101
|
Karsten CB, Mehta N, Shin SA, Diefenbach TJ, Slein MD, Karpinski W, Irvine EB, Broge T, Suscovich TJ, Alter G. A versatile high-throughput assay to characterize antibody-mediated neutrophil phagocytosis. J Immunol Methods 2019; 471:46-56. [PMID: 31132351 PMCID: PMC6620195 DOI: 10.1016/j.jim.2019.05.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/09/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
Neutrophils, the most abundant white blood cell, play a critical role in anti-pathogen immunity via phagocytic clearance, secretion of enzymes and immunomodulators, and the release of extracellular traps. Neutrophils non-specifically sense infection through an array of innate immune receptors and inflammatory sensors, but are also able to respond in a pathogen/antigen-specific manner when leveraged by antibodies via Fc-receptors. Among neutrophil functions, antibody-dependent neutrophil phagocytosis (ADNP) results in antibody-mediated opsonization, enabling neutrophils to sense and respond to infection in a pathogen-appropriate manner. Here, we describe a high-throughput flow cytometric approach to effectively visualize and quantify ADNP and its downstream consequences. The assay is easily adaptable, supporting both the use of purified neutrophils or white blood cells, the use of purified Ig or serum, and the broad utility of any target antigen. Thus, this ADNP assay represents a high-throughput platform for the in-depth characterization of neutrophil function. A high-throughput antibody-dependent neutrophil phagocytosis (ADNP) assay was developed. This flow cytometry assay is flexible and can be easily adapted to any pathogen. Analysis of sample sets by ADNP assay is fast, robust and cost-effective. Additional neutrophil functions can be profiled in secondary analyses.
Collapse
Affiliation(s)
- Christina B Karsten
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Nickita Mehta
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Sally A Shin
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thomas J Diefenbach
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Matthew D Slein
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Wiktor Karpinski
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Edward B Irvine
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Thomas Broge
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
102
|
Naegeli A, Bratanis E, Karlsson C, Shannon O, Kalluru R, Linder A, Malmström J, Collin M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 2019; 216:1615-1629. [PMID: 31092533 PMCID: PMC6605743 DOI: 10.1084/jem.20190293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
EndoS from Streptococcus pyogenes hydrolyzes the functionally important glycan on the Fc portion of IgG during infections in humans. In mice with IgG mediated immunity against the M1 protein on the bacteria, EndoS is a virulence factor. Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.
Collapse
Affiliation(s)
- Andreas Naegeli
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Christofer Karlsson
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Raja Kalluru
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
103
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
104
|
Tolbert WD, Subedi GP, Gohain N, Lewis GK, Patel KR, Barb AW, Pazgier M. From Rhesus macaque to human: structural evolutionary pathways for immunoglobulin G subclasses. MAbs 2019; 11:709-724. [PMID: 30939981 PMCID: PMC6601566 DOI: 10.1080/19420862.2019.1589852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
Abstract
The Old World monkey, Rhesus macaque (Macaca mulatta, Mm), is frequently used as a primate model organism in the study of human disease and to test new vaccines/antibody treatments despite diverging before chimpanzees and orangutans. Mm and humans share 93% genome identity with substantial differences in the genes of the adaptive immune system that lead to different functional IgG subclass characteristics, Fcγ receptors expressed on innate immune cells, and biological interactions. These differences put limitations on Mm use as a primary animal model in the study of human disease and to test new vaccines/antibody treatments. Here, we comprehensively analyzed molecular properties of the Fc domain of the four IgG subclasses of Rhesus macaque to describe potential mechanisms for their interactions with effector cell Fc receptors. Our studies revealed less diversity in the overall structure among the Mm IgG Fc, with MmIgG1 Fc being the most structurally like human IgG3, although its CH2 loops and N297 glycan mobility are comparable to human IgG1. Furthermore, the Fcs of Mm IgG3 and 4 lack the structural properties typical for their human orthologues that determine IgG3's reduced interaction with the neonatal receptor and IgG4's ability for Fab-arm exchange and its weaker Fcγ receptor interactions. Taken together, our data indicate that MmIgG1-4 are less structurally divergent than the human IgGs, with only MmIgG1 matching the molecular properties of human IgG1 and 3, the most active IgGs in terms of Fcγ receptor binding and Fc-mediated functions. PDB accession numbers for deposited structures are 6D4E, 6D4I, 6D4M, and 6D4N for MmIgG1 Fc, MmIgG2 Fc, MmIgG3 Fc, and MmIgG4 Fc, respectively.
Collapse
Affiliation(s)
- William David Tolbert
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
- Infectious Disease Division, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Ganesh Prasad Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology of Iowa State University, Ames, IA, USA
| | - Neelakshi Gohain
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Kenneth Lewis
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kashyap Rajesh Patel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology of Iowa State University, Ames, IA, USA
| | - Adam Wesley Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology of Iowa State University, Ames, IA, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
- Infectious Disease Division, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
105
|
Cambay F, Henry O, Durocher Y, De Crescenzo G. Impact of N-glycosylation on Fcγ receptor / IgG interactions: unravelling differences with an enhanced surface plasmon resonance biosensor assay based on coiled-coil interactions. MAbs 2019; 11:435-452. [PMID: 30822189 DOI: 10.1080/19420862.2019.1581017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-glycosylation profile of immunoglobulin G (IgG) is considered a critical quality attribute due to its impact on IgG-Fc gamma receptor (FcγR) interactions, which subsequently affect antibody-dependent cell-based immune responses. In this study, we investigated the impact of the FcγR capture method, as well as FcγR N-glycosylation, on the kinetics of interaction with various glycoforms of trastuzumab (TZM) in a surface plasmon resonance (SPR) biosensor assay. More specifically, we developed a novel strategy based on coiled-coil interactions for the stable and oriented capture of coil-tagged FcγRs at the biosensor surface. Coil-tagged FcγR capture outperformed all other capture strategies applied to the SPR study of IgG-FcγR interactions, as the robustness and reproducibility of the assay and the shelf life of the biosensor chip were excellent (> 1,000 IgG injections with the same biosensor surface). Coil-tagged FcγRs displaying different N-glycosylation profiles were generated either by different expression systems, in vitro glycoengineering or by size-exclusion chromatography, and roughly characterized by lectin blotting. Of salient interest, the overlay of their kinetics of interaction with several TZM glycoforms revealed key differences on both association and dissociation kinetics, confirming a complex influence of the FcγR N-glycosylation and its inherent heterogeneity upon receptor interaction with mAbs. This work is thus an important step towards better understanding of the impact of glycosylation upon binding of IgGs, either natural or engineered, to their receptors.
