR2, SP1, and vWF, thereby supporting the results of the murine model of AH. Taken together, HMGB1 upregulates vWF in vivo through the TLR2-MYD88-SP1 pathway in mice.
Collapse
Affiliation(s)
- Bandana Singh
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Indranil Biswas
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Saumya Bhagat
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Sarada Surya Kumari
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Gausal A Khan
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
113
|
Xu X, Gou L, Zhou M, Yang F, Zhao Y, Feng T, Shi P, Ghavamian A, Zhao W, Yu Y, Lu Y, Yi F, Liu G, Tang W. Progranulin protects against endotoxin-induced acute kidney injury by downregulating renal cell death and inflammatory responses in mice. Int Immunopharmacol 2016; 38:409-19. [DOI: 10.1016/j.intimp.2016.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
|
114
|
Morandini AC, Santos CF, Yilmaz Ö. Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis 2016; 74:ftw082. [PMID: 27542389 DOI: 10.1093/femspd/ftw082] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms have rapidly and controversially emerged as silent modulators of host defenses that can lead to a more prominent immune response and shape the course of inflammation in the host. Thus, the epigenetics can both drive the production of specific inflammatory mediators and control the magnitude of the host response. The epigenetic actions that are predominantly shown to modulate the host defense against microbial pathogens are DNA methylation, histone modification and the activity of non-coding RNAs. There is also growing evidence that opportunistic chronic pathogens, such as Porphyromonas gingivalis, as a microbial host subversion strategy, can epigenetically interfere with the host DNA machinery for successful colonization. Similarly, the novel involvement of small molecule 'danger signals', which are released by stressed or infected cells, at the center of host-pathogen interplay and epigenetics is developing. In this review, we systematically examine the latest knowledge within the field of epigenetics in the context of host-derived danger molecule and purinergic signaling, with a particular focus on host microbial defenses and infection-driven chronic inflammation.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlos F Santos
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
115
|
Ruess DA, Probst M, Marjanovic G, Wittel UA, Hopt UT, Keck T, Bausch D. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS One 2016; 11:e0161233. [PMID: 27513861 PMCID: PMC4981462 DOI: 10.1371/journal.pone.0161233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDAC) catalyze N-terminal deacetylation of lysine-residues on histones and multiple nuclear and cytoplasmic proteins. In various animal models, such as trauma/hemorrhagic shock, ischemic stroke or myocardial infarction, HDAC inhibitor (HDACi) application is cyto- and organoprotective and promotes survival. HDACi reduce stress signaling, cell death and inflammation. Hepatic ischemia-reperfusion (I/R) injury during major liver resection or transplantation increases morbidity and mortality. Assuming protective properties, the aim of this study was to investigate the effect of the HDACi VPA and SAHA on warm hepatic I/R. MATERIAL AND METHODS Male Wistar-Kyoto rats (age: 6-8 weeks) were randomized to VPA, SAHA, vehicle control (pre-) treatment or sham-groups and underwent partial no-flow liver ischemia for 90 minutes with subsequent reperfusion for 6, 12, 24 and 60 hours. Injury and regeneration was quantified by serum AST and ALT levels, by macroscopic aspect and (immuno-) histology. HDACi treatment efficiency, impact on MAPK/SAPK-activation and Hippo-YAP signaling was determined by Western blot. RESULTS Treatment with HDACi significantly enhanced hyperacetylation of Histone H3-K9 during I/R, indicative of adequate treatment efficiency. Liver injury, as measured by macroscopic aspect, serum transaminases and histology, was delayed, but not alleviated in VPA and SAHA treated animals. Importantly, tissue destruction was significantly more pronounced with VPA. SAPK-activation (p38 and JNK) was reduced by VPA and SAHA in the early (6h) reperfusion phase, but augmented later on (JNK, 24h). Regeneration appeared enhanced in SAHA and VPA treated animals and was dependent on Hippo-YAP signaling. CONCLUSIONS VPA and SAHA delay warm hepatic I/R injury at least in part through modulation of SAPK-activation. However, these HDACi fail to exert organoprotective effects, in this setting. For VPA, belated damage is even aggravated.
Collapse
Affiliation(s)
- Dietrich A. Ruess
- Department of Surgery, University Hospital Freiburg, Freiburg, Germany
- * E-mail:
| | - Moriz Probst
- Department of Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Goran Marjanovic
- Department of Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Uwe A. Wittel
- Department of Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Ulrich T. Hopt
- Department of Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Tobias Keck
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Dirk Bausch
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
116
|
Nishida T, Tsubota M, Kawaishi Y, Yamanishi H, Kamitani N, Sekiguchi F, Ishikura H, Liu K, Nishibori M, Kawabata A. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology 2016; 365:48-58. [PMID: 27474498 DOI: 10.1016/j.tox.2016.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022]
Abstract
Given that high mobility group box 1 (HMGB1), a nuclear protein, once released to the extracellular space, promotes nociception, we asked if inactivation of HMGB1 prevents or reverses chemotherapy-induced painful neuropathy in rats and also examined possible involvement of Toll-like receptor 4 (TLR4) and the receptor for advanced glycation endproduct (RAGE), known as targets for HMGB1. Painful neuropathy was produced by repeated i.p. administration of paclitaxel or vincristine in rats. Nociceptive threshold was determined by the paw pressure method and/or von Frey test in the hindpaw. Tissue protein levels were determined by immunoblotting. Repeated i.p. administration of the anti-HMGB1-neutralizing antibody or recombinant human soluble thrombomodulin (rhsTM), known to inactivate HMGB1, prevented the development of hyperalgesia and/or allodynia induced by paclitaxel or vincristine in rats. A single i.p. or intraplantar (i.pl.) administration of the antibody or rhsTM reversed the chemotherapy-induced neuropathy. A single i.pl. administration of a TLR4 antagonist or low molecular weight heparin, known to inhibit RAGE, attenuated the hyperalgesia caused by i.pl. HMGB1 and also the chemotherapy-induced painful neuropathy. Paclitaxel or vincristine treatment significantly decreased protein levels of HMGB1 in the dorsal root ganglia, but not sciatic nerves. HMGB1 thus participates in both development and maintenance of chemotherapy-induced painful neuropathy, in part through RAGE and TLR4. HMGB1 inactivation is considered useful to prevent and treat the chemotherapy-induced painful neuropathy.
