101
|
Ozbas-Gerceker F, Mihcioglu D. LMP2 and LMP7 Gene Polymorphisms in the Southeastern Anatolia Population of Turkey. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2013.11886212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Filiz Ozbas-Gerceker
- Department of Biology, Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey
| | | |
Collapse
|
102
|
Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. A comparative analysis between proteasome and immunoproteasome inhibition in cellular and humoral alloimmunity. Int Immunopharmacol 2017; 50:48-54. [PMID: 28628770 DOI: 10.1016/j.intimp.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/20/2017] [Accepted: 06/12/2017] [Indexed: 01/05/2023]
Abstract
Triggered by the successful administration of the proteasome inhibitor bortezomib in kidney transplant recipients with acute or chronic antibody-mediated rejection, we evaluated the effect of the proteasome inhibitor CEP-18770 and of the selective immunoproteasome inhibitor ONX-0914 on cellular and humoral alloimmunity. Cellular alloimmunity was assessed by cell proliferation in a two-way mixed lymphocyte reaction (MLR) with human peripheral blood mononuclear cells (PBMC). For assessing humoral alloimmunity we developed a method, where humoral alloimmunity was induced in one-way MLR. The de novo production of alloantibodies was measured with an antibody-mediated complement-dependent cytotoxicity assay, in which supernatants from the above MLRs were used against resting PBMC similar to the stimulator cells of the forementioned MLRs. In two-way MLRs ONX-0914 inhibited cell proliferation more than CEP-18770. In one-way MLRs CEP-18770 and ONX-0194 decreased alloantibody production to the same extent. Inhibition of the immunoproteasome is superior to inhibition of the proteasome in suppressing cellular alloimmunity, and equally effective as regards to humoral alloimmunity. Considering the selective expression of the immunoproteasome in immune cells and the expected restrictive toxicity of its inhibitors, these results render immunoproteasome an excellent target for the development of new immunosuppressive medications in the field of transplantation.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece.
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
103
|
ONX-0914, a selective inhibitor of immunoproteasome, ameliorates experimental autoimmune myasthenia gravis by modulating humoral response. J Neuroimmunol 2017; 311:71-78. [PMID: 28844501 DOI: 10.1016/j.jneuroim.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 11/23/2022]
Abstract
Accumulating evidence shows that the immunoproteasome participates in the immune response, beyond its initial role in the protein degradation. Here, we tested the effects of the selective immunoproteasome inhibitor, ONX-0914, on experimental autoimmune myasthenia gravis (EAMG). We found that ONX-0914 ameliorated the severity of ongoing EAMG by reducing the autoantibody affinity, accompanied with decreased Tfh cells and antigen presenting cells. Also it reduced the percentage of Th17 cells and inhibited the secretion of IL-17. Our data indicated ONX-0914 may bring benefit for MG therapy.
Collapse
|
104
|
Enosi Tuipulotu D, Netzler NE, Lun JH, Mackenzie JM, White PA. RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation. Front Immunol 2017; 8:959. [PMID: 28848558 PMCID: PMC5554501 DOI: 10.3389/fimmu.2017.00959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023] Open
Abstract
Viruses inherently exploit normal cellular functions to promote replication and survival. One mechanism involves transcriptional control of the host, and knowledge of the genes modified and their molecular function can aid in understanding viral-host interactions. Norovirus pathogenesis, despite the recent advances in cell cultivation, remains largely uncharacterized. Several studies have utilized the related murine norovirus (MNV) to identify innate response, antigen presentation, and cellular recognition components that are activated during infection. In this study, we have used next-generation sequencing to probe the transcriptomic changes of MNV-infected mouse macrophages. Our in-depth analysis has revealed that MNV is a potent stimulator of the innate response including genes involved in interferon and cytokine production pathways. We observed that genes involved in viral recognition, namely IFIH1, DDX58, and DHX58 were significantly upregulated with infection, whereas we observed significant downregulation of cytokine receptors (Il17rc, Il1rl1, Cxcr3, and Cxcr5) and TLR7. Furthermore, we identified that pathways involved in protein degradation (including genes Psmb3, Psmb4, Psmb5, Psmb9, and Psme2), antigen presentation, and lymphocyte activation are downregulated by MNV infection. Thus, our findings illustrate that MNV induces perturbations in the innate immune transcriptome, particularly in MHC maturation and viral recognition that can contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Daniel Enosi Tuipulotu
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natalie E Netzler
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer H Lun
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter A White
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
105
|
Karpova Y, Ustichenko V, Alabedal’karim N, Stepanova A, Lyupina Y, Boguslavski K, Bozhok G, Sharova N. Change in the Content of Immunoproteasomes and Macrophages in Rat Liver At the Induction of Donor-Specific Tolerance. Acta Naturae 2017; 9:71-80. [PMID: 29104778 PMCID: PMC5662276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/29/2022] Open
Abstract
Induction of donor specific tolerance (DST) by the introduction of donor cells into a recipient's portal vein is one of the approaches used to solve the problem of transplant engraftment. However, the mechanism of DST development remains unclear to this moment. In the present work, we first studied the change in the content of immunoproteasomes and macrophages of the liver at early stages of the development of allospecific portal tolerance in rats by Western blotting and flow cytofluorimetry. On the basis of the data obtained, we can conclude that the induction of DST is an active process characterized by two phases during which the level of the proteasome immune subunits LMP2 and LMP7 in liver mononuclear cells, including Kupffer cells, and the number of Kupffer cells change. The first phase lasts up to 5 days after the beginning of DST induction; the second phase - from 5 to 14 days. In both phases, the level of the subunits LMP2 and LMP7 in the total pool of mononuclear cells and Kupffer cells increases, with maximum values on days 1 and 7. In addition, the total number of Kupffer cells increases in both phases with a shift in several days. The most noticeable changes take place in the second phase. The third day is characterized by a lower content of mononuclear cells expressing immunoproteasomes compared to the control value in native animals. Presumably, at this time point a "window of opportunity" appears for subsequent filling of an empty niche with cells of different subpopulations and, depending on this fact, the development of tolerance or rejection. The results obtained raise the new tasks of finding ways to influence the cellular composition in the liver and the expression of immunoproteasomes on the third day after the beginning of DST induction to block the development of rejection.
