101
|
Shafiee A, Ahmadi H, Taheri B, Hosseinzadeh S, Fatahi Y, Soleimani M, Atyabi F, Dinarvand R. Appropriate Scaffold Selection for CNS Tissue Engineering. Avicenna J Med Biotechnol 2020; 12:203-220. [PMID: 33014312 PMCID: PMC7502166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/02/2020] [Indexed: 11/06/2022] Open
Abstract
Cellular transplantation, due to the low regenerative capacity of the Central Nervous System (CNS), is one of the promising strategies in the treatment of neurodegenerative diseases. The design and application of scaffolds mimicking the CNS extracellular matrix features (biochemical, bioelectrical, and biomechanical), which affect the cellular fate, are important to achieve proper efficiency in cell survival, proliferation, and differentiation as well as integration with the surrounding tissue. Different studies on natural materials demonstrated that hydrogels made from natural materials mimic the extracellular matrix and supply microenvironment for cell adhesion and proliferation. The design and development of cellular microstructures suitable for neural tissue engineering purposes require a comprehensive knowledge of neuroscience, cell biology, nanotechnology, polymers, mechanobiology, and biochemistry. In this review, an attempt was made to investigate this multidisciplinary field and its multifactorial effects on the CNS microenvironment. Many strategies have been used to simulate extrinsic cues, which can improve cellular behavior toward neural lineage. In this study, parallel and align, soft and injectable, conductive, and bioprinting scaffolds were reviewed which have indicated some successes in the field. Among different systems, three-Dimensional (3D) bioprinting is a powerful, highly modifiable, and highly precise strategy, which has a high architectural similarity to tissue structure and is able to construct controllable tissue models. 3D bioprinting scaffolds induce cell attachment, proliferation, and differentiation and promote the diffusion of nutrients. This method provides exceptional versatility in cell positioning that is very suitable for the complex Extracellular Matrix (ECM) of the nervous system.
Collapse
Affiliation(s)
- Akram Shafiee
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Ahmadi
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Behnaz Taheri
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Simzar Hosseinzadeh
- Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medicine, Tarbiat Modaress University, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
102
|
Nandakumar S, Grushko O, Buttitta LA. Polyploidy in the adult Drosophila brain. eLife 2020; 9:e54385. [PMID: 32840209 PMCID: PMC7447450 DOI: 10.7554/elife.54385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Long-lived cells such as terminally differentiated postmitotic neurons and glia must cope with the accumulation of damage over the course of an animal's lifespan. How long-lived cells deal with ageing-related damage is poorly understood. Here we show that polyploid cells accumulate in the adult fly brain and that polyploidy protects against DNA damage-induced cell death. Multiple types of neurons and glia that are diploid at eclosion, become polyploid in the adult Drosophila brain. The optic lobes exhibit the highest levels of polyploidy, associated with an elevated DNA damage response in this brain region. Inducing oxidative stress or exogenous DNA damage leads to an earlier onset of polyploidy, and polyploid cells in the adult brain are more resistant to DNA damage-induced cell death than diploid cells. Our results suggest polyploidy may serve a protective role for neurons and glia in adult Drosophila melanogaster brains.
Collapse
Affiliation(s)
- Shyama Nandakumar
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Olga Grushko
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Laura A Buttitta
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
103
|
Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Kb D, Mirzaei M, You Y, Graham SL, Gupta V. Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging Dis 2020; 11:946-966. [PMID: 32765956 PMCID: PMC7390532 DOI: 10.14336/ad.2019.0923] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Cell cycle dysregulation has been implicated in the pathogenesis of neurodegenerative disorders. Specialised function obligates neuronal cells to subsist in a quiescent state of cell cycle once differentiated and therefore the circumstances and mechanisms underlying aberrant cell cycle activation in post-mitotic neurons in physiological and disease conditions remains an intriguing area of research. There is a strict requirement of concurrence to cell cycle regulation for neurons to ensure intracellular biochemical conformity as well as interrelationship with other cells within neural tissues. This review deliberates on various mechanisms underlying cell cycle regulation in neuronal cells and underscores potential implications of their non-compliance in neural pathology. Recent research suggests that successful duplication of genetic material without subsequent induction of mitosis induces inherent molecular flaws that eventually assert as apoptotic changes. The consequences of anomalous cell cycle activation and subsequent apoptosis are demonstrated by the increased presence of molecular stress response and apoptotic markers. This review delineates cell cycle events under normal physiological conditions and deficits amalgamated by alterations in protein levels and signalling pathways associated with cell-division are analysed. Cell cycle regulators essentially, cyclins, CDKs, cip/kip family of inhibitors, caspases, bax and p53 have been identified to be involved in impaired cell cycle regulation and associated with neural pathology. The pharmacological modulators of cell cycle that are shown to impart protection in various animal models of neurological deficits are summarised. Greater understanding of the molecular mechanisms that are indispensable to cell cycle regulation in neurons in health and disease conditions will facilitate targeted drug development for neuroprotection.
Collapse
Affiliation(s)
- Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Veer Gupta
- 2School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Nitin Chitranshi
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yogita Dheer
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Devaraj Kb
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- 3Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
104
|
Emerging Roles of Inhibitor of Differentiation-1 in Alzheimer's Disease: Cell Cycle Reentry and Beyond. Cells 2020; 9:cells9071746. [PMID: 32708313 PMCID: PMC7409121 DOI: 10.3390/cells9071746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Inhibitor of DNA-binding/differentiation (Id) proteins, a family of helix-loop-helix (HLH) proteins that includes four members of Id1 to Id4 in mammalian cells, are critical for regulating cell growth, differentiation, senescence, cell cycle progression, and increasing angiogenesis and vasculogenesis, as well as accelerating the ability of cell migration. Alzheimer’s disease (AD), the most common neurodegenerative disease in the adult population, manifests the signs of cognitive decline, behavioral changes, and functional impairment. The underlying mechanisms for AD are not well-clarified yet, but the aggregation of amyloid-beta peptides (Aβs), the major components in the senile plaques observed in AD brains, contributes significantly to the disease progression. Emerging evidence reveals that aberrant cell cycle reentry may play a central role in Aβ-induced neuronal demise. Recently, we have shown that several signaling mediators, including Id1, hypoxia-inducible factor-1 (HIF-1), cyclin-dependent kinases-5 (CDK5), and sonic hedgehog (Shh), may contribute to Aβ-induced cell cycle reentry in postmitotic neurons; furthermore, Id1 and CDK5/p25 mutually antagonize the expression/activity of each other. Therefore, Id proteins may potentially have clinical applications in AD. In this review article, we introduce the underlying mechanisms for cell cycle dysregulation in AD and present some examples, including our own studies, to show different aspects of Id1 in terms of cell cycle reentry and other signaling that may be crucial to alter the neuronal fates in this devastating neurodegenerative disease. A thorough understanding of the underlying mechanisms may provide a rationale to make an earlier intervention before the occurrence of cell cycle reentry and subsequent apoptosis in the fully differentiated neurons during the progression of AD or other neurodegenerative diseases.
Collapse
|
105
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 519] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
106
|
Grison A, Atanasoski S. Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors in the Mouse Nervous System. Mol Neurobiol 2020; 57:3206-3218. [PMID: 32506380 DOI: 10.1007/s12035-020-01958-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Development and normal physiology of the nervous system require proliferation and differentiation of stem and progenitor cells in a strictly controlled manner. The number of cells generated depends on the type of cell division, the cell cycle length, and the fraction of cells that exit the cell cycle to become quiescent or differentiate. The underlying processes are tightly controlled and modulated by cyclin-dependent kinases (Cdks) and their interactions with cyclins and Cdk inhibitors (CKIs). Studies performed in the nervous system with mouse models lacking individual Cdks, cyclins, and CKIs, or combinations thereof, have shown that many of these molecules control proliferation rates in a cell-type specific and time-dependent manner. In this review, we will provide an update on the in vivo studies on cyclins, Cdks, and CKIs in neuronal and glial tissue. The goal is to highlight their impact on proliferation processes during the development of the peripheral and central nervous system, including and comparing normal and pathological conditions in the adult.