Collapse
Affiliation(s)
- Florian Cambay
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada.,b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada
| | - Olivier Henry
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| | - Yves Durocher
- b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada.,c Département de Biochimie et Médecine Moléculaire , Université de Montréal , Montréal , Québec , Canada
| | - Gregory De Crescenzo
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| |
Collapse
|
106
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
107
|
Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood 2019; 133:1395-1405. [PMID: 30655272 DOI: 10.1182/blood-2018-07-864538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
We have identified a rare healthy FcγRIIIB (CD16B)-null donor completely lacking FCGR3B RNA and protein expression and dissected the role of the different neutrophil Fcγ receptors in the response to therapeutic anti-CD20 monoclonal antibodies. We observed that polymorphonuclear neutrophils (PMNs) from FcγRIIIB wild-type (WT) individuals or the null donor were more effectively activated by chronic lymphocytic leukemia (CLL) B-cell targets opsonized with glycoengineered anti-CD20 antibodies compared with fully core-fucosylated anti-CD20 antibodies, suggesting the presence and role of FcγRIIIA (CD16A) on PMNs. Indeed, we demonstrated by reverse-transcription polymerase chain reaction, flow cytometry, and western blot analysis that PMNs from FcγRIIIB WT donors and the null individual express low levels of FcγRIIIA on their surfaces. FcγRIIIA is a functional and activating molecule on these cells, because anti-CD16 F(ab')2 antibodies alone were able to activate highly purified PMNs from the FcγRIIIB-null donor. Use of blocking anti-CD16 and anti-CD32 antibodies showed that FcγRIIIA is also a major mediator of phagocytosis of CD20-opsonized beads by FcγRIIIB WT and null PMNs. In contrast, trogocytosis of antibody-opsonized CLL B cells by PMNs was mediated primarily by FcγRIIIB in WT PMNs and by FcγRIIA in null PMNs. We conclude that FcγRIIIA is an important player in PMN functions, whereas FcγRIIIB is dispensable for activation and phagocytosis. We discuss the clinical implications of these findings.
Collapse
|
108
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
109
|
|
110
|
Zhao J, Nussinov R, Ma B. Antigen binding allosterically promotes Fc receptor recognition. MAbs 2019; 11:58-74. [PMID: 30212263 PMCID: PMC6343797 DOI: 10.1080/19420862.2018.1522178] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key question in immunology is whether antigen recognition and Fc receptor (FcR) binding are allosterically linked. This question is also relevant for therapeutic antibody design. Antibody Fab and Fc domains are connected by flexible unstructured hinge region. Fc chains have conserved glycosylation sites at Asn297, with each conjugated to a core heptasaccharide and forming biantennary Fc glycan. The glycans modulate the Fc conformations and functions. It is well known that the antibody Fab and Fc domains and glycan affect antibody activity, but whether these elements act independently or synergistically is still uncertain. We simulated four antibody complexes: free antibody, antigen-bound antibody, FcR-bound antibody, and an antigen-antibody-FcR complex. We found that, in the antibody's "T/Y" conformation, the glycans, and the Fc domain all respond to antigen binding, with the antibody population shifting to two dominant clusters, both with the Fc-receptor binding site open. The simulations reveal that the Fc-glycan-receptor complexes also segregate into two conformational clusters, one corresponding to the antigen-free antibody-FcR baseline binding, and the other with an antigen-enhanced antibody-FcR interaction. Our study confirmed allosteric communications in antibody-antigen recognition and following FcR activation. Even though we observed allosteric communications through the IgG domains, the most important mechanism that we observed is the communication via population shift, stimulated by antigen binding and propagating to influence FcR recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
111
|
Sequence-to-structure dependence of isolated IgG Fc complex biantennaryN-glycans: a molecular dynamics study. Glycobiology 2018; 29:94-103. [DOI: 10.1093/glycob/cwy097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
|
112
|
Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018; 333:65-79. [DOI: 10.1016/j.cellimm.2018.07.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
|
113
|
Roberts JT, Barb AW. A single amino acid distorts the Fc γ receptor IIIb/CD16b structure upon binding immunoglobulin G1 and reduces affinity relative to CD16a. J Biol Chem 2018; 293:19899-19908. [PMID: 30361439 DOI: 10.1074/jbc.ra118.005273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Therapeutic mAbs engage Fc γ receptor III (CD16) to elicit a protective cell-mediated response and destroy the target tissue. Newer drugs designed to bind CD16a with increased affinity surprisingly also elicit protective CD16b-mediated responses. However, it is unclear why IgG binds CD16a with more than 10-fold higher affinity than CD16b even though these receptors share more than 97% identity. Here we identified one residue, Gly-129, that contributes to the greater IgG binding affinity of CD16a. The CD16b variant D129G bound IgG1 Fc with 2-fold higher affinity than CD16a and with 90-fold higher affinity than the WT. Conversely, the binding affinity of CD16a-G129D was decreased 128-fold relative to WT CD16a and comparably to that of WT CD16b. The interaction of IgG1 Fc with CD16a, but not with CD16b, is known to be sensitive to the composition of the asparagine-linked carbohydrates (N-glycans) attached to the receptor. CD16a and CD16b-D129G displaying minimally processed oligomannose N-glycans bound to IgG1 Fc with about 5.2-fold increased affinity compared with variants with highly processed complex-type N-glycans. CD16b and the CD16a-G129D variant exhibited a smaller 1.9-fold affinity increase with oligomannose N-glycans. A model of glycosylated CD16b bound to IgG1 Fc determined to 2.2 Å resolution combined with a 250-ns all-atom molecular dynamics simulation showed that the larger Asp-129 residue deformed the Fc-binding surface. These results reveal how Asp-129 in CD16b affects its binding affinity for IgG1 Fc and suggest that antibodies engineered to engage CD16b with high affinity must accommodate the Asp-129 side chain.
Collapse
Affiliation(s)
- Jacob T Roberts
- From the Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Adam W Barb
- From the Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
114
|
Peng J, Patil SM, Keire DA, Chen K. Chemical Structure and Composition of Major Glycans Covalently Linked to Therapeutic Monoclonal Antibodies by Middle-Down Nuclear Magnetic Resonance. Anal Chem 2018; 90:11016-11024. [PMID: 30102512 PMCID: PMC7040853 DOI: 10.1021/acs.analchem.8b02637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycosylation of monoclonal antibodies (mAbs) is a critical quality attribute that can impact mAb drug efficacy and safety. The mAb glycans are inherently heterogeneous in chemical structure and composition of monosaccharides. The established fluorescence or mass-spectrometry (MS) detection methods for glycosylation evaluation may require multiple steps of glycan cleavage or extensive digestion of the mAb, chemical labeling of the glycans, column separation and report the chemical identity of glycans indirectly through retention time and molecular weight values. In demonstrating chemical structure similarity and comparability among mAb drugs, orthogonal analytical methods for measuring glycan chemistry are needed to ensure the quality of drug products. Here, a "middle-down" NMR method is developed as a proof-of-concept approach to measure the domain-specific glycosylation of marketed mAb drugs without cleavage of the glycan moieties. Complete glycan 1H/13C chemical shift assignments were obtained at 13C natural abundance from commercial standard glycans that allowed unambiguous determination of the chemical structure, glycosidic linkage position, and anomeric configuration of each monosaccharide in the major N-glycan scaffolds found in mAb molecules. The analysis of glycan anomeric peaks in two-dimensional (2D) 1H-13C NMR spectra yielded metrics for clinically important mAb quality attributes (i.e., galactosylation (Gal%) and fucosylation (Fuc%)), consistent with literature results using a standard glycan-mapping method. Therefore, the middle-down NMR method provided a facile orthogonal measurement for mAb glycosylation characterization with improved chemical information content on glycan structure determination and quantification, compared to standard approaches.