Collapse
Affiliation(s)
- Ya.D. Karpova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119334, Russia
| | - V.D. Ustichenko
- Institute of Problems in Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, Kharkov, 61016, Ukraine
| | - N.M. Alabedal’karim
- Institute of Problems in Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, Kharkov, 61016, Ukraine
| | - A.A. Stepanova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119334, Russia
| | - Yu.V. Lyupina
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119334, Russia
| | - K.I. Boguslavski
- Institute of Problems in Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, Kharkov, 61016, Ukraine
| | - G.A. Bozhok
- Institute of Problems in Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, Kharkov, 61016, Ukraine
| | - N.P. Sharova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119334, Russia
| |
Collapse
|
106
|
Karpova YD, Bozhok GA, Alabedal’karim NM, Lyupina YV, Astakhova TM, Legach EI, Sharova NP. Proteasomes and transplantology: Current state of the problem and the search for promising trends. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017030049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
107
|
van den Berg RA, Coccia M, Ballou WR, Kester KE, Ockenhouse CF, Vekemans J, Jongert E, Didierlaurent AM, van der Most RG. Predicting RTS,S Vaccine-Mediated Protection from Transcriptomes in a Malaria-Challenge Clinical Trial. Front Immunol 2017; 8:557. [PMID: 28588574 PMCID: PMC5440508 DOI: 10.3389/fimmu.2017.00557] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
The RTS,S candidate malaria vaccine can protect against controlled human malaria infection (CHMI), but how protection is achieved remains unclear. Here, we have analyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) of transcriptome data identified 110 genes that could be used in predictive models of protection. Among the 110 genes, 42 had known immune-related functions, including 29 that were related to the NF-κB-signaling pathway and 14 to the IFN-γ-signaling pathway. Post-dose 3 serum IFN-γ concentrations were also correlated with protection; and N-PLS-DA of IFN-γ-signaling pathway transcriptome data selected almost all (44/45) of the representative genes for predictive models of protection. Hence, the identification of the NF-κB and IFN-γ pathways provides further insight into how vaccine-mediated protection may be achieved.
Collapse
Affiliation(s)
| | | | | | - Kent E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | - Erik Jongert
- GSK Vaccines, Rue de l'Institut, Rixensart, Belgium
| | | | | |
Collapse
|
108
|
Ortega-Atienza S, Krawic C, Watts L, McCarthy C, Luczak MW, Zhitkovich A. 20S immunoproteasomes remove formaldehyde-damaged cytoplasmic proteins suppressing caspase-independent cell death. Sci Rep 2017; 7:654. [PMID: 28381880 PMCID: PMC5429636 DOI: 10.1038/s41598-017-00757-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
Immunoproteasomes are known for their involvement in antigen presentation. However, their broad tissue presence and other evidence are indicative of nonimmune functions. We examined a role for immunoproteasomes in cellular responses to the endogenous and environmental carcinogen formaldehyde (FA) that binds to cytosolic and nuclear proteins producing proteotoxic stress and genotoxic DNA-histone crosslinks. We found that immunoproteasomes were important for suppression of a caspase-independent cell death and the long-term survival of FA-treated cells. All major genotoxic responses to FA, including replication inhibition and activation of the transcription factor p53 and the apical ATM and ATR kinases, were unaffected by immunoproteasome inactivity. Immunoproteasome inhibition enhanced activation of the cytosolic protein damage sensor HSF1, elevated levels of K48-polyubiquitinated cytoplasmic proteins and increased depletion of unconjugated ubiquitin. We further found that FA induced the disassembly of 26S immunoproteasomes, but not standard 26S proteasomes, releasing the 20S catalytic immunoproteasome. FA-treated cells also had higher amounts of small activators PA28αβ and PA28γ bound to 20S particles. Our findings highlight the significance of nonnuclear damage in FA injury and reveal a major role for immunoproteasomes in elimination of FA-damaged cytoplasmic proteins through ubiquitin-independent proteolysis.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Lauren Watts
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Caitlin McCarthy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
109
|
Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, Pan Y, Chouchane L, Ma X. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res 2017; 77:2090-2101. [PMID: 28330927 DOI: 10.1158/0008-5472.can-16-2409] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
Patients with triple-negative breast cancers (TNBC) are at high risk for recurrence and metastasis at an early time despite standard treatment, underscoring the need for novel therapeutic modalities. Here, we report for the first time a distinctive and profound role of the E3 ubiquitin ligase UBR5 in the growth and metastasis of TNBC. An analysis of primary TNBC specimen by whole-exon sequencing revealed strong gene amplifications of UBR5 associated with the disease. UBR5 overexpression in TNBC tissues was confirmed at mRNA and protein levels. CRISPR/Cas9-mediated deletion of ubr5 in an experimental murine mammary carcinoma model of TNBC dramatically abrogated tumor growth and metastasis in vivo, which could be reversed completely via reconstitution with wild-type UBR5 but not a catalytically inactive mutant. Loss of UBR5 caused an impairment in angiogenesis within the tumor, associated with increased apoptosis, necrosis, and growth arrest. Absence of UBR5 in the tumor triggered aberrant epithelial-to-mesenchymal transition, principally via abrogated expression of E-cadherin, which resulted in severely reduced tumor metastasis to secondary organs. Use of NOD/SCID mice revealed that tumor-derived UBR5 facilitated tumor growth in a manner completely dependent upon immune cells in the microenvironment, whereas it promoted metastasis in a tumor cell-autonomous fashion. Our findings unveil UBR5 as a novel and critical regulator of tumor growth, metastasis, and immune response and highlight the potential for UBR5 as an effective therapeutic target for the treatment of highly aggressive breast and ovarian cancers that fail conventional therapy. Cancer Res; 77(8); 2090-101. ©2017 AACR.
Collapse
Affiliation(s)
- Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Xin Li
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lili Tang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Lixing Zhang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihang Pan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Xiaojing Ma
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.,State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
110
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
111
|
Immunoproteasome subunit deficiency has no influence on the canonical pathway of NF-κB activation. Mol Immunol 2017; 83:147-153. [PMID: 28157553 DOI: 10.1016/j.molimm.2017.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 01/02/2023]
Abstract
Activation of the pro-inflammatory transcription factor NF-κB requires signal-induced proteasomal degradation of the inhibitor of NF-κB (IκB) in order to allow nuclear translocation. Most cell types are capable of expressing two types of 20S proteasome core particles, the constitutive proteasome and immunoproteasome. Inducible under inflammatory conditions, the immunoproteasome is mainly characterized through an altered cleavage specificity compared to the constitutive proteasome. However, the question whether immunoproteasome subunits affect NF-κB signal transduction differently from constitutive subunits is still up for debate. To study the effect of immunoproteasomes on LPS- or TNF-α-induced NF-κB activation, we used IFN-γ stimulated peritoneal macrophages and mouse embryonic fibroblasts derived from mice deficient for the immunoproteasome subunits low molecular mass polypeptide (LMP) 2, or LMP7 and multicatalytic endopeptidase complex-like 1 (MECL-1). Along the canonical signaling pathway of NF-κB activation no differences in the extent and kinetic of IκB degradation were observed. Neither the nuclear translocation and DNA binding of NF-κB nor the production of the NF-κB dependent cytokines TNF-α, IL-6, and IL-10 differed between immunoproteasome deficient and proficient cells. Hence, we conclude that immunoproteasome subunits have no specialized function for canonical NF-κB activation.