Collapse
Affiliation(s)
- Takeshi Nishida
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan; Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Yudai Kawaishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Hiroki Yamanishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Natsuki Kamitani
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
117
|
Fu J, Shi Q, Song X, Liu Z, Wang Y, Wang Y, Song E, Song Y. From the Cover: Tetrachlorobenzoquinone Exerts Neurological Proinflammatory Activity by Promoting HMGB1 Release, Which Induces TLR4 Clustering within the Lipid Raft. Toxicol Sci 2016; 153:303-15. [DOI: 10.1093/toxsci/kfw124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
118
|
Maugeri N, Rovere-Querini P, Manfredi AA. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases. Front Immunol 2016; 7:182. [PMID: 27242789 PMCID: PMC4871869 DOI: 10.3389/fimmu.2016.00182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.
Collapse
Affiliation(s)
- Norma Maugeri
- San Raffaele Scientific Institute, Università Vita Salute San Raffaele , Milano , Italy
| | | | - Angelo A Manfredi
- San Raffaele Scientific Institute, Università Vita Salute San Raffaele , Milano , Italy
| |
Collapse
|
119
|
Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-Dependent HMGB1 Isoforms as Pivotal Co-Ordinators of Drug-Induced Liver Injury: Mechanistic Biomarkers and Therapeutic Targets. Antioxid Redox Signal 2016; 24:652-65. [PMID: 26481429 DOI: 10.1089/ars.2015.6406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.
Collapse
Affiliation(s)
- Jonathan D Lea
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Joanna I Clarke
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Niamh McGuire
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
120
|
Lundbäck P, Stridh P, Klevenvall L, Jenkins RE, Fischer M, Sundberg E, Andersson U, Antoine DJ, Harris HE. Characterization of the Inflammatory Properties of Actively Released HMGB1 in Juvenile Idiopathic Arthritis. Antioxid Redox Signal 2016; 24:605-19. [PMID: 25532033 PMCID: PMC4841912 DOI: 10.1089/ars.2014.6039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Pathogenic effects of the endogenous inflammatory mediator high mobility group box protein 1 (HMGB1) have been described in several inflammatory diseases. Recent reports have underlined the importance of post-translational modifications (PTMs) in determination of HMGB1 function and release mechanisms. We investigated the occurrence of PTMs of HMGB1 obtained from synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients. RESULTS Analyses of 17 JIA patients confirmed high HMGB1 levels in SF. Liquid chromatography tandem mass-spectrometry (LC-MS/MS) analyses of PTMs revealed that total HMGB1 levels were not associated with increased lactate dehydrogenase activity but strongly correlated with nuclear location sequence 2 (NLS2) hyperacetylation, indicating active release of HMGB1. The correlation between total HMGB1 levels and NLS2 hypoacetylation suggests additional, acetylation-independent release mechanisms. Monomethylation of lysine 43 (K43), a proposed neutrophil-specific PTM, was strongly associated with high HMGB1 levels, implying that neutrophils are a source of released HMGB1. Analysis of cysteine redox isoforms, fully reduced HMGB1, disulfide HMGB1, and oxidized HMGB1, revealed that HMGB1 acts as both a chemotactic and a cytokine-inducing mediator. These properties were associated with actively released HMGB1. INNOVATION This is the first report that characterizes HMGB1-specific PTMs during a chronic inflammatory condition. CONCLUSION HMGB1 in SF from JIA patients is actively released through both acetylation-dependent and -nondependent manners. The presence of various functional HMGB1 redox isoforms confirms the complexity of their pathogenic role during chronic inflammation. Defining HMGB1 release pathways and redox isoforms is critical for the understanding of the contribution of HMGB1 during inflammatory processes.
Collapse
Affiliation(s)
- Peter Lundbäck
- 1 Department of Medicine, Rheumatology Unit, Karolinska Institutet , Stockholm, Sweden
| | - Pernilla Stridh
- 2 Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Lena Klevenvall
- 3 Department of Women's and Children's Health, Paediatric Unit, Karolinska Institutet , Stockholm, Sweden
| | - Rosalind E Jenkins
- 4 MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Liverpool University , Liverpool, United Kingdom
| | - Marie Fischer
- 1 Department of Medicine, Rheumatology Unit, Karolinska Institutet , Stockholm, Sweden
| | - Erik Sundberg
- 3 Department of Women's and Children's Health, Paediatric Unit, Karolinska Institutet , Stockholm, Sweden
| | - Ulf Andersson
- 3 Department of Women's and Children's Health, Paediatric Unit, Karolinska Institutet , Stockholm, Sweden
| | - Daniel J Antoine
- 4 MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Liverpool University , Liverpool, United Kingdom
| | | |
Collapse
|
121
|
Tang Y, Zhao X, Antoine D, Xiao X, Wang H, Andersson U, Billiar TR, Tracey KJ, Lu B. Regulation of Posttranslational Modifications of HMGB1 During Immune Responses. Antioxid Redox Signal 2016; 24:620-34. [PMID: 26715031 PMCID: PMC5349223 DOI: 10.1089/ars.2015.6409] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE High-mobility group protein 1 (HMGB1) is an evolutionarily conserved and multifunctional protein. The biological function of HMGB1 depends on its cellular locations, binding partners, and redox states. Extracellular HMGB1 is a mediator of inflammation during infection or tissue injury. Immune cells actively release HMGB1 in response to infection, which in turn orchestrates both innate and adaptive immune responses. RECENT ADVANCES Hyperacetylation of HMGB1 within its nuclear localization sequences mobilizes HMGB1 from the nucleus to the cytoplasm and subsequently promotes HMGB1 release. The redox states of the cysteines in positions 23, 45, and 106 determine the biological activity of the extracellular HMGB1. CRITICAL ISSUES The full picture and the detailed molecular mechanisms of how cells regulate the posttranslational modifications and the redox status of HMGB1 during immune responses or under stress not only unravel the molecular mechanisms by which cells regulate the release and the biological function of HMGB1 but may also provide novel therapeutic targets to treat inflammatory diseases. FUTURE DIRECTIONS It is important to identify the signaling pathways that regulate the posttranslational modifications and the redox status of HMGB1 and find their roles in host immune responses and pathogenesis of diseases.
Collapse
Affiliation(s)
- Yiting Tang
- 1 Department of Hematology, The 3rd Xiangya Hospital, Central South University , Changsha, China .,2 State Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University , Changsha, China .,3 Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, China
| | - Xin Zhao
- 1 Department of Hematology, The 3rd Xiangya Hospital, Central South University , Changsha, China .,2 State Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University , Changsha, China
| | - Daniel Antoine
- 4 Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Xianzhong Xiao
- 5 Hunan Province Key Laboratory of Sepsis and Translational Medicine, Xiangya School of Medicine, Central South University , Changsha, China .,6 Department of Pathophysiology, Xiangya School of Medicine, Central South University , Changsha, China
| | - Haichao Wang
- 7 Department of Emergency Medicine, North Shore University Hospital , Manhasset, New York
| | - Ulf Andersson
- 8 Department of Women's and Children's Health, Karolinska Institutet , Stockholm, Sweden
| | - Timothy R Billiar
- 9 Department of Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Kevin J Tracey
- 10 Center of Biomedical Science, Feinstein Institute for Medical Research , Manhasset, New York
| | - Ben Lu
- 1 Department of Hematology, The 3rd Xiangya Hospital, Central South University , Changsha, China .,2 State Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University , Changsha, China .,5 Hunan Province Key Laboratory of Sepsis and Translational Medicine, Xiangya School of Medicine, Central South University , Changsha, China .,10 Center of Biomedical Science, Feinstein Institute for Medical Research , Manhasset, New York
| |
Collapse
|
122
|
Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, Chen GD, Peng HY. Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J Pineal Res 2016; 60:263-76. [PMID: 26732138 DOI: 10.1111/jpi.12307] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons.
