101
|
Chen YF. Temporal Single-Cell Sequencing Analysis Reveals That GPNMB-Expressing Macrophages Potentiate Muscle Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4108866. [PMID: 38585871 PMCID: PMC10996783 DOI: 10.21203/rs.3.rs-4108866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Macrophages play a crucial role in coordinating the skeletal muscle repair response, but their phenotypic diversity and the transition of specialized subsets to resolution-phase macrophages remain poorly understood. To address this issue, we induced injury and performed single-cell RNA sequencing on individual cells in skeletal muscle at different time points. Our analysis revealed a distinct macrophage subset that expressed high levels of Gpnmb and that coexpressed critical factors involved in macrophage-mediated muscle regeneration, including Igf1, Mertk, and Nr1h3. Gpnmb gene knockout inhibited macrophage-mediated efferocytosis and impaired skeletal muscle regeneration. Functional studies demonstrated that GPNMB acts directly on muscle cells in vitro and improves muscle regeneration in vivo. These findings provide a comprehensive transcriptomic atlas of macrophages during muscle injury, highlighting the key role of the GPNMB macrophage subset in regenerative processes. Targeting GPNMB signaling in macrophages could have therapeutic potential for restoring skeletal muscle integrity and homeostasis.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taiwan
| |
Collapse
|
102
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
103
|
Haase M, Comlekoglu T, Petrucciani A, Peirce SM, Blemker SS. Agent-based model demonstrates the impact of nonlinear, complex interactions between cytokines on muscle regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.14.553247. [PMID: 37645968 PMCID: PMC10462020 DOI: 10.1101/2023.08.14.553247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSC), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple time points following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting ECM-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.
Collapse
|
104
|
Chan HL, Zhang XHF. Nutrient Sensing in Macrophages Linked to Reorganized Tumor Vasculature. Cancer Res 2024; 84:650-651. [PMID: 38241708 DOI: 10.1158/0008-5472.can-24-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Macrophages are plastic immune cells that have varying functions dependent on stimulation from their environment. In a recent issue of Immunity, Do and colleagues demonstrated that activating mechanistic target of rapamycin complex 1 signaling in tumor macrophages alters their metabolism, localization, and function. Specifically, these tumor macrophages promote vascular remodeling that develops a hypoxic environment toxic to cancer cells. This culminates in a tangible reduction in tumor burden in a murine model of breast cancer. Their findings reveal a unique strategy to promote vascular remodeling through macrophage polarization and thereby highlight the intimate connections between macrophage metabolism and function. Additionally, their model highlights parallels between tumor progression and wound healing contexts while emphasizing the amplified effect of small perturbations to a tumor ecosystem.
Collapse
Affiliation(s)
- Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Baylor College of Medicine Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
- The Robert and Janice McNair Foundation MD/PhD Scholars, Baylor College of Medicine, Houston, Texas
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
105
|
Miyagawa F, Ozato K, Tagaya Y, Asada H. Type I IFN Derived from Ly6C hi Monocytes Suppresses Type 2 Inflammation in a Murine Model of Atopic Dermatitis. J Invest Dermatol 2024; 144:520-530.e2. [PMID: 37739337 DOI: 10.1016/j.jid.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
The roles of innate immune cells, including eosinophils, basophils, and group 2 innate lymphoid cells, in atopic dermatitis (AD) have been well-documented, whereas that of monocytes, another component of the innate immunity, remains rather poorly understood, thus necessitating the topic of this study. In addition, cytokines and cellular pathways needed for the resolution of type 2 inflammation in AD need further investigation. Using a murine AD model, we report here that (i) Ly6Chi monocytes were rapidly recruited to the AD lesion in a CCR2-dependent manner, blockade of which exacerbated AD; (ii) type I IFN production is profoundly involved in this suppression because the blockade of it by genetic depletion or antibody neutralization exacerbated AD; and (iii) Ly6Chi monocytes operate through the production of type I IFN because Ly6Chi monocytes from Irf7-null mice, which lack type I IFN production, failed to rescue Ccr2-/- mice from severe AD upon adoptive transfer. In addition, in vitro studies demonstrated type I IFN suppressed basophil expansion from bone marrow progenitor cells and survival of mature basophils. Collectively, our work suggests that Ly6Chi monocytes are the first and dominant inflammatory cells reaching AD lesions that negatively regulate type 2 inflammation through the production of type I IFN.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan.
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yutaka Tagaya
- Cell Biology Lab, Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
106
|
Ryu H, Jeong HH, Lee S, Lee MK, Kim MJ, Lee B. LPS-Induced Modifications in Macrophage Transcript and Secretion Profiles Are Linked to Muscle Wasting and Glucose Intolerance. J Microbiol Biotechnol 2024; 34:270-279. [PMID: 38044678 PMCID: PMC10940789 DOI: 10.4014/jmb.2309.09037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.
Collapse
Affiliation(s)
- Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
107
|
Miyake K, Ito J, Takahashi K, Nakabayashi J, Brombacher F, Shichino S, Yoshikawa S, Miyake S, Karasuyama H. Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model. Nat Commun 2024; 15:1666. [PMID: 38396021 PMCID: PMC10891131 DOI: 10.1038/s41467-024-46148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Both monocytes and macrophages are heterogeneous populations. It was traditionally understood that Ly6Chi classical (inflammatory) monocytes differentiate into pro-inflammatory Ly6Chi macrophages. Accumulating evidence has suggested that Ly6Chi classical monocytes can also differentiate into Ly6Clo pro-resolving macrophages under certain conditions, while their differentiation trajectory remains to be fully elucidated. The present study with scRNA-seq and flow cytometric analyses reveals that Ly6ChiPD-L2lo classical monocytes recruited to the allergic skin lesion sequentially differentiate into Ly6CloPD-L2hi pro-resolving macrophages, via intermediate Ly6ChiPD-L2hi macrophages but not Ly6Clo non-classical monocytes, in an IL-4 receptor-dependent manner. Along the differentiation, classical monocyte-derived macrophages display anti-inflammatory signatures followed by metabolic rewiring concordant with their ability to phagocytose apoptotic neutrophils and allergens, therefore contributing to the resolution of inflammation. The failure in the generation of these pro-resolving macrophages drives the IL-1α-mediated cycle of inflammation with abscess-like accumulation of necrotic neutrophils. Thus, we clarify the stepwise differentiation trajectory from Ly6Chi classical monocytes toward Ly6Clo pro-resolving macrophages that restrain neutrophilic aggravation of skin allergic inflammation.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Junya Ito
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazufusa Takahashi
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Nakabayashi
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Center for Genetic and Biotechnology Cape Town Component & University of Cape Town, Cape Town, South Africa
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Soichiro Yoshikawa
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
108
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
109
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
110
|
Xu HR, Le VV, Oprescu SN, Kuang S. Muscle stem cells as immunomodulator during regeneration. Curr Top Dev Biol 2024; 158:221-238. [PMID: 38670707 PMCID: PMC11801201 DOI: 10.1016/bs.ctdb.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The skeletal muscle is well known for its remarkable ability to regenerate after injuries. The regeneration is a complex and dynamic process that involves muscle stem cells (also called muscle satellite cells, MuSCs), fibro-adipogenic progenitors (FAPs), immune cells, and other muscle-resident cell populations. The MuSCs are the myogenic cell populaiton that contribute nuclei directly to the regenerated myofibers, while the other cell types collaboratively establish a microenvironment that facilitates myogenesis of MuSCs. The myogenic process includes activation, proliferation and differentiationof MuSCs, and subsequent fusion their descendent mononuclear myocytes into multinuclear myotubes. While the contributions of FAPs and immune cells to this microenvironment have been well studied, the influence of MuSCs on other cell types remains poorly understood. This review explores recent evidence supporting the potential role of MuSCs as immunomodulators during muscle regeneration, either through cytokine production or ligand-receptor interactions.