Collapse
|
112
|
Im E, Chung KC. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases. BMB Rep 2017; 49:459-73. [PMID: 27312603 PMCID: PMC5227139 DOI: 10.5483/bmbrep.2016.49.9.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473]
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
113
|
Brief treatment with a highly selective immunoproteasome inhibitor promotes long-term cardiac allograft acceptance in mice. Proc Natl Acad Sci U S A 2016; 113:E8425-E8432. [PMID: 27956634 DOI: 10.1073/pnas.1618548114] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Constitutive proteasomes (c-20S) are ubiquitously expressed cellular proteases that degrade polyubiquitinated proteins and regulate cell functions. An isoform of proteasome, the immunoproteasome (i-20S), is highly expressed in human T cells, dendritic cells (DCs), and B cells, suggesting that it could be a potential target for inflammatory diseases, including those involving autoimmunity and alloimmunity. Here, we describe DPLG3, a rationally designed, noncovalent inhibitor of the immunoproteasome chymotryptic subunit β5i that has thousands-fold selectivity over constitutive β5c. DPLG3 suppressed cytokine release from blood mononuclear cells and the activation of DCs and T cells, diminished accumulation of effector T cells, promoted expression of exhaustion and coinhibitory markers on T cells, and synergized with CTLA4-Ig to promote long-term acceptance of cardiac allografts across a major histocompatibility barrier. These findings demonstrate the potential value of using brief posttransplant immunoproteasome inhibition to entrain a long-term response favorable to allograft survival as part of an immunomodulatory regimen that is neither broadly immunosuppressive nor toxic.
Collapse
|
114
|
McCarthy MK, Malitz DH, Molloy CT, Procario MC, Greiner KE, Zhang L, Wang P, Day SM, Powell SR, Weinberg JB. Interferon-dependent immunoproteasome activity during mouse adenovirus type 1 infection. Virology 2016; 498:57-68. [PMID: 27560373 DOI: 10.1016/j.virol.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
The immunoproteasome is an inducible host mechanism that aids in the clearance of damaged proteins. The immunoproteasome also influences immune function by enhancing peptide presentation by MHC class I and promotes inflammation via IκB degradation and activation of NF-κB. We used mouse adenovirus type 1 (MAV-1) to characterize the role of the immunoproteasome in adenovirus pathogenesis. Following intranasal infection of mice, immunoproteasome activity in the heart and lung was significantly increased in an IFN-γ-dependent manner. Absence of the β5i immunoproteasome subunit and pharmacological inhibition of β5i activity had minimal effects on viral replication, virus-induced cellular inflammation, or induction of cytokine expression. Likewise, the establishment of protective immunity following primary infection was not significantly altered by β5i deficiency. Thus, although immunoproteasome activity is robustly induced during acute infection with MAV-1, our data suggest that other mechanisms are capable of compensating for immunoproteasome activity to maintain antiviral immunity and appropriate inflammatory responses.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle H Malitz
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Megan C Procario
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlyn E Greiner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Luna Zhang
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Sharlene M Day
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Saul R Powell
- Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
115
|
Xin BT, de Bruin G, Huber EM, Besse A, Florea BI, Filippov DV, van der Marel GA, Kisselev AF, van der Stelt M, Driessen C, Groll M, Overkleeft HS. Structure-Based Design of β5c Selective Inhibitors of Human Constitutive Proteasomes. J Med Chem 2016; 59:7177-87. [PMID: 27438186 DOI: 10.1021/acs.jmedchem.6b00705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work reports the development of highly potent and selective inhibitors of the β5c catalytic activity of human constitutive proteasomes. The work describes the design principles, large hydrophobic P3 residue and small hydrophobic P1 residue, that led to the synthesis of a panel of peptide epoxyketones; their evaluation and the selection of the most promising compounds for further analyses. Structure-activity relationships detail how in a logical order the β1c/i, β2c/i, and β5i activities became resistant to inhibition as compounds were diversified stepwise. The most effective compounds were obtained as a mixture of cis- and trans-biscyclohexyl isomers, and enantioselective synthesis resolved this issue. Studies on yeast proteasome structures complexed with some of the compounds provide a rationale for the potency and specificity. Substitution of the N-terminus in the most potent compound for a more soluble equivalent led to a cell-permeable molecule that selectively and efficiently blocks β5c in cells expressing both constitutive proteasomes and immunoproteasomes.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München , 85748 Garching, Germany
| | - Andrej Besse
- Department of Hematology and Oncology, Kantonsspital St. Gallen , 9007 St. Gallen, Switzerland
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexei F Kisselev
- Department of Pharmacology and Toxicology and Norris Cotton Cancer Center, Geisel Cancer School of Medicine at Dartmouth , 1 Medical Center Drive HB7936, Lebanon, New Hampshire 03756, United States
| | - Mario van der Stelt
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christoph Driessen
- Department of Hematology and Oncology, Kantonsspital St. Gallen , 9007 St. Gallen, Switzerland
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München , 85748 Garching, Germany
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
116
|
de Bruin G, Xin BT, Florea BI, Overkleeft HS. Proteasome Subunit Selective Activity-Based Probes Report on Proteasome Core Particle Composition in a Native Polyacrylamide Gel Electrophoresis Fluorescence-Resonance Energy Transfer Assay. J Am Chem Soc 2016; 138:9874-80. [PMID: 27428761 DOI: 10.1021/jacs.6b04207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mammalian tissues contain a single proteasome species: constitutive proteasomes. Tissues able to express, next to the constitutive proteasome catalytic activities (β1c, β2c, β5c), the three homologous activities, β1i, β2i and β5i, may contain numerous distinct proteasome particles: immunoproteasomes (composed of β1i, β2i and β5i) and mixed proteasomes containing a mix of these activities. This work describes the development of new subunit-selective activity-based probes and their use in an activity-based protein profiling assay that allows the detection of various proteasome particles. Tissue extracts are treated with subunit-specific probes bearing distinct fluorophores and subunit-specific inhibitors. The samples are resolved by native polyacrylamide gel electrophoresis, after which fluorescence-resonance energy transfer (FRET) reports on the nature of proteasomes present.