Collapse
Affiliation(s)
- Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
123
|
Park MS, Choi S, Lee YR, Joo HK, Kang G, Kim CS, Kim SJ, Lee SD, Jeon BH. Secreted APE1/Ref-1 inhibits TNF-α-stimulated endothelial inflammation via thiol-disulfide exchange in TNF receptor. Sci Rep 2016; 6:23015. [PMID: 26964514 PMCID: PMC4786854 DOI: 10.1038/srep23015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Apurinic apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is a multifunctional protein with redox activity and is proved to be secreted from stimulated cells. The aim of this study was to evaluate the functions of extracellular APE1/Ref-1 with respect to leading anti-inflammatory signaling in TNF-α-stimulated endothelial cells in response to acetylation. Treatment of TNF-α-stimulated endothelial cells with an inhibitor of deacetylase that causes intracellular acetylation, considerably suppressed vascular cell adhesion molecule-1 (VCAM-1). During TSA-mediated acetylation in culture, a time-dependent increase in secreted APE1/Ref-1 was confirmed. The acetyl moiety of acetylated-APE1/Ref-1 was rapidly removed based on the removal kinetics. Additionally, recombinant human (rh) APE1/Ref-1 with reducing activity induced a conformational change in rh TNF-α receptor 1 (TNFR1) by thiol-disulfide exchange. Following treatment with the neutralizing anti-APE1/Ref-1 antibody, inflammatory signals via the binding of TNF-α to TNFR1 were remarkably recovered, leading to up-regulation of reactive oxygen species generation and VCAM-1, in accordance with the activation of p66shc and p38 MAPK. These results strongly indicate that anti-inflammatory effects in TNF-α-stimulated endothelial cells by acetylation are tightly linked to secreted APE1/Ref-1, which inhibits TNF-α binding to TNFR1 by reductive conformational change, with suggestion as an endogenous inhibitor of vascular inflammation.
Collapse
Affiliation(s)
- Myoung Soo Park
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Sunga Choi
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Yu Ran Lee
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Hee Kyoung Joo
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Gun Kang
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Cuk-Seong Kim
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Soo Jin Kim
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Sang Do Lee
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| | - Byeong Hwa Jeon
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of KOREA
| |
Collapse
|
124
|
Kaplan BLF, Li J, LaPres JJ, Pruett SB, Karmaus PWF. Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 2016; 145:214-32. [PMID: 26008184 DOI: 10.1093/toxsci/kfv060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jinze Li
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - John J LaPres
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen B Pruett
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peer W F Karmaus
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
125
|
Yamasoba D, Tsubota M, Domoto R, Sekiguchi F, Nishikawa H, Liu K, Nishibori M, Ishikura H, Yamamoto T, Taga A, Kawabata A. Peripheral HMGB1-induced hyperalgesia in mice: Redox state-dependent distinct roles of RAGE and TLR4. J Pharmacol Sci 2016; 130:139-42. [DOI: 10.1016/j.jphs.2016.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/25/2015] [Accepted: 01/12/2016] [Indexed: 12/24/2022] Open
|
126
|
Sugihara M, Sadamori H, Nishibori M, Sato Y, Tazawa H, Shinoura S, Umeda Y, Yoshida R, Nobuoka D, Utsumi M, Ohno K, Nagasaka T, Yoshino T, Takahashi HK, Yagi T, Fujiwara T. Anti–high mobility group box 1 monoclonal antibody improves ischemia/reperfusion injury and mode of liver regeneration after partial hepatectomy. Am J Surg 2016; 211:179-88. [DOI: 10.1016/j.amjsurg.2015.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/10/2015] [Accepted: 06/25/2015] [Indexed: 01/27/2023]
|
127
|
Cai J, Wen J, Bauer E, Zhong H, Yuan H, Chen AF. The Role of HMGB1 in Cardiovascular Biology: Danger Signals. Antioxid Redox Signal 2015; 23:1351-69. [PMID: 26066838 DOI: 10.1089/ars.2015.6408] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Accumulating evidence shows that dysregulated immune response contributes to several types of CVDs such as atherosclerosis and pulmonary hypertension (PH). Vascular intimal impairment and low-density lipoprotein oxidation trigger a complex network of innate immune responses and sterile inflammation. RECENT ADVANCES High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, was recently discovered to function as a damage-associated molecular pattern molecule (DAMP) that initiates the innate immune responses. These findings lead to the understanding that HMGB1 plays a critical role in the inflammatory response in the pathogenesis of CVD. CRITICAL ISSUES In this review, we highlight the role of extracellular HMGB1 as a proinflammatory mediator as well as a DAMP in coronary artery disease, cerebral artery disease, peripheral artery disease, and PH. FUTURE DIRECTIONS A key focus for future researches on HMGB1 location, structure, modification, and signaling will reveal HMGB1's multiple functions and discover a targeted therapy that can eliminate HMGB1-mediated inflammation without interfering with adaptive immune responses.