Collapse
Affiliation(s)
- H Rex Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Victor V Le
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States; Purdue University Institute for Cancer Research, West Lafayette, IN, United States.
| |
Collapse
|
111
|
Shema C, Lu Y, Wang L, Zhang Y. Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration. Immun Ageing 2024; 21:12. [PMID: 38308312 PMCID: PMC10837905 DOI: 10.1186/s12979-024-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Individual aged with various change in cell and cellular microenvironments and the skeletal system undergoes physiological changes that affect the process of bone fracture healing. These changes are accompanied by alterations in regulating critical genes involved in this healing process. Unfortunately, the elderly are particularly susceptible to hip bone fractures, which pose a significant burden associated with higher morbidity and mortality rates. A notable change in older adults is the increased expression of activation, adhesion, and migration markers in circulating monocytes. However, there is a decrease in the expression of co-inhibitory molecules. Recently, research evidence has shown that the migration of specific monocyte subsets to the site of hip fracture plays a crucial role in bone resorption and remodeling, especially concerning age-related factors. In this review, we summarize the current knowledge about uniqueness characteristics of monocytes, and their potential regulation and moderation to enhance the healing process of hip fractures. This breakthrough could significantly contribute to the comprehension of aging process at a fundamental aging mechanism through this initiative would represent a crucial stride for diagnosing and treating age related hip fracture.
Collapse
Affiliation(s)
- Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yining Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
| | - Yingze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
112
|
Xiong S, Zhang Y, Zeng J, Zhou J, Liu S, Wei P, Liu H, Yi F, Wan Z, Xiong L, Zhang B, Li J. DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration. Mater Today Bio 2024; 24:100929. [PMID: 38229884 PMCID: PMC10789648 DOI: 10.1016/j.mtbio.2023.100929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 01/18/2024] Open
Abstract
The immune microenvironment plays a pivotal role in osteoanagenesis. Biomaterials can modulate osteogenic efficacy by inducing specific local immune reactions. As 3D-printing technology advances, digital light projection printing has emerged as a promising method for creating large scale, high-precision biomaterial scaffolds. By adjusting the solid content and the sintering conditions during printing, the pore size of biomaterials can be meticulously controlled. Yet, the systematic influence of pore size on the immune microenvironment remains uncharted. We fabricated 3D-printed hydroxyapatite bioceramic scaffolds with three distinct pore sizes: 400 μm, 600 μm, and 800 μm. Our study revealed that scaffolds with a pore size of 600 μm promote macrophage M2 polarization, which is achieved by upregulating interferon-beta and HIF-1α production. When these materials were implanted subcutaneously in rats and within rabbit skulls, we observed that the 600 μm scaffolds notably improved the long-term inflammatory response, fostered vascular proliferation, and augmented new bone growth. This research paves the way for innovative therapeutic strategies for treating large segmental bone defects in clinical settings.
Collapse
Affiliation(s)
- Shilang Xiong
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Yinuo Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Jianhua Zeng
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingyu Zhou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiwei Liu
- Department of Orthopedics, Ganzhou People's Hospital No.16, Mei Guan Road, Zhang Gong District, Ganzhou, Jiangxi, 341000, China
| | - Peng Wei
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hantian Liu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Feng Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zongmiao Wan
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Long Xiong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People's Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
113
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
114
|
Tao X, Wang J, Liu B, Cheng P, Mu D, Du H, Niu B. Plasticity and crosstalk of mesenchymal stem cells and macrophages in immunomodulation in sepsis. Front Immunol 2024; 15:1338744. [PMID: 38352879 PMCID: PMC10861706 DOI: 10.3389/fimmu.2024.1338744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis is a multisystem disease characterized by dysregulation of the host immune response to infection. Immune response kinetics play a crucial role in the pathogenesis and progression of sepsis. Macrophages, which are known for their heterogeneity and plasticity, actively participate in the immune response during sepsis. These cells are influenced by the ever-changing immune microenvironment and exhibit two-sided immune regulation. Recently, the immunomodulatory function of mesenchymal stem cells (MSCs) in sepsis has garnered significant attention. The immune microenvironment can profoundly impact MSCs, prompting them to exhibit dual immunomodulatory functions akin to a double-edged sword. This discovery holds great importance for understanding sepsis progression and devising effective treatment strategies. Importantly, there is a close interrelationship between macrophages and MSCs, characterized by the fact that during sepsis, these two cell types interact and cooperate to regulate inflammatory processes. This review summarizes the plasticity of macrophages and MSCs within the immune microenvironment during sepsis, as well as the intricate crosstalk between them. This remains an important concern for the future use of these cells for immunomodulatory treatments in the clinic.
Collapse
Affiliation(s)
- Xingyu Tao
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Jialian Wang
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bin Liu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Peifeng Cheng
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Dan Mu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Niu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
115
|
Bartolacci JG, Behun MN, Warunek JP, Li T, Sahu A, Dwyer GK, Lucas A, Rong J, Ambrosio F, Turnquist HR, Badylak SF. Matrix-bound nanovesicle-associated IL-33 supports functional recovery after skeletal muscle injury by initiating a pro-regenerative macrophage phenotypic transition. NPJ Regen Med 2024; 9:7. [PMID: 38280914 PMCID: PMC10821913 DOI: 10.1038/s41536-024-00346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/04/2024] [Indexed: 01/29/2024] Open
Abstract
Injuries to skeletal muscle are among the most common injuries in civilian and military populations, accounting for nearly 60% of extremity injuries. The standard of care for severe extremity injury has been focused upon limb salvage procedures and the utilization of tissue grafts or orthotics in conjunction with rehabilitation to avoid amputation. Nonetheless, many patients have persistent strength and functional deficits that permanently impact their quality of life. Preclinical and clinical studies have shown that partial restoration of functional skeletal muscle tissue following injury can be achieved by the implantation of a biologic scaffold composed of extracellular matrix (ECM). These favorable outcomes are mediated, at least in part, through local immunomodulation. The mechanisms underlying this immunomodulatory effect, however, are poorly understood. The present study investigates a potential mechanistic driver of the immunomodulatory effects; specifically, the effect of selected ECM components upon inflammation resolution and repair. Results show that the host response to skeletal muscle injury is profoundly altered and functional recovery decreased in il33-/- mice compared to age- and sex-matched wildtype counterparts by 14 days post-injury. Results also show that IL-33, contained within matrix-bound nanovesicles (MBV), supports skeletal muscle regeneration by regulating local macrophage activation toward a pro-remodeling phenotype via canonical and non-canonical pathways to improve functional recovery from injury compared to untreated il33-/- counterparts. Taken together, these data suggest that MBV and their associated IL-33 cargo represent a novel homeostatic signaling mechanism that contributes to skeletal muscle repair.