Collapse
Affiliation(s)
- Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
117
|
Rao G, Yadav VR, Awasthi S, Roberts PR, Awasthi V. Effect of liposome-encapsulated hemoglobin resuscitation on proteostasis in small intestinal epithelium after hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 2016; 311:G180-91. [PMID: 27288424 PMCID: PMC4967179 DOI: 10.1152/ajpgi.00157.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/29/2016] [Indexed: 01/31/2023]
Abstract
Gut barrier dysfunction is the major trigger for multiorgan failure associated with hemorrhagic shock (HS). Although the molecular mediators responsible for this dysfunction are unclear, oxidative stress-induced disruption of proteostasis contributes to the gut pathology in HS. The objective of this study was to investigate whether resuscitation with nanoparticulate liposome-encapsulated hemoglobin (LEH) is able to restore the gut proteostatic mechanisms. Sprague-Dawley rats were recruited in four groups: control, HS, HS+LEH, and HS+saline. HS was induced by withdrawing 45% blood, and isovolemic LEH or saline was administered after 15 min of shock. The rats were euthanized at 6 h to collect plasma and ileum for measurement of the markers of oxidative stress, unfolded protein response (UPR), proteasome function, and autophagy. HS significantly increased the protein and lipid oxidation, trypsin-like proteasome activity, and plasma levels of IFNγ. These effects were prevented by LEH resuscitation. However, saline was not able to reduce protein oxidation and plasma IFNγ in hemorrhaged rats. Saline resuscitation also suppressed the markers of UPR and autophagy below the basal levels; the HS or LEH groups showed no effect on the UPR and autophagy. Histological analysis showed that LEH resuscitation significantly increased the villus height and thickness of the submucosal and muscularis layers compared with the HS and saline groups. Overall, the results showed that LEH resuscitation was effective in normalizing the indicators of proteostasis stress in ileal tissue. On the other hand, saline-resuscitated animals showed a decoupling of oxidative stress and cellular protective mechanisms.
Collapse
Affiliation(s)
- Geeta Rao
- 1Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Vivek R. Yadav
- 1Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Shanjana Awasthi
- 1Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Pamela R. Roberts
- 2Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
118
|
Emerging role of immunoproteasomes in pathophysiology. Immunol Cell Biol 2016; 94:812-820. [PMID: 27192937 DOI: 10.1038/icb.2016.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022]
Abstract
The immunoproteasome is a proteasome variant that is found only in jawed vertebrates. It is responsible for degrading intracellular proteins to generate a major source of peptides with substantial major histocompatibility complex I binding affinity. The immunoproteasome also has roles in T-cell survival, differentiation and proliferation in various pathological conditions. In humans, any alteration in the expression, assembly or function of the immunoproteasome can lead to cancer, autoimmune disorders or inflammatory diseases. Although the roles of the immunoproteasome in cancer and neurodegenerative disorders have been extensively studied, its significance in other disease conditions has only recently become known. Therefore, there is renewed interest in the development of drugs, vaccines and biomarkers that target the immunoproteasome. The current review highlights the involvement of this complex in disease pathology in addition to the advances made in immunoproteasome research.
Collapse
|
119
|
Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, Irmler M, Overkleeft HS, Beckers J, Eickelberg O, Meiners S, Stoeger T. Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ 2016; 23:1026-37. [PMID: 26990663 PMCID: PMC4987736 DOI: 10.1038/cdd.2016.3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 02/04/2023] Open
Abstract
The proteasome is a central regulatory hub for intracellular signaling by degrading numerous signaling mediators. Immunoproteasomes are specialized types of proteasomes involved in shaping adaptive immune responses, but their role in innate immune signaling is still elusive. Here, we analyzed immunoproteasome function for polarization of alveolar macrophages, highly specialized tissue macrophages of the alveolar lung surface. Classical activation (M1 polarization) of primary alveolar macrophages by LPS/IFNγ transcriptionally induced all three immunoproteasome subunits, low molecular mass protein 2 (LMP2), LMP7 and multicatalytic endopeptidase complex-like 1, which was accompanied by increased immunoproteasome activity in M1 cells. Deficiency of LMP7 had no effect on the LPS/IFNγ-triggered M1 profile indicating that immunoproteasome function is dispensable for classical alveolar macrophage activation. In contrast, IL-4 triggered alternative (M2) activation of primary alveolar macrophages was accompanied by a transcriptionally independent amplified expression of LMP2 and LMP7 and an increase in immunoproteasome activity. Alveolar macrophages from LMP7 knockout mice disclosed a distorted M2 profile upon IL-4 stimulation as characterized by increased M2 marker gene expression and CCL17 cytokine release. Comparative transcriptome analysis revealed enrichment of IL-4-responsive genes and of genes involved in cellular response to defense, wounding and inflammation in LMP7-deficient alveolar macrophages indicating a distinct M2 inflammation resolving phenotype. Moreover, augmented M2 polarization was accompanied by amplified AKT/STAT6 activation and increased RNA and protein expression of the M2 master transcription factor interferon regulatory factor 4 in LMP7(-/-) alveolar macrophages. IL-13 stimulation of LMP7-deficient macrophages induced a similar M2-skewed profile indicative for augmented signaling via the IL-4 receptor α (IL4Rα). IL4Rα expression was generally elevated only on protein but not RNA level in LMP7(-/-) alveolar macrophages. Importantly, specific catalytic inhibition with an LMP7-specific proteasome inhibitor confirmed augmented IL-4-mediated M2 polarization of alveolar macrophages. Our results thus suggest a novel role of immunoproteasome function for regulating alternative activation of macrophages by limiting IL4Rα expression and signaling.
Collapse
Affiliation(s)
- S Chen
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - I E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - O Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - T Baumann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Y Yu
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Y Wu
- Max von Pettenkofer-Institute, Ludwig-Maximilians University, Munich, Germany
| | - M Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - H S Overkleeft
- Department of Bio-Organic Synthesis, Leiden University, Leiden, The Netherlands
| | - J Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, Freising, Germany
| | - O Eickelberg
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - S Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - T Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
120
|
Nonpeptidic Selective Inhibitors of the Chymotrypsin-Like (β5 i) Subunit of the Immunoproteasome. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
121
|
Raynes R, Pomatto LCD, Davies KJA. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med 2016; 50:41-55. [PMID: 27155164 DOI: 10.1016/j.mam.2016.05.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators.
Collapse
Affiliation(s)
- Rachel Raynes
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
122
|
Kirschner F, Reppe K, Andresen N, Witzenrath M, Ebstein F, Kloetzel PM. Proteasome β5i Subunit Deficiency Affects Opsonin Synthesis and Aggravates Pneumococcal Pneumonia. PLoS One 2016; 11:e0153847. [PMID: 27100179 PMCID: PMC4839637 DOI: 10.1371/journal.pone.0153847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Immunoproteasomes, harboring the active site subunits β5i/LMP7, β1i/LMP2, and β2i/MECL1 exert protective, regulatory or modulating functions during infection-induced immune responses. Immunoproteasomes are constitutively expressed in hematopoietic derived cells, constituting the first line of defense against invading pathogens. To clarify the impact of immunoproteasomes on the innate immune response against Streptococcus pneumoniae, we characterized the progression of disease and analyzed the systemic immune response in β5i/LMP7-/- mice. Our data show that β5i/LMP7 deficiency, which affected the subunit composition of proteasomes in murine macrophages and liver, was accompanied by reduced transcription of genes encoding immune modulating molecules such as pentraxins, ficolins, and collectins. The diminished opsonin expression suggested an impaired humoral immune response against invading pneumococci resulting in an aggravated systemic dissemination of S. pneumoniae in β5i/LMP7-/- mice. The impaired bacterial elimination in β5i/LMP7-/- mice was accompanied by an aggravated course of pneumonia with early mortality as a consequence of critical illness during the late phase of disease. In summary our results highlight an unsuspected role for immuno-subunits in modulating the innate immune response to extracellular bacterial infections.