Collapse
Affiliation(s)
- Alice Grison
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Suzana Atanasoski
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
107
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
108
|
Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Front Cell Neurosci 2020; 14:129. [PMID: 32508595 PMCID: PMC7248249 DOI: 10.3389/fncel.2020.00129] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Due to their postmitotic status, the potential for neurons to undergo senescence has historically received little attention. This lack of attention has extended to some non-postmitotic cells as well. Recently, the study of senescence within the central nervous system (CNS) has begun to emerge as a new etiological framework for neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The presence of senescent cells is known to be deleterious to non-senescent neighboring cells via development of a senescence-associated secretory phenotype (SASP) which includes the release of inflammatory, oxidative, mitogenic, and matrix-degrading factors. Senescence and the SASP have recently been hailed as an alternative to the amyloid cascade hypothesis and the selective killing of senescence cells by senolytic drugs as a substitute for amyloid beta (Aß) targeting antibodies. Here we call for caution in rejecting the amyloid cascade hypothesis and to the dismissal of Aß antibody intervention at least in early disease stages, as Aß oligomers (AßO), and cellular senescence may be inextricably linked. We will review literature that portrays AßO as a stressor capable of inducing senescence. We will discuss research on the potential role of secondary senescence, a process by which senescent cells induce senescence in neighboring cells, in disease progression. Once this seed of senescent cells is present, the elimination of senescence-inducing stressors like Aß would likely be ineffective in abrogating the spread of senescence. This has potential implications for when and why AßO clearance may or may not be effective as a therapeutic for AD. The selective killing of senescent cells by the immune system via immune surveillance naturally curtails the SASP and secondary senescence outside the CNS. Immune privilege restricts the access of peripheral immune cells to the brain parenchyma, making the brain a safe harbor for the spread of senescence and the SASP. However, an increasingly leaky blood brain barrier (BBB) compromises immune privilege in aging AD patients, potentially enabling immune infiltration that could have detrimental consequences in later AD stages. Rather than an alternative etiology, senescence itself may constitute an essential component of the cascade in the amyloid cascade hypothesis.
Collapse
|
109
|
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chem Neurosci 2020; 11:1218-1230. [PMID: 32286796 DOI: 10.1021/acschemneuro.0c00096] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine (ser)/threonine (Thr) kinase that has been demonstrated to be one of the most functionally diverse kinases within neurons. Cdk5 is regulated via binding with its neuron-specific regulatory subunits, p35 or p39. Cdk5-p35 activity is critical for a variety of developmental and cellular processes in the brain, including neuron migration, memory formation, microtubule regulation, and cell cycle suppression. Aberrant activation of Cdk5 via the truncated p35 byproduct, p25, is implicated in the pathogenesis of several neurodegenerative diseases. The present review highlights the importance of Cdk5 activity and function in the brain and demonstrates how deregulation of Cdk5 can contribute to the development of neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Additionally, we cover past drug discovery attempts at inhibiting Cdk5-p25 activity and discuss which types of targeting strategies may prove to be the most successful moving forward.
Collapse
|
110
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
111
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
112
|
Barrio-Alonso E, Fontana B, Valero M, Frade JM. Pathological Aspects of Neuronal Hyperploidization in Alzheimer's Disease Evidenced by Computer Simulation. Front Genet 2020; 11:287. [PMID: 32292421 PMCID: PMC7121139 DOI: 10.3389/fgene.2020.00287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/09/2020] [Indexed: 01/11/2023] Open
Abstract
When subjected to stress, terminally differentiated neurons are susceptible to reactivate the cell cycle and become hyperploid. This process is well documented in Alzheimer's disease (AD), where it may participate in the etiology of the disease. However, despite its potential importance, the effects of neuronal hyperploidy (NH) on brain function and its relationship with AD remains obscure. An important step forward in our understanding of the pathological effect of NH has been the development of transgenic mice with neuronal expression of oncogenes as model systems of AD. The analysis of these mice has demonstrated that forced cell cycle reentry in neurons results in most hallmarks of AD, including neurofibrillary tangles, Aβ peptide deposits, gliosis, cognitive loss, and neuronal death. Nevertheless, in contrast to the pathological situation, where a relatively small proportion of neurons become hyperploid, neuronal cell cycle reentry in these mice is generalized. We have recently developed an in vitro system in which cell cycle is induced in a reduced proportion of differentiated neurons, mimicking the in vivo situation. This manipulation reveals that NH correlates with synaptic dysfunction and morphological changes in the affected neurons, and that membrane depolarization facilitates the survival of hyperploid neurons. This suggests that the integration of synaptically silent, hyperploid neurons in electrically active neural networks allows their survival while perturbing the normal functioning of the network itself, a hypothesis that we have tested in silico. In this perspective, we will discuss on these aspects trying to convince the reader that NH represents a relevant process in AD.
Collapse
Affiliation(s)
- Estíbaliz Barrio-Alonso
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - Bérénice Fontana
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - Manuel Valero
- Neuroscience Institute, New York University, New York, NY, United States
| | - José M Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
113
|
Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci 2020; 77:1031-1047. [PMID: 31562563 PMCID: PMC11104877 DOI: 10.1007/s00018-019-03310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
AURKA is a serine/threonine kinase overexpressed in several cancers. Originally identified as a protein with multifaceted roles during mitosis, improvements in quantitative microscopy uncovered several non-mitotic roles as well. In physiological conditions, AURKA regulates cilia disassembly, neurite extension, cell motility, DNA replication and senescence programs. In cancer-like contexts, AURKA actively promotes DNA repair, it acts as a transcription factor, promotes cell migration and invasion, and it localises at mitochondria to regulate mitochondrial dynamics and ATP production. Here we review the non-mitotic roles of AURKA, and its partners outside of cell division. In addition, we give an insight into how structural data and quantitative fluorescence microscopy allowed to understand AURKA activation and its interaction with new substrates, highlighting future developments in fluorescence microscopy needed to better understand AURKA functions in vivo. Last, we will recapitulate the most significant AURKA inhibitors currently in clinical trials, and we will explore how the non-mitotic roles of the kinase may provide new insights to ameliorate current pharmacological strategies against AURKA overexpression.
Collapse
Affiliation(s)
- Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
114
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
115
|
Porterfield V, Khan SS, Foff EP, Koseoglu MM, Blanco IK, Jayaraman S, Lien E, McConnell MJ, Bloom GS, Lazo JS, Sharlow ER. A three-dimensional dementia model reveals spontaneous cell cycle re-entry and a senescence-associated secretory phenotype. Neurobiol Aging 2020; 90:125-134. [PMID: 32184029 DOI: 10.1016/j.neurobiolaging.2020.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
A hexanucleotide repeat expansion on chromosome 9 open reading frame 72 (C9orf72) is associated with familial amyotrophic lateral sclerosis (ALS) and a subpopulation of patients with sporadic ALS and frontotemporal dementia. We used inducible pluripotent stem cells from neurotypic and C9orf72+ (C9+) ALS patients to derive neuronal progenitor cells. We demonstrated that C9+ and neurotypic neuronal progenitor cells differentiate into neurons. The C9+ neurons, however, spontaneously re-expressed cyclin D1 after 12 weeks, suggesting cell cycle re-engagement. Gene profiling revealed significant increases in senescence-associated genes in C9+ neurons. Moreover, C9+ neurons expressed high levels of mRNA for CXCL8, a chemokine overexpressed by senescent cells, while media from C9+ neurons contained significant levels of CXCL8, CXCL1, IL13, IP10, CX3CL1, and reactive oxygen species, which are components of the senescence-associated secretory phenotype. Thus, re-engagement of cell cycle-associated proteins and a senescence-associated secretory phenotype could be fundamental components of neuronal dysfunction in ALS and frontotemporal dementia.
