101
|
Sibon OC, Stevenson VA, Theurkauf WE. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 1997; 388:93-7. [PMID: 9214509 DOI: 10.1038/40439] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Embryogenesis is typically initiated by a series of rapid mitotic divisions that are under maternal genetic control. The switch to zygotic control of embryogenesis at the midblastula transition is accompanied by significant increases in cell-cycle length and gene transcription, and changes in embryo morphology. Here we show that mutations in the grapes (grp) checkpoint 1 kinase homologue in Drosophila block the morphological and biochemical changes that accompany the midblastula transition, lead to a continuation of the maternal cell-cycle programme, and disrupt DNA-replication checkpoint control of cell-cycle progression. The timing of the midblastula transition is controlled by the ratio of nuclei to cytoplasm (the nucleocytoplasmic ratio), suggesting that this developmental transition is triggered by titration of a maternal factor by the increasing mass of nuclear material that accumulates during the rapid embryonic mitoses. Our observations support a model for cell-cycle control at the midblastula transition in which titration of a maternal component of the DNA-replication machinery slows DNA synthesis and induces a checkpoint-dependent delay in cell-cycle progression. This delay may allow both completion of S phase and transcription of genes that initiate the switch to zygotic control of embryogenesis.
Collapse
Affiliation(s)
- O C Sibon
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, 11794-5215, USA
| | | | | |
Collapse
|
102
|
Su TT, Yakubovich N, O'Farrell PH. Cloning of Drosophila MCM homologs and analysis of their requirement during embryogenesis. Gene 1997; 192:283-9. [PMID: 9224901 PMCID: PMC2753454 DOI: 10.1016/s0378-1119(97)00107-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
MCM (minichromosome maintenance) gene family of Saccharomyces cerevisiae encodes essential DNA replication factors that participate in the initiation of DNA replication. In addition, their localization to the nucleus in a mitosis-dependent manner fueled the hypothesis that MCMs also act to couple DNA replication to mitosis. We report the identification of a Drosophila gene family with extensive sequence identity to the MCM genes. Results from antibody injection experiments suggest that MCMs play an essential role in DNA replication during embryogenesis. Evolutionary conservation of MCM sequences and function in Drosophila could potentially facilitate studies of how initiation of DNA replication is regulated and coupled to mitosis during metazoan development.
Collapse
|
103
|
Ikegami R, Rivera-Bennetts AK, Brooker DL, Yager TD. Effect of inhibitors of DNA replication on early zebrafish embryos: evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition. ZYGOTE 1997; 5:153-75. [PMID: 9276512 DOI: 10.1017/s0967199400003828] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We address the developmental activation, in the zebrafish embryo, of intrinsic cell-cycle checkpoints which monitor the DNA replication process and progression through the cell cycle. Eukaryotic DNA replication is probably carried out by a multiprotein complex containing numerous enzymes and accessory factors that act in concert to effect processive DNA synthesis (Applegren, N. et al. (1995) J. Cell. Biochem. 59, 91-107). We have exposed early zebrafish embryos to three chemical agents which are predicted to specifically inhibit the DNA polymerase alpha, topoisomerase I and topoisomerase II components of the DNA replication complex. We present four findings: (1) Before mid-blastula transition (MBT) an inhibition of DNA synthesis does not block cells from attempting to proceed through mitosis, implying the lack of functional checkpoints. (2) After MBT, the embryo displays two distinct modes of intrinsic checkpoint operation. One mode is a rapid and complete stop of cell division, and the other is an 'adaptive' response in which the cell cycle continues to operate, perhaps in a 'repair' mode, to generate daughter nuclei with few visible defects. (3) The embryo does not display a maximal capability for the 'adaptive' response until several hours after MBT, which is consistent with a slow transcriptional control mechanism for checkpoint activation. (4) The slow activation of checkpoints at MBT provides a window of time during which inhibitors of DNA synthesis will induce cytogenetic lesions without killing the embryo. This could be useful in the design of a deletion-mutagenesis strategy.
Collapse
Affiliation(s)
- R Ikegami
- Hospital for Sick Children, Graduate Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
104
|
Callaini G, Dallai R, Riparbelli MG. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 1997; 110 ( Pt 2):271-80. [PMID: 9044057 DOI: 10.1242/jcs.110.2.271] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The behavior of parental chromosomes during the first mitosis of Drosophila simulans zygotes obtained from unidirectional incompatible crosses is described and it is demonstrated that the condensation of parental chromatin complements was asynchronous. The timing of paternal chromatin condensation appeared to be delayed in these embryos, so that condensed maternal chromosomes and entangled prophase-like paternal fibers congressed in the equatorial plane of the first metaphase spindle. At anaphase the maternal chromosomes migrated to opposite poles of the spindle, whereas the paternal chromatin lagged in the midzone of the spindle. This resulted in dramatic errors in paternal chromatin inheritance leading to the formation of embryos with aneuploid or haploid nuclei. These observations suggest that the anaphase onset of maternal chromosomes is unaffected by the improper alignment of the paternal complement. Since the first metaphase spindle of the Drosophila zygote consists of twin bundles of microtubules each holding one parental complement, we suspect that each half spindle regulates the timing of anaphase onset of its own chromosome set. In normal developing embryos, the fidelity of chromosome transmission is presumably ensured by the relative timing required to prepare parental complements for the orderly segregation that occurs during the metaphase-anaphase transition.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | |
Collapse
|
105
|
Tavares A, Glover DM. Mitotic protein kinases in Drosophila embryos. Methods Enzymol 1997; 283:622-32. [PMID: 9251053 DOI: 10.1016/s0076-6879(97)83049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A Tavares
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Scotland
| | | |
Collapse
|
106
|
Frenz LM, Glover DM. A maternal requirement for glutamine synthetase I for the mitotic cycles of syncytial Drosophila embryos. J Cell Sci 1996; 109 ( Pt 11):2649-60. [PMID: 8937983 DOI: 10.1242/jcs.109.11.2649] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the maternal effect phenotype of a hypomorphic mutation in the Drosophila gene for glutamine synthetase I (GSI). The extent of development of embryos derived from homozygous mutant females is variable, although most mutant embryos fail to survive past germband elongation and none develop into larvae. These embryos are characterised by an increase in the number of yolk-like nuclei following nuclear migration to the cortex. These nuclei appear to fall into the interior of the embryo from the cortex at blastoderm. As they do so, the majority continue to show association with PCNA in synchrony with nuclei at the cortex, suggesting some continuity of the synchrony of DNA replication. However, the occurrence of nuclei that have lost cell cycle synchrony with their neighbours is not uncommon. Immunostaining of mutant embryos revealed a range of mitotic defects, ultimately resulting in nuclear fusion events, division failure or other mitotic abnormalities. A high proportion of these mitotic figures show chromatin bridging at anaphase and telophase consistent with progression through mitosis in the presence of incompletely replicated DNA. GSI is responsible for the ATP-dependent amination of glutamate to produce glutamine, which is required in the formation of amino acids, purines and pyrimidines. We discuss how the loss of glutamine could depress both protein and DNA synthesis and lead to a variety of mitotic defects in this embryonic system that lacks certain checkpoint controls.