Collapse
Affiliation(s)
- Jiangnan Peng
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Sharadrao M. Patil
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David A. Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kang Chen
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
115
|
Subedi GP, Barb AW. CD16a with oligomannose-type N-glycans is the only "low-affinity" Fc γ receptor that binds the IgG crystallizable fragment with high affinity in vitro. J Biol Chem 2018; 293:16842-16850. [PMID: 30213862 DOI: 10.1074/jbc.ra118.004998] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
Fc γ receptors (FcγRs) bind circulating IgG (IgG1) at the surface of leukocytes. Antibodies clustered at the surface of a targeted particle trigger a protective immune response through activating FcγRs. Three recent reports indicate that the composition of the asparagine-linked carbohydrate chains (N-glycans) of FcγRIIIa/CD16a impacted IgG1-binding affinity. Here we determined how N-glycan composition affected the affinity of the "low-affinity" FcγRs for six homogeneous IgG1 Fc N-glycoforms (G0, G0F, G2, G2F, A2G2, and A2G2F). Surprisingly, CD16a with oligomannose N-glycans bound to IgG1 Fc (A2G2) with a KD = 1.0 ± 0.1 nm This affinity represents a 51-fold increase over the affinity measured for CD16a with complex-type N-glycans (51 ± 8 nm) and is comparable with the affinity of FcγRI/CD64, the sole "high-affinity" FcγR. CD16a N-glycan composition accounted for increases in binding affinity for the other IgG1 Fc glycoforms tested (10-50-fold). This remarkable sensitivity could only be eliminated by preventing glycosylation at Asn162 with an Asn-to-Gln mutation; mutations at the four other N-glycosylation sites preserved tighter binding in the Man5 glycoform. None of the other low-affinity FcγRs showed more than a 3.1-fold increase upon modifying the receptor N-glycan composition, including CD16b, which differs from CD16a by only four amino acid residues. This result indicates that CD16a is unique among the low-affinity FcγRs, and modifying only the glycan composition of both the IgG1 Fc ligand and receptor provides a 400-fold range in affinities.
Collapse
Affiliation(s)
- Ganesh P Subedi
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, Iowa 50011
| | - Adam W Barb
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, Iowa 50011
| |
Collapse
|
116
|
Dalziel M, Beers SA, Cragg MS, Crispin M. Through the barricades: overcoming the barriers to effective antibody-based cancer therapeutics. Glycobiology 2018; 28:697-712. [PMID: 29800150 DOI: 10.1093/glycob/cwy043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Since the turn of the century, cancer therapy has undergone a transformation in terms of new treatment modalities and renewed optimism in achieving long-lived tumor control and even cure. This is, in large part, thanks to the widespread incorporation of monoclonal antibodies (mAbs) into standard treatment regimens. These new therapies have, across many settings, significantly contributed to improved clinical responses, patient quality of life and survival. Moreover, the flexibility of the antibody platform has led to the development of a wide range of innovative and combinatorial therapies that continue to augment the clinician's armory. Despite these successes, there is a growing awareness that in many cases mAb therapy remains suboptimal, primarily due to inherent limitations imposed by the immune system's own homeostatic controls and the immunosuppressive tumor microenvironment. Here, we discuss the principal barriers that act to constrain the tumor-killing activity of antibody-based therapeutics, particularly those involving antibody glycans, using illustrative examples from both pre-clinical and market approved mAbs. We also discuss strategies that have been, or are in development to overcome these obstacles. Finally, we outline how the growing understanding of the biological terrain in which mAbs function is shaping innovation and regulation in cancer therapeutics.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford, UK
| | - Stephen A Beers
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Max Crispin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| |
Collapse
|
117
|
Effects of amino acid substitutions on the biological activity of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). Biochem Biophys Res Commun 2018; 503:2633-2638. [DOI: 10.1016/j.bbrc.2018.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/13/2023]
|
118
|
Falconer DJ, Subedi GP, Marcella AM, Barb AW. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. ACS Chem Biol 2018; 13:2179-2189. [PMID: 30016589 DOI: 10.1021/acschembio.8b00342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are largely based on the immunoglobulin G1 (IgG1) scaffold, and many elicit a cytotoxic cell-mediated response by binding Fc γ receptors. Core fucosylation, a prevalent modification to the asparagine (N)-linked carbohydrate on the IgG1 crystallizable fragment (Fc), decreases the Fc γ receptor IIIa (CD16a) binding affinity and mAb efficacy. We determined IgG1 Fc fucosylation reduced the CD16a affinity by 1.7 ± 0.1 kcal/mol when compared to that of afucosylated IgG1 Fc; however, CD16a N-glycan truncation decreased this penalty by 1.2 ± 0.1 kcal/mol or 70%. Fc fucosylation restricted the manifold of conformations sampled by displacing the CD16a Asn162-glycan that impinges upon the linkage between the α-mannose(1-6)β-mannose residues and promoted contacts with the IgG Tyr296 residue. Fucosylation also impacted the IgG1 Fc structure as indicated by changes in resonance frequencies and nuclear spin relaxation observed by solution nuclear magnetic resonance spectroscopy. The effects of fucosylation on IgG1 Fc may account for the remaining 0.5 ± 0.1 kcal/mol penalty of fucosylated IgG1 Fc binding CD16a when compared to that of afucosylated IgG1 Fc. Our results indicated the CD16a Asn162-glycan modulates the antibody affinity indirectly by reducing the volume sampled, as opposed to a direct mechanism with intermolecular glycan-glycan contacts previously proposed to stabilize this system. Thus, antibody engineering to enhance intermolecular glycan-glycan contacts will likely provide limited improvement, and future designs should maximize the affinity by maintaining the CD16a Asn162-glycan conformational heterogeneity.
Collapse
Affiliation(s)
- Daniel J. Falconer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Ganesh P. Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Aaron M. Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Adam W. Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| |
Collapse
|
119
|
Bondt A, Hafkenscheid L, Falck D, Kuijper TM, Rombouts Y, Hazes JMW, Wuhrer M, Dolhain RJEM. ACPA IgG galactosylation associates with disease activity in pregnant patients with rheumatoid arthritis. Ann Rheum Dis 2018; 77:1130-1136. [PMID: 29615411 DOI: 10.1136/annrheumdis-2018-212946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Patients with autoantibody-positive rheumatoid arthritis (RA) are less likely to experience pregnancy-induced improvement of RA disease activity (DAS28-C reactive protein (CRP)) compared with patients with autoantibody-negative RA. Anti-citrullinated protein antibodies (ACPAs) are the most specific autoantibodies for RA. We previously demonstrated that disease improvement is associated with changes in total IgG glycosylation, which regulate antibody effector function. Therefore, we sought to analyse the ACPA-IgG glycosylation profile during pregnancy with the aim to understand the lower change of pregnancy-induced improvement of the disease in patients with autoantibody-positive RA. METHODS ACPA-IgGs were purified from ACPA-positive patient sera (n=112) of the Pregnancy-induced Amelioration of Rheumatoid Arthritis cohort, a prospective study designed to investigate pregnancy-associated improvement of RA. The fragment crystallisable (Fc)glycosylation profile of ACPA-IgGs was characterised by mass spectrometry and compared with that of total IgG derived from the same patients or from ACPA-negative patients. RESULTS All ACPA-IgG subclasses display significant changes in the level of galactosylation and sialylation during pregnancy, although less pronounced than in total IgG. The pregnancy-induced increase in ACPA-IgG galactosylation, but not sialylation, associates with lower DAS28-CRP. In ACPA-positive patients, no such association was found with changes in the galactosylation of total IgG, whereas in ACPA-negative patients changes in disease activity correlated well with changes in the galactosylation of total IgG. CONCLUSIONS In ACPA-positive RA, the pregnancy-induced change in galactosylation of ACPA-IgG, and not that of total IgG, associates with changes in disease activity. These data may indicate that in ACPA-positive patients the galactosylation of ACPA-IgG is of more pathogenic relevance than that of total IgG.