Collapse
Affiliation(s)
- Felicia Kirschner
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Andresen
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frédéric Ebstein
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
123
|
Johnston-Carey HK, Pomatto LCD, Davies KJA. The Immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol 2016; 51:268-81. [PMID: 27098648 DOI: 10.3109/10409238.2016.1172554] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Immunoproteasome has traditionally been viewed primarily for its role in peptide production for antigen presentation by the major histocompatibility complex, which is critical for immunity. However, recent research has shown that the Immunoproteasome is also very important for the clearance of oxidatively damaged proteins in homeostasis, and especially during stress and disease. The importance of the Immunoproteasome in protein degradation has become more evident as diseases characterized by protein aggregates have also been linked to deficiencies of the Immunoproteasome. Additionally, there are now diseases defined by mutations or polymorphisms within Immunoproteasome-specific subunit genes, further suggesting its crucial role in cytokine signaling and protein homeostasis (or "proteostasis"). The purpose of this review is to highlight our growing understanding of the importance of the Immunoproteasome in the management of protein quality control, and the detrimental impact of its dysregulation during disease and aging.
Collapse
Affiliation(s)
- Helen K Johnston-Carey
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Laura C D Pomatto
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Kelvin J A Davies
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA ;,b Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences , Los Angeles , CA , USA
| |
Collapse
|
124
|
Sosič I, Gobec M, Brus B, Knez D, Živec M, Konc J, Lešnik S, Ogrizek M, Obreza A, Žigon D, Janežič D, Mlinarič-Raščan I, Gobec S. Nonpeptidic Selective Inhibitors of the Chymotrypsin-Like (β5 i) Subunit of the Immunoproteasome. Angew Chem Int Ed Engl 2016; 55:5745-8. [PMID: 27037901 DOI: 10.1002/anie.201600190] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/12/2016] [Indexed: 12/31/2022]
Abstract
Elevated expression of the immunoproteasome has been associated with autoimmune diseases, inflammatory diseases, and various types of cancer. Selective inhibitors of the immunoproteasome are not only scarce, but also almost entirely restricted to peptide-based compounds. Herein, we describe nonpeptidic reversible inhibitors that selectively block the chymotrypsin-like (β5i) subunit of the human immunoproteasome in the low micromolar range. The most potent of the reversibly acting compounds were then converted into covalent, irreversible, nonpeptidic inhibitors that retained selectivity for the β5i subunit. In addition, these inhibitors discriminate between the immunoproteasome and the constitutive proteasome in cell-based assays. Along with their lack of cytotoxicity, these data point to these nonpeptidic compounds being suitable for further investigation as β5i-selective probes for possible application in noncancer diseases related to the immunoproteasome.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Boris Brus
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Matej Živec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janez Konc
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Samo Lešnik
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Mitja Ogrizek
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleš Obreza
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Dušan Žigon
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
125
|
Gvozdeva OV, Belogurov AA, Kuzina ES, Gabibov AG, Meschaninova MI, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Modified siRNA effectively silence inducible immunoproteasome subunits in NSO cells. Biochimie 2016; 125:75-82. [PMID: 26944796 DOI: 10.1016/j.biochi.2016.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022]
Abstract
The pathogenesis of autoimmune and neurodegenerative diseases involves overexpression of inducible subunits of the immunoproteasome. However, the clinical application of inhibitors to inducible subunits of the immunoproteasome has been limited due to systemic toxicity. Here, we designed siRNAs that efficiently silence LMP2, LMP7 and MECL-1 gene expression. Inducible subunits of the immunoproteasome are complex siRNA targets because they have a long half-life; therefore, we introduced 2'-O-methyl modifications into nuclease-sensitive sites. This led to 90-95% silencing efficiency and prolonged silencing, eliminating the need for multiple transfections. Furthermore, we showed that in the absence of transfection reagent, siRNAs with lipophilic residues were able to penetrate cells more effectively and decrease the expression of inducible immunoproteasome subunits by 35% after 5 days. These results show that siRNA targeted to inducible immunoproteasome subunits have great potential for the development of novel therapeutics for autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga V Gvozdeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Alexey A Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, Miklukho-Maklaya str., Moscow, 117997, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya str., Kazan, Tatarstan, 420008 Russia
| | - Ekaterina S Kuzina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander G Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, Miklukho-Maklaya str., Moscow, 117997, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya str., Kazan, Tatarstan, 420008 Russia
| | - Mariya I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Alya G Ven'yaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia.
| |
Collapse
|
126
|
Joyce S. Immunoproteasomes edit tumors, which then escapes immune recognition. Eur J Immunol 2015; 45:3241-5. [PMID: 26527367 PMCID: PMC4695966 DOI: 10.1002/eji.201546100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 01/23/2023]
Abstract
In 1985, John Monaco--the discoverer of LMP-2 and -7, the inducible components of the immunoproteasome--asked his advanced immunology class as to why the MHC region contained not only structural genes, but several others as well, whose functions were then unknown. As we drew a blank, he quipped: perchance because many of the MHC genes are induced by IFN-γ! The ensuing three decades have witnessed the unveiling of the profound fundamental and clinical implications of that classroom tête-à-tête. Amongst its multitudinous effects, IFN-γ induces genes enhancing antigen processing and presentation to T cells; such as those encoding cellular proteases and activators of proteases. In this issue, Keller et al. [Eur. J. Immunol. 2015. 45: 3257-3268] demonstrate that the limited success of MART-1/Melan-A-targeted immunotherapy in melanoma patients could be due to inefficient MART-1(26-35) presentation, owing to the proteolytic activities of IFN-γ-inducible β2i/MECL-1, proteasome activator 28 (PA28), and endoplasmic reticulum-associated aminopeptidase-associated with antigen processing (ERAP). Specifically, whilst β2i and PA28 impede MART-1(26-35) liberation from its precursor protein, ERAP-1 degrades this epitope. Hence, critical to effective cancer immunotherapy is deep knowledge of T-cell-targeted tumor antigens and how cellular proteases generate protective epitope(s) from them, or destroy them.