Collapse
Affiliation(s)
- L M Frenz
- Department of Anatomy and Physiology, University of Dundee, Scotland, UK
| | | |
Collapse
|
107
|
Edgar BA, Datar SA. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Genes Dev 1996; 10:1966-77. [PMID: 8756353 DOI: 10.1101/gad.10.15.1966] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Drosophila embryos the maternal/zygotic transition (MZT) in cell cycle control normally follows mitosis 13. Here we show that this transition requires degradation of two maternal mRNAs, string and twine, which encode Cdc25 phosphatases. Although twine is essential for meiosis and string is essential for most mitotic cycles, the two genes have mutually complementing, overlapping functions in the female germ line and the early embryo. Deletion of both gene products from the female germ line arrests germ-line development. Reducing the maternal dose of both products can lower the number of early embryonic mitoses to 12, whereas increasing maternal Cdc25(twine) can increase the number of early mitoses to 14. Blocking the activation of zygotic transcription stabilizes maternal string and twine mRNAs and also allows an extra maternal mitosis, which is Cdc25 dependent. We propose that Drosophila's MZT comprises a chain reaction in which (1) proliferating nuclei deplete factors (probably mitotic cyclins) required for cell cycle progression; (2) this depletion causes the elongation of interphases and allows zygotic transcription; (3) new gene products accumulate that promote degradation of maternal mRNAs, including string and twine; and (4) consequent loss of Cdc25 phosphatase activity allows inhibitory phosphorylation of Cdc2 by Dwee1 kinase, effecting G2 arrest. Unlike timing or counting mechanisms, this mechanism can compensate for losses or additions of nuclei by altering the timing and number of the maternal cycles and thus will always generate the correct cell density at the MZT.
Collapse
Affiliation(s)
- B A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | |
Collapse
|
108
|
Hung DT, Jamison TF, Schreiber SL. Understanding and controlling the cell cycle with natural products. CHEMISTRY & BIOLOGY 1996; 3:623-39. [PMID: 8807895 DOI: 10.1016/s1074-5521(96)90129-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small molecule natural products have aided in the discovery and characterization of many proteins critical to the progression and maintenance of the cell cycle. Identification of the direct target of a natural product gives scientists a tool to control a specific aspect of the cell cycle, thus facilitating the study of the cell-cycle machinery.
Collapse
Affiliation(s)
- D T Hung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
109
|
Debec A, Kalpin RF, Daily DR, McCallum PD, Rothwell WF, Sullivan W. Live analysis of free centrosomes in normal and aphidicolin-treated Drosophila embryos. J Cell Biol 1996; 134:103-15. [PMID: 8698807 PMCID: PMC2120918 DOI: 10.1083/jcb.134.1.103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In a number of embryonic systems, centrosomes that have lost their association with the nuclear envelope and spindle maintain their ability to duplicate and induce astral microtubules. To identify additional activities of free centrosomes, we monitored astral microtubule dynamics by injecting living syncytial Drosophila embryos with fluorescently labeled tubulin. Our recordings follow multiple rounds of free centrosome duplication and separation during the cortical division. The rate and distance of free sister centrosome separation corresponds well with the initial phase of associated centrosome separation. However, the later phase of separation observed for centrosomes associated with a spindle (anaphase B) does not occur. Free centrosome separation regularly occurs on a plane parallel to the plasma membrane. While previous work demonstrated that centrosomes influence cytoskeletal dynamics, this observation suggests that the cortical cytoskeleton regulates the orientation of centrosome separation. Although free centrosomes do not form spindles, they display relatively normal cell cycle-dependent modulations of their astral microtubules. In addition, free centrosome duplication, separation, and modulation of microtubule dynamics often occur in synchrony with neighboring associated centrosomes. These observations suggest that free centrosomes respond normally to local nuclear division signals. Disruption of the cortical nuclear divisions with aphidicolin supports this conclusion; large numbers of abnormal nuclei recede into the interior while their centrosomes remain on the cortex. Following individual free centrosomes through multiple focal planes for 45 min after the injection of aphidicolin reveals that they do not undergo normal modulation of their astral dynamics nor do they undergo multiple rounds of duplication and separation. We conclude that in the absence of normally dividing cortical nuclei many centrosome activities are disrupted and centrosome duplication is extensively delayed. This indicates the presence of a feedback mechanism that creates a dependency relationship between the cortical nuclear cycles and the centrosome cycles.
Collapse
Affiliation(s)
- A Debec
- Université Pierre et Marie Curie, UA Centre National de la Recherche Scientifique 1135, Paris, France
| | | | | | | | | | | |
Collapse
|
110
|
Balczon R. The centrosome in animal cells and its functional homologs in plant and yeast cells. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 169:25-82. [PMID: 8843652 DOI: 10.1016/s0074-7696(08)61984-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The centrosome is the principal microtubule-organizing center in mammalian cells. Until recently, the centrosome could only be studied at the ultrastructural level and defined as a functional entity. However, during the past decade a number of clever experimental strategies have been used to identify numerous molecular components of the centrosome. The identification of biochemical subunits of the centrosome complex has allowed the centrosome to be investigated in much more detail, resulting in important advances being made in our understanding of microtubule nucleation events, spindle formation, the assembly and replication of the centrosome, and the nature of the microtubule-organizing centers in plant cells and lower eukaryotes. The next several years should see additional rapid progress in our understanding of the microtubule cytoskeleton as investigators begin to assign functions to the centrosome proteins that have already been reported and as additional centrosome components are discovered.
Collapse
Affiliation(s)
- R Balczon
- Department of Structural and Cellular Biology, University of South Alabama, Mobile 36688, USA
| |
Collapse
|
111
|
Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Biophys Biochem Cytol 1995; 130:105-15. [PMID: 7790366 PMCID: PMC2120504 DOI: 10.1083/jcb.130.1.105] [Citation(s) in RCA: 260] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Relatively little is known about the mechanisms used by somatic cells to regulate the replication of the centrosome complex. Centrosome doubling was studied in CHO cells by electron microscopy and immunofluorescence microscopy using human autoimmune anticentrosome antiserum, and by Northern blotting using the cDNA encoding portion of the centrosome autoantigen pericentriolar material (PCM)-1. Centrosome doubling could be dissociated from cycles of DNA synthesis and mitotic division by arresting cells at the G1/S boundary of the cell cycle using either hydroxyurea or aphidicolin. Immunofluorescence micros-copy using SPJ human autoimmune anticentrosome antiserum demonstrated that arrested cells were able to undergo numerous rounds of centrosome replication in the absence of cycles of DNA synthesis and mitosis. Northern blot analysis demonstrated that the synthesis and degradation of the mRNA encoding PCM-1 occurred in a cell cycle-dependent fashion in CHO cells with peak levels of PCM-1 mRNA being present in G1 and S phase cells before mRNA amounts dropped to undetectable levels in G2 and M phases. Conversely, cells arrested at the G1/S boundary of the cell cycle maintained PCM-1 mRNA at artificially elevated levels, providing a possible molecular mechanism for explaining the multiple rounds of centrosome replication that occurred in CHO cells during prolonged hydroxyurea-induced arrest. The capacity to replicate centrosomes could be abolished in hydroxyurea-arrested CHO cells by culturing the cells in dialyzed serum. However, the ability to replicate centrosomes and to synthesize PCM-1 mRNA could be re-initiated by adding EGF to the dialyzed serum. This experimental system should be useful for investigating the positive and negative molecular mechanisms used by somatic cells to regulate the replication of centrosomes and for studying and the methods used by somatic cells for coordinating centrosome duplication with other cell cycle progression events.