Collapse
Affiliation(s)
- Albert Bondt
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Martijn Kuijper
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France
| | - Johanna M W Hazes
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
120
|
Plasma N-glycome composition associates with chronic low back pain. Biochim Biophys Acta Gen Subj 2018; 1862:2124-2133. [PMID: 29981899 DOI: 10.1016/j.bbagen.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease. METHODS Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery. RESULTS We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP. CONCLUSIONS Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation. GENERAL SIGNIFICANCE To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology.
Collapse
|
121
|
Zhao J, Nussinov R, Wu WJ, Ma B. In Silico Methods in Antibody Design. Antibodies (Basel) 2018; 7:E22. [PMID: 31544874 PMCID: PMC6640671 DOI: 10.3390/antib7030022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Antibody therapies with high efficiency and low toxicity are becoming one of the major approaches in antibody therapeutics. Based on high-throughput sequencing and increasing experimental structures of antibodies/antibody-antigen complexes, computational approaches can predict antibody/antigen structures, engineering the function of antibodies and design antibody-antigen complexes with improved properties. This review summarizes recent progress in the field of in silico design of antibodies, including antibody structure modeling, antibody-antigen complex prediction, antibody stability evaluation, and allosteric effects in antibodies and functions. We listed the cases in which these methods have helped experimental studies to improve the affinities and physicochemical properties of antibodies. We emphasized how the molecular dynamics unveiled the allosteric effects during antibody-antigen recognition and antibody-effector recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wen-Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
122
|
More AS, Toth RT, Okbazghi SZ, Middaugh CR, Joshi SB, Tolbert TJ, Volkin DB, Weis DD. Impact of Glycosylation on the Local Backbone Flexibility of Well-Defined IgG1-Fc Glycoforms Using Hydrogen Exchange-Mass Spectrometry. J Pharm Sci 2018; 107:2315-2324. [PMID: 29751008 DOI: 10.1016/j.xphs.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/31/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
We have used hydrogen exchange-mass spectrometry to characterize local backbone flexibility of 4 well-defined IgG1-Fc glycoforms expressed and purified from Pichia pastoris, 2 of which were prepared using subsequent in vitro enzymatic treatments. Progressively decreasing the size of the N-linked N297 oligosaccharide from high mannose (Man8-Man12), to Man5, to GlcNAc, to nonglycosylated N297Q resulted in progressive increases in backbone flexibility. Comparison of these results with recently published physicochemical stability and Fcγ receptor binding data with the same set of glycoproteins provide improved insights into correlations between glycan structure and these pharmaceutical properties. Flexibility significantly increased upon glycan truncation in 2 potential aggregation-prone regions. In addition, a correlation was established between increased local backbone flexibility and increased deamidation at asparagine 315. Interestingly, the opposite trend was observed for oxidation of tryptophan 277 where faster oxidation correlated with decreased local backbone flexibility. Finally, a trend of increasing C'E glycopeptide loop flexibility with decreasing glycan size was observed that correlates with their FcγRIIIa receptor binding properties. These well-defined IgG1-Fc glycoforms serve as a useful model system to identify physicochemical stability and local backbone flexibility data sets potentially discriminating between various IgG glycoforms for potential applicability to future comparability or biosimilarity assessments.
Collapse
Affiliation(s)
- Apurva S More
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Ronald T Toth
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Solomon Z Okbazghi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Thomas J Tolbert
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047.
| | - David D Weis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Department of Chemistry, University of Kansas, Lawrence, Kansas 66045.
| |
Collapse
|
123
|
Knopf J, Magorivska I, Maler JM, Spitzer P, Bilyy R, Biermann MHC, Hychka K, Bondt A, Wuhrer M, Toes REM, Schett G, Herrmann M, Muñoz LE. Low amounts of bisecting glycans characterize cerebrospinal fluid-borne IgG. J Neuroimmunol 2018; 320:19-24. [PMID: 29759137 DOI: 10.1016/j.jneuroim.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Immunoglobulin G (IgG) harbors a conserved N-glycosylation site which is important for its effector functions. Changes in glycosylation of IgG occur in many autoimmune diseases but also in physiological conditions. Therefore, the glycosylation pattern of serum IgG is well characterized. However, limited data is available on the glycosylation pattern of IgG in cerebrospinal fluid (CSF) compared to serum. Here, we report significantly reduced levels of bisected glycans in CSF IgG. Galactosylation and sialylation of IgG4 also differed significantly. Therefore, we propose a common mechanism mediating glycosylation changes of IgG at the transition from serum to CSF in steady state conditions.
Collapse
Affiliation(s)
- Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Iryna Magorivska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Juan M Maler
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Philipp Spitzer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mona H C Biermann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kateryna Hychka
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Albert Bondt
- Leiden University Medical Center, Department of Rheumatology, Leiden, The Netherlands; Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Rene E M Toes
- Leiden University Medical Center, Department of Rheumatology, Leiden, The Netherlands
| | - Georg Schett
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
124
|
Šimurina M, de Haan N, Vučković F, Kennedy NA, Štambuk J, Falck D, Trbojević-Akmačić I, Clerc F, Razdorov G, Khon A, Latiano A, D'Incà R, Danese S, Targan S, Landers C, Dubinsky M, McGovern DPB, Annese V, Wuhrer M, Lauc G. Glycosylation of Immunoglobulin G Associates With Clinical Features of Inflammatory Bowel Diseases. Gastroenterology 2018; 154:1320-1333.e10. [PMID: 29309774 PMCID: PMC5880750 DOI: 10.1053/j.gastro.2018.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Causes of inflammatory bowel diseases are not well understood and the most prominent forms, Crohn's disease (CD) and ulcerative colitis (UC), are sometimes hard to distinguish. Glycosylation of IgG has been associated with CD and UC. IgG Fc-glycosylation affects IgG effector functions. We evaluated changes in IgG Fc-glycosylation associated with UC and CD, as well as with disease characteristics in different patient groups. METHODS We analyzed 3441 plasma samples obtained from 2 independent cohorts of patients with CD (874 patients from Italy and 391 from the United States) or UC (1056 from Italy and 253 from the US and healthy individuals [controls]; 427 in Italy and 440 from the United States). IgG Fc-glycosylation (tryptic glycopeptides) was analyzed by liquid chromatography coupled to mass spectrometry. We analyzed associations between disease status (UC vs controls, CD vs controls, and UC vs CD) and glycopeptide traits, and associations between clinical characteristics and glycopeptide traits, using a logistic regression model with age and sex included as covariates. RESULTS Patients with CD or UC had lower levels of IgG galactosylation than controls. For example, the odds ratio (OR) for IgG1 galactosylation in patients with CD was 0.59 (95% confidence interval [CI], 0.51-0.69) and for patients with UC was 0.81 (95% CI, 0.71-0.92). Fucosylation of IgG was increased in patients with CD vs controls (for IgG1: OR, 1.27; 95% CI, 1.12-1.44), but decreased in patients with UC vs controls (for IgG23: OR, 0.72; 95% CI, 0.63-0.82). Decreased galactosylation associated with more severe CD or UC, including the need for surgery in patients with UC vs controls (for IgG1: OR, 0.69; 95% CI, 0.54-0.89) and in patients with CD vs controls (for IgG23: OR, 0.78; 95% CI, 0.66-0.91). CONCLUSIONS In a retrospective analysis of plasma samples from patients with CD or UC, we associated levels of IgG Fc-glycosylation with disease (compared to controls) and its clinical features. These findings could increase our understanding of mechanisms of CD and UC pathogenesis and be used to develop diagnostics or guide treatment.