Collapse
Affiliation(s)
- J G Bartolacci
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - M N Behun
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - J P Warunek
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - T Li
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - A Sahu
- Department of Physical Medicine and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - G K Dwyer
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - A Lucas
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Rong
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA
| | - F Ambrosio
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA
| | - H R Turnquist
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA.
| | - S F Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA.
| |
Collapse
|
116
|
Oishi Y, Koike H, Kumagami N, Nakagawa Y, Araki M, Taketomi Y, Miki Y, Matsuda S, Kim H, Matsuzaka T, Ozawa H, Shimano H, Murakami M, Manabe I. Macrophage SREBP1 regulates skeletal muscle regeneration. Front Immunol 2024; 14:1251784. [PMID: 38259495 PMCID: PMC10800357 DOI: 10.3389/fimmu.2023.1251784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Naoki Kumagami
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yoshimi Nakagawa
- Division of Complex Bioscience Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Masaya Araki
- Division of Complex Bioscience Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Matsuda
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
117
|
Xining Z, Sai L. The Evolving Function of Vasculature and Pro-angiogenic Therapy in Fat Grafting. Cell Transplant 2024; 33:9636897241264976. [PMID: 39056562 PMCID: PMC11282510 DOI: 10.1177/09636897241264976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous fat grating is a widely-accepted method to correct soft tissue deficiency. Although fat transplantation shows excellent biocompatibility and simple applicability, the relatively low retention rate caused by fat necrosis is still a challenge. The vasculature is integral after fat grafting, serving multiple crucial functions. Rapid and effective angiogenesis within grafts is essential for supplying oxygen necessary for adipocytes' survival. It facilitates the influx of inflammatory cells to remove necrotic adipocytes and aids in the delivery of regenerative cells for adipose tissue regeneration in fat grafts. The vasculature also provides a niche for interaction between adipose progenitor cells and vascular progenitor cells, enhancing angiogenesis and adipogenesis in grafts. Various methods, such as enriching grafts with diverse pro-angiogenic cells or utilizing cell-free approaches, have been employed to enhance angiogenesis. Beige and dedifferentiated adipocytes in grafts could increase vessel density. This review aims to outline the function of vasculature in fat grafting and discuss different cell or cell-free approaches that can enhance angiogenesis following fat grafting.
Collapse
Affiliation(s)
- Zhang Xining
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luo Sai
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
118
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
119
|
Castor-Macias JA, Larouche JA, Wallace EC, Spence BD, Eames A, Duran P, Yang BA, Fraczek PM, Davis CA, Brooks SV, Maddipati KR, Markworth JF, Aguilar CA. Maresin 1 repletion improves muscle regeneration after volumetric muscle loss. eLife 2023; 12:e86437. [PMID: 38131691 PMCID: PMC10807862 DOI: 10.7554/elife.86437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.
Collapse
Affiliation(s)
- Jesus A Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Emily C Wallace
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bonnie D Spence
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Alec Eames
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Pamela Duran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Paula M Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Carol A Davis
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State UniversityDetroitUnited States
| | - James F Markworth
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IndianaUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
120
|
Cao Z, Lu P, Li L, Geng Q, Lin L, Yan L, Zhang L, Shi C, Li L, Zhao N, He X, Tan Y, Lu C. Bioinformatics-led discovery of liver-specific genes and macrophage infiltration in acute liver injury. Front Immunol 2023; 14:1287136. [PMID: 38130716 PMCID: PMC10733525 DOI: 10.3389/fimmu.2023.1287136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Acute liver injury (ALI) is an important global health concern, primarily caused by widespread hepatocyte cell death, coupled with a complex immune response and a lack of effective remedies. This study explores the underlying mechanisms, immune infiltration patterns, and potential targets for intervention and treatment ALI. Methods The datasets of acetaminophen (APAP), carbon tetrachloride (CCl4), and lipopolysaccharide (LPS)-induced ALI were obtained from the GEO database. Differentially expressed genes (DEGs) were individually identified using the limma packages. Functional enrichment analysis was performed using KEGG, GO, and GSEA methods. The overlapping genes were extracted from the three datasets, and hub genes were identified using MCODE and CytoHubba algorithms. Additionally, PPI networks were constructed based on the String database. Immune cell infiltration analysis was conducted using ImmuCellAI, and the correlation between hub genes and immune cells was determined using the Spearman method. The relationship between hub genes, immune cells, and biochemical indicators of liver function (ALT, AST) was validated using APAP and triptolide (TP) -induced ALI mouse models. Results Functional enrichment analysis indicated that all three ALI models were enriched in pathways linked to fatty acid metabolism, drug metabolism, inflammatory response, and immune regulation. Immune analysis revealed a significant rise in macrophage infiltration. A total of 79 overlapping genes were obtained, and 10 hub genes were identified that were consistent with the results of the biological information analysis after screening and validation. Among them, Clec4n, Ms4a6d, and Lilrb4 exhibited strong associations with macrophage infiltration and ALI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
121
|
Akbarzadeh R, Czyz C, Thomsen SY, Schilf P, Murthy S, Sadik CD, König P. Monocyte populations are involved in the pathogenesis of experimental epidermolysis bullosa acquisita. Front Immunol 2023; 14:1241461. [PMID: 38116004 PMCID: PMC10728641 DOI: 10.3389/fimmu.2023.1241461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Monocytes play a significant role in the pathogenesis of most inflammatory diseases, including autoimmune diseases. Herein, different subpopulations of monocytes often play differential, partially antagonistic roles, in the regulation of tissue populations. Pemphigoid diseases constitute a group of autoimmune blistering skin diseases featuring a marked infiltration of the dermis with immune cells, including monocytes. The monocyte subsets infiltrating the skin, however, have largely remained elusive. Monocyte adhesion and recruitment into the inflamed tissues are regulated by chemokine receptors, most prominently by CCR2 and CX3CR1. To delineate the involvement of monocyte populations in autoimmune blistering skin diseases, we spatiotemporally monitored the dynamic spectrum of monocyte populations that infiltrate the inflamed skin using multiphoton intravital imaging and reporter mice for chemokine receptors. Experimental epidermolysis bullosa acquisita (EBA) was induced by injection of anti-murine type VII collagen (amCOLVII) IgG into the Csf1rEGFP-reporter mice, where circulating myeloid cells, such as monocytes and neutrophils, express an EGFP. EGFP+ cells, including neutrophils and monocytes, were present in the skin, immediately after the deposition of the amCOLVII antibody at the dermal-epidermal junction. To investigate the recruitment and involvement of different monocyte-derived cell populations in the disease course further, EBA was induced in CCR2RFP/+-reporter and CX3CR1GFP/+-reporter mice. A comparable distribution of red fluorescent protein (RFP)+ or green fluorescent protein (GFP)+ was found in both diseased mice and their respective controls over time, indicating the similar recruitment of monocytes into the skin following the binding of autoantibodies. Experiments were extended to the CCR2RFP/RFP-deficient and CX3CR1GFP/GFP-deficient mice to determine whether monocyte recruitment and disease severity are compromised in the absence of the receptor. A comparable pattern was seen in the recruitment of monocytes into the skin in both reporter and deficient mice. However, in contrast to similar disease severity between CX3CR1-deficient and reporter mice, CCR2-deficient mice developed significantly less disease than CCR2-reporter mice, as indicated by the percentage of affected area of ears. Collectively, our observations indicate that while CCR2 and CX3CR1 receptors are not involved in the recruitment of monocytes into the skin, CCR2 deficiency is associated with improved disease outcomes in experimental EBA in mice.
Collapse
Affiliation(s)
- Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | - Sarah-Yasmin Thomsen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
122
|
Rigamonti A, Villar J, Segura E. Monocyte differentiation within tissues: a renewed outlook. Trends Immunol 2023; 44:999-1013. [PMID: 37949783 DOI: 10.1016/j.it.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
When recruited to mammalian tissues, monocytes differentiate into macrophages or dendritic cells (DCs). In the past few years, the existence of monocyte-derived DCs (moDCs) was questioned by the discovery of new DC populations with overlapping phenotypes. Here, we critically review the evidence for monocyte differentiation into DCs in tissues and highlight their specific functions. Recent studies have shown that monocyte-derived macrophages (moMacs) with distinct life cycles coexist in tissues, both at steady state and upon inflammation. Integrating studies in mice and humans, we highlight specific features of moMacs during inflammation and tissue repair. We also discuss the notion of monocyte differentiation occurring via a binary fate decision. Deciphering monocyte-derived cell properties is essential for understanding their role in nonresolving inflammation and how they might be targeted for therapies.