Collapse
Affiliation(s)
- R Balczon
- Department of Structural and Cellular Biology, University of South Alabama, Mobile 36688, USA
| | | | | | | | | | | |
Collapse
|
112
|
Glover DM, Leibowitz MH, McLean DA, Parry H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995; 81:95-105. [PMID: 7720077 DOI: 10.1016/0092-8674(95)90374-7] [Citation(s) in RCA: 633] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We show that female sterile mutations of aurora (aur) are allelic to mutations in the lethal complementation group ck10. This lies in a cytogenetic interval, 87A7-A9, that contains eight transcription units. A 250 bp region upstream of both aur and a divergent transcription unit corresponds to the site of a specific chromatin structure (scs') previously proposed to be a barrier to insulate enhancers of the major hsp70 gene at 87A7. Syncytial embryos derived from aur mothers display closely paired centrosomes at inappropriate mitotic stages and develop interconnected spindles in which the poles are shared. Amorphic alleles result in pupal lethality and in mitotic arrest in which condensed chromosomes are arranged on circular monopolar spindles. The size of the single centrosomal body in these circular figures suggests that loss of function of the serine-threonine protein kinase encoded by aur leads to a failure of the centrosomes to separate and form a bipolar spindle.
Collapse
Affiliation(s)
- D M Glover
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | | | |
Collapse
|
113
|
Abstract
Drosophila embryogenesis begins with thirteen mitotic divisions that occur without cytokinesis. During these syncytial divisions, a series of stereotyped nuclear movements produce a syncytial blastoderm embryo that is characterized by a uniform monolayer of cortical nuclei. Inhibitor studies indicate that actin filaments and microtubules mediate the coordinated nuclear movements of the syncytial stages of embryogenesis. Recent genetic and cytological analyses provide new insight into the functions of specific microtubule and actin filament arrays in organizing the syncytial embryo, and these may lead to the identification of novel regulatory and structural components of the cytoskeleton.
Collapse
Affiliation(s)
- W Sullivan
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
114
|
Woods CM, Zhu J, Coleman T, Bloom SE, Lazarides E. Novel centrosomal protein reveals the presence of multiple centrosomes in turkey (Meleagris gallopavo) bnbn binucleated erythrocytes. J Cell Sci 1995; 108 ( Pt 2):699-710. [PMID: 7769012 DOI: 10.1242/jcs.108.2.699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotype of the bnbn hemolytic anemia mutation in the domestic turkey is manifested as binucleation specifically in the definitive erythrocyte lineage, most likely as the consequence of anomolous centrosomal activity (Bloom et al., 1970; Searle and Bloom, 1979). Here we have identified in turkey two variants of the novel, centrosomally-associated erythroid-specific protein p23. One variant is Ca(2+)-sensitive and is highly homologous to its chick counterpart (Zhu et al., 1995, accompanying paper). The other, p21 is a truncated form resulting from a 62 amino acid deletion from the 3′ end and a 40 amino acid insertion at the 5′ end, and appears to lack Ca(2+)-sensitivity. These proteins are localized at the marginal band, centrosomes and nuclear membrane of differentiated erythrocytes. Anti-p23/p21 immunofluorescence revealed the presence of multiple centrosomes in bnbn erythrocytes. We therefore undertook a detailed genetic analysis to determine whether the p21 variant represented the bn mutation. Initial tests of normal BnBn and mutant bnbn individuals suggested that the p23/p21 proteins might be encoded by the Bn/bn genes. However, further genetic tests demonstrated independent segregation for these two genetic loci. Thus, these proteins are encoded by the heretofore undescribed genes, p23/p21, mapping to an autosomal locus in the turkey genome.
Collapse
Affiliation(s)
- C M Woods
- Department of Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | |
Collapse
|
115
|
Robbins LG, Pimpinelli S. Chromosome damage and early developmental arrest caused by the Rex element of Drosophila melanogaster. Genetics 1994; 138:401-11. [PMID: 7828823 PMCID: PMC1206158 DOI: 10.1093/genetics/138.2.401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rex (Ribosomal exchange) is a genetically identified repeated element within the ribosomal DNA (rDNA) of Drosophila melanogaster. Rex has a semidominant maternal effect that promotes exchange between and within rDNA arrays in the first few embryonic mitoses. Several of Rex's genetic properties suggest that its primary effect is rDNA-specific chromosome breakage that is resolved by recombination. We report here that rDNA crossovers are only a small, surviving minority of Rex-induced events. Cytology of embryos produced by Rex-homozygous females reveals obvious chromosome damage in at least a quarter of the embryos within the first three mitotic divisions. More than half of the embryos produced by Rex females die, and the developmental arrest is among the earliest reported for any maternal-effect lethal. The striking lethal phenotype suggests that embryos with early chromosome damage could be particularly fruitful subjects for analysis of the cell biology of early embryos.
Collapse
Affiliation(s)
- L G Robbins
- Genetics Program, Michigan State University, East Lansing 48824-1312
| | | |
Collapse
|
116
|
Fogarty P, Kalpin RF, Sullivan W. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13. Development 1994; 120:2131-42. [PMID: 7925016 DOI: 10.1242/dev.120.8.2131] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
grapes (grp) is a second chromosome (36A-B) maternal-effect lethal mutation in Drosophila melanogaster. We demonstrate that the syncytial nuclear divisions of grp-derived embryos are normal through metaphase of nuclear cycle 12. However, as the embryos progress into telophase of cycle 12, the microtubule structures rapidly deteriorate and midbodies never form. Immediately following the failure of midbody formation, sister telophase products collide and form large tetraploid nuclei. These observations suggest that the function of the midbody in the syncytial embryo is to maintain separation of sister nuclei during telophase of the cortical divisions. After an abbreviated nuclear cycle 13 interphase, these polyploid nuclei progress through prophase and arrest in metaphase. The spindles associated with the arrested nuclei are stable for hours even though the microtubules are rapidly turning over. The nuclear cycle 13 anaphase separation of sister chromatids never occurs and the chromosomes, still encompassed by spindles, assume a telophase conformation. Eventually neighboring arrested spindles begin to associate and form large clusters of spindles and nuclei. To determine whether this arrest was the result of a disruption in normal developmental events that occur at this time, both grp-derived and wild-type embryos were exposed to X-irradiation. Syncytial wild-type embryos exhibit a high division error rate, but not a nuclear-cycle arrest after exposure to low doses of X-irradiation. In contrast, grp-derived embryos exhibit a metaphase arrest in response to equivalent doses of X-irradiation. This arrest can be induced even in the early syncytial divisions prior to nuclear migration. These results suggest that the nuclear cycle 13 metaphase arrest of unexposed grp-derived embryos is independent of the division-cycle transitions that also occur at this stage. Instead, it may be the result of a previously unidentified feedback mechanism.
Collapse
Affiliation(s)
- P Fogarty
- Department of Biology, University of California, Santa Cruz 95064
| | | | | |
Collapse
|
117
|
Williams BC, Goldberg ML. Determinants of Drosophila zw10 protein localization and function. J Cell Sci 1994; 107 ( Pt 4):785-98. [PMID: 7914521 DOI: 10.1242/jcs.107.4.785] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined several issues concerning how the Drosophila l(1)zw10 gene product functions to ensure proper chromosome segregation. (a) We have found that in zw10 mutant embryos and larval neuroblasts, absence of the zw10 protein has no obvious effect on either the congression of chromosomes to the metaphase plate or the morphology of the metaphase spindle, although many aberrations are observed subsequently in anaphase. This suggests that activity of the zw10 protein becomes essential at anaphase onset, a time at which the zw10 protein is redistributed to the kinetochore region of the chromosomes. (b) The zw10 protein appears to bind to kinetochores in mitotically arrested cells, eventually accumulating to high levels within the chromosome mass. Our results imply that zw10 may act as part of a novel feedback pathway that normally renders sister chromatid separation dependent upon spindle integrity. (c) The localization of zw10 protein is altered by two mitotic mutations, rough deal and abnormal anaphase resolution, that specifically disrupt anaphase. These findings indicate that the zw10 protein functions as part of a multicomponent mechanism ensuring proper chromosome segregation at the beginning of anaphase.