Collapse
Affiliation(s)
- Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frano Vučković
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Genadij Razdorov
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
| | - Anna Khon
- Division of Gastroenterology, S. Camillo-Forlanini Hospital, Circonvallazione Gianicolense, Rome, Italy
| | - Anna Latiano
- Division of Gastroenterology, Casa Sollievo della Sofferenza Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Renata D'Incà
- Division of Gastroenterology, University Hospital, Padua, Italy
| | - Silvio Danese
- Humanitas University, Inflammatory Bowel Disease Center, Department of Gastroenterology, Humanitas Clinical and Research Hospital, Milan, Italy
| | - Stephan Targan
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Carol Landers
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marla Dubinsky
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vito Annese
- Division of Gastroenterology, University Hospital Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Valiant Clinic, Dubai, United Arab Emirates
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia.
| |
Collapse
|
125
|
Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115:1378-1393. [DOI: 10.1002/bit.26567] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
126
|
Dekkers G, Rispens T, Vidarsson G. Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases. Front Immunol 2018; 9:553. [PMID: 29616041 PMCID: PMC5867308 DOI: 10.3389/fimmu.2018.00553] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been shown to affect antibody effector functions via C1q of the complement system and Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-glycoforms, such as lowered total IgG galactosylation observed in many autoimmune diseases have been associated with elevated disease severity. Agalactosyslated IgG has therefore been regarded and classified by many as pro-inflammatory. However, and somewhat counterintuitively, agalactosylation has been shown by several groups to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, which seems at odds with this proposed pro-inflammatory nature. In this review, we discuss these circumstances where altered IgG galactosylation/glycosylation is found. We propose a novel model based on these observations and current biochemical evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the threshold required to achieve immune activation by autoantibodies through either C1q or FcγR. Although this model needs experimental verification, it is supported by several clinical observations and reconciles apparent discrepancies in the literature, and suggests a general mechanism in IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
127
|
Falconer DJ, Barb AW. Mouse IgG2c Fc loop residues promote greater receptor-binding affinity than mouse IgG2b or human IgG1. PLoS One 2018; 13:e0192123. [PMID: 29408873 PMCID: PMC5800599 DOI: 10.1371/journal.pone.0192123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
The structures of non-human antibodies are largely unstudied despite the potential for the identification of alternative structural motifs and physical properties that will benefit a basic understanding of protein and immune system evolution as well as highlight unexplored motifs to improve therapeutic monoclonal antibody. Here we probe the structure and receptor-binding properties of the mouse IgG2c crystallizable fragment (Fc) to compare to mouse IgG2b and human IgG1 Fcs. Models of mIgG2c Fc determined by x-ray crystallography with a complex-type biantennary (to 2.05 Å) or a truncated (1)GlcNAc asparagine-linked (N)-glycan attached (to 2.04 Å) show differences in key regions related to mouse Fc γ receptor IV (mFcγRIV) binding. Mouse IgG2c forms different non-bonded interactions between the BC, DE and FG loops than the highly-conserved mIgG2b and binds to FcγRIV with 4.7-fold greater affinity in the complex-type glycoform. Secondary structural elements surrounding the Asn297 site of glycosylation form longer beta strands in the truncated mIgG2c Fc glycoform when compared to mIgG2c with the complex-type N-glycan. Solution NMR spectroscopy of the N-linked (1)GlcNAc residues show differences between mIgG2b, 2c and hIgG1 Fc that correlate to receptor binding affinity. Mutations targeting differences in mIgG2 DE and FG loops decreased affinity of mIgG2c for FcγRIV and increased affinity of mIgG2b. Changes in NMR spectra of the mutant Fc proteins mirrored these changes in affinity. Our studies identified structural and functional differences in highly conserved molecules that were not predicted from primary sequence comparison.
Collapse
Affiliation(s)
- Daniel J. Falconer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA, United States of America
| | - Adam W. Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
128
|
Conserved FcγR- glycan discriminates between fucosylated and afucosylated IgG in humans and mice. Mol Immunol 2018; 94:54-60. [DOI: 10.1016/j.molimm.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023]
|
129
|
Unravelling Immunoglobulin G Fc N-Glycosylation: A Dynamic Marker Potentiating Predictive, Preventive and Personalised Medicine. Int J Mol Sci 2018; 19:ijms19020390. [PMID: 29382131 PMCID: PMC5855612 DOI: 10.3390/ijms19020390] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/10/2018] [Accepted: 01/24/2018] [Indexed: 11/21/2022] Open
Abstract
Multiple factors influence immunoglobulin G glycosylation, which in turn affect the glycoproteins’ function on eliciting an anti-inflammatory or pro-inflammatory response. It is prudent to underscore these processes when considering the use of immunoglobulin G N-glycan moieties as an indication of disease presence, progress, or response to therapeutics. It has been demonstrated that the altered expression of genes that encode enzymes involved in the biosynthesis of immunoglobulin G N-glycans, receptors, or complement factors may significantly modify immunoglobulin G effector response, which is important for regulating the immune system. The immunoglobulin G N-glycome is highly heterogenous; however, it is considered an interphenotype of disease (a link between genetic predisposition and environmental exposure) and so has the potential to be used as a dynamic biomarker from the perspective of predictive, preventive, and personalised medicine. Undoubtedly, a deeper understanding of how the multiple factors interact with each other to alter immunoglobulin G glycosylation is crucial. Herein we review the current literature on immunoglobulin G glycoprotein structure, immunoglobulin G Fc glycosylation, associated receptors, and complement factors, the downstream effector functions, and the factors associated with the heterogeneity of immunoglobulin G glycosylation.
Collapse
|
130
|
Patel KR, Roberts JT, Subedi GP, Barb AW. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function. J Biol Chem 2018; 293:3477-3489. [PMID: 29330305 DOI: 10.1074/jbc.ra117.001207] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates (N-glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N-glycans (23%). These proportions indicated restricted N-glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N-glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N-glycoforms similar to NK cell-derived CD16a but yielded N-glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N-glycan composition affected antibody binding: CD16a with oligomannose N-glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N-glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N-glycan composition and antibody-binding affinity.