Collapse
Affiliation(s)
- Veronica Porterfield
- Department of Neurology, University of Virginia, Charlottesville, VA, USA; University of Virginia Stem Cell Core, Office of Research Core Administration, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Shahzad S Khan
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Erin P Foff
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Mehmet Murat Koseoglu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pharmacology, University of Virginia, Charlottesville, VA, USA; Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Isabella K Blanco
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sruthi Jayaraman
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Eric Lien
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA; Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA; Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
116
|
Lyu P, Huang Z, Feng Q, Su Y, Zheng M, Hong Y, Cai X, Lu Z. Unveiling the transcriptome alteration of POMC neuron in diet-induced obesity. Exp Cell Res 2020; 389:111848. [PMID: 31954693 DOI: 10.1016/j.yexcr.2020.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/24/2023]
Abstract
Loss of neuron homeostasis in the arcuate nucleus (ARC) is responsible for diet-induced-obesity (DIO). We previously reported that loss of Rb1 gene compromised the homeostasis of anorexigenic POMC neurons in ARC and induced obesity in mice. To evaluate the development of DIO, we propose to analyze the transcriptomic alteration of POMC neurons in mice following high fat diet (HFD) feeding. We isolated these neurons from established DIO mice and performed transcriptomic profiling using RNA-seq. In total, 1066 genes (628 upregulated and 438 downregulated) were identified as differentially expressed genes (DEGs). Pathway enrichment analysis with these DEGs further revealed that "cell cycle," "apoptosis," "chemokine signaling," and "sphingolipid metabolism" pathways were correlated with DIO development. Moreover, we validated that the pRb protein, a key regulator of "cell cycle pathway," was inactivated by phosphorylation in POMC neurons by HFD feeding. Importantly, the reversal of deregulated cell cycle by stereotaxic delivering of the unphosphorylated pRbΔP in ARC significantly meliorated the DIO. Collectively, our study provides insights into the mechanisms related to the loss of homeostasis of POMC neurons in DIO, and suggests pRb phosphorylation as a potential intervention target to treat DIO.
Collapse
Affiliation(s)
- Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhishun Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingjun Feng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yongfu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mengying Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yannv Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
117
|
Calvert BA, Ryan Firth AL. Application of iPSC to Modelling of Respiratory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1237:1-16. [PMID: 31468358 PMCID: PMC8274633 DOI: 10.1007/5584_2019_430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory disease is one of the leading causes of morbidity and mortality world-wide with an increasing incidence as the aged population prevails. Many lung diseases are treated for symptomatic relief, with no cure available, indicating a critical need for novel therapeutic strategies. Such advances are hampered by a lack of understanding of how human lung pathologies initiate and progress. Research on human lung disease relies on the isolation of primary cells from explanted lungs or the use of immortalized cells, both are limited in their capacity to represent the genomic and phenotypic variability among the population. In an era where we are progressing toward precision medicine the use of patient specific induced pluripotent cells (iPSC) to generate models, where sufficient primary cells and tissues are scarce, has increased our capacity to understand human lung pathophysiology. Directed differentiation of iPSC toward lung presented the initial challenge to overcome in generating iPSC-derived lung epithelial cells. Since then major advances have been made in defining protocols to specify and isolate specific lung lineages, with the generation of airway spheroids and multi cellular organoids now possible. This technological advance has opened up our capacity for human lung research and prospects for autologous cell therapy. This chapter will focus on the application of iPSC to studying human lung disease.
Collapse
Affiliation(s)
- Ben A Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy L Ryan Firth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
118
|
Iqbal N, Zhu LI, Chua SC. Neuronal Cell Cycle Events Link Caloric Intake to Obesity. Trends Endocrinol Metab 2020; 31:46-52. [PMID: 31629614 PMCID: PMC7064044 DOI: 10.1016/j.tem.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 02/03/2023]
Abstract
Obesity is a neurological disorder that operates by favoring energy storage within adipose depots and increased caloric intake. Most cases of human obesity are acquired without any underlying genetic basis. Here, we suggest that obesity can impair the function of some hypothalamic neurons critical to body weight regulation. Genetic ablation of the retinoblastoma (Rb) gene within pro-opiomelanocortin (POMC) neurons leads to death of the neurons and subsequent obesity. The Rb protein (pRb), a key inhibitor of the cell cycle, can also be inactivated by cyclin dependent kinase (CDK)-mediated phosphorylation. Extensive development led to the production of FDA-approved CDK4/6 inhibitors. Based on our own results, we propose that maintaining or re-instating pRb function using CDK4/6 inhibitors are potentially effective treatments of diet-induced obesity (DIO).
Collapse
Affiliation(s)
- Niloy Iqbal
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10462, USA
| | - LIang Zhu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10462, USA
| | - Streamson C Chua
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10462, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10462, USA.
| |
Collapse
|
119
|
Xia P, Liu Y, Chen J, Cheng Z. Cell Cycle Proteins as Key Regulators of Postmitotic Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:641-650. [PMID: 31866779 PMCID: PMC6913832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cell cycle progression in dividing cells, characterized by faithful replication of the genomic materials and duplication of the original cell, is fundamental for growth and reproduction of all mammalian organisms. Functional maturation of postmitotic cells, however, requires cell cycle exit and terminal differentiation. In mature postmitotic cells, many cell cycle proteins remain to be expressed, or can be induced and reactivated in pathological conditions such as traumatic injury and degenerative diseases. Interestingly, elevated levels of cell cycle proteins in postmitotic cells often do not induce proliferation, but result in aberrant cell cycle reentry and cell death. At present, the cell cycle machinery is known predominantly for regulating cell cycle progression and cell proliferation, albeit accumulating evidence indicates that cell cycle proteins may also control cell death, especially in postmitotic tissues. Herein, we provide a brief summary of these findings and hope to highlight the connection between cell cycle reentry and postmitotic cell death. In addition, we also outline the signaling pathways that have been identified in cell cycle-related cell death. Advanced understanding of the molecular mechanisms underlying cell cycle-related death is of paramount importance because this knowledge can be applied to develop protective strategies against pathologies in postmitotic tissues. Moreover, a full-scope understanding of the cell cycle machinery will allow fine tuning to favor cell proliferation over cell death, thereby potentially promoting tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Zhaokang Cheng
- To whom all correspondence should be addressed: Zhaokang Cheng, PhD, Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd. Spokane, WA 99202-2131; Tel: 509-358-7741,
| |
Collapse
|
120
|
Tang C, Zhu L, Zhou Q, Li M, Zhu Y, Xu Z, Lu Y, Xu R. Altered Features of Vimentin-containing Cells in Cerebrum of Tg(SOD1*G93A)1Gur Mice: A Preliminary Study on Cerebrum Endogenous Neural Precursor Cells in Amyotrophic Lateral Sclerosis. Int J Biol Sci 2019; 15:2830-2843. [PMID: 31853221 PMCID: PMC6909959 DOI: 10.7150/ijbs.33461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Vimentin-containing cells (VCCs) are potential neural precursor cells in central nervous systems, Thus, we studied the alteration of VCCs proliferation, differentiation and migration in the cerebrum during different stages of Tg(SOD1*G93A)1Gur mice. It aims to search potential ways regulating the proliferation, differentiation and migration of endogenous VCCs, to enhance their neural repair function and to cure or prevent from the development of ALS. We observed and analyzed the proliferation, differentiation and migration of VCCs in different anatomic regions and cell types of cerebrum at different stages including the pre-onset (60-70 days), onset (90-100 days) and progression (120-130 days) of wild-type (WT) and Tg(SOD1*G93A)1Gur mice using the fluorescent immunohistochemical technology. Results showed that VCCs in the cerebrum were mostly distributed in the ventricular system, periventricular structures, the hippocampus and the cerebral cortex in WT mice. VCCs significantly reduced in the motor cortex and the cingulate cortex in Tg(SOD1*G93A)1Gur mice. All vimentin expressed in the extranuclear and almost all VCCs were astrocytes in WT mice and Tg(SOD1*G93A)1Gur mice. There were no significant difference in the number of Brdu and nestin positive cells in left and right brains of WT mice and Tg(SOD1*G93A)1Gur mice in the period of 60-130 days. Our data suggested that there existed extensively NPCs in the cerebrum of adult mice. In ALS-like Tg(SOD1*G93A)1Gur mice, VCCs in the motor cortex, the olfactory cortex and the cingulate cortex showed that no any proliferation and redistribution in neural cells of VCCs in the cerebrum occurred in all stages of ALS, might migrate to damaged regions.