Collapse
Affiliation(s)
| | - Javiera Villar
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France
| | - Elodie Segura
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France.
| |
Collapse
|
123
|
Yaghi OK, Hanna BS, Langston PK, Michelson DA, Jayewickreme T, Marin-Rodero M, Benoist C, Mathis D. A discrete 'early-responder' stromal-cell subtype orchestrates immunocyte recruitment to injured tissue. Nat Immunol 2023; 24:2053-2067. [PMID: 37932455 PMCID: PMC10792729 DOI: 10.1038/s41590-023-01669-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Following acute injury, stromal cells promote tissue regeneration by a diversity of mechanisms. Time-resolved single-cell RNA sequencing of muscle mesenchymal stromal cells (MmSCs) responding to acute injury identified an 'early-responder' subtype that spiked on day 1 and expressed a notable array of transcripts encoding immunomodulators. IL-1β, TNF-α and oncostatin M each strongly and rapidly induced MmSCs transcribing this immunomodulatory program. Macrophages amplified the program but were not strictly required for its induction. Transfer of the inflammatory MmSC subtype, tagged with a unique surface marker, into healthy hindlimb muscle induced inflammation primarily driven by neutrophils and macrophages. Among the abundant inflammatory transcripts produced by this subtype, Cxcl5 was stroma-specific and highly upregulated with injury. Depletion of this chemokine early after injury revealed a substantial impact on recruitment of neutrophils, a prolongation of inflammation to later times and an effect on tissue regeneration. Mesenchymal stromal cell subtypes expressing a comparable inflammatory program were found in a mouse model of muscular dystrophy and in several other tissues and pathologies in both mice and humans. These 'early-responder' mesenchymal stromal cells, already in place, permit rapid and coordinated mobilization and amplification of critical cell collaborators in response to injury.
Collapse
Affiliation(s)
- Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Bola S Hanna
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Teshika Jayewickreme
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Miguel Marin-Rodero
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
124
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
125
|
Southerland KW, Xu Y, Peters DT, Lin X, Wei X, Xiang Y, Fei K, Olivere LA, Morowitz JM, Otto J, Dai Q, Kontos CD, Diao Y. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells. Genome Med 2023; 15:95. [PMID: 37950327 PMCID: PMC10636829 DOI: 10.1186/s13073-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI), a severe manifestation of peripheral arterial disease (PAD), is associated with a 1-year limb amputation rate of approximately 15-20% and substantial mortality. A key feature of CLTI is the compromised regenerative ability of skeletal muscle; however, the mechanisms responsible for this impairment are not yet fully understood. In this study, we aim to delineate pathological changes at both the cellular and transcriptomic levels, as well as in cell-cell signaling pathways, associated with compromised muscle regeneration in limb ischemia in both human tissue samples and murine models of CLTI. METHODS We performed single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients and from a murine model of CLTI. In both datasets, we analyzed gene expression changes in macrophage and muscle satellite cell (MuSC) populations as well as differential cell-cell signaling interactions and differentiation trajectories. RESULTS Single-cell transcriptomic profiling and immunofluorescence analysis of CLTI patient skeletal muscle demonstrated that ischemic-damaged tissue displays a pro-inflammatory macrophage signature. Comparable results were observed in a murine CLTI model. Moreover, integrated analyses of both human and murine datasets revealed premature differentiation of MuSCs to be a key feature of failed muscle regeneration in the ischemic limb. Furthermore, in silico inferences of intercellular communication and in vitro assays highlight the importance of macrophage-MuSC signaling in ischemia induced muscle injuries. CONCLUSIONS Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and a murine CLTI model, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.
Collapse
Affiliation(s)
- Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Derek T Peters
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Kaileen Fei
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Lindsey A Olivere
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15217, USA
| | - Jeremy M Morowitz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Development and Stem Cell Biology Program, Duke University, Durham, NC, 27710, USA
| | - James Otto
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Qunsheng Dai
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher D Kontos
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
126
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
127
|
Langston PK, Sun Y, Ryback BA, Mueller AL, Spiegelman BM, Benoist C, Mathis D. Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise. Sci Immunol 2023; 8:eadi5377. [PMID: 37922340 PMCID: PMC10860652 DOI: 10.1126/sciimmunol.adi5377] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
Exercise enhances physical performance and reduces the risk of many disorders such as cardiovascular disease, type 2 diabetes, dementia, and cancer. Exercise characteristically incites an inflammatory response, notably in skeletal muscles. Although some effector mechanisms have been identified, regulatory elements activated in response to exercise remain obscure. Here, we have addressed the roles of Foxp3+CD4+ regulatory T cells (Tregs) in the healthful activities of exercise via immunologic, transcriptomic, histologic, metabolic, and biochemical analyses of acute and chronic exercise models in mice. Exercise rapidly induced expansion of the muscle Treg compartment, thereby guarding against overexuberant production of interferon-γ and consequent metabolic disruptions, particularly mitochondrial aberrancies. The performance-enhancing effects of exercise training were dampened in the absence of Tregs. Thus, exercise is a natural Treg booster with therapeutic potential in disease and aging contexts.
Collapse
Affiliation(s)
- P. Kent Langston
- Department of Immunology, Harvard Medical School; Boston, 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
- Department of Cell Biology, Harvard Medical School; Boston, 02115, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
| | - Amber L. Mueller
- Department of Genetics, Harvard Medical School; Boston, 02115, USA
| | - Bruce M. Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
- Department of Cell Biology, Harvard Medical School; Boston, 02115, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, 02115, USA
| |
Collapse
|
128
|
Su Q, Li J, Huang J, Cai Q, Xue C, Huang C, Chen L, Li J, Li D, Ge H, Cheng B. Histological characteristics of exercise-induced skeletal muscle remodelling. J Cell Mol Med 2023; 27:3217-3234. [PMID: 37517049 PMCID: PMC10623533 DOI: 10.1111/jcmm.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
This study aims to analyse the pathological features of skeletal muscle injury repair by using rats to model responses to different exercise intensities. Eighty-four rats were randomly divided into five groups for treadmill exercise. The short-term control, low-intensity, medium-intensity and high-intensity groups underwent gastrocnemius muscle sampling after 6, 8 and 12 weeks of exercise. The long-term high-intensity group underwent optical coherence tomography angiography and sampling after 18 weeks of exercise. RNA sequencing was performed on the muscle samples, followed by the corresponding histological staining. Differentially expressed genes were generally elevated at 6 weeks in the early exercise stage, followed by a decreasing trend. Meanwhile, the study demonstrated a negative correlation between time and the gene modules involved in vascular regulation. The modules associated with muscle remodelling were positively correlated with exercise intensity. Although the expression of many genes associated with common angiogenesis was downregulated at 8, 12 and 18 weeks, we found that muscle tissue microvessels were still increased, which may be closely associated with elevated sFRP2 and YAP1. During muscle injury-remodelling, angiogenesis is characterized by significant exercise time and exercise intensity dependence. We find significant differences in the spatial distribution of angiogenesis during muscle injury-remodelling, which be helpful for the future achievement of spatially targeted treatments for exercise-induced muscle injuries.