Collapse
Affiliation(s)
- Kashyap R Patel
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Jacob T Roberts
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Ganesh P Subedi
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Adam W Barb
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
131
|
Benedetti E, Pučić-Baković M, Keser T, Wahl A, Hassinen A, Yang JY, Liu L, Trbojević-Akmačić I, Razdorov G, Štambuk J, Klarić L, Ugrina I, Selman MHJ, Wuhrer M, Rudan I, Polasek O, Hayward C, Grallert H, Strauch K, Peters A, Meitinger T, Gieger C, Vilaj M, Boons GJ, Moremen KW, Ovchinnikova T, Bovin N, Kellokumpu S, Theis FJ, Lauc G, Krumsiek J. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat Commun 2017; 8:1483. [PMID: 29133956 PMCID: PMC5684356 DOI: 10.1038/s41467-017-01525-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin G (IgG) is a major effector molecule of the human immune response, and aberrations in IgG glycosylation are linked to various diseases. However, the molecular mechanisms underlying protein glycosylation are still poorly understood. We present a data-driven approach to infer reactions in the IgG glycosylation pathway using large-scale mass-spectrometry measurements. Gaussian graphical models are used to construct association networks from four cohorts. We find that glycan pairs with high partial correlations represent enzymatic reactions in the known glycosylation pathway, and then predict new biochemical reactions using a rule-based approach. Validation is performed using data from a GWAS and results from three in vitro experiments. We show that one predicted reaction is enzymatically feasible and that one rejected reaction does not occur in vitro. Moreover, in contrast to previous knowledge, enzymes involved in our predictions colocalize in the Golgi of two cell lines, further confirming the in silico predictions.
Collapse
Affiliation(s)
- Elisa Benedetti
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Annika Wahl
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | | | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Lucija Klarić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, EH8 9AG Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Ivo Ugrina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
- Intellomics Ltd., 10000 Zagreb, Croatia
| | | | - Manfred Wuhrer
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, EH8 9AG Edinburgh, UK
| | - Ozren Polasek
- University of Split School of Medicine, 21000 Split, Croatia
- Gen-info Ltd., 10000 Zagreb, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Harald Grallert
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 40225 Düsseldorf, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians Universität, 81577 Munich, Germany
| | - Annette Peters
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Tatiana Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nicolai Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Mathematics, Technical University Munich, 85748 Garching bei München, Germany
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 40225 Düsseldorf, Germany
| |
Collapse
|
132
|
Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering. Sci Rep 2017; 7:12659. [PMID: 28978918 PMCID: PMC5627252 DOI: 10.1038/s41598-017-12830-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Immunoglobulin G1 (IgG1), a subclass of human serum antibodies, is the most widely used scaffold for developing monoclonal antibodies to treat human diseases. The composition of asparagine(N)297-linked glycans can modulate the binding affinity of IgG1 Fc to Fc γ receptors, but it is unclear how the structural modifications of N-glycan termini, which are distal from the binding interface, contribute to the affinity. Through atomistic molecular dynamics simulations of a series of sequentially truncated high-mannose IgG1 Fc glycoforms, we found that the C′E loop and the Cγ2-Cγ3 orientation are highly dynamic, and changes in N-glycan composition alter their conformational ensembles. High-mannose glycoform preferentially samples conformations that are more competent to FcγRIIIa binding, compared to the truncated glycoforms, suggesting a role of IgG1 Fc N-glycan in optimizing the interface with the Fc receptor for efficient binding. The trajectory analyses also reveal that the N-glycan has large amplitude motions and the carbohydrate moiety interconverts between Fc-bound and unbound forms, enabling enzymatic modification of the glycan termini.
Collapse
|
133
|
Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J 2017; 13. [PMID: 28862393 DOI: 10.1002/biot.201700476] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Indexed: 02/04/2023]
Abstract
Antibodies are typical examples of biopharmaceuticals which are composed of numerous, almost infinite numbers of potential molecular entities called variants or isoforms, which constitute the microheterogeneity of these molecules. These variants are generated during biosynthesis by so-called posttranslational modification, during purification or upon storage. The variants differ in biological properties such as pharmacodynamic properties, for example, Antibody Dependent Cellular Cytotoxicity, complement activation, and pharmacokinetic properties, for example, serum half-life and safety. Recent progress in analytical technologies such as various modes of liquid chromatography and mass spectrometry has helped to elucidate the structure of a lot of these variants and their biological properties. In this review the most important modifications (glycosylation, terminal modifications, amino acid side chain modifications, glycation, disulfide bond variants and aggregation) are reviewed and an attempt is made to give an overview on the biological properties, for which the reports are often contradictory. Even though there is a deep understanding of cellular and molecular mechanism of antibody modification and their consequences, the clinical proof of the effects observed in vitro and in vivo is still not fully rendered. For some modifications such as core-fucosylation of the N-glycan and aggregation the effects are clear and should be monitored, but with others such as C-terminal lysine clipping the reports are contradictory. As a consequence it seems too early to tell if any modification can be safely ignored.
Collapse
Affiliation(s)
- Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Nico Lingg
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
134
|
Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 2017; 13:621-630. [DOI: 10.1038/nrrheum.2017.146] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
135
|
Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY, Matlung H, van den Berg TK, van Esch WJE, Kuijpers TW, Wouters D, Rispens T, Wuhrer M, Vidarsson G. Decoding the Human Immunoglobulin G-Glycan Repertoire Reveals a Spectrum of Fc-Receptor- and Complement-Mediated-Effector Activities. Front Immunol 2017; 8:877. [PMID: 28824618 PMCID: PMC5539844 DOI: 10.3389/fimmu.2017.00877] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Glycosylation of the immunoglobulin G (IgG)-Fc tail is required for binding to Fc-gamma receptors (FcγRs) and complement-component C1q. A variety of IgG1-glycoforms is detected in human sera. Several groups have found global or antigen-specific skewing of IgG glycosylation, for example in autoimmune diseases, viral infections, and alloimmune reactions. The IgG glycoprofiles seem to correlate with disease outcome. Additionally, IgG-glycan composition contributes significantly to Ig-based therapies, as for example IVIg in autoimmune diseases and therapeutic antibodies for cancer treatment. The effect of the different glycan modifications, especially of fucosylation, has been studied before. However, the contribution of the 20 individual IgG glycoforms, in which the combined effect of all 4 modifications, to the IgG function has never been investigated. Here, we combined six glyco-engineering methods to generate all 20 major human IgG1-glycoforms and screened their functional capacity for FcγR and complement activity. Bisection had no effect on FcγR or C1q-binding, and sialylation had no- or little effect on FcγR binding. We confirmed that hypo-fucosylation of IgG1 increased binding to FcγRIIIa and FcγRIIIb by ~17-fold, but in addition we showed that this effect could be further increased to ~40-fold for FcγRIIIa upon simultaneous hypo-fucosylation and hyper-galactosylation, resulting in enhanced NK cell-mediated antibody-dependent cellular cytotoxicity. Moreover, elevated galactosylation and sialylation significantly increased (independent of fucosylation) C1q-binding, downstream complement deposition, and cytotoxicity. In conclusion, fucosylation and galactosylation are primary mediators of functional changes in IgG for FcγR- and complement-mediated effector functions, respectively, with galactose having an auxiliary role for FcγRIII-mediated functions. This knowledge could be used not only for glycan profiling of clinically important (antigen-specific) IgG but also to optimize therapeutic antibody applications.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Louise Treffers
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Arthur E H Bentlage
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Marcella de Boer
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Mieke Brouwer
- Sanquin Research and Landsteiner Laboratory, Department Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Hanke Matlung
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Sanquin Research and Landsteiner Laboratory, Department Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
136
|
Radinsky O, Edri A, Brusilovsky M, Fedida-Metula S, Sobarzo A, Gershoni-Yahalom O, Lutwama J, Dye J, Lobel L, Porgador A. Sudan ebolavirus long recovered survivors produce GP-specific Abs that are of the IgG1 subclass and preferentially bind FcγRI. Sci Rep 2017; 7:6054. [PMID: 28729706 PMCID: PMC5519693 DOI: 10.1038/s41598-017-06226-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/09/2017] [Indexed: 02/04/2023] Open
Abstract
Ebolavirus is a highly lethal pathogen, causing a severe hemorrhagic disease with a high fatality rate. To better understand immune correlates of protection by virus specific IgG, we investigated the evolution of the Fcγ receptors (FcγRs)-activating capabilities of antiviral IgG in serum samples of long recovered survivors. To this end, longitudinal serum samples from survivors of Sudan ebolavirus (SUDV) infection, studied over years, were examined for the presence of Ebola-GP specific IgG subclasses, and for their binding to FcγRs. We developed a cell-based reporter system to quantitate pathogen-specific antibody binding to FcγRIIIA, FcγRIIA, FcγRIIB and FcγRI. With this system, we demonstrate that anti-GP-specific stimulation of the FcγRI reporter by survivors’ sera was substantially high one year after acute infection, with a slight reduction in activity over a decade post infection. We further demonstrate that GP-specific IgG1 is by far the seroprevalent subclass that retained and even enhanced its presence in the sera, over ten years post infection; the prevalence of other GP-specific IgG subclasses was considerably reduced over time. In accordance, GP-specific FcγRI reporter response and GP-specific total IgG1 subclass correlated in the studied group of Ebola survivors. These observations are important for further informing Ebola vaccine and therapeutic development.