Collapse
Affiliation(s)
- Jingjing Cai
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Juan Wen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Eileen Bauer
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hua Zhong
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Hong Yuan
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Alex F Chen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
128
|
Zeng W, Shan W, Gao L, Gao D, Hu Y, Wang G, Zhang N, Li Z, Tian X, Xu W, Peng J, Ma X, Yao J. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci Rep 2015; 5:16013. [PMID: 26525891 PMCID: PMC4630617 DOI: 10.1038/srep16013] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
The inflammatory mediator high-mobility group box 1 (HMGB1) plays a critical role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the regulation of HMGB1 in NAFLD, particularly through sirtuin 1 (SIRT1), remains unclear. In this study, we investigated the role of SIRT1-mediated inhibition of HMGB1 release in NAFLD and the effect of salvianolic acid B (SalB), which is a water-soluble phenolic acid extracted from Radix Salvia miltiorrhiza, on NAFLD through SIRT1/HMGB1 signaling. In vivo, SalB treatment significantly attenuated high-fat diet (HFD)-induced liver damage, hepatic steatosis, and inflammation. Importantly, SalB significantly inhibited HMGB1 nuclear translocation and release, accompanied by SIRT1 elevation. In HepG2 cells, palmitic acid (PA)-induced pro-inflammatory cytokines release were blocked by HMGB1 small interfering RNA (siRNA) transfection. Moreover, pharmacological SIRT1 inhibition by Ex527 induced HMGB1 translocation and release, whereas SIRT1 activation by resveratrol or SalB reversed this trend. SIRT1 siRNA abrogated the SalB-mediated inhibition of HMGB1 acetylation and release, suggesting that SalB-mediated protection occurs by SIRT1 targeting HMGB1 for deacetylation. We are the first to demonstrate that the SIRT1/HMGB1 pathway is a key therapeutic target for controlling NAFLD inflammation and that SalB confers protection against HFD- and PA-induced hepatic steatosis and inflammation through SIRT1-mediated HMGB1 deacetylation.
Collapse
Affiliation(s)
- Wenjing Zeng
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Wen Shan
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Lili Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Yan Hu
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ning Zhang
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhenlu Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wei Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
129
|
Hwang JS, Choi HS, Ham SA, Yoo T, Lee WJ, Paek KS, Seo HG. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci Rep 2015; 5:15971. [PMID: 26522327 PMCID: PMC4629154 DOI: 10.1038/srep15971] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2015] [Indexed: 02/08/2023] Open
Abstract
Inflammatory signal-mediated release of high-mobility group box 1 (HMGB1) is a damage-associated molecular pattern or alarmin. The inflammatory functions of HMGB1 have been extensively investigated; however, less is known about the mechanisms controlling HMGB1 release. We show that SIRT1, the human homolog of the Saccharomyces cerevisiae protein silent information regulator 2, which is involved in cellular senescence and possibly the response to inflammation, forms a stable complex with HMGB1 in murine macrophage RAW264.7 cells. SIRT1 directly interacted with HMGB1 via its N-terminal lysine residues (28–30), and thereby inhibited HMGB1 release to improve survival in an experimental model of sepsis. By contrast, inflammatory stimuli such as lipopolysaccharide (LPS) and tumor necrosis factor-α promoted HMGB1 release by provoking its dissociation from SIRT1 dependent on acetylation, thereby increasing the association between HMGB1 and chromosome region maintenance 1, leading to HMGB1 translocation. In vivo infection with wild-type SIRT1 and HMGB1K282930R, a hypo-acetylation mutant, improved survival (85.7%) during endotoxemia more than infection with wild-type SIRT1 and HMGB1-expressing adenovirus, indicating that the acetylation-dependent interaction between HMGB1 and SIRT1 is critical for LPS-induced lethality. Taken together, we propose that SIRT1 forms an anti-inflammatory complex with HMGB1, allowing cells to bypass the response to inflammation.
Collapse
Affiliation(s)
- Jung Seok Hwang
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Hyuk Soo Choi
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Sun Ah Ham
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Taesik Yoo
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Won Jin Lee
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Kyung Shin Paek
- The Department of Nursing, Semyung University, Jechon, Korea
| | - Han Geuk Seo
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
130
|
Steiger C, Wollborn J, Gutmann M, Zehe M, Wunder C, Meinel L. Controlled therapeutic gas delivery systems for quality-improved transplants. Eur J Pharm Biopharm 2015; 97:96-106. [PMID: 26527426 DOI: 10.1016/j.ejpb.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022]
Abstract
Therapeutic gases enriched into perfusion solutions have been effectively used for the improvement of organ transplant quality. At present, the enrichment of perfusion solutions with gases requires complex machinery/containers and handling precautions. Alternatively, the gas is generated within the perfusion solution by supplemented carbonylated transition metal complexes with associated toxicological concerns when these metals contact the transplant. Therefore, we developed therapeutic gas releasing systems (TGRSs) allowing for the controlled generation and release of therapeutic gases (carbon monoxide and hydrogen sulfide) from otherwise hermetically sealed containers, such that the perfusion solution for the transplant is saturated with the gas but no other components from the TGRS are liberated in the solution. The release from the TGRS into the perfusion solution can be tailored as a function of the number and thickness of gas permeable membranes leading to release patterns having been linked to therapeutic success in previous trials. Furthermore, the surrogate biomarker HMGB1 was significantly downregulated in ischemic rat liver transplants perfused with enriched CO solution as compared to control. In conclusion, the TGRS allows for easy, reliable, and controlled generation and release of therapeutic gases while removing safety concerns of current approaches, thereby positively impacting the risk benefit profile of using therapeutic gases for transplant quality improvement in the future.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Jakob Wollborn
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Hugstetter Str. 55, DE-79106 Freiburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Markus Zehe
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Christian Wunder
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|
131
|
Zhang Y, Karki R, Igwe OJ. Toll-like receptor 4 signaling: A common pathway for interactions between prooxidants and extracellular disulfide high mobility group box 1 (HMGB1) protein-coupled activation. Biochem Pharmacol 2015; 98:132-43. [PMID: 26367307 DOI: 10.1016/j.bcp.2015.08.109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 01/17/2023]
Abstract
Necrotic cells passively release HMGB1, which can stimulate TLR4 in an autocrine fashion to potentially initiate "sterile" inflammation that maintains different disease states. We have shown that prooxidants can induce NF-κB activation through TLR4 stimulation. We examined whether prooxidants enhance HMGB1-induced TLR4 signaling through NF-κB activation. We used LPS-EK as a specific agonist for TLR4, and PPC and SIN-1 as in situ sources for ROS. As model systems, we used HEK-Blue cells (stably transfected with mouse TLR4), RAW-Blue™ cells (derived from murine RAW 264.7 macrophages) and primary murine macrophages from TLR4-KO mice. Both HEK-Blue and RAW-Blue 264.7 cells express optimized secreted embryonic alkaline phosphatase (SEAP) reporter under the control of a promoter inducible by NF-κB. We treated cells with HMGB1 alone and/or in conjunction with prooxidants and/or inhibitors using SEAP release as a measure of TLR4 stimulation. HMGB1 alone and/or in conjunction with prooxidants increased TNFα and IL-6 released from TLR4-WT, but not from TLR4-KO macrophages. Pro-oxidants increased HMGB1 release, which we quantified by ELISA. We used both fluorescence microscopy imaging and flow cytometry to quantify the expression of intracellular ROS. TLR4-neutralizing antibody decreased prooxidant-induced HMGB1 release. Prooxidants promoted HMGB1-induced NF-κB activation as determined by increased release of SEAP and TNF-α, and accumulation of iROS. HMGB1 (Box A), anti-HMGB1 and anti-TLR4-neutralizing pAbs inhibited HMGB1-induced NF-κB activation, but HMGB1 (Box A) and anti-HMGB1 pAb had no effect on prooxidant-induced SEAP release. The present results confirm that prooxidants enhance proinflammatory effects of HMGB1 by activating NF-κB through TLR4 signaling.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missour-Kansas City, 2464 Charlotte Street, HSB # 2247, Kansas City, MO 64108-2718, USA
| | - Rajendra Karki
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missour-Kansas City, 2464 Charlotte Street, HSB # 2247, Kansas City, MO 64108-2718, USA
| | - Orisa J Igwe
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missour-Kansas City, 2464 Charlotte Street, HSB # 2247, Kansas City, MO 64108-2718, USA.