Collapse
Affiliation(s)
- Qihang Su
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jie Li
- Department of OrthopedicsZhabei Central Hospital of Jing'an DistrictShanghaiChina
| | - Jingbiao Huang
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiuchen Cai
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chao Xue
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chenglong Huang
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liyang Chen
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jun Li
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Dandan Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of MedicineTongji UniversityShanghaiChina
- Department of Environmental and Public Health Sciences, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Hengan Ge
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Biao Cheng
- Department of Sports Medicine, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
129
|
Zhang X, Yuan J, Zhang S, Li W, Xu Y, Li H, Zhang L, Chen X, Ding W, Zhu J, Song J, Wang X, Zhu C. Germinal matrix hemorrhage induces immune responses, brain injury, and motor impairment in neonatal rats. J Cereb Blood Flow Metab 2023; 43:49-65. [PMID: 36545808 PMCID: PMC10638988 DOI: 10.1177/0271678x221147091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Germinal matrix hemorrhage (GMH) is a major complication of prematurity that causes secondary brain injury and is associated with long-term neurological disabilities. This study used a postnatal day 5 rat model of GMH to explore immune response, brain injury, and neurobehavioral changes after hemorrhagic injury. The results showed that CD45high/CD11b+ immune cells increased in the brain after GMH and were accompanied by increased macrophage-related chemokine/cytokines and inflammatory mediators. Hematoma formed as early as 2 h after injection of collagenase VII and white matter injury appeared not only in the external capsule and hippocampus, but also in the thalamus. In addition, GMH caused abnormal motor function as revealed by gait analysis, and locomotor hyperactivity in the elevated plus maze, though no other obvious anxiety or recognition/memory function changes were noted when examined by the open field test and novel object recognition test. The animal model used here partially reproduces the GMH-induced brain injury and motor dysfunction seen in human neonates and therefore can be used as a valid tool in experimental studies for the development of effective therapeutic strategies for GMH-induced brain injury.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jing Yuan
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Wendong Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xi Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Wenjun Ding
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jinjin Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Center for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Center for Bran Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
130
|
Petrocelli JJ, McKenzie AI, de Hart NMMP, Reidy PT, Mahmassani ZS, Keeble AR, Kaput KL, Wahl MP, Rondina MT, Marcus RL, Welt CK, Holland WL, Funai K, Fry CS, Drummond MJ. Disuse-induced muscle fibrosis, cellular senescence, and senescence-associated secretory phenotype in older adults are alleviated during re-ambulation with metformin pre-treatment. Aging Cell 2023; 22:e13936. [PMID: 37486024 PMCID: PMC10652302 DOI: 10.1111/acel.13936] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Muscle inflammation and fibrosis underlie disuse-related complications and may contribute to impaired muscle recovery in aging. Cellular senescence is an emerging link between inflammation, extracellular matrix (ECM) remodeling and poor muscle recovery after disuse. In rodents, metformin has been shown to prevent cellular senescence/senescent associated secretory phenotype (SASP), inflammation, and fibrosis making it a potentially practical therapeutic solution. Thus, the purpose of this study was to determine in older adults if metformin monotherapy during bed rest could reduce muscle fibrosis and cellular senescence/SASP during the re-ambulation period. A two-arm controlled trial was utilized in healthy male and female older adults (n = 20; BMI: <30, age: 60 years+) randomized into either placebo or metformin treatment during a two-week run-in and 5 days of bedrest followed by metformin withdrawal during 7 days of recovery. We found that metformin-treated individuals had less type-I myofiber atrophy during disuse, reduced pro-inflammatory transcriptional profiles, and lower muscle collagen deposition during recovery. Collagen content and myofiber size corresponded to reduced whole muscle cellular senescence and SASP markers. Moreover, metformin treatment reduced primary muscle resident fibro-adipogenic progenitors (FAPs) senescent markers and promoted a shift in fibroblast fate to be less myofibroblast-like. Together, these results suggest that metformin pre-treatment improved ECM remodeling after disuse in older adults by possibly altering cellular senescence and SASP in skeletal muscle and in FAPs.
Collapse
Affiliation(s)
- Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Alec I. McKenzie
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Naomi M. M. P. de Hart
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Paul T. Reidy
- Department of Kinesiology, Nutrition, and HealthMiami UniversityOxfordOhioUSA
| | | | | | - Katie L. Kaput
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew P. Wahl
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew T. Rondina
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Robin L. Marcus
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Corrine K. Welt
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - William L. Holland
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Katsuhiko Funai
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| | | | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
131
|
Henke PK, Nicklas JM, Obi A. Immune cell-mediated venous thrombus resolution. Res Pract Thromb Haemost 2023; 7:102268. [PMID: 38193054 PMCID: PMC10772895 DOI: 10.1016/j.rpth.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Herein, we review the current processes that govern experimental deep vein thrombus (DVT) resolution. How the human DVT resolves at the molecular and cellular level is not well known due to limited specimen availability. Experimentally, the thrombus resolution resembles wound healing, with early neutrophil-mediated actions followed by monocyte/macrophage-mediated events, including neovascularization, fibrinolysis, and eventually collagen replacement. Potential therapeutic targets are described, and coupling with site-directed approaches to mitigate off-target effects is the long-term goal. Similarly, timing of adjunctive agents to accelerate DVT resolution is an area that is only starting to be considered. There is much critical research that is needed in this area.
Collapse
Affiliation(s)
- Peter K. Henke
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - John M. Nicklas
- Department of Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Andrea Obi
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
132
|
Ren Y, Zheng Z, Yu Y, Hu R, Xu S. Three-Dimensional Printed Poly (Lactic-co-Glycolic Acid)-Magnesium Composite Scaffolds for the Promotion of Osteogenesis Through Immunoregulation. J Craniofac Surg 2023; 34:2563-2568. [PMID: 37782137 PMCID: PMC10597428 DOI: 10.1097/scs.0000000000009750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/04/2023] [Indexed: 10/03/2023] Open
Abstract
Scaffolds play an important role in bone tissue engineering. The ideal engineered scaffold needs to be biocompatible, bioactive, and able to regulate immune cells to enhance bone regeneration. In this study, magnesium (Mg)-contained poly(lactic-co-glycolic acid) (PLGA) scaffolds (hereinafter, referred to as PLGA-2Mg) were fabricated by 3-dimensional printing using a mixture of PLGA and MgSO 4 powder. Poly(lactic-co-glycolic acid) scaffolds (hereinafter, referred to as PLGA) were also fabricated by 3-dimensional printing and were used as control. The biocompatibility, immunoregulatory ability, and osteogenic properties of PLGA-2Mg were analyzed and compared with those of PLGA. The results indicate that the incorporation of Mg increased the Young modulus and surface roughness of the scaffold, but did not affect its degradation. The PLGA-2Mg further promoted the adhesion and proliferation of MC3T3-E1 cells compared with PLGA, which indicates its improved biocompatibility and bioactivity. In addition, PLGA-2Mg inhibited the polarization of RAW 264.7 cells toward the M1 phenotype by down-regulating the IL-1β , IL-6 , and iNOs gene expression when challenged with lipopolysaccharide stimulation. In contrast, it promoted the polarization of RAW 264.7 cells toward the M2 phenotype by up-regulating the TGF-β , IL-10 , and Arg-1 gene expression without lipopolysaccharide stimulation. Finally, MC3T3-E1 cells were cocultured with RAW 264.7 cells and scaffolds using a transwell system. It was found that the expression level of osteogenic-related genes ( ALP , COL-1 , BMP2 , and BSP ) was significantly upregulated in the PLGA-2Mg group compared with that in the PLGA group. Consequently, PLGA-2Mg with increased biocompatibility and bioactivity can promote osteogenesis through immunoregulation and has the potential to be used as a novel scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong
| | - Zheng Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu
| | - Yanjun Yu
- Department of Stomatology, Nanjing Tongren Hospital, Nanjing, Jiangsu
| | - Rongrong Hu
- Department of Stomatology, The Second People’s Hospital of Tibet Autonomous Region, Lasa, Tibet
| | - Shanshan Xu
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong
| |
Collapse
|
133
|
Martins L, Bader M, Pesquero JB. Kinins: Locally formed peptides during inflammation with potential use in tissue regeneration. Inflamm Res 2023; 72:1957-1963. [PMID: 37750921 DOI: 10.1007/s00011-023-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/23/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Kinins are a set of peptides present in tissues and involved in cardiovascular regulation, inflammation, and pain. Here, we briefly comment on recent key findings on the use of kinins in regenerative medicine.