Collapse
Affiliation(s)
- Chunyan Tang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Menghua Li
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Yi Lu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, china
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
121
|
Martín-Guerrero SM, Casado P, Muñoz-Gámez JA, Carrasco MC, Navascués J, Cuadros MA, López-Giménez JF, Cutillas PR, Martín-Oliva D. Poly(ADP-Ribose) Polymerase-1 inhibition potentiates cell death and phosphorylation of DNA damage response proteins in oxidative stressed retinal cells. Exp Eye Res 2019; 188:107790. [DOI: 10.1016/j.exer.2019.107790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
122
|
Tsai MC, Lin SH, Hidayah K, Lin CI. Equol Pretreatment Protection of SH-SY5Y Cells against Aβ (25-35)-Induced Cytotoxicity and Cell-Cycle Reentry via Sustaining Estrogen Receptor Alpha Expression. Nutrients 2019; 11:nu11102356. [PMID: 31623342 PMCID: PMC6835339 DOI: 10.3390/nu11102356] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
β-amyloid formation in the brain is one of the characteristics of Alzheimer’s disease. Exposure to this peptide may result in reentry into the cell cycle leading to cell death. The phytoestrogen equol has similar biological effects as estrogen without the side effects. This study investigated the possible mechanism of the neuron cell-protecting effect of equol during treatment with Aβ. SH-SY5Y neuroblastoma cells were treated with either 1 μM S-equol or 10 nM 17β-estradiol for 24 h prior to 1 μM Aβ (25–35) exposure. After 24 h exposure to Aβ (25–35), a significant reduction in cell survival and a reentry into the cell cycle process accompanied by increased levels of cyclin D1 were observed. The expressions of estrogen receptor alpha (ERα) and its coactivator, steroid receptor coactivator-1 (SRC-1), were also significantly downregulated by Aβ (25–35) in parallel with activated extracellular signal-regulated kinase (ERK)1/2. However, pretreatment of cells with S-equol or 17β-estradiol reversed these effects. Treatment with the ER antagonist, ICI-182,780 (1 μM), completely blocked the effects of S-equol and 17β-estradiol on cell viability, ERα, and ERK1/2 after Aβ (25–35) exposure. These data suggest that S-equol possesses a neuroprotective potential as it effectively antagonizes Aβ (25–35)-induced cell cytotoxicity and prevents cell cycle reentry in SH-SY5Y cells. The mechanism underlying S-equol neuroprotection might involve ERα-mediated pathways.
Collapse
Affiliation(s)
- Meng-Chao Tsai
- Department of Psychiatry, Taoyuan General Hospital, Taoyuan 33004, Taiwan.
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11042, Taiwan.
- Master Program in Food Safety, Taipei Medical University, Taipei 11042, Taiwan.
- Research Center of Geriatric Nutrition, Taipei Medical University, Taipei 11042, Taiwan.
| | - Kiswatul Hidayah
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11042, Taiwan.
| | - Ching-I Lin
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 33857, Taiwan.
| |
Collapse
|
123
|
Bae-Gartz I, Janoschek R, Breuer S, Schmitz L, Hoffmann T, Ferrari N, Branik L, Oberthuer A, Kloppe CS, Appel S, Vohlen C, Dötsch J, Hucklenbruch-Rother E. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front Neurosci 2019; 13:962. [PMID: 31572115 PMCID: PMC6753176 DOI: 10.3389/fnins.2019.00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Maternal obesity has emerged as an important risk factor for the development of metabolic disorders in the offspring. The hypothalamus as the center of energy homeostasis regulation is known to function based on complex neuronal networks that evolve during fetal and early postnatal development and maintain their plasticity into adulthood. Development of hypothalamic feeding networks and their functional plasticity can be modulated by various metabolic cues, especially in early stages of development. Here, we aimed at determining the underlying molecular mechanisms that contribute to disturbed hypothalamic network formation in offspring of obese mouse dams. Methods Female mice were fed either a control diet (CO) or a high-fat diet (HFD) after weaning until mating and during pregnancy and gestation. Male offspring was sacrificed at postnatal day (P) 21. The hypothalamus was subjected to gene array analysis, quantitative PCR and western blot analysis. Results P21 HFD offspring displayed increased body weight, circulating insulin levels, and strongly increased activation of the hypothalamic insulin signaling cascade with a concomitant increase in ionized calcium binding adapter molecule 1 (IBA1) expression. At the same time, the global gene expression profile in CO and HFD offspring differed significantly. More specifically, manifest influences on several key pathways of hypothalamic neurogenesis, axogenesis, and regulation of synaptic transmission and plasticity were detectable. Target gene expression analysis revealed significantly decreased mRNA expression of several neurotrophic factors and co-factors and their receptors, accompanied by decreased activation of their respective intracellular signal transduction. Conclusion Taken together, these results suggest a potential role for disturbed neurotrophin signaling and thus impaired neurogenesis, axogenesis, and synaptic plasticity in the pathogenesis of the offspring’s hypothalamic feeding network dysfunction due to maternal obesity.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Nina Ferrari
- Heart Center, Cologne Center for Prevention in Childhood and Youth, University Hospital of Cologne, Cologne, Germany
| | - Lena Branik
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Cora-Sophia Kloppe
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
124
|
Zhao H, Sun J, Shao J, Zou Z, Qiu X, Wang E, Wu G. Glucose Transporter 1 Promotes the Malignant Phenotype of Non-Small Cell Lung Cancer through Integrin β1/Src/FAK Signaling. J Cancer 2019; 10:4989-4997. [PMID: 31598171 PMCID: PMC6775508 DOI: 10.7150/jca.30772] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Glucose transporter 1 (GLUT1) is the main factor of Warburg effect, which is associated with poor prognosis in many tumors. However, the underlying molecular mechanism of GLUT1 in the progression of non-small cell lung cancer (NSCLC) is unclear. Methods: We used quantitative real-time PCR to detect GLUT1 mRNA expression in bronchial brushing samples and performed Western Blot and biological behavior testing to check the effect of GLUT1 on NSCLC cell proliferation, migration, invasion and apoptosis. Results: We found that the C(t) normalized value of GLUT1 in malignant bronchial brushing samples was significantly higher than that in benign samples (P<0.05). GLUT1 significantly increased the expressions of cyclin A, cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), CDK4, CDK6 and matrix metalloproteinase 2 (MMP2), but decreased the expressions of p53 and p130 in NSCLC cells. The biological behavior testing indicated that GLUT1 enhanced NSCLC cell proliferation, invasion and migration but inhibited cell apoptosis. In addition, GLUT1 upregulated the expression of integrin β1 and promoted the phosphorylation of focal adhesion kinase (FAK, phosphorylation at Tyr576/577) and Src (Src phosphorylation at Tyr530). siRNA knock down of integrin β1 expression suppressed GLUT1 induced NSCLC cell biological behavior, as well as the phosphorylation of FAK and Src. Conclusion: Taken together, our data confirms that GLUT1 promotes the malignant phenotype of NSCLC through integrin β1/Src/FAK signaling, which provides a new therapeutic target for the treatment and research of lung cancer.
Collapse
Affiliation(s)
- Huanyu Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Jian Sun
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China.,Guangzhou DaAn Clinical Laboratory Center, No. 74 Zhongshan Er Road, Guangzhou, 510000, China
| | - Jianshuang Shao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Zifang Zou
- Department of Chest Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Guangping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| |
Collapse
|
125
|
D'Angelo B, Astarita C, Boffo S, Massaro-Giordano M, Antonella Ianuzzi C, Caporaso A, Macaluso M, Giordano A. LPS-induced inflammatory response triggers cell cycle reactivation in murine neuronal cells through retinoblastoma proteins induction. Cell Cycle 2019; 16:2330-2336. [PMID: 28820328 DOI: 10.1080/15384101.2017.1363943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.