| |
Collapse
|
132
|
Yang NB, Ni SL, Li SS, Zhang SN, Hu DP, Lu MQ. Endotoxin tolerance alleviates experimental acute liver failure via inhibition of high mobility group box 1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9062-9071. [PMID: 26464648 PMCID: PMC4583880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
High mobility group box 1 (HMGB1) has been widely reported to mediate damage caused by inflammatory responses. The aim of our study is to investigate the role of HMGB1 in endotoxin tolerance (ET) alleviating inflammation of acute liver failure (ALF) rats and its possible signaling mechanism. To mimic ET, male Sprague-Dawley rats were pretreated with low dose of lipopolysaccharide (LPS) (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent ALF induction. ALF was induced by intraperitoneal administration of D-GalN/LPS. ET induced by LPS pretreatment significantly improved the survival rate of ALF rats. Moreover, after ALF induction, ET+ALF rats exhibited lower serum enzyme (ALT, AST and TBiL) levels, lower production of inflammatory cytokines (IL-6, TNF-a and HMGB1) and more minor liver histopathological damage than ALF rats. ET+ALF rats showed enhanced expression levels of HMGB1, decreased levels of STAT1 and p-STAT1, augmented expression of SOCS1 in liver tissues than ALF rats. These results indicated that ET induced by low-dose LPS pretreatment may alleviate inflammation and liver injury in experimental acute liver failure rats mainly through inhibition of hepatic HMGB1 translocation and release.
Collapse
Affiliation(s)
- Nai-Bin Yang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, P. R. China
- Hepatology Institute of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Shun-Lan Ni
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, P. R. China
- Hepatology Institute of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Shan-Shan Li
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, P. R. China
- Hepatology Institute of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Sai-Nan Zhang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, P. R. China
- Hepatology Institute of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Dan-Ping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University108 Wansong Road, Ruian 325200, Zhejiang, China
| | - Ming-Qin Lu
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, P. R. China
- Hepatology Institute of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| |
Collapse
|
133
|
Sakamoto K, Mizuta A, Fujimura K, Kurauchi Y, Mori A, Nakahara T, Ishii K. High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina. Exp Eye Res 2015; 137:63-70. [PMID: 26079740 DOI: 10.1016/j.exer.2015.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/16/2015] [Accepted: 06/03/2015] [Indexed: 12/20/2022]
Abstract
High-mobility group Box-1 (HMGB1) is known to be released from injured cells and to induce an inflammatory response. Although HMGB1 was reported to mediate ischemia-reperfusion injury of the brain, its role in glutamate excitotoxicity of the retina remains controversial. Here, the authors demonstrated the evidence that HMGB1 is involved in the retinal damage induced by NMDA. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal injection of NMDA (200 nmol/eye) or HMGB1 protein derived from bovines (5-15 μg/eye). Intravitreal anti-HMGB1 IgY (5 μg/eye) was simultaneously administered with NMDA or HMGB1. Seven days later, animals were killed and 5-μm retinal sections through the optic nerve head were obtained. These specimens were subjected to morphometry. Intravitreal NMDA and HMGB1 protein evoked cell loss in the ganglion cell layer 7 days later. Intravitreal anti-HMGB1 IgY reduced these damages. Anti-HMGB1 IgY reduced the number of 8-hydroxy-deoxyguanosine (8-OHdG)-positive cells induced by intravitreal NMDA. Toll-like receptor 2/4 antagonist peptide, receptor for advanced glycation end-products (RAGE) antagonist peptide, and FPS-ZM1 significantly reduced the retinal damage induced by HMGB1 protein. The results in the present study suggest that HMGB1 is at least in part involved in NMDA-induced retinal injury, and probably induces cell death of retinal ganglion cells with increase of oxidative stress, via activation of toll-like receptor 2/4 and RAGE in the rat retina.
Collapse
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan.
| | - Aya Mizuta
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Kyosuke Fujimura
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Yuki Kurauchi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| |
Collapse
|
134
|
Wang M, Gorasiya S, Antoine DJ, Sitapara RA, Wu W, Sharma L, Yang H, Ashby CR, Vasudevan D, Zur M, Thomas DD, Mantell LL. The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-κB-mediated release of high-mobility group box-1. Am J Respir Cell Mol Biol 2015; 52:171-82. [PMID: 24992505 DOI: 10.1165/rcmb.2013-0544oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The prolonged exposure to hyperoxia can compromise macrophage functions and contribute to the development of ventilator-associated pneumonia. High levels of extracellular high-mobility group box-1 (HMGB1) in the airways of mice exposed to hyperoxia can directly cause macrophage dysfunction. Hence, inhibition of the release of nuclear HMGB1 into the extracellular milieu may help to maintain macrophage functions under hyperoxic conditions. The present study investigates whether ethacrynic acid (EA) affects hyperoxia-induced HMGB1 release from macrophages and improves their functions. Macrophage-like RAW 264.7 cells and bone marrow-derived macrophages were exposed to different concentrations of EA for 24 hours in the presence of 95% O2. EA significantly decreased the accumulation of extracellular HMGB1 in cultured media. Importantly, the phagocytic activity and migration capability of macrophages were significantly enhanced in EA-treated cells. Interestingly, hyperoxia-induced NF-κB activation was also inhibited in these cells. To determine whether NF-κB plays a role in hyperoxia-induced HMGB1 release, BAY 11-7082, an inhibitor of NF-κB activation, was used. Similar to EA, BAY 11-7082 significantly inhibited the accumulation of extracellular HMGB1 and improved hyperoxia-compromised macrophage migration and phagocytic activity. Furthermore, 24-hour hyperoxic exposure of macrophages caused hyperacetylation of HMGB1 and its subsequent cytoplasmic translocation and release, which were inhibited by EA and BAY 11-7082. Together, these results suggest that EA enhances hyperoxia-compromised macrophage functions by inhibiting HMGB1 hyperacetylation and its release from macrophages, possibly through attenuation of the NF-κB activation. Therefore, the activation of NF-κB could be one of the underlying mechanisms that mediate hyperoxia-compromised macrophage functions.