Collapse
Affiliation(s)
- Leonardo Martins
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAN), 3a Tylna St., 90-364, Łódź, Poland.
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th floor, São Paulo, 04039032, Brazil.
- Department of Biochemistry and Molecular Biology, Federal University of São Paulo, Rua Três de Maio 100, 4th floor, São Paulo, 04044-020, Brazil.
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785, Berlin, Germany
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th floor, São Paulo, 04039032, Brazil
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu 862, 6th floor, São Paulo, 04023-062, Brazil
| |
Collapse
|
134
|
Tarban N, Papp AB, Deák D, Szentesi P, Halász H, Patsalos A, Csernoch L, Sarang Z, Szondy Z. Loss of adenosine A3 receptors accelerates skeletal muscle regeneration in mice following cardiotoxin-induced injury. Cell Death Dis 2023; 14:706. [PMID: 37898628 PMCID: PMC10613231 DOI: 10.1038/s41419-023-06228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Skeletal muscle regeneration is a complex process orchestrated by multiple interacting steps. An increasing number of reports indicate that inflammatory responses play a central role in linking initial muscle injury responses to timely muscle regeneration following injury. The nucleoside adenosine has been known for a long time as an endogenously produced anti-inflammatory molecule that is generated in high amounts during tissue injury. It mediates its physiological effects via four types of adenosine receptors. From these, adenosine A3 receptors (A3Rs) are not expressed by the skeletal muscle but are present on the surface of various inflammatory cells. In the present paper, the effect of the loss of A3Rs was investigated on the regeneration of the tibialis anterior (TA) muscle in mice following cardiotoxin-induced injury. Here we report that regeneration of the skeletal muscle from A3R-/- mice is characterized by a stronger initial inflammatory response resulting in a larger number of transmigrating inflammatory cells to the injury site, faster clearance of cell debris, enhanced proliferation and faster differentiation of the satellite cells (the muscle stem cells), and increased fusion of the generated myoblasts. This leads to accelerated skeletal muscle tissue repair and the formation of larger myofibers. Though the infiltrating immune cells expressed A3Rs and showed an increased inflammatory profile in the injured A3R-/- muscles, bone marrow transplantation experiments revealed that the increased response of the tissue-resident cells to tissue injury is responsible for the observed phenomenon. Altogether our data indicate that A3Rs are negative regulators of injury-related regenerative inflammation and consequently also that of the muscle fiber growth in the TA muscle. Thus, inhibiting A3Rs might have a therapeutic value during skeletal muscle regeneration following injury.
Collapse
Affiliation(s)
- Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Albert Bálint Papp
- Doctoral School of Dental Sciences, University of Debrecen, Debrecen, Hungary
| | - Dávid Deák
- Laboratory Animal Facility, Life Science Building, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Halász
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St, Petersburg, FL, USA
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
135
|
Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol 2023; 14:1274816. [PMID: 37954602 PMCID: PMC10634307 DOI: 10.3389/fimmu.2023.1274816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle is essential for body physical activity, energy metabolism, and temperature maintenance. It has excellent capabilities to maintain homeostasis and to regenerate after injury, which indispensably relies on muscle stem cells, satellite cells (MuSCs). The quiescence, activation, and differentiation of MuSCs are tightly regulated in homeostatic and regenerating muscles. Among the important regulators are intramuscular macrophages, which are functionally heterogeneous with different subtypes present in a spatiotemporal manner to regulate the balance of different MuSC statuses. During chronic injury and aging, intramuscular macrophages often undergo aberrant activation, which in turn disrupts muscle homeostasis and regenerative repair. Growing evidence suggests that the aberrant activation is mainly triggered by altered muscle microenvironment. The trained immunity that affects myeloid progenitors during hematopoiesis may also contribute. Aged immune system may contribute, in part, to the aging-related sarcopenia and compromised skeletal muscle injury repair. As macrophages are actively involved in the progression of many muscle diseases, manipulating their functional activation has become a promising therapeutic approach, which requires comprehensive knowledge of the cellular and molecular mechanisms underlying the diverse activation. To this end, we discuss here the current knowledge of multifaceted role of macrophages in skeletal muscle homeostasis, injury, and repair.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
136
|
He Y, Heng Y, Qin Z, Wei X, Wu Z, Qu J. Intravital microscopy of satellite cell dynamics and their interaction with myeloid cells during skeletal muscle regeneration. SCIENCE ADVANCES 2023; 9:eadi1891. [PMID: 37851799 PMCID: PMC10584350 DOI: 10.1126/sciadv.adi1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Skeletal muscle regeneration requires the highly coordinated cooperation of muscle satellite cells (MuSCs) with other cellular components. Upon injury, myeloid cells populate the wound site, concomitant with MuSC activation. However, detailed analysis of MuSC-myeloid cell interaction is hindered by the lack of suitable live animal imaging technology. Here, we developed a dual-laser multimodal nonlinear optical microscope platform to study the dynamics of MuSCs and their interaction with nonmyogenic cells during muscle regeneration. Using three-dimensional time-lapse imaging on live reporter mice and taking advantages of the autofluorescence of reduced nicotinamide adenine dinucleotide (NADH), we studied the spatiotemporal interaction between nonmyogenic cells and muscle stem/progenitor cells during MuSC activation and proliferation. We discovered that their cell-cell contact was transient in nature. Moreover, MuSCs could activate with notably reduced infiltration of neutrophils and macrophages, and their proliferation, although dependent on macrophages, did not require constant contact with them. These findings provide a fresh perspective on myeloid cells' role during muscle regeneration.
Collapse
Affiliation(s)
- Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Youshan Heng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Xiuqing Wei
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhenguo Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jianan Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
137
|
Lemos JP, Tenório LPG, Mouly V, Butler-Browne G, Mendes-da-Cruz DA, Savino W, Smeriglio P. T cell biology in neuromuscular disorders: a focus on Duchenne Muscular Dystrophy and Amyotrophic Lateral Sclerosis. Front Immunol 2023; 14:1202834. [PMID: 37920473 PMCID: PMC10619758 DOI: 10.3389/fimmu.2023.1202834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Growing evidence demonstrates a continuous interaction between the immune system, the nerve and the muscle in neuromuscular disorders of different pathogenetic origins, such as Duchenne Muscular Dystrophy (DMD) and Amyotrophic Lateral Sclerosis (ALS), the focus of this review. Herein we highlight the complexity of the cellular and molecular interactions involving the immune system in neuromuscular disorders, as exemplified by DMD and ALS. We describe the distinct types of cell-mediated interactions, such as cytokine/chemokine production as well as cell-matrix and cell-cell interactions between T lymphocytes and other immune cells, which target cells of the muscular or nervous tissues. Most of these interactions occur independently of exogenous pathogens, through ligand-receptor binding and subsequent signal transduction cascades, at distinct levels of specificity. Although this issue reveals the complexity of the system, it can also be envisioned as a window of opportunity to design therapeutic strategies (including synthetic moieties, cell and gene therapy, as well as immunotherapy) by acting upon one or more targets. In this respect, we discuss ongoing clinical trials using VLA-4 inhibition in DMD, and in ALS, with a focus on regulatory T cells, both revealing promising results.