Collapse
Affiliation(s)
- Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomit Fedida-Metula
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ariel Sobarzo
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Julius Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infection, Uganda Virus Research Institute, Entebbe, Uganda
| | - John Dye
- Virology Division - U.S. Army Medical Research Institute of Infectious Diseases 1425 Porter St., Fort Detrick, Frederick, Maryland, 21701, USA
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,Department of Arbovirology, Emerging and Re-emerging Infection, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
137
|
Hayes JM, Frostell A, Karlsson R, Müller S, Martín SM, Pauers M, Reuss F, Cosgrave EF, Anneren C, Davey GP, Rudd PM. Identification of Fc Gamma Receptor Glycoforms That Produce Differential Binding Kinetics for Rituximab. Mol Cell Proteomics 2017; 16:1770-1788. [PMID: 28576848 DOI: 10.1074/mcp.m117.066944] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Fc gamma receptors (FcγR) bind the Fc region of antibodies and therefore play a prominent role in antibody-dependent cell-based immune responses such as ADCC, CDC and ADCP. The immune effector cell activity is directly linked to a productive molecular engagement of FcγRs where both the protein and glycan moiety of antibody and receptor can affect the interaction and in the present study we focus on the role of the FcγR glycans in this interaction. We provide a complete description of the glycan composition of Chinese hamster ovary (CHO) expressed human Fcγ receptors RI (CD64), RIIaArg131/His131 (CD32a), RIIb (CD32b) and RIIIaPhe158/Val158 (CD16a) and analyze the role of the glycans in the binding mechanism with IgG. The interactions of the monoclonal antibody rituximab with each FcγR were characterized and we discuss the CHO-FcγRIIIaPhe158/Val158 and CHO-FcγRI interactions and compare them to the equivalent interactions with human (HEK293) and murine (NS0) produced receptors. Our results reveal clear differences in the binding profiles of rituximab, which we attribute in each case to the differences in host cell-dependent FcγR glycosylation. The glycan profiles of CHO expressed FcγRI and FcγRIIIaPhe158/Val158 were compared with the glycan profiles of the receptors expressed in NS0 and HEK293 cells and we show that the glycan type and abundance differs significantly between the receptors and that these glycan differences lead to the observed differences in the respective FcγR binding patterns with rituximab. Oligomannose structures are prevalent on FcγRI from each source and likely contribute to the high affinity rituximab interaction through a stabilization effect. On FcγRI and FcγRIIIa large and sialylated glycans have a negative impact on rituximab binding, likely through destabilization of the interaction. In conclusion, the data show that the IgG1-FcγR binding kinetics differ depending on the glycosylation of the FcγR and further support a stabilizing role of FcγR glycans in the antibody binding interaction.
Collapse
Affiliation(s)
- Jerrard M Hayes
- From the ‡School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse St. Dublin 2, Ireland;
| | - Asa Frostell
- §GE Healthcare, Björkgatan, SE-75184 Uppsala, Sweden
| | | | - Steffen Müller
- ¶NIBRT-Glycoscience Group, NIBRT-The National Institute for Bioprocessing, Research and Training, Foster Avenue, Blackrock, County Dublin, Ireland
| | | | - Martin Pauers
- ‖Boehringer Ingelheim Pharma, Biberach/Riss, Germany
| | | | - Eoin F Cosgrave
- ¶NIBRT-Glycoscience Group, NIBRT-The National Institute for Bioprocessing, Research and Training, Foster Avenue, Blackrock, County Dublin, Ireland
| | | | - Gavin P Davey
- From the ‡School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse St. Dublin 2, Ireland
| | - Pauline M Rudd
- ¶NIBRT-Glycoscience Group, NIBRT-The National Institute for Bioprocessing, Research and Training, Foster Avenue, Blackrock, County Dublin, Ireland
| |
Collapse
|
138
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
139
|
Bruggeman CW, Dekkers G, Bentlage AEH, Treffers LW, Nagelkerke SQ, Lissenberg-Thunnissen S, Koeleman CAM, Wuhrer M, van den Berg TK, Rispens T, Vidarsson G, Kuijpers TW. Enhanced Effector Functions Due to Antibody Defucosylation Depend on the Effector Cell Fcγ Receptor Profile. THE JOURNAL OF IMMUNOLOGY 2017; 199:204-211. [PMID: 28566370 DOI: 10.4049/jimmunol.1700116] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
Abstract
Abs of the IgG isotype are glycosylated in their Fc domain at a conserved asparagine at position 297. Removal of the core fucose of this glycan greatly increases the affinity for FcγRIII, resulting in enhanced FcγRIII-mediated effector functions. Normal plasma IgG contains ∼94% fucosylated Abs, but alloantibodies against, for example, Rhesus D (RhD) and platelet Ags frequently have reduced fucosylation that enhances their pathogenicity. The increased FcγRIII-mediated effector functions have been put to use in various afucosylated therapeutic Abs in anticancer treatment. To test the functional consequences of Ab fucosylation, we produced V-gene-matched recombinant anti-RhD IgG Abs of the four different subclasses (IgG1-4) with and without core fucose (i.e., 20% fucose remaining). Binding to all human FcγR types and their functional isoforms was assessed with surface plasmon resonance. All hypofucosylated anti-RhD IgGs of all IgG subclasses indeed showed enhanced binding affinity for isolated FcγRIII isoforms, without affecting binding affinity to other FcγRs. In contrast, when testing hypofucosylated anti-RhD Abs with FcγRIIIa-expressing NK cells, a 12- and 7-fold increased erythrocyte lysis was observed with the IgG1 and IgG3, respectively, but no increase with IgG2 and IgG4 anti-RhD Abs. Notably, none of the hypofucosylated IgGs enhanced effector function of macrophages, which, in contrast to NK cells, express a complex set of FcγRs, including FcγRIIIa. Our data suggest that the beneficial effects of afucosylated biologicals for clinical use can be particularly anticipated when there is a substantial involvement of FcγRIIIa-expressing cells, such as NK cells.
