101
|
Zhu H, Yang Y, Wang Y, Li J, Schiller PW, Peng T. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc Res 2011; 92:75-84. [PMID: 21622680 DOI: 10.1093/cvr/cvr145] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Free fatty acids induce apoptosis in cardiomyocytes, which is implicated in lipotoxic cardiomyopathy. However, the underlying mechanisms remain not fully understood. MicroRNAs (miRNAs) are non-coding small RNAs that control gene expression at the post-transcriptional level. Dysregulated miRNAs have been shown to be involved in heart diseases. This study was to examine whether miR-195 regulates palmitate-induced cardiomyocyte apoptosis by targeting Sirt1, a known anti-apoptotic protein. METHODS AND RESULTS In cultured neonatal mouse cardiomyocytes, palmitate up-regulated miR-195 expression, increased reactive oxygen species (ROS) production, and induced apoptosis as determined by up-regulation of caspase-3 activity and DNA fragmentation. Inhibition of miR-195 decreased ROS production and apoptosis in palmitate-stimulated cardiomyocytes. In contrast, a miR-195 mimic enhanced palmitate-induced ROS production and apoptosis. The induction of miR-195 correlated with a reduction in Sirt1 and Bcl-2. We further showed that miR-195 targeted and inhibited Sirt1 expression through two target sites located in the 3' un-translational region of Sirt1 mRNA. In concordance, inhibition of miR-195 increased Sirt1 protein in cardiomyocytes whereas the miR-195 mimic reduced it. Activation of Sirt1 or overexpression of Bcl-2 inhibited palmitate-induced apoptosis. On the other hand, inhibition of Sirt1 enhanced apoptosis. The inhibitory effect of Sirt1 on apoptosis was associated with a reduction in ROS. CONCLUSIONS This study demonstrates a pro-apoptotic role of miR-195 in cardiomyocytes and identifies Sirt1 as a direct target of miR-195. The effect of miR-195 on apoptosis is mediated through down-regulation of Sirt1 and Bcl-2 and ROS production. Thus, miR-195 may be a new therapeutic target for lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Huaqing Zhu
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, Ontario, Canada N6A 4G5
| | | | | | | | | | | |
Collapse
|
102
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
103
|
Cingolani HE, Ennis IL, Aiello EA, Pérez NG. Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Arch 2011; 462:29-38. [DOI: 10.1007/s00424-011-0930-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
104
|
Zhang Y, Jiang LC, Hu WJ, Hu QG, Zheng QC. TNF-α treatment alters Mfn2 expression and mitochondrial morphology and function in hepatic LO2 cells. Shijie Huaren Xiaohua Zazhi 2010; 18:3452-3456. [DOI: 10.11569/wcjd.v18.i32.3452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of treatment with tumor necrosis factor-alpha (TNF-α) on the expression of mitofusin 2 (Mfn2) and mitochondrial morphology and function in hepatic LO2 cells.
METHODS: After pEGFP-Mfn2 plasmid was transfected into LO2 cells with Lipofectamine 2000, transfected LO2 cells were incubated with TNF-α for 12 h. The expression of Mfn2 mRNA and protein was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot, respectively. MitoTracker Mitochondrion-Selective Probes were used to detect the changes in mitochondrial morphology. ATP synthesis and reactive oxygen species (ROS) production were measured to assess mitochondrial function.
RESULTS: RT-PCR and Western blot analyses showed that Mfn2 was highly expressed in LO2 cells. After treatment of LO2 cells with TNF-α, Mfn2 expression was significantly suppressed (0.279 ± 0.026 vs 0.742 ± 0.018; 0.196 ± 0.024 vs 0.580 ± 0.011, P < 0.05), ATP level decreased (2.00 µmol/g ± 0.15 µmol/g vs 5.81 µmol/g ± 0.31 µmol/g, P < 0.05), ROS production increased (80.68 ± 4.02 vs 65.44 ± 3.47, P < 0.05), and the normal tubular network of mitochondria was fragmented into short rods or spheres when compared to control cells. In contrast, these changes were not significant in Mfn2-transfected LO2 cells.
CONCLUSION: TNF-α treatment may alter mitochondrial morphology and impair mitochondrial function by decreasing the expression of Mfn2 in hepatic LO2 cells.