Collapse
Affiliation(s)
- Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Liliane Patrícia Gonçalves Tenório
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
138
|
Jomard C, Gondin J. Influence of sexual dimorphism on satellite cell regulation and inflammatory response during skeletal muscle regeneration. Physiol Rep 2023; 11:e15798. [PMID: 37798097 PMCID: PMC10555529 DOI: 10.14814/phy2.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
After injury, skeletal muscle regenerates thanks to the key role of satellite cells (SC). The regeneration process is supported and coordinated by other cell types among which immune cells. Among the mechanisms involved in skeletal muscle regeneration, a sexual dimorphism, involving sex hormones and more particularly estrogens, has been suggested. However, the role of sexual dimorphism on skeletal muscle regeneration is not fully understood, likely to the use of various experimental settings in both animals and human. This review aims at addressing how sex and estrogens regulate both the SC and the inflammatory response during skeletal muscle regeneration by considering the different experimental designs used in both animal models (i.e., ovarian hormone deficiency, estrogen replacement or supplementation, treatments with estrogen receptors agonists/antagonists and models knockout for estrogen receptors) and human (hormone therapy replacement, pre vs. postmenopausal, menstrual cycle variation…).
Collapse
Affiliation(s)
- Charline Jomard
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| |
Collapse
|
139
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
140
|
Gregg SR, Barshick MR, Johnson SE. Intravenous Injection of Sodium Hyaluronate Diminishes Basal Inflammatory Gene Expression in Equine Skeletal Muscle. Animals (Basel) 2023; 13:3030. [PMID: 37835636 PMCID: PMC10571686 DOI: 10.3390/ani13193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Following strenuous exercise, skeletal muscle experiences an acute inflammatory state that initiates the repair process. Systemic hyaluronic acid (HA) is injected to horses routinely as a joint anti-inflammatory. To gain insight into the effects of HA on skeletal muscle, adult Thoroughbred geldings (n = 6) were injected with a commercial HA product weekly for 3 weeks prior to performing a submaximal exercise test. Gluteal muscle (GM) biopsies were obtained before and 1 h after exercise for gene expression analysis and HA localization. The results from RNA sequencing demonstrate differences in gene expression between non-injected controls (CON; n = 6) and HA horses. Prior to exercise, HA horses contained fewer (p < 0.05) transcripts associated with leukocyte activity and cytokine production than CON. The performance of exercise resulted in the upregulation (p < 0.05) of several cytokine genes and their signaling intermediates, indicating that HA does not suppress the normal inflammatory response to exercise. The transcript abundance for marker genes of neutrophils (NCF2) and macrophages (CD163) was greater (p < 0.05) post-exercise and was unaffected by HA injection. The anti-inflammatory effects of HA on muscle are indirect as no differences (p > 0.05) in the relative amount of the macromolecule was observed between the CON and HA fiber extracellular matrix (ECM). However, exercise tended (p = 0.10) to cause an increase in ECM size suggestive of muscle damage and remodeling. The finding was supported by the increased (p < 0.05) expression of CTGF, TGFβ1, MMP9, TIMP4 and Col4A1. Collectively, the results validate HA as an anti-inflammatory aid that does not disrupt the normal post-exercise muscle repair process.
Collapse
Affiliation(s)
| | | | - Sally E. Johnson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (S.R.G.); (M.R.B.)
| |
Collapse
|
141
|
Tang H, Sun W, Liu X, Gao Q, Chen Y, Xie C, Lin W, Chen J, Wang L, Fan Z, Zhang L, Ren Y, She Y, He Y, Chen C. A bioengineered trachea-like structure improves survival in a rabbit tracheal defect model. Sci Transl Med 2023; 15:eabo4272. [PMID: 37729433 DOI: 10.1126/scitranslmed.abo4272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
A practical strategy for engineering a trachea-like structure that could be used to repair or replace a damaged or injured trachea is an unmet need. Here, we fabricated bioengineered cartilage (BC) rings from three-dimensionally printed fibers of poly(ɛ-caprolactone) (PCL) and rabbit chondrocytes. The extracellular matrix (ECM) secreted by the chondrocytes combined with the PCL fibers formed a "concrete-rebar structure," with ECM deposited along the PCL fibers, forming a grid similar to that of native cartilage. PCL fiber-hydrogel rings were then fabricated and alternately stacked with BC rings on silicone tubes. This trachea-like structure underwent vascularization after heterotopic transplantation into rabbits for 4 weeks. The vascularized bioengineered trachea-like structure was then orthotopically transplanted by end-to-end anastomosis to native rabbit trachea after a segment of trachea had been resected. The bioengineered trachea-like structure displayed mechanical properties similar to native rabbit trachea and transmural angiogenesis between the rings. The 8-week survival rate in transplanted rabbits was 83.3%, and the respiratory rate of these animals was similar to preoperative levels. This bioengineered trachea-like structure may have potential for treating tracheal stenosis and other tracheal injuries.
Collapse
Affiliation(s)
- Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Chaoqi Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| |
Collapse
|
142
|
Feng F, Cui B, Fang L, Lan T, Luo K, Xu X, Lu Z. DDAH1 Protects against Cardiotoxin-Induced Muscle Injury and Regeneration. Antioxidants (Basel) 2023; 12:1754. [PMID: 37760057 PMCID: PMC10525962 DOI: 10.3390/antiox12091754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Nitric oxide (NO) is an important biological signaling molecule affecting muscle regeneration. The activity of NO synthase (NOS) is regulated by dimethylarginine dimethylaminohydrolase 1 (DDAH1) through degradation of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA). To investigate the role of DDAH1 in muscle injury and regeneration, muscle-specific Ddah1-knockout mice (Ddah1MKO) and their littermates (Ddah1f/f) were used to examine the progress of cardiotoxin (CTX)-induced muscle injury and subsequent muscle regeneration. After CTX injection, Ddah1MKO mice developed more severe muscle injury than Ddah1f/f mice. Muscle regeneration was also delayed in Ddah1MKO mice on Day 5 after CTX injection. These phenomena were associated with higher serum ADMA and LDH levels as well as a great induction of inflammatory response, oxidative stress and cell apoptosis in the gastrocnemius (GA) muscle of Ddah1MKO mice. In the GA muscle of CTX-treated mice, Ddah1 deficiency decreased the protein expression of M-cadherin, myogenin, Bcl-2, peroxiredoxin 3 (PRDX3) and PRDX5, and increased the protein expression of MyoD, TNFα, Il-6, iNOS and Bax. In summary, our data suggest that DDAH1 exerts a protective role in muscle injury and regeneration.
Collapse
Affiliation(s)
- Fei Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
| | - Bingqing Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (B.C.); (K.L.)
| | - Li Fang
- Department of Endocrinology, Dongtai Renmin Hospital, Dongtai 224233, China;
| | - Ting Lan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (B.C.); (K.L.)
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (B.C.); (K.L.)
| | - Xin Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (B.C.); (K.L.)
| |
Collapse
|
143
|
Morroni J, Benedetti A, Esposito L, De Bardi M, Borsellino G, Riera CS, Giordani L, Bouche M, Lozanoska-Ochser B. Injury-experienced satellite cells retain long-term enhanced regenerative capacity. Stem Cell Res Ther 2023; 14:246. [PMID: 37697344 PMCID: PMC10496398 DOI: 10.1186/s13287-023-03492-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Inflammatory memory or trained immunity is a recently described process in immune and non-immune tissue resident cells, whereby previous exposure to inflammation mediators leads to a faster and stronger responses upon secondary challenge. Whether previous muscle injury is associated with altered responses to subsequent injury by satellite cells (SCs), the muscle stem cells, is not known. METHODS We used a mouse model of repeated muscle injury, in which intramuscular cardiotoxin (CTX) injections were administered 50 days apart in order to allow for full recovery of the injured muscle before the second injury. The effect of prior injury on the phenotype, proliferation and regenerative potential of satellite cells following a second injury was examined in vitro and in vivo by immunohistochemistry, RT-qPCR and histological analysis. RESULTS We show that SCs isolated from muscle at 50 days post-injury (injury-experienced SCs (ieSCs)) enter the cell cycle faster and form bigger myotubes when cultured in vitro, compared to control SCs isolated from uninjured contralateral muscle. Injury-experienced SCs were characterized by the activation of the mTORC 1 signaling pathway, suggesting they are poised to activate sooner following a second injury. Consequently, upon second injury, SCs accumulate in greater numbers in muscle at 3 and 10 days after injury. These changes in SC phenotype and behavior were associated with accelerated muscle regeneration, as evidenced by an earlier appearance of bigger fibers and increased number of myonuclei per fiber at day 10 after the second injury. CONCLUSIONS Overall, we show that skeletal muscle injury has a lasting effect on SC function priming them to respond faster to a subsequent injury. The ieSCs have long-term enhanced regenerative properties that contribute to accelerated regeneration following a secondary challenge.