Collapse
Affiliation(s)
- B C Williams
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703
| | | |
Collapse
|
118
|
Endow SA, Chandra R, Komma DJ, Yamamoto AH, Salmon ED. Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J Cell Sci 1994; 107 ( Pt 4):859-67. [PMID: 8056842 DOI: 10.1242/jcs.107.4.859] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonclaret disjunctional (ncd) is a kinesin-related microtubule motor protein required for meiotic and early mitotic chromosome distribution in Drosophila. ncd translocates on microtubules with the opposite polarity to kinesin, toward microtubule minus ends, and is associated with spindles in chromosome/spindle preparations. Here we report a new mutant of ncd caused by partial deletion of the predicted coiled-coil central stalk. The mutant protein exhibits a velocity of translocation and ability to generate torque in motility assays comparable to near full-length ncd, but only partially rescues a null mutant for chromosome mis-segregation. Antibody staining experiments show that the partial loss-of-function and null mutants cause centrosomal and spindle pole defects, including centrosome splitting and loss of centrosomes from spindle poles, and localize ncd to centrosomes as well as spindles of wild-type embryos. Association of ncd with spindles and centrosomes is microtubule- and cell cycle-dependent: inhibition of microtubule assembly with colchicine abolishes ncd staining and centrosomal staining is observed in prometaphase, metaphase and anaphase, but diminishes in late anaphase/telophase. The cell cycle dependence of centrosomal staining and the defects of mutants provide clear evidence for activity of the ncd motor protein near or at the spindle poles in mitosis. The ncd motor may interact with centrosomal microtubules and spindle fibers to attach centrosomes to spindle poles, and mediate poleward translocation (flux) of kinetochore fibers, a process that may underlie poleward movement of chromosomes in mitosis. Together with previous work, our findings indicate that ncd is important in maintaining spindle poles in mitosis as well as in meiosis.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
119
|
Mayor R, Izquierdo L. Morulae at compaction and the pattern of protein synthesis in mouse embryos. Differentiation 1994; 55:175-84. [PMID: 8187979 DOI: 10.1046/j.1432-0436.1994.5530175.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Compaction of mouse embryos at the 8-cell stage causes a drastic change in cell form and in cell-to-cell contacts in 3-4 h. We have studied the effect of inhibitors of transcription (alpha-amanitin), DNA replication (aphidicolin) and compaction (cytochalasin D, EGTA, alpha-lactalbumin and Con A) on the pattern of protein synthesis using gel electrophoresis. Our results show that the pattern of protein synthesis is regulated principally by passage through S phase during each early cell cycle rather than by de novo transcription, while changes induced in cell form or contacts do not alter the pattern significantly.
Collapse
Affiliation(s)
- R Mayor
- Departamento de Biologia, Universidad de Chile, Santiago
| | | |
Collapse
|
120
|
Affiliation(s)
- C Gonzalez
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | |
Collapse
|
121
|
Affiliation(s)
- G Schubiger
- Department of Zoology, University of Washington, Seattle 98195
| | | |
Collapse
|
122
|
White-Cooper H, Alphey L, Glover DM. The cdc25 homologue twine is required for only some aspects of the entry into meiosis in Drosophila. J Cell Sci 1993; 106 ( Pt 4):1035-44. [PMID: 8126091 DOI: 10.1242/jcs.106.4.1035] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twineHB5 mutation prevents spindle formation during the entry into meiosis in Drosophila males, but chromosome condensation and nuclear envelope breakdown both still occur. This suggests the possibility that this particular cdc25 homologue is required to activate a p34cdc2 kinase required for only some of the events of this G2-M transition. In contrast, meiotic spindles do form in twineHB5 females, although these appear abnormal. However, the female meiotic divisions do not arrest at metaphase I as in wild type, but continue repeatedly, leading to gross non-disjunction. Small chromatin masses, corresponding in size to the fourth chromosomes, often segregate properly to the spindle poles. These can persist into the embryos derived from twineHB5 females, where they appear to participate in mitotic divisions on thin spindles. In addition, these embryos contain a small number of large chromatin masses that are not associated with spindles.
Collapse
Affiliation(s)
- H White-Cooper
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
123
|
Liu Q, Golubovskaya I, Cande WZ. Abnormal cytoskeletal and chromosome distribution in po, ms4 and ms6; mutant alleles of polymitotic that disrupt the cell cycle progression from meiosis to mitosis in maize. J Cell Sci 1993; 106 ( Pt 4):1169-78. [PMID: 8126098 DOI: 10.1242/jcs.106.4.1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maize cell cycle regulation mutant polymitotic (po) progresses through abnormal cell cycles, characterized by premature cell divisions without chromosome duplication of the daughter cells produced by meiosis during microsporogenesis and macrosporogenesis. There are three recessive alleles of the Po gene; po, ms4, and ms6. A new method of permeabilizing cells based on freeze-fracture technology was used to study the distribution of microtubules in wild-type and mutant microspores. Here we show that an abnormal distribution of microtubules is correlated with changes in chromosome morphology in a cell cycle-dependent manner in po, ms4 and ms6 mutant alleles. After meiosis II, the cell cycle is complete and becomes progressively less synchronous in po homozygotes compared with wild-type cells. During microsporogenesis, the distribution of microtubules is abnormal, and chromosome morphology is altered in both po, ms4 and ms6 mutants. However, more chromosome fragments or micronuclei associated with minispindles are present in ms6 than po and ms4. After microspores are released from the tetrads, disruptions in structure and organization of chromosomes and microtubules continues in subsequent abnormal cell cycles. However, these cell cycles are incomplete since phragmoplasts are not formed. During these incomplete cell cycles, abnormal spindles and microtubule arrays are induced and extra microtubule arrays are associated with irregularly distributed chromosome fragments. States corresponding to interphase, prophase, metaphase and anaphase can be recognized in the mutant microspores. Abnormal cell cycles also occur after female meiosis during ms4 macrospore development. Since only the cell that normally undergoes embryo sac development (the chazal-most cell) undergoes supernumerary divisions this suggests that the po phenotype can be characterized as premature haploid divisions rather than repetition of meiosis II.