Collapse
Affiliation(s)
- Barbara D'Angelo
- a Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA
| | - Carlo Astarita
- a Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA.,b Department of Medicine, Surgery, and Neuroscience , University of Siena , Siena , Italy
| | - Silvia Boffo
- a Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA
| | - Mina Massaro-Giordano
- c Department of Ophthalmology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA
| | | | - Antonella Caporaso
- d Oncology Research Center of Mercogliano (CROM) , Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale , Naples , Italy
| | - Marcella Macaluso
- a Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA
| | - Antonio Giordano
- a Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA.,b Department of Medicine, Surgery, and Neuroscience , University of Siena , Siena , Italy
| |
Collapse
|
126
|
Kahrizi K, Huber M, Galetzka D, Dewi S, Schröder J, Weis E, Kariminejad A, Fattahi Z, Ropers HH, Schweiger S, Najmabadi H, Winter J. Homozygous variants in the gene SCAPER cause syndromic intellectual disability. Am J Med Genet A 2019; 179:1214-1225. [PMID: 31069901 DOI: 10.1002/ajmg.a.61172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022]
Abstract
The S-Phase Cyclin A Associated Protein In The ER (SCAPER) gene is a ubiquitously expressed gene with unknown function in the brain. Recently, biallelic SCAPER variants were described in four patients from three families with retinitis pigmentosa (RP) and intellectual disability (ID). Here, we expand the spectrum of pathogenic variants in SCAPER and report on 10 further patients from four families with ID, RP, and additional dysmorphic features carrying homozygous variants in SCAPER. The variants found comprise frameshift, nonsense, and missense variants as well as an intragenic homozygous deletion, which spans SCAPER exons 15 and 16 and introduces a frameshift and a premature stop codon. Analyses of SCAPER expression in human and mouse brain revealed an upregulation of SCAPER expression during cortical development and a higher expression of SCAPER in neurons compared to neural progenitors. In the adult brain SCAPER is expressed in several regions including the cerebral cortex where it shows a layer-specific expression with an expression peak in lower layer glutamatergic neurons. Our study supports the role of SCAPER variants in the pathogenesis of ID and RP, expands the variant spectrum and highlights the need for functional studies concerning the role of SCAPER during brain development and function.
Collapse
Affiliation(s)
- Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mareike Huber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Danuta Galetzka
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sri Dewi
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julia Schröder
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Weis
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ariana Kariminejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zoherh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hans-Hilger Ropers
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Focus Program of Translational Neurosciences of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Focus Program of Translational Neurosciences of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
127
|
He Y, Yang X, Jiao M, Anoopkumar-Dukie S, Zeng Y, Mei H. Housefly (Musca domestica) larvae powder, preventing oxidative stress injury via regulation of UCP4 and CyclinD1 and modulation of JNK and P38 signaling in APP/PS1 mice. Food Funct 2019; 10:235-243. [PMID: 30540319 DOI: 10.1039/c8fo02052c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Housefly (Musca domestica) Larvae powder (HL) is rich in antioxidants. As oxidative stress is considered as one of the main pathogenesis in Alzheimer's Disease (AD), this study was designed to explore the protective effects of HL as an antioxidant on APP/PS1 mice. 2-Month-old APP/PS1 mice were divided into a model control (MC) group, a Donepezil group and a HL group, and C57BL/6 mice were used as the normal control (NC) group. After 180 days of treatment, the memory ability was measured by Morris Water Maze (MWM). The presence of Aβ and the expression of Uncoupling Protein 4 (UCP4) and CyclinD1 were detected by immunohistochemistry. The expressions of Superoxide Dismutase 1 (SOD1), Catalase (CAT) and Mitogen-activated Protein Kinase (MAPK) signal pathways were measured by western blotting. Compared with untreated APP/PS1 mice, the memory abilities of the HL-treated mice were significantly improved. Furthermore, the HL treatment not only down-regulated the deposition of Aβ and the expression of CylinD1, but also increased both the mRNA and protein levels of SOD, CAT, and UCP4, and enhanced the phosphorylation of JNK and P38 MAPK activation. In conclusion, these results suggest that HL may have a protective effect against memory impairment and prevent oxidative stress-induced injury via the regulation of UCP4 and CyclinD1 and the modulation of JNK and P38 MAPK signaling in AD.
Collapse
Affiliation(s)
- Yinru He
- School of Basic Courses, Guangzhou, Guangdong 510006, China
| | | | | | | | | | | |
Collapse
|
128
|
Farley MM, Watkins TA. Intrinsic Neuronal Stress Response Pathways in Injury and Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:93-116. [PMID: 29414247 DOI: 10.1146/annurev-pathol-012414-040354] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From injury to disease to aging, neurons, like all cells, may face various insults that can impact their function and survival. Although the consequences are substantially dictated by the type, context, and severity of insult, distressed neurons are far from passive. Activation of cellular stress responses aids in the preservation or restoration of nervous system function. However, stress responses themselves can further advance neuropathology and contribute significantly to neuronal dysfunction and neurodegeneration. Here we explore the recent advances in defining the cellular stress responses within neurodegenerative diseases and neuronal injury, and we emphasize axonal injury as a well-characterized model of neuronal insult. We highlight key findings and unanswered questions about neuronal stress response pathways, from the initial detection of cellular insults through the underlying mechanisms of the responses to their ultimate impact on the fates of distressed neurons.
Collapse
Affiliation(s)
- Madeline M Farley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030;
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
129
|
Walton CC, Andersen JK. Unknown fates of (brain) oxidation or UFO: Close encounters with neuronal senescence. Free Radic Biol Med 2019; 134:695-701. [PMID: 30639615 DOI: 10.1016/j.freeradbiomed.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/19/2022]
Abstract
Oxidative stress has long been considered a key component contributing to pathologies associated with brain aging and age-related neurodegenerative diseases. The proposed mechanisms involved are varied, but recently have been suggested to include induction of cellular senescence, a cellular growth arrest state characterized by the secretion of pre-inflammatory senescence-associated secretory phenotype (SASP) factors. The post-mitotic status of neurons has been traditionally considered to prohibit cellular senescence, however recent studies have provided compelling evidence that neurons may be capable of undergoing senescence in response to oxidative stress and other factors. Development of senolytics, small molecules that selectively induce senescent cell death, could represent a paradigm change for the treatment of neurodegenerative diseases including Alzheimer's and Parkinson's disease (AD, PD). However, their use depends on unequivocal validation that neurons can senesce and that they do not have detrimental off-target effects in other cell types in the brain and elsewhere.
Collapse
|
130
|
Wezyk M, Szybinska A, Wojsiat J, Szczerba M, Day K, Ronnholm H, Kele M, Berdynski M, Peplonska B, Fichna JP, Ilkowski J, Styczynska M, Barczak A, Zboch M, Filipek-Gliszczynska A, Bojakowski K, Skrzypczak M, Ginalski K, Kabza M, Makalowska I, Barcikowska-Kotowicz M, Wojda U, Falk A, Zekanowski C. Overactive BRCA1 Affects Presenilin 1 in Induced Pluripotent Stem Cell-Derived Neurons in Alzheimer's Disease. J Alzheimers Dis 2019; 62:175-202. [PMID: 29439343 DOI: 10.3233/jad-170830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-β. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-β pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.
Collapse
Affiliation(s)
- Michalina Wezyk
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Szybinska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcelina Szczerba
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Kelly Day
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Ronnholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Department of Pharmacology and Clinical Neuroscience, Umea Universitet, Umea, Sweden
| | - Beata Peplonska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Styczynska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Anna Barczak
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Zboch
- Center of Alzheimer's Disease of Wroclaw Medical University, Scinawa, Poland
| | - Anna Filipek-Gliszczynska
- Clinical Department of Neurology, Extrapyramidal Disorders and Alzheimer's Outpatient Clinic, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Krzysztof Bojakowski
- Clinical Department of General and Vascular Surgery, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michal Kabza
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Izabela Makalowska
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Barcikowska-Kotowicz
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
131
|
Abstract
Differentiated neurons can undergo cell cycle re-entry during pathological conditions, but it remains largely accepted that M-phase is prohibited in these cells. Here we show that primary neurons at post-synaptogenesis stages of development can enter M-phase. We induced cell cycle re-entry by overexpressing a truncated Cyclin E isoform fused to Cdk2. Cyclin E/Cdk2 expression elicits canonical cell cycle checkpoints, which arrest cell cycle progression and trigger apoptosis. As in mitotic cells, checkpoint abrogation enables cell cycle progression through S and G2-phases into M-phase. Although most neurons enter M-phase, only a small subset undergo cell division. Alternatively, neurons can exit M-phase without cell division and recover the axon initial segment, a structural determinant of neuronal viability. We conclude that neurons and mitotic cells share S, G2 and M-phase regulation.