Collapse
Affiliation(s)
- Jacopo Morroni
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- COU of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenza Esposito
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Carles Sanchez Riera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
| |
Collapse
|
144
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
145
|
Lu D, Jiao X, Jiang W, Yang L, Gong Q, Wang X, Wei M, Gong S. Mesenchymal stem cells influence monocyte/macrophage phenotype: Regulatory mode and potential clinical applications. Biomed Pharmacother 2023; 165:115042. [PMID: 37379639 DOI: 10.1016/j.biopha.2023.115042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from a variety of tissues, such as umbilical cord, fat, and bone marrow. Today, MSCs are widely recognized for their prominent anti-inflammatory properties in a variety of acute and chronic inflammatory diseases. In inflammatory diseases, monocytes/macrophages are an important part of the innate immune response in the body, and the alteration of the inflammatory phenotype plays a crucial role in the secretion of pro-inflammatory/anti-inflammatory factors, the repair of injured sites, and the infiltration of inflammatory cells. In this review, starting from the effect of MSCs on the monocyte/macrophage phenotype, we have outlined in detail the process by which MSCs influence the transformation of the monocyte/macrophage inflammatory phenotype, emphasizing the central role of monocytes/macrophages in MSC-mediated anti-inflammatory and damage site repair. MSCs are phagocytosed by monocytes/macrophages in various physiological states, the paracrine effect of MSCs and mitochondrial transfer of MSCs to macrophages to promote the transformation of monocytes/macrophages into anti-inflammatory phenotypes. We also review the clinical applications of the MSCs-monocytes/macrophages system and describe novel pathways between MSCs and tissue repair, the effects of MSCs on the adaptive immune system, and the effects of energy metabolism levels on monocyte/macrophage phenotypic changes.
Collapse
Affiliation(s)
- Dejin Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenjian Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Li Yang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qian Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
146
|
Zhou C, Lei F, Mittermaier M, Ksander B, Dana R, Dohlman CH, Vavvas DG, Chodosh J, Paschalis EI. Opposing Roles of Blood-Borne Monocytes and Tissue-Resident Macrophages in Limbal Stem Cell Damage after Ocular Injury. Cells 2023; 12:2089. [PMID: 37626899 PMCID: PMC10453077 DOI: 10.3390/cells12162089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Limbal stem cell (LSC) deficiency is a frequent and severe complication after chemical injury to the eye. Previous studies have assumed this is mediated directly by the caustic agent. Here we show that LSC damage occurs through immune cell mediators, even without direct injury to LSCs. In particular, pH elevation in the anterior chamber (AC) causes acute uveal stress, the release of inflammatory cytokines at the basal limbal tissue, and subsequent LSC damage and death. Peripheral C-C chemokine receptor type 2 positive/CX3C motif chemokine receptor 1 negative (CCR2+ CX3CR1-) monocytes are the key mediators of LSC damage through the upregulation of tumor necrosis factor-alpha (TNF-α) at the limbus. In contrast to peripherally derived monocytes, CX3CR1+ CCR2- tissue-resident macrophages have a protective role, and their depletion prior to injury exacerbates LSC loss and increases LSC vulnerability to TNF-α-mediated apoptosis independently of CCR2+ cell infiltration into the tissue. Consistently, repopulation of the tissue by new resident macrophages not only restores the protective M2-like phenotype of macrophages but also suppresses LSC loss after exposure to inflammatory signals. These findings may have clinical implications in patients with LSC loss after chemical burns or due to other inflammatory conditions.
Collapse
Affiliation(s)
- Chengxin Zhou
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
- Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Fengyang Lei
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
- Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Mirja Mittermaier
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
| | - Bruce Ksander
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
| | - Reza Dana
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
| | - Claes H. Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G. Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
- Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| | - Eleftherios I. Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA; (C.Z.); (F.L.); (M.M.); (B.K.); (R.D.); (C.H.D.); (J.C.)
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
- Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
147
|
Siu WS, Ma H, Cheng W, Shum WT, Leung PC. Traditional Chinese Medicine for Topical Treatment of Skeletal Muscle Injury. Pharmaceuticals (Basel) 2023; 16:1144. [PMID: 37631059 PMCID: PMC10457816 DOI: 10.3390/ph16081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle injuries are common musculoskeletal problems, but the pharmaceutical agent for muscle repair and healing is insufficient. Traditional Chinese Medicine (TCM) frequently uses topical treatments to treat muscle injuries, although scientific evidence supporting their efficacy is scarce. In this study, an in vitro assay was used to test the cytotoxicity of a topical TCM formula containing Carthami Flos, Dipsaci Radix, and Rhei Rhizoma (CDR). Then, a muscle contusion rat model was developed to investigate the in vivo effect and basic mechanisms underlying CDR on muscle regeneration. The in vitro assay illustrated that CDR was non-cytotoxic to immortalized rat myoblast culture and increased cell viability. Histological results demonstrated that the CDR treatment facilitated muscle repair by increasing the number of new muscle fibers and promoting muscle integrity. The CDR treatment also upregulated the expression of Pax7, MyoD and myogenin, as evidenced by an immunohistochemical study. A gene expression analysis indicated that the CDR treatment accelerated the regeneration and remodeling phases during muscle repair. This study demonstrated that topical CDR treatment was effective at facilitating muscle injury repair.
Collapse
Affiliation(s)
- Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wai-Ting Shum
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
148
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
149
|
Martins L, Amorim WW, Gregnani MF, de Carvalho Araújo R, Qadri F, Bader M, Pesquero JB. Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors. Inflamm Res 2023; 72:1583-1601. [PMID: 37464053 PMCID: PMC10499706 DOI: 10.1007/s00011-023-01766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE AND DESIGN After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.
Collapse
Affiliation(s)
- Leonardo Martins
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAN), 3a Tylna St., 90-364, Łódź, Poland.
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.
- Department of Biochemistry and Molecular Biology, Federal University of São Paulo, Rua Três de Maio 100, 4th Floor, São Paulo, 04044-020, Brazil.
| | - Weslley Wallace Amorim
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil
| | - Marcos Fernandes Gregnani
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil
| | - Ronaldo de Carvalho Araújo
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil
| | - Fatimunnisa Qadri
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785, Berlin, Germany
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu 862, 6th Floor, São Paulo, 04023-062, Brazil.
| |
Collapse
|
150
|
Johnson AL, Kamal M, Parise G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023; 12:1968. [PMID: 37566047 PMCID: PMC10417507 DOI: 10.3390/cells12151968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Skeletal muscle has a high capacity to repair and remodel in response to damage, largely through the action of resident muscle stem cells, termed satellite cells. Satellite cells are required for the proper repair of skeletal muscle through a process known as myogenesis. Recent investigations have observed relationships between satellite cells and other cell types and structures within the muscle microenvironment. These findings suggest that the crosstalk between inflammatory cells, fibrogenic cells, bone-marrow-derived cells, satellite cells, and the vasculature is essential for the restoration of muscle homeostasis. This review will discuss the influence of the cells and structures within the muscle microenvironment on satellite cell function and muscle repair.
Collapse
Affiliation(s)
| | | | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|