Collapse
Affiliation(s)
- Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System and the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
127
|
Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, Montealegre G, Biancotto A, Reinhardt A, Almeida de Jesus A, Pelletier M, Tsai WL, Remmers EF, Kardava L, Hill S, Kim H, Lachmann HJ, Megarbane A, Chae JJ, Brady J, Castillo RD, Brown D, Casano AV, Gao L, Chapelle D, Huang Y, Stone D, Chen Y, Sotzny F, Lee CCR, Kastner DL, Torrelo A, Zlotogorski A, Moir S, Gadina M, McCoy P, Wesley R, Rother KI, Hildebrand PW, Brogan P, Krüger E, Aksentijevich I, Goldbach-Mansky R. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 2015; 125:4196-211. [PMID: 26524591 DOI: 10.1172/jci81260] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023] Open
Abstract
Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production.
Collapse
|
128
|
Keller M, Ebstein F, Bürger E, Textoris-Taube K, Gorny X, Urban S, Zhao F, Dannenberg T, Sucker A, Keller C, Saveanu L, Krüger E, Rothkötter HJ, Dahlmann B, Henklein P, Voigt A, Kuckelkorn U, Paschen A, Kloetzel PM, Seifert U. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition. Eur J Immunol 2015; 45:3257-68. [PMID: 26399368 DOI: 10.1002/eji.201445243] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 08/23/2015] [Accepted: 09/21/2015] [Indexed: 01/29/2023]
Abstract
The immunodominant MART-1(26(27)-35) epitope, liberated from the differentiation antigen melanoma antigen recognized by T cells/melanoma antigen A (MART-1/Melan-A), has been frequently targeted in melanoma immunotherapy, but with limited clinical success. Previous studies suggested that this is in part due to an insufficient peptide supply and epitope presentation, since proteasomes containing the immunosubunits β5i/LMP7 (LMP, low molecular weight protein) or β1i/LMP2 and β5i/LMP7 interfere with MART-1(26-35) epitope generation in tumor cells. Here, we demonstrate that in addition the IFN-γ-inducible proteasome subunit β2i/MECL-1 (multicatalytic endopeptidase complex-like 1), proteasome activator 28 (PA28), and ER-resident aminopeptidase 1 (ERAP1) impair MART-1(26-35) epitope generation. β2i/MECL-1 and PA28 negatively affect C- and N-terminal cleavage and therefore epitope liberation from the proteasome, whereas ERAP1 destroys the MART-1(26-35) epitope by overtrimming activity. Constitutive expression of PA28 and ERAP1 in melanoma cells indicate that both interfere with MART-1(26-35) epitope generation even in the absence of IFN-γ. In summary, our results provide first evidence that activities of different antigen-processing components contribute to an inefficient MART-1(26-35) epitope presentation, suggesting the tumor cell's proteolytic machinery might have an important impact on the outcome of epitope-specific immunotherapies.
Collapse
Affiliation(s)
- Martin Keller
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frédéric Ebstein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Bürger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Xenia Gorny
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Sabrina Urban
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fang Zhao
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Tanja Dannenberg
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Antje Sucker
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Christin Keller
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann-Josef Rothkötter
- Institut für Anatomie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Burkhardt Dahlmann
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Henklein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antje Voigt
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Kuckelkorn
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Paschen
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | | | - Ulrike Seifert
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
129
|
Characterization of the Interaction between the Matrix Protein of Vesicular Stomatitis Virus and the Immunoproteasome Subunit LMP2. J Virol 2015; 89:11019-29. [PMID: 26311888 DOI: 10.1128/jvi.01753-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. IMPORTANCE The immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.
Collapse
|
130
|
Alpha-ring Independent Assembly of the 20S Proteasome. Sci Rep 2015; 5:13130. [PMID: 26286114 PMCID: PMC4541365 DOI: 10.1038/srep13130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
Archaeal proteasomes share many features with their eukaryotic counterparts and serve as important models for assembly. Proteasomes are also found in certain bacterial lineages yet their assembly mechanism is thought to be fundamentally different. Here we investigate α-ring formation using recombinant proteasomes from the archaeon Methanococcus maripaludis. Through an engineered disulfide cross-linking strategy, we demonstrate that double α-rings are structurally analogous to half-proteasomes and can form independently of single α-rings. More importantly, via targeted mutagenesis, we show that single α-rings are not required for the efficient assembly of 20S proteasomes. Our data support updating the currently held "α-ring first" view of assembly, initially proposed in studies of archaeal proteasomes, and present a way to reconcile the seemingly separate bacterial assembly mechanism with the rest of the proteasome realm. We suggest that a common assembly network underpins the absolutely conserved architecture of proteasomes across all domains of life.
Collapse
|
131
|
Rao G, Croft B, Teng C, Awasthi V. Ubiquitin-Proteasome System in Neurodegenerative Disorders. JOURNAL OF DRUG METABOLISM & TOXICOLOGY 2015; 6:187. [PMID: 30761219 PMCID: PMC6370320 DOI: 10.4172/2157-7609.1000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer's and Parkinson's. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in neurodegenerative disorders and potential utility of proteasomal modulation therein.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Brandon Croft
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Chengwen Teng
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
132
|
Zhang HM, Fu J, Hamilton R, Diaz V, Zhang Y. The mammalian target of rapamycin modulates the immunoproteasome system in the heart. J Mol Cell Cardiol 2015; 86:158-67. [PMID: 26239133 DOI: 10.1016/j.yjmcc.2015.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/11/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) plays an important role in cardiac development and function. Inhibition of mTOR by rapamycin has been shown to attenuate pathological cardiac hypertrophy and improve the function of aging heart, accompanied by an inhibition of the cardiac proteasome activity. The current study aimed to determine the potential mechanism(s) by which mTOR inhibition modulates cardiac proteasome. Inhibition of mTOR by rapamycin was found to reduce primarily the immunoproteasome in both H9c2 cells in vitro and mouse heart in vivo, without significant effect on the constitutive proteasome and protein ubiquitination. Concurrent with the reduction of the immunoproteasome, rapamycin reduced two important inflammatory response pathways, the NF-κB and Stat3 signaling. In addition, rapamycin attenuated the induction of the immunoproteasome in H9c2 cells by inflammatory cytokines, including INFγ and TNFα, by suppressing NF-κB signaling. These data indicate that rapamycin indirectly modulated immunoproteasome through the suppression of inflammatory response pathways. Lastly, the role of the immunoproteasome during the development of cardiac hypertrophy was investigated. Administration of a specific inhibitor of the immunoproteasome ONX 0914 attenuated isoproterenol-induced cardiac hypertrophy, suggesting that the immunoproteasome may be involved in the development of cardiac hypertrophy and therefore could be a therapeutic target. In conclusion, rapamycin inhibits the immunoproteasome through its effect on the inflammatory signaling pathways and the immunoproteasome could be a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ryan Hamilton
- Barshop Institute, The University of Texas Health Science Center at San Antonio, TX 78249, United States
| | - Vivian Diaz
- Barshop Institute, The University of Texas Health Science Center at San Antonio, TX 78249, United States
| | - Yiqiang Zhang
- Barshop Institute, The University of Texas Health Science Center at San Antonio, TX 78249, United States; Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78249, United States
| |
Collapse
|
133
|
Human Tumor Antigens and Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948501. [PMID: 26161423 PMCID: PMC4487697 DOI: 10.1155/2015/948501] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
With the recent developments of adoptive T cell therapies and the use of new monoclonal antibodies against the immune checkpoints, immunotherapy is at a turning point. Key players for the success of these therapies are the cytolytic T lymphocytes, which are a subset of T cells able to recognize and kill tumor cells. Here, I review the nature of the antigenic peptides recognized by these T cells and the processes involved in their presentation. I discuss the importance of understanding how each antigenic peptide is processed in the context of immunotherapy and vaccine delivery.