Collapse
Affiliation(s)
- Q Liu
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
124
|
Hegdé J, Stephenson EC. Distribution of swallow protein in egg chambers and embryos of Drosophila melanogaster. Development 1993; 119:457-70. [PMID: 7507030 DOI: 10.1242/dev.119.2.457] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila maternal effect gene swallow has a role in localizing bicoid mRNA at the anterior margin of the oocyte during oogenesis, and a poorly characterized role in nuclear divisions in early embryogenesis. We have examined the distribution of swallow protein during oogenesis and embryogenesis using anti-swallow antibodies. During oogenesis, high levels of swallow protein are present in basal nurse cell cytoplasm, although small amounts are also present at the anterior oocyte margin, the site of bicoid RNA localization. Only a small fraction of swallow protein is in a position to interact directly with bicoid RNA during localization. The asymmetric distribution of swallow protein is disrupted in swallow ovaries, in which bicoid RNA becomes unlocalized late in oogenesis. swallow protein is uniformly distributed in eggs, but becomes localized to nuclei during early mitotic divisions in early embryogenesis. swallow protein enters each nucleus at the beginning of mitosis, occupies a position complementary to that of condensed chromatin, and leaves each nucleus at the end of mitosis. We show examples of nuclear division defects in swallow mutant embryos, and suggest that the abnormal nuclear divisions in early swallow embryos reflect a second function for swallow protein that contributes to abdominal segmentation defects common in swallow embryos.
Collapse
Affiliation(s)
- J Hegdé
- Department of Biology, University of Rochester, NY 14627
| | | |
Collapse
|
125
|
Sullivan W, Daily DR, Fogarty P, Yook KJ, Pimpinelli S. Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo. Mol Biol Cell 1993; 4:885-96. [PMID: 8257792 PMCID: PMC275719 DOI: 10.1091/mbc.4.9.885] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.
Collapse
Affiliation(s)
- W Sullivan
- Department of Biology, University of California, Santa Cruz 95064
| | | | | | | | | |
Collapse
|
126
|
Philp AV, Axton JM, Saunders RD, Glover DM. Mutations in the Drosophila melanogaster gene three rows permit aspects of mitosis to continue in the absence of chromatid segregation. J Cell Sci 1993; 106 ( Pt 1):87-98. [PMID: 8270646 DOI: 10.1242/jcs.106.1.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the three rows (thr) gene, by a combination of chromosome microdissection and P element tagging. We describe phenotypes of embryos homozygous for mutations at the thr locus. Maternal mRNA and protein appear to be sufficient to allow 14 rounds of mitosis in embryos homozygous for thr mutations. However, a small percentage of cells in syncytial blastoderm stage thr embryos sink into the interior of the embryo as if they have failed to divide properly. Following cellularisation all cells complete mitosis 14 normally. All cells become delayed at mitosis 15 with their chromosomes remaining aligned on the spindle in a metaphase-like configuration, even though both cyclins A and B have both been degraded. As cyclin B degradation occurs at the metaphase-anaphase transition, subsequent to the microtubule integrity checkpoint, the delay induced by mutations at the thr locus defines a later point in mitotic progression. Chromosomes in the cells of thr embryos do not undertake anaphase separation, but remain at the metaphase plate. Subsequently they decondense. A subset of nuclei go on to replicate their DNA but there is no further mitotic division.
Collapse
Affiliation(s)
- A V Philp
- Department of Anatomy & Physiology, University of Dundee, Scotland, UK
| | | | | | | |
Collapse
|
127
|
Buchenau P, Saumweber H, Arndt-Jovin DJ. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J Cell Sci 1993; 104 ( Pt 4):1175-85. [PMID: 8391015 DOI: 10.1242/jcs.104.4.1175] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of DNA topology by topoisomerase II from Drosophila melanogaster has been studied extensively by biochemical methods but little is known about its roles in vivo. We have performed experiments on the inhibition of topoisomerase II in living Drosophila blastoderm embryos. We show that the enzymatic activity can be specifically disrupted by microinjection of antitopoisomerase II antibodies as well as the epipodophyllotoxin VM26, a known inhibitor of topoisomerase II in vitro. By labeling the chromatin of live embryos with tetramethylrhodamine-coupled histones, the effects of inhibition on nuclear morphology and behaviour was followed in vivo using confocal laser scanning microscopy. Both the antibodies and the drug prevented or hindered the segregation of chromatin daughter sets at the anaphase stage of mitosis. In addition, high concentrations of inhibitor interfered with the condensation of chromatin and its proper arrangement into the metaphase plate. The observed effects yielded non-functional nuclei, which were drawn into the inner yolk mass of the embryo. Concurrently, undamaged nuclei surrounding the affected region underwent compensatory division, leading to the restoration of the nuclear population, and thereby demonstrating the regulative capacity of Drosophila blastoderm embryos.
Collapse
Affiliation(s)
- P Buchenau
- Abteilung Molekulare Biologie, Max Planck Institut für biophysikalische Chemie, Göttingen, FRG
| | | | | |
Collapse
|
128
|
Gomes R, Karess RE, Ohkura H, Glover DM, Sunkel CE. Abnormal anaphase resolution (aar): a locus required for progression through mitosis in Drosophila. J Cell Sci 1993; 104 ( Pt 2):583-93. [PMID: 8505381 DOI: 10.1242/jcs.104.2.583] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a new mitotic locus of Drosophila melanogaster required for the progression through mitosis in the syncytial embryo and in late larval development. The locus aar (abnormal anaphase resolution) maps to the cytological interval 85E7-F16 and was identified by two alleles. The aar1 allele causes pupal lethality. Larval neuroblasts show an elevated mitotic index with high chromosome condensation and stretched and lagging chromatids during anaphase. aar2 produces fully viable but sterile females. aar1/aar2 females lay eggs that develop mitotic figures with similar abnormalities to those observed in neuroblasts. Indirect immunofluorescence of these embryos indicates that the centrosome cycle appears normal, although some abnormal spindle microtubules can be seen during mitosis.
Collapse
Affiliation(s)
- R Gomes
- Laboratório de Genética Molecular, Centro de Citologia Experimental da Universidade do Porto, Portugal
| | | | | | | | | |
Collapse
|
129
|
Parabiotic development of fused eggs from the Hymenopteron, Pimpla turionellae, and of eggs injected with energids. ACTA ACUST UNITED AC 1993; 203:44-50. [PMID: 28305979 DOI: 10.1007/bf00539889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1993] [Accepted: 04/02/1993] [Indexed: 10/26/2022]
Abstract
Explanted oocytes and eggs of different developmental stages from the Hymenopteron Pimpla were fused in pairs as "parabiotic tandems". Interactions within the tandem were analysed by time lapse films. Except for the exchange of nuclei, no joint development was observed, and each partner followed its own time pattern. The rapid cell cycles of the cleavage energids switched over to longer cycles according to the local developmental stage of the different egg regions, although all of the nuclei were still contained in a single plasmodium. In a second experimental series, nuclei in newly deposited eggs were X-rayed and replaced by cleavage energids from later stages injected into the wrong (=posterior) egg pole. Even injected blastoderm nuclei immediately took up mitotic activities and underwent rapid cell cycles characteristic of early cleavage. Normal embryos could be formed, although the nuclei had populated the egg in a reverse direction.