Collapse
|
132
|
Kumar R, Deshmukh PS, Sharma S, Banerjee B. Activation of endoplasmic reticulum stress in rat brain following low-intensity microwave exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9314-9321. [PMID: 30721430 DOI: 10.1007/s11356-019-04377-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The present study was designed to explore the effects of low-intensity microwave radiation on endoplasmic reticulum stress and unfolded protein response. Experiments were performed on male Wistar rats exposed to microwave radiation for 30 days at 900 MHz, 1800 MHz, and 2450 MHz frequencies on four groups of animal: sham-exposed group, 900 MHz exposed (SAR 5.84 × 10-4 W/kg), 1800 MHz exposed (SAR 5.94 × 10-4 W/kg), and 2450 MHz exposed (SAR 6.7 × 10-4 W/kg) groups. Expressions of mRNA were estimated at the end of exposure in rat brain by real-time quantitative PCR. Microwave exposure at 900, 1800, and 2450 MHz with respective SAR values as mentioned above significantly (< 0.05) altered mRNA expression of transcription factors ATF4, CHOP, and XBP1 in accordance with increasing microwave frequency. The result of the present study reveals that low-intensity microwave exposure at frequencies 900, 1800, and 2450 MHz induces endoplasmic reticulum stress and unfolded protein response.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Pravin S Deshmukh
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, University of Delhi, Delhi, India
| | - BasuDev Banerjee
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India.
| |
Collapse
|
133
|
Man A, Slevin M, Petcu E, Fraefel C. The Cyclin-Dependent Kinase 5 Inhibitor Peptide Inhibits Herpes Simplex Virus Type 1 Replication. Sci Rep 2019; 9:1260. [PMID: 30718749 PMCID: PMC6362106 DOI: 10.1038/s41598-018-37989-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
In order to evaluate the influence of CDK5 inhibitory peptide (CIP) on Human alphaherpesvirus 1 (HSV-1) replication, we constructed two recombinant adeno-associated-virus 2 (rAAV2) vectors encoding CIP fused with cyan-fluorescent-protein (CFP), with or without nuclear localization signal. A third vector encoding non-fused CIP and CFP was also constructed. HeLa and HEK 293T cells were infected with the rAAV-CIP vectors at multiplicity of infection (MOI) of 5000, in the absence or presence of a recombinant HSV-1 that encodes a yellow-fluorescent-protein (rHSV48Y; MOI = 1). Cells co-infected with rHSV48Y and rAAV vectors that did not express the CIP gene (rAAV-CFP-Neo) served as controls. At 24 h after infection, the effect of CIP on rHSV48Y replication was assessed by PCR, qRT-PCR, Western-blot, flow-cytometry, epifluorescence and confocal microscopy. We show that in cultures co-infected with rAAV-CFP-Neo, 27% of the CFP-positive cells present rHSV48Y replication compartments. By contrast, in cultures co-infected with CIP-encoding rAAV2 vectors and rHSV48Y only 6-20% of the cells positive for CIP showed rHSV48Y replication compartments, depending on the CIP variant. Flow-cytometry showed that less than 40% of the rHSV48Y/rAAV-CIP, and more than 75% of rHSV48Y/rAAV-CFP-Neo co-infected cells were positive for both transgene products. The microscopy and flow-cytometry data support the hypothesis that CIP is inhibiting HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Man
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Department of Microbiology, University of Medicine and Pharmacy of Tîrgu Mureș, Târgu Mureș, Romania
| | - Mark Slevin
- University of Medicine and Pharmacy of Tîrgu Mureș, Târgu Mureș, Romania.
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.
| | - Eugen Petcu
- Griffith University, Gold Coast, Brisbane, Australia
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
134
|
Raoofi A, Abdollahifar MA, Aliaghaei A, Piryaei A, Hejazi F, Sajadi E, Rashidiani-Rashidabadi A, Sadeghi Y. Peripheral axotomy-induced changes of motor function and histological structure of spinal anterior horn. Eur J Transl Myol 2019; 29:7945. [PMID: 31019660 PMCID: PMC6460218 DOI: 10.4081/ejtm.2019.7945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to evaluate changes of both peripheral motor function and histology of spinal anterior horn in adult rats after unilateral sciatectomy. Ten adult healthy rats served as control group, while in the ten rat experimental group the right sciatic nerve was severed. We followed-up nerve motor function using a sciatic function index and electromyography activity of the gastrocnemious muscle. The rats of the experimental group presented the expected gross locomotor deficit and leg muscle atrophy. At 12 weeks post sciatectomy, L4 and L5 spinal cord segments were removed from the twenty rats and were analysed by istological stereological methods. In the axotomized animals volume of the anterior horn and its content of motor neurons decreased, while the content of astrocytes increased (p < 0.05). Thus, in adult rats, beside the obvious peripheral nerve disfuction, the sciatic nerve axotomy have severe consequences on the soma of the injured motor neurons in the spinal anterior horn. All these quantitative analyses may be usefull to quantify changes occurring in adult animals after axotomy and eventual management to modify the final outcomes in peripheral nerve disorders.
Collapse
Affiliation(s)
- Amir Raoofi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hejazi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Ensieh Sajadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rashidiani-Rashidabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
135
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
136
|
β-N-methylamino-L-alanine (BMAA) suppresses cell cycle progression of non-neuronal cells. Sci Rep 2018; 8:17995. [PMID: 30573743 PMCID: PMC6301973 DOI: 10.1038/s41598-018-36418-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
β-N-methylamino-L-alanine (BMAA), a natural non-proteinaceous amino acid, is a neurotoxin produced by a wide range of cyanobacteria living in various environments. BMAA is a candidate environmental risk factor for neurodegenerative diseases such as amyotrophic lateral sclerosis and Parkinson-dementia complex. Although BMAA is known to exhibit weak neuronal excitotoxicity via glutamate receptors, the underlying mechanism of toxicity has yet to be fully elucidated. To examine the glutamate receptor-independent toxicity of BMAA, we investigated the effects of BMAA in non-neuronal cell lines. BMAA potently suppressed the cell cycle progression of NIH3T3 cells at the G1/S checkpoint without inducing plasma membrane damage, apoptosis, or overproduction of reactive oxygen species, which were previously reported for neurons and neuroblastoma cells treated with BMAA. We found no evidence that activation of glutamate receptors was involved in the suppression of the G1/S transition by BMAA. Our results indicate that BMAA affects cellular functions, such as the division of non-neuronal cells, through glutamate receptor-independent mechanisms.
Collapse
|
137
|
Márton M, Tihanyi N, Gyulavári P, Bánhegyi G, Kapuy O. NRF2-regulated cell cycle arrest at early stage of oxidative stress response mechanism. PLoS One 2018; 13:e0207949. [PMID: 30485363 PMCID: PMC6261604 DOI: 10.1371/journal.pone.0207949] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress results in activation of several signal transduction pathways controlled by the PERK-substrate NRF2 (nuclear factor erythroid 2-related factor 2); meanwhile the ongoing cell division cycle has to be blocked. It has been recently shown that Cyclin D1 got immediately down-regulated via PERK pathway in response to oxidative stress leading to cell cycle arrest. However, the effect of NRF2 on cell cycle regulation has not been explored yet. We aimed to reveal a crosstalk between PERK-substrate NRF2 and the key elements of cell cycle regulatory network upon oxidative stress using molecular biological techniques- Although Cyclin D1 level remained constant, its activity was blocked by various stoichiometric inhibitors (such as p15, p21 and p27) even at low level of oxidative stress. The activity of these CDK inhibitors completely disappeared, when the addition of oxidative agent was combined with silencing of either PERK or NRF2.This further confirms the important role of NRF2 in blocking Cyclin D1 with stoichiometric inhibitors at early stage of oxidative stress.
Collapse
Affiliation(s)
- Margita Márton
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Nikolett Tihanyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Pál Gyulavári
- MTA-SE Pathobiochemistry Research Group, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Budapest, Hungary
| | - Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
138
|
Dou X, Chen L, Lei M, Zellmer L, Jia Q, Ling P, He Y, Yang W, Liao DJ. Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. Int J Biol Sci 2018; 14:1800-1812. [PMID: 30443184 PMCID: PMC6231223 DOI: 10.7150/ijbs.26962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes.