Collapse
|
105
|
Li WJ, Nie SP, Chen Y, Xie MY, He M, Yu Q, Yan Y. Ganoderma atrum polysaccharide protects cardiomyocytes against anoxia/reoxygenation-induced oxidative stress by mitochondrial pathway. J Cell Biochem 2010; 110:191-200. [PMID: 20217839 DOI: 10.1002/jcb.22526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is now well established that oxidative stress plays a causative role in the pathogenesis of anoxia/reoxygenation (A/R) injury. Ganoderma atrum polysaccharide (PSG-1), the most abundant component isolated from G. atrum, has been shown to possess potent antioxidant activity. The goals of this study were to investigate the effect of PSG-1 against oxidative stress induced by A/R injury and the possible mechanisms in cardiomyocytes. In this work, primary cultures of neonatal rat cardiomyocytes pretreated with PSG-1 were subjected to A/R and subsequently monitored for cell viability by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The levels of intracellular reactive oxygen species (ROS), apoptosis, and mitochondrial membrane potential (Deltapsi(m)) were determined by flow cytometry. Western blot analysis was used to measure the expression of cytochrome c, Bcl-2 family, and manganese superoxide dismutase (MnSOD) proteins, and the activities of caspase-3 and caspase-9 were determined by a colorimetric method. The results showed that PSG-1 protected against cell death caused by A/R injury in cardiomyocytes. PSG-1 reduced the A/R-induced ROS generation, the loss of mitochondrial membrane potential (Deltapsi(m)), and the release of cytochrome c from the mitochondria into cytosol. PSG-1 inhibited the A/R-stimulated activation of caspase-9 and caspase-3 and alteration of Bcl-2 family proteins. Moreover, PSG-1 significantly increased the protein expression of MnSOD in cardiomyocytes. These findings suggest that PSG-1 significantly attenuates A/R-induced oxidative stress and improves cell survival in cardiomyocytes through mitochondrial pathway.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | | | | | | | | | | |
Collapse
|
106
|
Chou HC, Chen YW, Lee TR, Wu FS, Chan HT, Lyu PC, Timms JF, Chan HL. Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med 2010; 49:96-108. [PMID: 20385227 DOI: 10.1016/j.freeradbiomed.2010.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/26/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
Protein phosphorylation plays a crucial role in the signal transduction pathways that regulate gene expression, metabolism, cell adhesion, and cell survival in response to oxidative stress. In this study, we have used hydrogen peroxide treatment of H9C2 rat cardiomyocytes as a model of oxidative stress in heart ischemia-reperfusion injury. We show that oxidative stress induces a robust tyrosine phosphorylation of multiple proteins in this cell type. A phosphoproteomics approach using anti-phosphotyrosine affinity purification and LC-MS/MS was then used to identify the protein targets of this stress-induced phosphorylation. Twenty-three tyrosine-phosphorylated proteins were identified, with the majority known to be associated with cell-cell junctions, the actin cytoskeleton, and cell adhesion. This suggested that oxidative stress may have a profound effect on intercellular connections and the cytoskeleton to affect cell adhesion, morphology, and survival. Importantly, Src kinase was shown to be a major upstream regulator of these events. Immunofluorescence studies, fluorescence-activated cell sorting, and cell-based assays were used to demonstrate oxidative stress-induced modification of cell adhesion structures and the cytoskeleton, induced de-adhesion, and increased apoptosis, which were reversed by treatment with the Src kinase inhibitor PP1. These data demonstrate the critical role of Src kinase in oxidative stress-induced phosphorylation and cell damage in cardiomyocytes and suggest that targeting this kinase may be an effective strategy for preventing ischemia-reperfusion injury in the heart.
Collapse
Affiliation(s)
- Hsiu-Chuan Chou
- Tissue Regeneration Bio-Device Tech Lab, Medical Electronics and Device Technology Center, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Han Wei, Dan Wei, Shuo Yi, Fang Zhang, Wenjun Ding. Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. Hum Exp Toxicol 2010; 30:579-90. [PMID: 20554636 DOI: 10.1177/0960327110374207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been reported that vascular endothelia cell damage is an important precursor to the morbidity and mortality associated with cardiovascular disease exposed to airborne particulate matter (PM). The present study investigated the hypothesis that urban fine (PM(2.5)) particles could cause cytotoxicity via oxidative stress in human umbilical vein endothelial cells, EA.hy926. The concentrations of metal elements (Cr, Fe, Ni, Cu, Zn, Mo, Cd and Pb) in PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) were determined by inductively coupled plasma - mass spectrometry (ICP-MS). Iron (Fe), Zn and Pb were highly enriched in all the samples. Exposure of the cultured EA.hy926 cells to PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) led to cell death, reactive oxygen species (ROS) increase, mitochondrial transmembrane potential (ΔΨm) disruption and NF-κB activation, respectively. The ROS increase by exposure to PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) triggered the activation of nuclear factor (NF)-κB, which means that PM(2.5) particles exert cytotoxicity by an apopotic process. However, the induction of cytotoxicity by PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) was reversed by pretreatment with superoxide dismutase (SOD). These results suggest that each fraction of PM(2.5) has a potency to cause oxidative stress in endothelial cells. ROS was generated through PM(2.5)-mediated mitochondrial apoptotic pathway, which may induce direct interaction between metal elements and endothelia cells.