Collapse
|
130
|
Callaini G, Riparbelli MG. Surface cap modifications in cold-treated Drosophila melanogaster embryos. Cell Tissue Res 1992; 270:553-8. [PMID: 1486607 DOI: 10.1007/bf00645058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When early Drosophila embryos were allowed to develop at 0 degree C, several abnormalities in the surface cap organization were observed. Scanning electron microscopy showed that exposure to cold mainly lead to the deformation of the cortical caps and to their partial fusion with adjacent caps. The process of cellularization was presumably affected and large uncellularized areas were observed. Rhodamine-phalloidin staining showed that cap deformation was closely related to the altered microfilament distribution, which was presumably responsible for the failure of large syncytial areas to cellularize. During the process of cellularization, F-actin localization did not depend on the microtubules forming the baskets around the elongating nuclei, but was related to the subpopulation of microtubules radiating from the centrosomes toward the plasma membrane. Only these microtubules seemed to be affected by cold treatment.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, Siena, Italy
| | | |
Collapse
|
131
|
Devault A, Fesquet D, Cavadore JC, Garrigues AM, Labbé JC, Lorca T, Picard A, Philippe M, Dorée M. Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2. J Cell Biol 1992; 118:1109-20. [PMID: 1387401 PMCID: PMC2289581 DOI: 10.1083/jcb.118.5.1109] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have produced human cyclin A in Escherichia coli and investigated how it generates H1 kistone kinase activity when added to cyclin-free extracts prepared from parthenogenetically activated Xenopus eggs. Cyclin A was found to form a major complex with cdc2, and to bind cdk2/Eg1 only poorly. No lag phase was detected between the time when cyclin A was added and the time when H1 histone kinase activity was produced in frog extracts, even in the presence of 2 mM vanadate, which blocks cdc25 activity. Essentially identical results were obtained using extracts prepared from starfish oocytes. We conclude that formation of an active cyclin A-cdc2 kinase during early development escapes an inhibitory mechanism that delays formation of an active cyclin B-cdc2 kinase. This inhibitory mechanism involves phosphorylation of cdc2 on tyrosine 15. Okadaic acid (OA) activated cyclin B-cdc2 kinase and strongly reduced tyrosine phosphorylation of cyclin B-associated cdc2, even in the presence of vanadate. 6-dimethylamino-purine, a reported inhibitor of serine-threonine kinases, suppressed OA-dependent activation of cyclin B-cdc2 complexes. This indicates that the kinase(s) which phosphorylate(s) cdc2 on inhibitory sites can be inactivated by a phosphorylation event, itself antagonized by an OA-sensitive, most likely type 2A phosphatase. We also found that cyclin B- or cyclin A-cdc2 kinases can induce or accelerate conversion of the cyclin B-cdc2 complex from an inactive into an active kinase. Cyclin B-associated cdc2 does not undergo detectable phosphorylation on tyrosine in egg extracts containing active cyclin A-cdc2 kinase, even in the presence of vanadate. We propose that the active cyclin A-cdc2 kinase generated without a lag phase from neo-synthesized cyclin A and cdc2 may cause a rapid switch in the equilibrium of cyclin B-cdc2 complexes to the tyrosine-dephosphorylated and active form of cdc2 during early development, owing to strong inhibition of the cdc2-specific tyrosine kinase(s). This may explain why early cell cycles are so rapid in many species.
Collapse
Affiliation(s)
- A Devault
- Centre National de la Recherche Scientifique UPR 8402, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Wickramasinghe D, Albertini DF. Centrosome phosphorylation and the developmental expression of meiotic competence in mouse oocytes. Dev Biol 1992; 152:62-74. [PMID: 1378414 DOI: 10.1016/0012-1606(92)90156-b] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies suggested that the transition from an incompetent to a competent meiotic state during the course of oogenesis in the mouse involved a G2/M-like cell cycle transition (Wickramasinghe et al, 1991. Dev. Biol. 143, 162). The present studies tested the hypothesis that centrosome phosphorylation, an event normally induced by MPF, is required for this developmental transition and the expression of meiotic competence in cultured growing mouse oocytes. Multiple fluorescence labeling techniques were used to evaluate centrosome number, phosphorylation status, and microtubule nucleating capacity in competent and incompetent oocytes. Experimental conditions were established for reversibly altering the phosphorylation status of the centrosomes and the effects of these treatments on meiotic resumption were examined. Phosphorylated centrosomes nucleating short microtubules were observed in competent oocytes, whereas nonphosphorylated centrosomes and interphase microtubule arrays were found in incompetent oocytes. Upon recovery from nocodazole-induced microtubule depolymerization, short microtubules formed from centrosomes in competent oocytes, whereas long microtubules reappear in the cytoplasm of incompetent oocytes. Perturbation of the phosphorylation state of oocytes with activators of protein kinase A or protein kinase C resulted in the formation of long interphase microtubules in competent oocytes while centrosome phosphorylation was maintained. Treatment of competent oocytes with the phosphorylation inhibitor 6-dimethylaminopurine also led to formation of long microtubules, although under these conditions centrosomes were dephosphorylated. When competent oocytes were treated simultaneously with puromycin and the phosphodiesterase inhibitor isobutyl methylxanthine (IBMX) for 6 hr, centrosomes became dephosphorylated; centrosomes were rephosphorylated when competent oocytes were further cultured in IBMX without puromycin. Conditions that induced centrosome dephosphorylation in competent oocytes resulted in the loss of the ability to express meiotic competence in culture, whereas maintenance of centrosome phosphorylation in these oocytes was correlated with the ability to resume meiosis. These results suggest that the G2/M transition that occurs when mouse oocytes progress from an incompetent to a competent state in vivo involves the phosphorylation of centrosomes and that the maintenance of centrosome phosphorylation is required for the in vitro expression of meiotic competence.
Collapse
Affiliation(s)
- D Wickramasinghe
- Department of Anatomy and Cell Biology, Tufts University Health Science School, Boston, Massachusetts 02111
| | | |
Collapse
|
133
|
Zissler D. From egg to pole cells: ultrastructural aspects of early cleavage and germ cell determination in insects. Microsc Res Tech 1992; 22:49-74. [PMID: 1617208 DOI: 10.1002/jemt.1070220106] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insect eggs are giant and very complex cells covered by an extremely resistant shell. Both the egg cell and surrounding eggshell express anteroposterior and ventrodorsal polarity. The molecular and cytoplasmic organization of both axes originates during oogenesis and leads to the production of an ooplasmic system which consists of euplasm and deutoplasm (yolk) and contains a nucleus as well as extranuclear determinants of maternal origin. Both are part of the store of information for early embryogenesis. In addition, the deutoplasm serves as raw material and early nutrient supply for building the embryo. The insect egg cell, which is arrested in the first maturation division when released from the ovary during oviposition, will be activated by different stimuli among different species to complete meiosis and start embryogenesis. The zygote nucleus undergoes a number of synchronous mitotic divisions leading to cleavage energids which initially form a syncytial blastoderm and subsequently the cellular blastoderm. In many insects, prior to blastoderm formation, polar granules (or oosome material) are incorporated in a single cell or a small number of cells which bud off at the posterior pole. These so called pole cells give rise to the primordial germ cells. Therefore, polar granules or the oosome material mark the germ line, and while structural counterparts of determinants of body pattern formation have so far not been found, the polar granules or oosome serve as an autonomous ooplasmic determinant for the pole or germ cells. Anteroposterior body polarity can arise independent of the germ plasm.
Collapse
Affiliation(s)
- D Zissler
- Institut für Biologie I (Zoologie), Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany
| |
Collapse
|
134
|
Maldonado-Codina G, Glover DM. Cyclins A and B associate with chromatin and the polar regions of spindles, respectively, and do not undergo complete degradation at anaphase in syncytial Drosophila embryos. J Cell Biol 1992; 116:967-76. [PMID: 1531147 PMCID: PMC2289331 DOI: 10.1083/jcb.116.4.967] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.