Collapse
Affiliation(s)
- Xixi Dou
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P.R. China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Qingwen Jia
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| |
Collapse
|
139
|
Comparing effects of CDK inhibition and E2F1/2 ablation on neuronal cell death pathways in vitro and after traumatic brain injury. Cell Death Dis 2018; 9:1121. [PMID: 30401820 PMCID: PMC6219504 DOI: 10.1038/s41419-018-1156-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1−/−/E2F2−/− or E2F2−/− transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.
Collapse
|
140
|
Chi H, Chang HY, Sang TK. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E3082. [PMID: 30304824 PMCID: PMC6213751 DOI: 10.3390/ijms19103082] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal cell death in the central nervous system has always been a challenging process to decipher. In normal physiological conditions, neuronal cell death is restricted in the adult brain, even in aged individuals. However, in the pathological conditions of various neurodegenerative diseases, cell death and shrinkage in a specific region of the brain represent a fundamental pathological feature across different neurodegenerative diseases. In this review, we will briefly go through the general pathways of cell death and describe evidence for cell death in the context of individual common neurodegenerative diseases, discussing our current understanding of cell death by connecting with renowned pathogenic proteins, including Tau, amyloid-beta, alpha-synuclein, huntingtin and TDP-43.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| |
Collapse
|
141
|
Ask TF, Lugo RG, Sütterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci 2018; 12:726. [PMID: 30369866 PMCID: PMC6194361 DOI: 10.3389/fnins.2018.00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
There is evidence that accumulated senescent cells drive age-related pathologies, but the antecedents to the cellular stressors that induce senescence remain poorly understood. Previous research suggests that there is a relationship between shorter telomere length, an antecedent to cellular senescence, and psychological stress. Existing models do not sufficiently account for the specific pathways from which psychological stress regulation is converted into production of reactive oxygen species. We propose the neuro-immuno-senescence integrative model (NISIM) suggesting how vagally mediated heart rate variability (HRV) might be related to cellular senescence. Prefrontally modulated, and vagally mediated cortical influences on the autonomic nervous system, expressed as HRV, affects the immune system by adrenergic stimulation and cholinergic inhibition of cytokine production in macrophages and neutrophils. Previous findings indicate that low HRV is associated with increased production of the pro-inflammatory cytokines IL-6 and TNF-α. IL-6 and TNF-α can activate the NFκB pathway, increasing production of reactive oxygen species that can cause DNA damage. Vagally mediated HRV has been related to an individual's ability to regulate stress, and is lower in people with shorter telomeres. Based on these previous findings, the NISIM suggest that the main pathway from psychological stress to individual differences in oxidative telomere damage originates in the neuroanatomical components that modulate HRV, and culminates in the cytokine-induced activation of NFκB. Accumulated senescent cells in the brain is hypothesized to promote age-related neurodegenerative disease, and previous reports suggest an association between low HRV and onset of Alzheimer's and Parkinson's disease. Accumulating senescent cells in peripheral tissues secreting senescence-associated secretory phenotype factors can alter tissue structure and function which can induce cancer and promote tumor growth and metastasis in old age, and previous research suggested that ability to regulate psychological stress has a negative association with cancer onset. We therefore conclude that the NISIM can account for a large proportion of the individual differences in the psychological stress-related antecedents to cellular senescence, and suggest that it can be useful in providing a dynamic framework for understanding the pathways by which psychological stress induce pathologies in old age.
Collapse
Affiliation(s)
- Torvald F. Ask
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ricardo G. Lugo
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty of Health and Welfare Sciences, Østfold University College, Halden, Norway
- Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
142
|
Barrio-Alonso E, Hernández-Vivanco A, Walton CC, Perea G, Frade JM. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci Rep 2018; 8:14316. [PMID: 30254284 PMCID: PMC6156334 DOI: 10.1038/s41598-018-32708-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/14/2018] [Indexed: 11/09/2022] Open
Abstract
Cell cycle reentry followed by neuronal hyperploidy and synaptic failure are two early hallmarks of Alzheimer's disease (AD), however their functional connection remains unexplored. To address this question, we induced cell cycle reentry in cultured cortical neurons by expressing SV40 large T antigen. Cell cycle reentry was followed by hyperploidy in ~70% of cortical neurons, and led to progressive axon initial segment loss and reduced density of dendritic PSD-95 puncta, which correlated with diminished spike generation and reduced spontaneous synaptic activity. This manipulation also resulted in delayed cell death, as previously observed in AD-affected hyperploid neurons. Membrane depolarization by high extracellular potassium maintained PSD-95 puncta density and partially rescued both spontaneous synaptic activity and cell death, while spike generation remained blocked. This suggests that AD-associated hyperploid neurons can be sustained in vivo if integrated in active neuronal circuits whilst promoting synaptic dysfunction. Thus, cell cycle reentry might contribute to cognitive impairment in early stages of AD and neuronal death susceptibility at late stages.
Collapse
Affiliation(s)
- E Barrio-Alonso
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - A Hernández-Vivanco
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - C C Walton
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - G Perea
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - J M Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain.
| |
Collapse
|
143
|
Chen P, Shang A, Wang W, Yang J. Astragaloside suppresses tumor necrosis factor receptor‐associated factor 5 signaling pathway and alleviates neurodegenerative changes in retinal pigment epithelial cells induced by isoflurane. J Cell Biochem 2018; 120:1028-1037. [PMID: 30277612 DOI: 10.1002/jcb.27599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Pei‐Jun Chen
- Department of Anesthesiology The First Affiliated Hospital of Soochow University Suzhou China
- Department of Anesthesiology The Sixth People’s Hospital of Yancheng City Yancheng China
| | - An‐Quan Shang
- Department of Laboratory Medicine Tongji Hospital of Tongji University School of Medicine Shanghai China
| | - Wei‐Wei Wang
- Department of Pathology The Sixth People’s Hospital of Yancheng City Yancheng China
| | - Jian‐Ping Yang
- Department of Anesthesiology The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
144
|
Saha P, Gupta R, Sen T, Sen N. Activation of cyclin D1 affects mitochondrial mass following traumatic brain injury. Neurobiol Dis 2018; 118:108-116. [PMID: 30010002 DOI: 10.1016/j.nbd.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023] Open
Abstract
Cell cycle activation has been associated with varying types of neurological disorders including brain injury. Cyclin D1 is a critical modulator of cell cycle activation and upregulation of Cyclin D1 in neurons contributes to the pathology associated with traumatic brain injury (TBI). Mitochondrial mass is a critical factor to maintain the mitochondrial function, and it can be regulated by different signaling cascades and transcription factors including NRF1. However, the underlying mechanism of how TBI leads to impairment of mitochondrial mass following TBI remains obscure. Our results indicate that augmentation of CyclinD1 attenuates mitochondrial mass formation following TBI. To elucidate the molecular mechanism, we found that Cyclin D1 interacts with a transcription factor NRF1 in the nucleus and prevents NRF1's interaction with p300 in the pericontusional cortex following TBI. As a result, the acetylation level of NRF1 was decreased, and its transcriptional activity was attenuated. This event leads to a loss of mitochondrial mass in the pericontusional cortex following TBI. Intranasal delivery of Cyclin D1 RNAi immediately after TBI rescues transcriptional activation of NRF1 and recovers mitochondrial mass after TBI.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States
| | - Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States.