Collapse
Affiliation(s)
- Han Wei
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P R China
| | | | | | | | | |
Collapse
|
108
|
Schmelzer C, Döring F. Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes. Biofactors 2010; 36:222-8. [PMID: 20533395 DOI: 10.1002/biof.93] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coenzyme Q(10) (CoQ(10)) is an obligatory element in the respiratory chain and functions as a potent antioxidant of lipid membranes. More recently, anti-inflammatory effects as well as an impact of CoQ(10) on gene expression have been observed. To reveal putative effects of Q(10) on LPS-induced gene expression, whole genome expression analysis was performed in the monocytic cell line THP-1. Thousand one hundred twenty-nine and 710 probe sets have been identified to be significantly (P <or= 0.05) up and downregulated in LPS-treated cells when compared with controls, respectively. Text mining analysis of the top 50 LPS upregulated genes revealed a functional connection in the NFkappaB pathway and confirmed our applied in vitro stimulation model. Moreover, 33 LPS-sensitive genes have been identified to be significantly downregulated by Q(10)-treatment between a factor of 1.32 and 1.85. GeneOntology (GO) analysis revealed for the Q(10)-sensitve genes a primary involvement in protein metabolism (e.g., HERC1 and EPS15), cell proliferation (e.g., CCDC100 and SMURF1), and transcriptional processes (e.g., CNOT4 and STK4). Three genes were either related to NFkappaB transcription factor activity (ERC1), cytokinesis (DIAPH2), or modulation of oxidative stress (MSRA). In conclusion, our data provide evidence that Q(10) downregulates LPS-inducible genes in the monocytic cell line THP-1. Thus, the previously described effects of Q(10) on the reduction of proinflammatory mediators might be due to its antioxidant impact on gene expression.
Collapse
Affiliation(s)
- Constance Schmelzer
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts-University of Kiel, Germany
| | | |
Collapse
|
109
|
Tappia PS, Asemu G, Rodriguez-Leyva D. Phospholipase C as a potential target for cardioprotection during oxidative stressThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:249-63. [DOI: 10.1139/y10-019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiac dysfunction due to ischemia–reperfusion (I/R) is associated with marked changes in membrane function and subsequent Ca2+-handling abnormalities in cardiomyocytes. The membrane abnormalities in hearts subjected to I/R arise primarily from oxidative stress as a consequence of increased formation of reactive oxygen species and other oxidants, as well as reduced antioxidant defenses. Little is known, however, about the nature and mechanisms of the sarcolemmal membrane changes with respect to phospholipase C (PLC)-related signaling events. In addition, the mechanisms involved in protection of the postischemic myocardium and in ischemic preconditioning with respect to PLC function need to be established. Accordingly, this article reviews the historical and current information on PLC-mediated signal transduction mechanisms in I/R, as well as outlining future directions that should be addressed. Such information will extend our knowledge of ischemic heart disease and help improve its therapy.
Collapse
Affiliation(s)
- Paramjit S. Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Girma Asemu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Delfin Rodriguez-Leyva
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
110
|
Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, Xiao RP. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 2009; 106:102-10. [PMID: 19910575 DOI: 10.1161/circresaha.109.210914] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Ca2+/calmodulin-dependent protein kinase (CaMK)II is a multifunctional kinase involved in vital cellular processes such as Ca(2+) handling and cell fate regulation. In mammalian heart, 2 primary CaMKII isoforms, deltaB and deltaC, localize in nuclear and cytosolic compartments, respectively. Although previous studies have established an essential role of CaMKII-deltaC in cardiomyocyte apoptosis, the functional role of the more abundant isoform, CaMKII-deltaB, remains elusive. OBJECTIVE Here, we determined the potential role of CaMKII-deltaB in regulating cardiomyocyte viability and explored the underlying mechanism. METHODS AND RESULTS In cultured neonatal rat cardiomyocytes, the expression of CaMKII-deltaB and CaMKII-deltaC was inversely regulated in response to H2O2-induced oxidative stress with a profound reduction of the former and an increase of the later. Similarly, in vivo ischemia/reperfusion (IR) led to an opposite regulation of these CaMKII isoforms in a rat myocardial IR model. Notably, overexpression of CaMKII-deltaB protected cardiomyocytes against oxidative stress-, hypoxia-, and angiotensin II-induced apoptosis, whereas overexpression of its cytosolic counterpart promoted apoptosis. Using