Collapse
|
135
|
Affiliation(s)
- P Ripoll
- Centro de Biología Molecular (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
136
|
Kimble M, Kuriyama R. Functional components of microtubule-organizing centers. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 136:1-50. [PMID: 1506143 DOI: 10.1016/s0074-7696(08)62049-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M Kimble
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
137
|
Maniotis A, Schliwa M. Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 1991; 67:495-504. [PMID: 1934057 DOI: 10.1016/0092-8674(91)90524-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have removed the centrosome from cultured BSC-1 cells by microsurgery, leaving enough cytoplasm with the nucleated cell fragment (karyoplast) to ensure survival and growth. In each experiment, we followed the fate of the karyoplast as well as the anucleate cell fragment (cytoplast) containing the original pair of centrioles. Experimental karyoplasts reestablish a juxtanuclear microtubule-organizing center, an astral array of microtubules, and a compact Golgi apparatus. They enter and presumably complete S phase, and they grow beyond the size of an average BSC-1 cell. However, they do not regenerate centrioles in time periods equivalent to more than 10 cell cycles and do not undergo cell division. Control-operated cells with centrosomes left in the karyoplast progress through the cell cycle, duplicate the centrosome, and form clonal cell colonies. We conclude that the removal of centrioles uncouples cell growth from cell reproduction and impedes centriole biogenesis and centrosome duplication.
Collapse
Affiliation(s)
- A Maniotis
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
138
|
Girdham CH, Glover DM. Chromosome tangling and breakage at anaphase result from mutations in lodestar, a Drosophila gene encoding a putative nucleoside triphosphate-binding protein. Genes Dev 1991; 5:1786-99. [PMID: 1916263 DOI: 10.1101/gad.5.10.1786] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe a Drosophila maternal-effect gene, lodestar, mutations in which cause chromatin bridges at anaphase. lodestar maps to cytological position 84D13-14, and we identified the lodestar gene in germ-line transformation experiments by the ability of a genomic fragment to restore fertility to females homozygous for lodestar mutations. lodestar encodes a potential nucleoside triphosphate binding protein, which is a novel member of the D-E-A-H box family of proteins. Antibodies raised against the lodestar gene product detect a protein that undergoes cell cycle-dependent changes in distribution in the embryo. The protein is cytoplasmic at interphase, and rapidly enters the nucleus early in prophase. It is restricted to the region enclosed by the spindle envelope during metaphase and anaphase; but by telophase, the lodestar protein is contained entirely within the reforming nucleus.
Collapse
Affiliation(s)
- C H Girdham
- Department of Biochemistry, The University, Dundee, Scotland
| | | |
Collapse
|
139
|
Shamanski FL, Orr-Weaver TL. The Drosophila plutonium and pan gu genes regulate entry into S phase at fertilization. Cell 1991; 66:1289-300. [PMID: 1913810 DOI: 10.1016/0092-8674(91)90050-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in the Drosophila maternal genes plutonium (plu) and pan gu (png) have the striking phenotype that DNA replication initiates in unfertilized eggs. Fertilized eggs from plu or png mutant mothers also have a mutant phenotype; DNA replication is uncoupled from nuclear division, resulting in giant, polyploid nuclei. Analysis of multiple alleles of these genes indicates that their wild-type function is required to maintain repression of DNA replication until fertilization. The phenotype of two png alleles suggests that this gene also may play a direct role in coupling S phase and mitosis during the early cleavage divisions. We describe genetic interactions among png, plu, and the previously identified gene gnu that demonstrate these three genes regulate the same process.
Collapse
Affiliation(s)
- F L Shamanski
- Department of Biology, Massachusetts Institute of Technology, Cambridge
| | | |
Collapse
|
140
|
Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991; 66:507-17. [PMID: 1651171 DOI: 10.1016/0092-8674(81)90014-3] [Citation(s) in RCA: 846] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have identified mutant strains of S. cerevisiae that fail to properly arrest their cell cycles at mitosis in response to the loss of microtubule function. New bud emergence and DNA replication (but not cytokinesis) occur with high efficiency in the mutants under conditions that inhibit these events in wild-type cells. The inability to halt cell cycle progression is specific for impaired microtubule function; the mutants respond normally to other cell cycle-blocking treatments. Under microtubule-disrupting conditions, the mutants neither achieve nor maintain the high level of histone H1 kinase activity characteristic of wild-type cells. Our studies have defined three genes required for normal cell cycle arrest. These findings are consistent with the existence of a surveillance system that halts the cell cycle in response to microtubule perturbation.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
141
|
Abstract
We have investigated the feedback control that prevents cells with incompletely assembled spindles from leaving mitosis. We isolated budding yeast mutants sensitive to the anti-microtubule drug benomyl. Mitotic arrest-deficient (mad) mutants are the subclass of benomyl-sensitive mutants in which the completion of mitosis is not delayed in the presence of benomyl and that die as a consequence of their premature exit from mitosis. A number of properties of the mad mutants indicate that they are defective in the feedback control over the exit from mitosis: their killing by benomyl requires passage through mitosis; their benomyl sensitivity can be suppressed by an independent method for delaying the exit from mitosis; they have normal microtubules; and they have increased frequencies of chromosome loss. We cloned MAD2, which encodes a putative calcium-binding protein whose disruption is lethal. We discuss the role of feedback controls in coordinating events in the cell cycle.
Collapse
Affiliation(s)
- R Li
- Program in Cell Biology, University of California, San Francisco 94143-0444
| | | |
Collapse
|
142
|
Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc Natl Acad Sci U S A 1991; 88:6427-31. [PMID: 1650467 PMCID: PMC52098 DOI: 10.1073/pnas.88.15.6427] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development of pancreatic cancer in transgenic mice expressing the simian virus 40 tumor antigen placed under controlling regions of the elastase I gene is characterized by the sequential appearance of tetraploid and then multiple aneuploid cell populations. Pancreatic tissues from such transgenic mice were studied between 8 and 32 days of age. Virtually 100% of acinar cell nuclei had immunohistochemically detectable tumor antigen by 18 days. Tetraploid cells were demonstrated by DNA content flow cytometry by 20 days and were associated with the appearance of interphase cells that had 5-11 centrioles per cell in single thin sections of pancreatic tissue examined by electron microscopy. Mitotic cells also were observed that had 5 or more centrioles per cell that were incorporated into the poles of bipolar or at least tripolar spindle apparatuses. These observations indicate that formation of the tetraploid intermediate in the diploid----tetraploid----aneuploid sequence of pancreatic tumor formation in elastase-simian virus 40 tumor antigen transgenic mice is accompanied by the development of cells with 5 or more centrioles that can be incorporated into the poles of abnormal mitotic spindles. We speculate that cells with more than 4 centrioles are predisposed to the formation of multipolar mitoses that may yield daughter cells with chromosomal gains and losses, resulting in the subsequent development of aneuploid tumors.