Collapse
Affiliation(s)
- Mao Wang
- 1 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Woolbright BL, Dorko K, Antoine DJ, Clarke JI, Gholami P, Li F, Kumer SC, Schmitt TM, Forster J, Fan F, Jenkins RE, Park BK, Hagenbuch B, Olyaee M, Jaeschke H. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol Appl Pharmacol 2015; 283:168-77. [PMID: 25636263 PMCID: PMC4361327 DOI: 10.1016/j.taap.2015.01.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
Abstract
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Joanna I Clarke
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Parviz Gholami
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Feng Li
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fang Fan
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mojtaba Olyaee
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
136
|
Mcdonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, Tsung A. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med 2015; 20:639-48. [PMID: 25375408 DOI: 10.2119/molmed.2014.00076] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1-TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1's release from hypoxic hepatocytes in vitro and thereby weakened HMGB1's activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury.
Collapse
Affiliation(s)
- Kerry-Ann Mcdonald
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Patricia Loughran
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly Ferrero
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
137
|
Walko TD, Di Caro V, Piganelli J, Billiar TR, Clark RSB, Aneja RK. Poly(ADP-ribose) polymerase 1-sirtuin 1 functional interplay regulates LPS-mediated high mobility group box 1 secretion. Mol Med 2015; 20:612-24. [PMID: 25517228 DOI: 10.2119/molmed.2014.00156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD(+)) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD(+)-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis.
Collapse
Affiliation(s)
- Thomas D Walko
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Valentina Di Caro
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jon Piganelli
- Department of Immunology, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S B Clark
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rajesh K Aneja
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
138
|
Spahn JH, Li W, Bribriesco AC, Liu J, Shen H, Ibricevic A, Pan JH, Zinselmeyer BH, Brody SL, Goldstein DR, Krupnick AS, Gelman AE, Miller MJ, Kreisel D. DAP12 expression in lung macrophages mediates ischemia/reperfusion injury by promoting neutrophil extravasation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4039-48. [PMID: 25762783 DOI: 10.4049/jimmunol.1401415] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/04/2015] [Indexed: 12/25/2022]
Abstract
Neutrophils are critical mediators of innate immune responses and contribute to tissue injury. However, immune pathways that regulate neutrophil recruitment to injured tissues during noninfectious inflammation remain poorly understood. DAP12 is a cell membrane-associated protein that is expressed in myeloid cells and can either augment or dampen innate inflammatory responses during infections. To elucidate the role of DAP12 in pulmonary ischemia/reperfusion injury (IRI), we took advantage of a clinically relevant mouse model of transplant-mediated lung IRI. This technique allowed us to dissect the importance of DAP12 in tissue-resident cells and those that infiltrate injured tissue from the periphery during noninfectious inflammation. Macrophages in both mouse and human lungs that have been subjected to cold ischemic storage express DAP12. We found that donor, but not recipient, deficiency in DAP12 protected against pulmonary IRI. Analysis of the immune response showed that DAP12 promotes the survival of tissue-resident alveolar macrophages and contributes to local production of neutrophil chemoattractants. Intravital imaging demonstrated a transendothelial migration defect into DAP12-deficient lungs, which can be rescued by local administration of the neutrophil chemokine CXCL2. We have uncovered a previously unrecognized role for DAP12 expression in tissue-resident alveolar macrophages in mediating acute noninfectious tissue injury through regulation of neutrophil trafficking.
Collapse
Affiliation(s)
- Jessica H Spahn
- Department of Surgery, Washington University, St. Louis, MO 63110
| | - Wenjun Li
- Department of Surgery, Washington University, St. Louis, MO 63110
| | | | - Jie Liu
- Department of Surgery, Washington University, St. Louis, MO 63110
| | - Hua Shen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510
| | - Aida Ibricevic
- Department of Medicine, Washington University, St. Louis, MO 63110; and
| | - Jie-Hong Pan
- Department of Medicine, Washington University, St. Louis, MO 63110; and
| | - Bernd H Zinselmeyer
- Department of Pathology & Immunology, Washington University, St. Louis, MO 63110
| | - Steven L Brody
- Department of Medicine, Washington University, St. Louis, MO 63110; and
| | - Daniel R Goldstein
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510
| | | | - Andrew E Gelman
- Department of Surgery, Washington University, St. Louis, MO 63110; Department of Pathology & Immunology, Washington University, St. Louis, MO 63110
| | - Mark J Miller
- Department of Medicine, Washington University, St. Louis, MO 63110; and
| | - Daniel Kreisel
- Department of Surgery, Washington University, St. Louis, MO 63110; Department of Pathology & Immunology, Washington University, St. Louis, MO 63110
| |
Collapse
|
139
|
Yadav VR, Hussain A, Xie J, Kosanke S, Awasthi V. The salutary effects of diphenyldifluoroketone EF24 in liver of a rat hemorrhagic shock model. Scand J Trauma Resusc Emerg Med 2015; 23:8. [PMID: 25645333 PMCID: PMC4324433 DOI: 10.1186/s13049-015-0098-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Liver is a target for injury in low flow states and it plays a central role in the progression of systemic failure associated with hemorrhagic shock. Pharmacologic support can help recover liver function even after it has suffered extensive damage during ischemia and reperfusion phases. In this work we assessed the efficacy of a diphenyldifluoroketone EF24, an IKKβ inhibitor, in controlling hepatic inflammatory signaling caused by hemorrhagic shock in a rat model. Methods Sprague Dawley rats were bled to about 50% of blood volume. The hemorrhaged rats were treated with vehicle control or EF24 (0.4 mg/kg) after 1 h of hemorrhage without any accompanying resuscitation. The study was terminated after additional 5 h to excise liver tissue for biochemical analyses and histology. Results EF24 treatment alleviated hemorrhagic shock-induced histologic injury in the liver and restored serum transaminases to normal levels. Hemorrhagic shock induced the circulating levels of CD163 (a marker for macrophage activation) and CINC (an IL-8 analog), as well as myeloperoxidase activity in liver tissue. These markers of inflammatory injury were reduced by EF24 treatment. EF24 treatment also suppressed the expression of the Toll-like receptor 4, phospho-p65/Rel A, and cyclooxygenase-2 in liver tissues, indicating that it suppressed inflammatory pathway. Moreover, it reduced the hemorrhagic shock-induced increase in the expression of high mobility group box-1 protein. The evidence for apoptosis after hemorrhagic shock was inconclusive. Conclusion Even in the absence of volume support, EF24 treatment suppresses pro-inflammatory signaling in liver tissue and improves liver functional markers in hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Alamdar Hussain
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, USA.