Collapse
|
134
|
Keller IE, Vosyka O, Takenaka S, Kloß A, Dahlmann B, Willems LI, Verdoes M, Overkleeft HS, Marcos E, Adnot S, Hauck SM, Ruppert C, Günther A, Herold S, Ohno S, Adler H, Eickelberg O, Meiners S. Regulation of immunoproteasome function in the lung. Sci Rep 2015; 5:10230. [PMID: 25989070 PMCID: PMC4437306 DOI: 10.1038/srep10230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Impaired immune function contributes to the development of chronic obstructive pulmonary disease (COPD). Disease progression is further exacerbated by pathogen infections due to impaired immune responses. Elimination of infected cells is achieved by cytotoxic CD8+ T cells that are activated by MHC I-mediated presentation of pathogen-derived antigenic peptides. The immunoproteasome, a specialized form of the proteasome, improves generation of antigenic peptides for MHC I presentation thereby facilitating anti-viral immune responses. However, immunoproteasome function in the lung has not been investigated in detail yet. In this study, we comprehensively characterized the function of immunoproteasomes in the human and murine lung. Parenchymal cells of the lung express low constitutive levels of immunoproteasomes, while they are highly and specifically expressed in alveolar macrophages. Immunoproteasome expression is not altered in whole lung tissue of COPD patients. Novel activity-based probes and native gel analysis revealed that immunoproteasome activities are specifically and rapidly induced by IFNγ treatment in respiratory cells in vitro and by virus infection of the lung in mice. Our results suggest that the lung is potentially capable of mounting an immunoproteasome-mediated efficient adaptive immune response to intracellular infections.
Collapse
Affiliation(s)
- Ilona E Keller
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- 1] Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany [2] Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alexander Kloß
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Burkhardt Dahlmann
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lianne I Willems
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Serge Adnot
- INSERM U955, Département de Physiologie, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Andreas Günther
- 1] Department of Internal Medicine, Justus-Liebig-University Giessen, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany [2] Agaplesion Pneumologische Klinik Waldhof-Elgershausen, Greifenstein, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Section of Infectious Diseases, Justus- Liebig-University, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Shinji Ohno
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Heiko Adler
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
135
|
Abstract
All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.
Collapse
Affiliation(s)
- Philippe Fort
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| | - Andrey V Kajava
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France Institut de Biologie Computationnelle, Montpellier, France
| | - Fredéric Delsuc
- Université de Montpellier, France CNRS, IRD, Institut des Sciences de l'Evolution, UMR 5554, Montpellier, France
| | - Olivier Coux
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| |
Collapse
|
136
|
Pickering AM, Lehr M, Miller RA. Lifespan of mice and primates correlates with immunoproteasome expression. J Clin Invest 2015; 125:2059-68. [PMID: 25866968 PMCID: PMC4463211 DOI: 10.1172/jci80514] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/05/2015] [Indexed: 12/24/2022] Open
Abstract
There is large variation in lifespan among different species, and there is evidence that modulation of proteasome function may contribute to longevity determination. Comparative biology provides a powerful tool for identifying genes and pathways that control the rate of aging. Here, we evaluated skin-derived fibroblasts and demonstrate that among primate species, longevity correlated with an elevation in proteasomal activity as well as immunoproteasome expression at both the mRNA and protein levels. Immunoproteasome enhancement occurred with a concurrent increase in other elements involved in MHC class I antigen presentation, including β-2 microglobulin, (TAP1), and TAP2. Fibroblasts from long-lived primates also appeared more responsive to IFN-γ than cells from short-lived primate species, and this increase in IFN-γ responsiveness correlated with elevated expression of the IFN-γ receptor protein IFNGR2. Elevation of immunoproteasome and proteasome activity was also observed in the livers of long-lived Snell dwarf mice and in mice exposed to drugs that have been shown to extend lifespan, including rapamycin, 17-α-estradiol, and nordihydroguaiaretic acid. This work suggests that augmented immunoproteasome function may contribute to lifespan differences in mice and among primate species.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Animals
- Antigen Presentation
- Cells, Cultured
- Dwarfism/genetics
- Dwarfism/physiopathology
- Estradiol/pharmacology
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Interferon-gamma/pharmacology
- Janus Kinases/physiology
- Longevity/drug effects
- Longevity/immunology
- Longevity/physiology
- Male
- Masoprocol/pharmacology
- Mice/physiology
- Mice, Inbred C3H
- Mice, Mutant Strains
- Oxidative Stress
- Primates/physiology
- Proteasome Endopeptidase Complex/biosynthesis
- Proteasome Endopeptidase Complex/chemistry
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Subunits
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Interferon/physiology
- STAT Transcription Factors/physiology
- Signal Transduction
- Sirolimus/pharmacology
- Species Specificity
- Up-Regulation
- beta 2-Microglobulin/biosynthesis
- beta 2-Microglobulin/genetics
- Interferon gamma Receptor
Collapse
|
137
|
Crystal Structure of the Human 20S Proteasome in Complex with Carfilzomib. Structure 2015; 23:418-24. [DOI: 10.1016/j.str.2014.11.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 11/21/2022]
|
138
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
139
|
Goldbach-Mansky R, de Jesus AA, McDermott MF, Kastner DL. Monogenic autoinflammatory diseases. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
140
|
Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat 2015; 18:18-35. [DOI: 10.1016/j.drup.2014.12.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
|
141
|
Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid Redox Signal 2014; 21:2419-43. [PMID: 24437477 DOI: 10.1089/ars.2013.5794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. RECENT ADVANCES Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. CRITICAL ISSUES The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. FUTURE DIRECTIONS An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and will generate leads for therapeutic intervention.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre , Leiden, The Netherlands
| | | | | | | |
Collapse
|
142
|
Cornish Carmony K, Sharma LK, Lee DM, Park JE, Lee W, Kim KB. Elucidating the catalytic subunit composition of distinct proteasome subtypes: a crosslinking approach employing bifunctional activity-based probes. Chembiochem 2014; 16:284-92. [PMID: 25477005 DOI: 10.1002/cbic.201402491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Indexed: 12/25/2022]
Abstract
In addition to two well-recognized proteasome subtypes-constitutive proteasomes and immunoproteasomes-mounting evidence also suggests the existence of intermediate proteasome subtypes containing unconventional mixtures of catalytic subunits. Although they appear to play unique biological roles, the lack of practical methods for detecting distinct proteasome subtypes has limited functional investigations. Here, we report the development of activity-based probes that crosslink two catalytic subunits within intact proteasome complexes. Identification of the crosslinked subunit pairs provides direct evidence of the catalytic subunit composition of proteasomes. Using these probes, we found that U266 multiple myeloma cells contain intermediate proteasomes comprising both β1i and β2, but not β1 and β2i, consistent with previous findings with other cell types. Our bifunctional probes can be utilized in functional investigations of distinct proteasome subtypes in various biological settings.