| |
Collapse
|
145
|
Gao X, Xie H, Zhu S, Yu B, Xian Y, Ouyang Q, Ji Y, Yang X, Wen C, Wang P, Tong Y, Wang Q. The Combination of Human Urinary Kallidinogenase and Mild Hypothermia Protects Adult Rats Against Hypoxic-Ischemic Encephalopathy-Induced Injury by Promoting Angiogenesis and Regeneration. Front Aging Neurosci 2018; 10:196. [PMID: 30050428 PMCID: PMC6050362 DOI: 10.3389/fnagi.2018.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Objectives: Human Urinary Kallidinogenase (HUK) is a tissue kallikrein that plays neuroprotective role in ischemic conditions via different mechanisms. Mild hypothermia (MH) is another robust neuroprotectant that reduces mortality but does not profoundly ameliorate the neurological outcome in hypoxic-ischemic encephalopathy (HIE) patients. However, whether the combination of HUK and MH can be used as a promising neuroprotective treatment in HIE is unknown. Methods: One-hundred and forty-four adult Wistar rats were randomly divided into five groups: Sham, HIE, HUK, MH and a combination of HUK and MH treatment. The HIE rat model was established by right carotid dissection followed by hypoxia aspiration. The survival curve was created within 7 days, and the neurological severity scores (NSS) were assessed at days 0, 1, 3, and 7. Nissl staining, Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), immunofluorescent staining and western blotting were used to evaluate neuronal survival, apoptosis and necrosis, tight-junction proteins Claudin-1 and Zonula occludens-1 (ZO-1), vascular endothelial growth factor (VEGF), doublecortex (DCX), bradykinin receptor B1 (BDKRB1), BDKRB2 and Ki67 staining. Results: The combined treatment rescued all HIE rats from death and had a best survival curve compared to HIE. The Combination also reduced the NSS scores after HIE at days 7, better than HUK or MH alone. The combination of HUK and MH reserved more cells in Nissl staining and inhibited neuronal apoptosis and necrosis as well as significantly attenuated HIE-induced decreases in claudin-1, ZO-1, cyclin D1 and BDKRB1/B2 in comparison to HUK or MH treatment alone. Moreover, the combined treatment increased the expression of VEGF and DCX as well as the number of Ki67-labeled cells. Conclusions: This study demonstrates that both HUK and MH are neuroprotective after HIE insult; however, the combined therapy with HUK and MH enhanced the efficiency and efficacy of either therapy alone in the treatment of HIE, at least partially by promoting angiogenesis and regeneration and rescuing tight-junction loss. The combination of HUK and MH seems to be a feasible and promising clinical strategy to alleviate cerebral injury following HIE insult. Highlights: -The combination of HUK and MH distinctly reduces neurological dysfunction in HIE rats.-HUK enhances the neuroprotective effects of MH in HIE.-MH attenuates tight-junction disruption, upregulates the BDKR B1/2, DCX and cyclin D1.-The combination of MH and HUK enhances the expressions of MH/HUK mediated-BDKR B1/2, DCX, cyclin D1 and Ki67 positive cells.
Collapse
Affiliation(s)
- Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Xian
- Department of General Intensive Care Unit of Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Ouyang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yabin Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chunyan Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Penghua Wang
- Department of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Yufeng Tong
- Structural Genomics Consortium, Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
146
|
Yang E, Gavini K, Bhakta A, Dhanasekaran M, Khan I, Parameshwaran K. Streptozotocin induced hyperglycemia stimulates molecular signaling that promotes cell cycle reentry in mouse hippocampus. Life Sci 2018; 205:131-135. [DOI: 10.1016/j.lfs.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
|
147
|
Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, Ling H, Gentleman S, Houlden H, Holton JL, Schapira AHV, Nacheva E, Proukakis C. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 2018; 141:2419-2431. [DOI: 10.1093/brain/awy157] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Katya Mokretar
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
- Department of Academic Haematology, University College London, UK
| | - Daniel Pease
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Jan-Willem Taanman
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Aynur Soenmez
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Ayesha Ejaz
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | | | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
148
|
Ciapa B, Granon S. Expression of Cyclin-D1 in Astrocytes Varies During Aging. Front Aging Neurosci 2018; 10:104. [PMID: 29740309 PMCID: PMC5928257 DOI: 10.3389/fnagi.2018.00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
D-Cyclins control progression through the G1 phase and the G1/S transition of the cell cycle. In the adult brain, they regulate neurogenesis which is limited to the sub-granular zone of the dentate gyrus (DG) and to the sub-ventricular zone (SVZ) of the lateral ventricles. Yet, D-cyclins have also been detected in other parts of the adult brain in differentiated neurons that do not proliferate and rather die by apoptosis in response to cell cycle reactivation. Expression of D-cyclins in astrocytes has also been reported but published results, such as those concerning neurons, appear conflictual. We carried out this study in order to clarify the general pattern of D-cyclin expression in the mouse brain. By performing GFAP/cyclin-D1 double labeling experiments, we detected hypertrophic astrocytes expressing cyclin-D1 in their cytoplasmic processes. Their number increased with age in the hippocampus area but decreased with age in the SVZ. Clusters of astrocytes expressing cyclin-D1 were also detected in the cortical areas of old mice and around blood vessels of neurogenic areas. Other non-asteroidal small cells, probably stem cells, expressed both GFAP and nuclear cyclin-D1 in the neurogenic area of the DG and in the SVZ at a higher density in young mice than in old mice. Finally, cells expressing cyclin-D1 but not GFAP were also found scattered in the striatum and the CA1 region of the hippocampus, and at a high percentage in cortical layers of young and old mice. Our results suggest that astrocytes may control neuronal functions and proliferation by modulating, in normal or altered conditions such as aging or degenerative diseases, cyclin-D1 expression.
Collapse
Affiliation(s)
- Brigitte Ciapa
- CNRS, Team Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR 9197, Université Paris-Sud, Orsay, France
| | - Sylvie Granon
- CNRS, Team Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR 9197, Université Paris-Sud, Orsay, France
| |
Collapse
|
149
|
Bencze J, Mórotz GM, Seo W, Bencs V, Kálmán J, Miller CCJ, Hortobágyi T. Biological function of Lemur tyrosine kinase 2 (LMTK2): implications in neurodegeneration. Mol Brain 2018; 11:20. [PMID: 29631601 PMCID: PMC5891947 DOI: 10.1186/s13041-018-0363-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are frequent, incurable diseases characterised by abnormal protein accumulation and progressive neuronal loss. Despite their growing prevalence, the underlying pathomechanism remains unclear. Lemur tyrosine kinase 2 (LMTK2) is a member of a transmembrane serine/threonine-protein kinase family. Although it was described more than a decade ago, our knowledge on LMTK2’s biological functions is still insufficient. Recent evidence has suggested that LMTK2 is implicated in neurodegeneration. After reviewing the literature, we identified three LMTK2-mediated mechanisms which may contribute to neurodegenerative processes: disrupted axonal transport, tau hyperphosphorylation and enhanced apoptosis. Moreover, LMTK2 gene expression is decreased in an Alzheimer’s disease mouse model. According to these features, LMTK2 might be a promising therapeutic target in near future. However, further investigations are required to clarify the exact biological functions of this unique protein.
Collapse
Affiliation(s)
- János Bencze
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Gábor Miklós Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Woosung Seo
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Viktor Bencs
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - János Kálmán
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Christopher Charles John Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary. .,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary. .,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
150
|
Peripheral Nerve Injury-Induced Astrocyte Activation in Spinal Ventral Horn Contributes to Nerve Regeneration. Neural Plast 2018; 2018:8561704. [PMID: 29849572 PMCID: PMC5903197 DOI: 10.1155/2018/8561704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/03/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidences suggest that peripheral nerve injury (PNI) may initiate astrocytic responses in the central nervous system (CNS). However, the response of astrocytes in the spinal ventral horn and its potential role in nerve regeneration after PNI remain unclear. Herein, we firstly illustrated that astrocytes in the spinal ventral horn were dramatically activated in the early stage following sciatic nerve injury, and these profiles were eliminated in the chronic stage. Additionally, we found that the expression of neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), also accompanied with astrocyte activation. In comparison with the irreversible transected subjects, astrocyte activation and the neurotrophic upregulation in the early stage were more drastic in case the transected nerve was rebridged immediately after injury. Furthermore, administering fluorocitrate to inhibit astrocyte activation resulted in decreased neurotrophin expression in the spinal ventral horn and delayed axonal regeneration in the nerve as well as motor function recovery. Overall, the present study indicates that peripheral nerve injury can initiate astrocyte activation accompanied with neurotrophin upregulation in the spinal ventral horn. The above responses mainly occur in the early stage of PNI and may contribute to nerve regeneration and motor function recovery.
Collapse
|