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
140
|
Curcumin attenuated acute Propionibacterium acnes -induced liver injury through inhibition of HMGB1 expression in mice. Int Immunopharmacol 2015; 24:159-165. [PMID: 25510585 DOI: 10.1016/j.intimp.2014.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
141
|
Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015; 6:14. [PMID: 25674088 PMCID: PMC4309199 DOI: 10.3389/fimmu.2015.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| | - Sophie Paczesny
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| |
Collapse
|
142
|
Wu F, Zhao ZH, Ding ST, Wu HH, Lu JJ. High mobility group box 1 protein is methylated and transported to cytoplasm in clear cell renal cell carcinoma. Asian Pac J Cancer Prev 2015; 14:5789-95. [PMID: 24289579 DOI: 10.7314/apjcp.2013.14.10.5789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high mobility group box 1 (HMGB1) protein is a widespread nuclear protein present in most cell types. It typically locates in the nucleus and functions as a nuclear cofactor in transcription regulation. However, HMGB1 can also localize in the cytoplasm and be released into extracellular matrix, where it plays critical roles in carcinogenesis and inflammation. However, it remains elusive whether HMGB1 is relocated to cytoplasm in clear cell renal cell carcinoma (ccRCC). METHODS Nuclear and cytoplasmic proteins were extracted by different protocols from 20 ccRCC samples and corresponding adjacent renal tissues. Western blotting and immunohistochemistry were used to identify the expression of HMGB1 in ccRCC. To elucidate the potential mechanism of HMGB1 cytoplasmic translocation, HMGB1 proteins were enriched by immunoprecipitation and analyzed by mass spectrometry (MS). RESULTS The HMGB1 protein was overexpressed and partially localized in cytoplasm in ccRCC samples (12/20, 60%, p<0.05). Immunohistochemistry results indicated that ccRCC of high nuclear grade possess more HMGB1 relocation than those with low grade (p<0.05). Methylation of HMGB1 at lysine 112 in ccRCC was detected by MS. Bioinformatics analysis showed that post-translational modification might affect the binding ability to DNA and mediate its translocation. CONCLUSION Relocation of HMGB1 to cytoplasm was confirmed in ccRCC. Methylation of HMGB1 at lysine 112 might the redistribution of this cofactor protein.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, Provincial Hospital Affiliated to Shandong University, Jinan, China E-mail :
| | | | | | | | | |
Collapse
|
143
|
Molecular responses to ischemia and reperfusion in the liver. Arch Toxicol 2015; 89:651-7. [PMID: 25566829 DOI: 10.1007/s00204-014-1437-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
Abstract
Ischemia/reperfusion (IR) injury occurs when oxygen is rapidly reintroduced into ischemic tissue, resulting in cell death and necrotic tissue damage. This is a major concern during liver transplantation procedures since there is an inevitable interruption and subsequent restoration of circulation. IR injury in liver tissue is initiated through reactive oxygen species (ROS), which are generated by hepatocytes during IR insult. Although these ROS are thought to play a protective roll since they are known to activate several pathways involved in the hypoxic response, they also trigger a localized sterile immune response that results in the recruitment of Kupffer cells and neutrophils to the site of IR insult. These immune cells generate larger quantities of ROS that trigger apoptosis and oncotic necrosis in liver tissue. In this review, we will summarize what is currently known about the response of liver tissue to IR insult at the molecular level.
Collapse
|
144
|
Zou J, T. Crews F. Glutamate/NMDA excitotoxicity and HMGB1/TLR4 neuroimmune toxicity converge as components of neurodegeneration. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
145
|
Yang Z, Li L, Chen L, Yuan W, Dong L, Zhang Y, Wu H, Wang C. PARP-1 Mediates LPS-Induced HMGB1 Release by Macrophages through Regulation of HMGB1 Acetylation. THE JOURNAL OF IMMUNOLOGY 2014; 193:6114-6123. [DOI: 10.4049/jimmunol.1400359] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The high-mobility group box protein 1 (HMGB1) is increasingly recognized as an important inflammatory mediator. In some cases, the release of HMGB1 is regulated by poly(ADP-ribose) polymerase-1 (PARP-1), but the mechanism is still unclear. In this study, we report that PARP-1 activation contributes to LPS-induced PARylation of HMGB1, but the PARylation of HMGB1 is insufficient to direct its migration from the nucleus to the cytoplasm; PARP-1 regulates the translocation of HMGB1 to the cytoplasm through upregulating the acetylation of HMGB1. In mouse bone marrow–derived macrophages, genetic and pharmacological inhibition of PARP-1 suppressed LPS-induced translocation and release of HMGB1. Increased PARylation was accompanied with the nucleus-to-cytoplasm translocation and release of HMGB1 upon LPS exposure, but PARylated HMGB1 was located at the nucleus, unlike acetylated HMGB1 localized at the cytoplasm in an import assay. PARP inhibitor and PARP-1 depletion decreased the activity ratio of histone acetyltransferases to histone deacetylases that elevated after LPS stimulation and impaired LPS-induced acetylation of HMGB1. In addition, PARylation of HMGB1 facilitates its acetylation in an in vitro enzymatic reaction. Furthermore, reactive oxygen species scavenger (N-acetyl-l-cysteine) and the ERK inhibitor (FR180204) impaired LPS-induced PARP activation and HMGB1 release. Our findings suggest that PARP-1 regulates LPS-induced acetylation of HMGB1 in two ways: PARylating HMGB1 to facilitate the latter acetylation and increasing the activity ratio of histone acetyltransferases to histone deacetylases. These studies revealed a new mechanism of PARP-1 in regulating the inflammatory response to endotoxin.
Collapse
Affiliation(s)
- Zhiyong Yang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Li Li
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Lijuan Chen
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Weiwei Yuan
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Liming Dong
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Yushun Zhang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Heshui Wu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Chunyou Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| |
Collapse
|
146
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
147
|
Sun J, Wu Q, Sun H, Qiao Y. Inhibition of histone deacetylase by butyrate protects rat liver from ischemic reperfusion injury. Int J Mol Sci 2014; 15:21069-79. [PMID: 25405737 PMCID: PMC4264212 DOI: 10.3390/ijms151121069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 01/04/2023] Open
Abstract
We showed previously that pretreatment of butyrate, which is an endogenous histone deacetylase (HDAC) inhibitor normally fermented from undigested fiber by intestinal microflora, seriously alleviated ischemia reperfusion (I/R)-induced liver injury by inhibiting the nuclear factor κB (NF-κB) pathway. The goal of this study was to investigate the effect of butyrate administrated at the onset of ischemia for HDAC inhibition in hepatic I/R injury. Sprague Dawley rats were subjected to warm ischemia for 60 min followed by 6 and 24 h of reperfusion. Butyrate was administrated at the onset of ischemia. Liver injury was evaluated by serum levels of aminotransferase, inflammatory factors, and histopathology. The levels of acetylated histone H3 and expression of heat shock protein (Hsp) 70 were measured by Western blot. After reperfusion, the levels of acetylated histone H3 significantly decreased. Butyrate treatment markedly prevented the reduction of acetylated histone H3 and upregulated the expression of Hsp70, thereby reducing liver injury. Our study demonstrated that I/R resulted in marked reduction of histone acetylation; butyrate exerted a great hepatoprotective effect through HDAC inhibition and Hsp70 induction.