Collapse
Affiliation(s)
- Kimberly Cornish Carmony
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596 (USA)
| | | | | | | | | | | |
Collapse
|
143
|
Orlovsky M, Dosenko V, Spiga F, Skibo G, Lightman S. Hippocampus remodeling by chronic stress accompanied by GR, proteasome and caspase-3 overexpression. Brain Res 2014; 1593:83-94. [DOI: 10.1016/j.brainres.2014.09.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022]
|
144
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
145
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
146
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
147
|
Donohue TM, Thomes PG. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity. Redox Biol 2014; 3:29-39. [PMID: 25462063 PMCID: PMC4297932 DOI: 10.1016/j.redox.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin-proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense.
Collapse
Affiliation(s)
- Terrence M Donohue
- Research Service (151), VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, College of Medicine, USA; Department of Biochemistry and Molecular Biology, College of Medicine, USA; Department of Pathology and Microbiology, College of Medicine, USA; The Center for Environmental Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Paul G Thomes
- Research Service (151), VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, College of Medicine, USA
| |
Collapse
|
148
|
Shashova EE, Lyupina YV, Glushchenko SA, Slonimskaya EM, Savenkova OV, Kulikov AM, Gornostaev NG, Kondakova IV, Sharova NP. Proteasome functioning in breast cancer: connection with clinical-pathological factors. PLoS One 2014; 9:e109933. [PMID: 25329802 PMCID: PMC4201529 DOI: 10.1371/journal.pone.0109933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is one of four oncology diseases that are most widespread in the world. Moreover, breast cancer is one of leading causes of cancer-related deaths in female population within economically developed regions of the world. So far, detection of new mechanisms of breast cancer development is very important for discovery of novel areas in which therapy approaches may be elaborated. The objective of the present study is to investigate involvement of proteasomes, which cleave up to 90% of cellular proteins and regulate numerous cellular processes, in mechanisms of breast cancer development. Proteasome characteristics in 106 patient breast carcinomas and adjacent tissues, as well as relationships of detected proteasome parameters with clinical-pathological factors, were investigated. Proteasome chymotrypsin-like activity was evaluated by hydrolysis of fluorogenic peptide Suc-LLVY-AMC. The expression of proteasome subunits was studied by Western-blotting and immunohistochemistry. The wide range of chymotrypsin-like activity in tumors was detected. Activity in tumors was higher if compared to adjacent tissues in 76 from 106 patients. Multiple analysis of generalized linear models discovered that in estrogen α-receptor absence, tumor growth was connected with the enhanced expression of proteasome immune subunit LMP2 and proteasome activator PA700 in tumor (at 95% confidence interval). Besides, by this analysis we detected some phenomena in adjacent tissue, which are important for tumor growth and progression of lymph node metastasis in estrogen α-receptor absence. These phenomena are related to the enhanced expression of activator PA700 and immune subunit LMP7. Thus, breast cancer development is connected with functioning of immune proteasome forms and activator PA700 in patients without estrogen α-receptors in tumor cells. These results could indicate a field for search of new therapy approaches for this category of patients, which has the worst prognosis of health recovery.
Collapse
Affiliation(s)
- Elena E. Shashova
- Department of Experimental Oncology, Cancer Research Institute of Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Yulia V. Lyupina
- Department of Biochemistry of Ontogenesis Processes, NK Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A. Glushchenko
- Department of Pathological Anatomy and Cytology, Cancer Research Institute of Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Elena M. Slonimskaya
- Department of General Oncology, Cancer Research Institute of Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
- Department of Oncology, Siberian State Medical University, Tomsk, Russia
| | - Olga V. Savenkova
- Department of Pathological Anatomy and Cytology, Cancer Research Institute of Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Alexey M. Kulikov
- Department of Evolutionary and Developmental Genetics, NK Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Nikolay G. Gornostaev
- Department of Evolutionary and Developmental Genetics, NK Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Kondakova
- Department of Experimental Oncology, Cancer Research Institute of Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Natalia P. Sharova
- Department of Biochemistry of Ontogenesis Processes, NK Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
149
|
Dinter J, Gourdain P, Lai NY, Duong E, Bracho-Sanchez E, Rucevic M, Liebesny PH, Xu Y, Shimada M, Ghebremichael M, Kavanagh DG, Le Gall S. Different antigen-processing activities in dendritic cells, macrophages, and monocytes lead to uneven production of HIV epitopes and affect CTL recognition. THE JOURNAL OF IMMUNOLOGY 2014; 193:4322-4334. [PMID: 25230751 DOI: 10.4049/jimmunol.1400491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs), macrophages (MPs), and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous Ags preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum translocation, trimming, and MHC-I presentation. In this study, we compared the capacity of DCs, MPs, and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848, and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs, and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs, and monocytes. Differences in Ag-processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Pauline Gourdain
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Nicole Y Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Marijana Rucevic
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Paul H Liebesny
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yang Xu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Mariko Shimada
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Musie Ghebremichael
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Daniel G Kavanagh
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
150
|
Changes in proteasome chymotrypsin-like activity during the development of human mammary and thyroid carcinomas. Bull Exp Biol Med 2014; 156:242-4. [PMID: 24319759 DOI: 10.1007/s10517-013-2321-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in the proteasome chymotrypsin-like activity in mammary and thyroid carcinomas in comparison with the adjacent tissue were studied at stages T(1-4)N(0-3)M(0) and T(2-3)N(0-1)M(0), respectively. The activities changed in a wave-like manner over the course of mammary carcinoma growth in cases with and without metastases. The minimum increment of the activity in the tumor was recorded during the T(2)N(0) stage in the absence of local metastases. The increment of the activity reached the peak in N(1) tumors of the same size with metastases. The activities in the tumor and adjacent tissues virtually did not differ during the T(3-4)N(1-3) stages. The time course of proteasome activity changes in thyroid tumors of the studied stages was similar to that in mammary carcinoma. The results can be used for development of methods for evaluating the aggressiveness of mammary and thyroid tumors.
Collapse
|