Collapse
Affiliation(s)
- Christine W Bruggeman
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands;
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Louise W Treffers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Suzanne Lissenberg-Thunnissen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| |
Collapse
|
140
|
Corti D, Cameroni E, Guarino B, Kallewaard NL, Zhu Q, Lanzavecchia A. Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol 2017; 24:60-69. [PMID: 28527859 PMCID: PMC7102826 DOI: 10.1016/j.coviro.2017.03.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
Monoclonal antibodies have revolutionized the treatment of several human diseases, including cancer, autoimmunity and inflammatory conditions and represent a new frontier for the treatment of infectious diseases. In the last decade, new methods have allowed the efficient interrogation of the human antibody repertoire from influenza immune individuals and the isolation of several monoclonal antibodies capable of dealing with the high variability of influenza viruses. Here, we will provide a comprehensive overview of the specificity, antiviral and immunological mechanisms of action and development into the clinic of broadly reactive monoclonal antibodies against influenza A and B viruses.
Collapse
Affiliation(s)
| | | | | | | | - Qing Zhu
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| |
Collapse
|
141
|
Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, Rispens T, Vidarsson G. Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs 2017; 9:767-773. [PMID: 28463043 DOI: 10.1080/19420862.2017.1323159] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to FcγR-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse FcγRs is available. The orthologous mouse and human FcγRs share roughly 60-70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse FcγR. Human IgGs bound to mouse FcγR with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3>IgG1>IgG4>IgG2 and FcγRI>>FcγRIV>FcγRIII>FcγRIIb. This suggests human IgG subclasses to have similar relative FcγR-mediated biological activities in mice.
Collapse
Affiliation(s)
- Gillian Dekkers
- a Department of Experimental Immunohematology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , The Netherlands
| | - Arthur E H Bentlage
- a Department of Experimental Immunohematology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , The Netherlands
| | - Tamara C Stegmann
- a Department of Experimental Immunohematology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , The Netherlands
| | - Heather L Howie
- b Department of Transfusion Medicine , Bloodworks Northwest Research Institute , Seattle , Washington , USA
| | - Suzanne Lissenberg-Thunnissen
- a Department of Experimental Immunohematology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , The Netherlands
| | - James Zimring
- b Department of Transfusion Medicine , Bloodworks Northwest Research Institute , Seattle , Washington , USA
| | - Theo Rispens
- c Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center , University of Amsterdam , The Netherlands
| | - Gestur Vidarsson
- a Department of Experimental Immunohematology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , The Netherlands
| |
Collapse
|
142
|
Abstract
IgG antibodies contain a conserved N-glycosylation site on the Fc domain to which a complex, biantennary glycan is attached. The fine structures of this glycan modulate antibody effector functions by affecting the binding affinity of the Fc to diverse Fc receptor family members. For example, core fucosylation significantly decreases antibody-dependent cellular cytotoxicity (ADCC), whereas terminal α2,6-sialylation plays a critical role in the anti-inflammatory activity of human i.v. immunoglobulin therapy. The effect of specific combinations of sugars in the glycan on ADCC remains to be further addressed, however. Therefore, we synthesized structurally well-defined homogeneous glycoforms of antibodies with different combinations of fucosylation and sialylation and performed side-by-side in vitro FcγR-binding analyses, cell-based ADCC assays, and in vivo IgG-mediated cellular depletion studies. We found that core fucosylation exerted a significant adverse effect on FcγRIIIA binding, in vitro ADCC, and in vivo IgG-mediated cellular depletion, regardless of sialylation status. In contrast, the effect of sialylation on ADCC was dependent on the status of core fucosylation. Sialylation in the context of core fucosylation significantly decreased ADCC in a cell-based assay and suppressed antibody-mediated cell killing in vivo. In contrast, in the absence of fucosylation, sialylation did not adversely impact ADCC.
Collapse
|
143
|
Kemna MJ, Plomp R, van Paassen P, Koeleman CAM, Jansen BC, Damoiseaux JGMC, Cohen Tervaert JW, Wuhrer M. Galactosylation and Sialylation Levels of IgG Predict Relapse in Patients With PR3-ANCA Associated Vasculitis. EBioMedicine 2017; 17:108-118. [PMID: 28169190 PMCID: PMC5360573 DOI: 10.1016/j.ebiom.2017.01.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The objective of our study is to investigate the Fc glycosylation profiles of both antigen-specific IgG targeted against proteinase 3 (PR3-ANCA) and total IgG as prognostic markers of relapse in patients with Granulomatosis with Polyangiitis (GPA). METHODS Seventy-five patients with GPA and a PR3-ANCA rise during follow-up were included, of whom 43 patients relapsed within a median period of 8 (2-16) months. The N-glycan at Asn297 of affinity-purified and denatured total IgG and PR3-ANCA was determined by mass spectrometry of glycopeptides in samples obtained at the time of the PR3-ANCA rise and at the time of the relapse or time-matched during remission. RESULTS Patients with total IgG1 exhibiting low galactosylation or low sialylation were highly prone to relapse after an ANCA rise (HR 3.46 [95%-CI 1.73-6.96], p<0.0001 and HR 3.22 [95%-CI 1.52-6.83], p=0.002, respectively). In relapsing patients, total IgG1 galactosylation, sialylation and bisection significantly decreased and fucosylation significantly increased from the time of the PR3-ANCA rise to the relapse (p<0.0001, p=0.0087, p<0.0001 and p=0.0025), while the glycosylation profile remained similar in non-relapsing patients. PR3-ANCA IgG1 galactosylation, sialylation and fucosylation of PR3-ANCA IgG1 decreased in relapsing patients (p=0.0073, p=0.0049 and p=0.0205), but also in non-relapsing patients (p=0.0007, p=0.0114 and p=0.0002), while bisection increased only in non-relapsing patients (p<0.0001). CONCLUSION While Fc glycosylation profiles have been associated with clinically manifest autoimmune diseases, in the present study we show that low galactosylation and sialyation in total IgG1 but not PR3-ANCA IgG1 predicts disease reactivation in patients with GPA who experience an ANCA rise during follow-up. We postulate that glycosylation profiles may be useful in pre-emptive therapy studies using ANCA rises as guideline.
Collapse
Affiliation(s)
- Michael J Kemna
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rosina Plomp
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter van Paassen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Willem Cohen Tervaert
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
144
|
Collin M. Antibody Glycosylation Predicts Relapse in Autoimmune Vasculitis. EBioMedicine 2017; 17:15. [PMID: 28202231 PMCID: PMC5360564 DOI: 10.1016/j.ebiom.2017.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mattias Collin
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
145
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|