Collapse
Affiliation(s)
- D S Levine
- Department of Medicine, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
143
|
Callaini G, Dallai R, Riparbelli MG. Microfilament distribution in cold-treated Drosophila embryos. Exp Cell Res 1991; 194:316-21. [PMID: 1709105 DOI: 10.1016/0014-4827(91)90371-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cold treatment of Drosophila embryos is observed to result in general alteration of microfilament distribution leading to deformation of the surface caps and to perturbation of the process of cleavage furrow extension. After exposure to low temperature the cortical actin caps underwent several morphological changes, despite the arrested nuclear cycle. These observations are discussed in relation to centrosome behavior during the cell cycle.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | |
Collapse
|
144
|
Callaini G, Dallai R. Abnormal behavior of the yolk centrosomes during early embryogenesis of Drosophila melanogaster. Exp Cell Res 1991; 192:16-21. [PMID: 1898590 DOI: 10.1016/0014-4827(91)90151-j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After the 10th nuclear cycle the yolk centrosomes follow an irregular pathway. Unlike the somatic centrosomes, which move to the opposite poles of the nuclei to form the bipolar spindles, the yolk centrosomes remain as pairs at one pole of the yolk nuclei or shift feebly and nucleate irregular spindles, most of which have only one main pole. The yolk centrosomes are no longer observed near the yolk nuclei, but progressively move away into the surrounding cytoplasm. Despite the irregular behavior of the centrosomes and although the yolk nuclei cease to divide, the yolk centrosome duplication cycle continues. The early development of Drosophila thus provides an excellent natural system for the study of the uncoupling of the nuclear and centrosomal cycles.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, University of Siena, Italy
| | | |
Collapse
|
145
|
Hiraoka Y, Agard DA, Sedat JW. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J Cell Biol 1990; 111:2815-28. [PMID: 2125300 PMCID: PMC2116368 DOI: 10.1083/jcb.111.6.2815] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three-dimensional optical sectioning microscopy. Time-lapse, three-dimensional data recorded in living embryos revealed that congression of chromosomes (the process whereby chromosomes move to form the metaphase plate) at prometaphase occurs as a wave, starting at the top of the nucleus near the embryo surface and proceeding through the nucleus to the bottom. The time-lapse analysis was augmented by a high-resolution analysis of fixed embryos where it was possible to unambiguously trace the three-dimensional paths of individual chromosomes. In prophase, the centromeres were found to be clustered at the top of the nucleus while the telomeres were situated at the bottom of the nucleus or towards the embryo interior. This polarized centromere-telomere orientation, perpendicular to the embryo surface, was preserved during the process of prometaphase chromosome congression. Correspondingly, breakdown of the nuclear envelope started at the top of the nucleus with the mitotic spindle being formed at the positions of the partial breakdown of the nuclear envelope. Our observation provide an example in which nuclear structures are spatially organized and their functions are locally and coordinately controlled in three dimensions.
Collapse
Affiliation(s)
- Y Hiraoka
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554
| | | | | |
Collapse
|
146
|
Glover DM, Raff J, Karr TL, O'Neill SL, Lin H, Wolfner MF. Parasites in Drosophila embryos. Nature 1990; 348:117. [PMID: 2234074 DOI: 10.1038/348117a0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
147
|
Edgar BA, O'Farrell PH. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 1990; 62:469-80. [PMID: 2199063 PMCID: PMC2753418 DOI: 10.1016/0092-8674(90)90012-4] [Citation(s) in RCA: 346] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The string (stg) locus of Drosophila encodes a factor that is thought to trigger mitosis by activating the p34cdc2 protein kinase. stg is required for mitosis early in development and is transcribed in a dynamic pattern that anticipates the pattern of embryonic cell divisions. Here we show that differential cell cycle regulation during postblastoderm development (cell cycles 14-16) occurs in G2. We demonstrate that stg mRNA expressed from a heat shock promotor triggers mitosis, and an associated S phase, in G2 cells during these cycles. Hence, differential cell cycle timing at this developmental stage is controlled by stg. Finally, we use heat-induced stg expression to alter the normal pattern of embryonic mitoses. Surprisingly, the complex mitotic pattern evident during normal development is not essential for many features of pattern formation or for viability.
Collapse
Affiliation(s)
- B A Edgar
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
148
|
Gard DL, Hafezi S, Zhang T, Doxsey SJ. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Biophys Biochem Cytol 1990; 110:2033-42. [PMID: 2190990 PMCID: PMC2116137 DOI: 10.1083/jcb.110.6.2033] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cycloheximide (500 micrograms/ml) rapidly arrests cleavage, spindle assembly, and cycles of an M-phase-specific histone kinase in early Xenopus blastulae. 2 h after cycloheximide addition, most cells contained two microtubule asters radiating from perinuclear microtubule organizing centers (MTOCs). In contrast, blastomeres treated with cycloheximide for longer periods (3-6 h) contained numerous microtubule asters and MTOCs. Immunofluorescence with an anticentrosome serum and EM demonstrated that the MTOCs in cycloheximide-treated cells were typical centrosomes, containing centrioles and pericentriolar material. We conclude that centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. In addition, these observations suggest that Xenopus embryos contain sufficient material to assemble 1,000-2,000 centrosomes in the absence of normal protein synthesis.
Collapse
Affiliation(s)
- D L Gard
- Department of Biology, University of Utah, Salt Lake City
| | | | | | | |
Collapse
|
149
|
Downes CS, Musk SR, Watson JV, Johnson RT. Caffeine overcomes a restriction point associated with DNA replication, but does not accelerate mitosis. J Cell Biol 1990; 110:1855-9. [PMID: 2161852 PMCID: PMC2116112 DOI: 10.1083/jcb.110.6.1855] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitotic chromosome condensation is normally dependent on the previous completion of replication. Caffeine spectacularly deranges cell cycle controls after DNA polymerase inhibition or DNA damage; it induces the condensation, in cells that have not completed replication, of fragmented nuclear structures, analogous to the S-phase prematurely condensed chromosomes seen when replicating cells are fused with mitotic cells. Caffeine has been reported to induce S-phase condensation in cells where replication is arrested, by accelerating cell cycle progression as well as by uncoupling it from replication; for, in BHK or CHO hamster cells arrested in early S-phase and given caffeine, condensed chromosomes appear well before the normal time at which mitosis occurs in cells released from arrest. However, we have found that this apparent acceleration depends on the technique of synchrony and cell line employed. In other cells, and in synchronized hamster cells where the cycle has not been subjected to prolonged continual arrest, condensation in replication-arrested cells given caffeine occurs at the same time as normal mitosis in parallel populations where replication is allowed to proceed. This caffeine-induced condensation is therefore "premature" with respect to the chromatin structure of the S-phase nucleus, but not with respect to the timing of the normal cycle. Caffeine in replication-arrested cells thus overcomes the restriction on the formation of mitotic condensing factors that is normally imposed during DNA replication, but does not accelerate the timing of condensation unless cycle controls have previously been disturbed by synchronization procedures.
Collapse
Affiliation(s)
- C S Downes
- Department of Zoology, Cambridge University, United Kingdom
| | | | | | | |
Collapse
|
150
|
Dasso M, Newport JW. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 1990; 61:811-23. [PMID: 2160859 DOI: 10.1016/0092-8674(90)90191-g] [Citation(s) in RCA: 270] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During cell division complete DNA replication must occur before mitosis is initiated. Using a cell-free extract derived from Xenopus eggs that oscillates between S phase and mitosis, we have investigated how completion of DNA synthesis is coupled to the initiation of mitosis. We find that Xenopus eggs contain a feedback pathway which suppresses mitosis until replication is completed and that activation of this inhibitory system is dependent on the presence of a threshold concentration of unreplicated DNA. We demonstrate that in the presence of unreplicated DNA the active feedback system inhibits initiation of mitosis by blocking the activation of MPF, a regulator of mitosis found in all eukaryotic cells. Our results demonstrate that the feedback system does not inhibit MPF activation by blocking the synthesis or accumulation of cyclin protein, a subunit of MPF, or by blocking association of cyclin with the cdc2 subunit of MPF. We propose that the feedback system blocks mitosis by maintaining MPF in an inactive state by modulating posttranslational modifications critical for MPF activation.
Collapse
Affiliation(s)
- M Dasso
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|