Collapse
Affiliation(s)
- Jie Sun
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng 252000, China.
| | - Qiujv Wu
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng 252000, China.
| | - Huiling Sun
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng 252000, China.
| | - Yingli Qiao
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng 252000, China.
| |
Collapse
|
148
|
Abstract
High-mobility group box 1 (HMGB1) was originally defined as a ubiquitous nuclear protein, but it was later determined that the protein has different roles both inside and outside of cells. Nuclear HMGB1 regulates chromatin structure and gene transcription, whereas cytosolic HMGB1 is involved in inflammasome activation and autophagy. Extracellular HMGB1 has drawn attention because it can bind to related cell signalling transduction receptors, such as the receptor for advanced glycation end products, Toll-like receptor (TLR)2, TLR4 and TLR9. It also participates in the development and progression of a variety of diseases. HMGB1 is actively secreted by stimulation of the innate immune system, and it is passively released by ischaemia or cell injury. This review focuses on the important role of HMGB1 in the pathogenesis of acute and chronic sterile inflammatory conditions. Strategies that target HMGB1 have been shown to significantly decrease inflammation in several disease models of sterile inflammation, and this may represent a promising clinical approach for treatment of certain conditions associated with sterile inflammation.
Collapse
Affiliation(s)
- A Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | |
Collapse
|
149
|
Adsorption of the inflammatory mediator high-mobility group box 1 by polymers with different charge and porosity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238160. [PMID: 25243124 PMCID: PMC4163473 DOI: 10.1155/2014/238160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/11/2023]
Abstract
High-mobility group box 1 protein (HMGB1) is a conserved protein with a variety of biological functions inside as well as outside the cell. When released by activated immune cells, it acts as a proinflammatory cytokine. Its delayed release has sparked the interest in HMGB1 as a potential therapeutic target. Here, we studied the adsorption of HMGB1 to anionic methacrylate-based polymers as well as to neutral polystyrene-divinylbenzene copolymers. Both groups of adsorbents exhibited efficient binding of recombinant HMGB1 and of HMGB1 derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The adsorption characteristics depended on particle size, porosity, accessibility of the pores, and charge of the polymers. In addition to these physicochemical parameters of the adsorbents, modifications of the molecule itself (e.g., acetylation, phosphorylation, and oxidation), interaction with other plasma proteins or anticoagulants (e.g., heparin), or association with extracellular microvesicles may influence the binding of HMGB1 to adsorbents and lead to preferential depletion of HMGB1 subsets with different biological activity.
Collapse
|
150
|
Ge X, Antoine DJ, Lu Y, Arriazu E, Leung TM, Klepper AL, Branch AD, Fiel MI, Nieto N. High mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). J Biol Chem 2014; 289:22672-22691. [PMID: 24928512 PMCID: PMC4132775 DOI: 10.1074/jbc.m114.552141] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/05/2014] [Indexed: 12/16/2022] Open
Abstract
Growing clinical and experimental evidence suggests that sterile inflammation contributes to alcoholic liver disease (ALD). High mobility group box-1 (HMGB1) is highly induced during liver injury; however, a link between this alarmin and ALD has not been established. Thus, the aim of this work was to determine whether HMGB1 contributes to the pathogenesis of ALD. Liver biopsies from patients with ALD showed a robust increase in HMGB1 expression and translocation, which correlated with disease stage, compared with healthy explants. Similar findings were observed in chronic ethanol-fed wild-type (WT) mice. Using primary cell culture, we validated the ability of hepatocytes from ethanol-fed mice to secrete a large amount of HMGB1. Secretion was time- and dose-dependent and responsive to prooxidants and antioxidants. Selective ablation of Hmgb1 in hepatocytes protected mice from alcohol-induced liver injury due to increased carnitine palmitoyltransferase-1, phosphorylated 5'AMP-activated protein kinase-α, and phosphorylated peroxisome proliferator-activated receptor-α expression along with elevated LDL plus VLDL export. Native and post-translationally modified HMGB1 were detected in humans and mice with ALD. In liver and serum from control mice and in serum from healthy volunteers, the lysine residues within the peptides containing nuclear localization signals (NLSs) 1 and 2 were non-acetylated, and all cysteine residues were reduced. However, in livers from ethanol-fed mice, in addition to all thiol/non-acetylated isoforms of HMGB1, we observed acetylated NLS1 and NLS2, a unique phosphorylation site in serine 35, and an increase in oxidation of HMGB1 to the disulfide isoform. In serum from ethanol-fed mice and from patients with ALD, there was disulfide-bonded hyperacetylated HMGB1, disulfide-bonded non-acetylated HMGB1, and HMGB1 phosphorylated in serine 35. Hepatocytes appeared to be a major source of these HMGB1 isoforms. Thus, hepatocyte HMGB1 participates in the pathogenesis of ALD and undergoes post-translational modifications (PTMs) that could condition its toxic effects.
Collapse
MESH Headings
- Acetylation
- Animals
- Antioxidants/pharmacology
- Cells, Cultured
- Female
- HMGB1 Protein/genetics
- HMGB1 Protein/metabolism
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Lipoproteins, LDL/genetics
- Lipoproteins, LDL/metabolism
- Lipoproteins, VLDL/genetics
- Lipoproteins, VLDL/metabolism
- Liver/metabolism
- Liver/pathology
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/mortality
- Liver Diseases, Alcoholic/pathology
- Male
- Mice
- Mice, Knockout
- Oxidants/pharmacology
- Phosphorylation/genetics
- Primary Cell Culture
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- Xiaodong Ge
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Daniel J Antoine
- Medical Research Council Centre for Drug Safety Science, Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Yongke Lu
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Elena Arriazu
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tung-Ming Leung
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Arielle L Klepper
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andrea D Branch
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Natalia Nieto
- Division of Liver Diseases, Department of Medicine and Icahn School of Medicine at Mount Sinai, New York, New York 10029.
| |
Collapse
|