cDNA microarray, real-time PCR and Western blotting, we demonstrated that overexpression of CaMKII-deltaB but not CaMKII-deltaC elevated expression of heat shock protein (HSP)70 family members, including inducible (i)HSP70 and its homolog (Hst70). Moreover, overexpression of CaMKII-deltaB led to phosphorylation and activation of heat shock factor (HSF)1, the primary transcription factor responsible for HSP70 gene regulation. Importantly, gene silencing of iHSP70, but not Hst70, abolished CaMKII-deltaB-mediated protective effect, indicating that only iHSP70 was required for CaMKII-deltaB elicited antiapoptotic signaling. CONCLUSIONS We conclude that cardiac CaMKII-deltaB and CaMKII-deltaC were inversely regulated in response to oxidative stress and IR injury, and that in contrast to CaMKII-deltaC, CaMKII-deltaB serves as a potent suppressor of cardiomyocyte apoptosis triggered by multiple death-inducing stimuli via phosphorylation of HSF1 and subsequent induction of iHSP70, marking both CaMKII-delta isoforms as promising therapeutic targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
111
|
Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Nishihara T, Yamashita Y. Globular adiponectin-induced RAW 264 apoptosis is regulated by a reactive oxygen species-dependent pathway involving Bcl-2. Free Radic Biol Med 2009; 46:1308-16. [PMID: 19250964 DOI: 10.1016/j.freeradbiomed.2009.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 12/18/2022]
Abstract
Globular adiponectin (gAd), a truncated form of adipocyte-derived cytokine, stimulates RAW 264 cells to produce reactive oxygen species (ROS), which trigger an apoptotic cascade. In this study, we investigated the generation of intracellular and mitochondrial ROS in gAd-stimulated RAW 264 cells. Treatment with gAd efficiently induced the generation of intracellular and mitochondrial ROS, as detected by dichlorodihydrofluorescein diacetate and MitoSOX fluorescence, respectively. Furthermore, gAd treatment significantly increased 8-oxoguanine, a specific indicator of oxidative DNA damage. The transfection of RAW 264 cells with iNOS- and gp91(phox)-specific small interfering RNA reduced markedly the generation of intracellular, but not mitochondrial, ROS. Quantitative PCR revealed that the expression ratio of Bcl-2 to Bax was reduced in a time-dependent manner in gAd-treated RAW 264 cells. The overexpression of Bcl-2 markedly inhibited gAd-induced apoptosis in RAW 264 cells and also reduced both the intracellular and the mitochondrial ROS generation induced by gAd treatment. Moreover, the overexpression of Bcl-2 significantly suppressed gAd-induced NO secretion and NOS activity. In addition, the inhibition of NOS activity partially reduced the oxidative DNA damage induced by gAd. Taken together, these results demonstrate that the gAd-induced apoptotic pathway acting via ROS/RNS generation involves Bcl-2.
Collapse
Affiliation(s)
- Sumio Akifusa
- Department of Preventive Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
112
|
Box A, Sureda A, Deudero S. Antioxidant response of the bivalve Pinna nobilis colonised by invasive red macroalgae Lophocladia lallemandii. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:456-60. [PMID: 19010448 DOI: 10.1016/j.cbpc.2008.10.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 11/24/2022]
Abstract
Invasive species represent a risk to natural ecosystems and a biodiversity hazard. The present work aims to determine the antioxidant enzyme response - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the phase II detoxifying enzyme - glutathione S-transferase (GST) - and markers of oxidative damage - thioredoxin reductase (TR) and malondialdehyde (MDA) - in gills and digestive gland of Pinna nobilis and to study the antioxidant response effects in the bivalve colonised by the invasive macroalgae Lophocladia lallemandii. Colonised specimens were collected in a control area without L. lallemandii and another area completely colonised by L. lallemandii. All enzyme activities were found to be present in gills and digestive gland, with some tissue differences. CAT and SOD activities were higher in gills than digestive gland, whereas GST activity and MDA levels were higher in digestive gland. The presence of L. lallemandii induced a significant increase in the activities of antioxidant enzymes in both gills and digestive gland, except for CAT activity in gills. GST and TR activities were also increased in both tissues, as well as the MDA concentration. We can conclude that the presence of L. lallemandii colonising P. nobilis induces a biological stress and oxidative damage to the fan mussel.
Collapse
Affiliation(s)
- Antonio Box
- Marine Biology Laboratory, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain.
| | | | | |
Collapse
|
113
|
Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Yamashita Y. Involvement of Ca(2+) in globular adiponectin-induced reactive oxygen species. Biochem Biophys Res Commun 2009; 381:649-53. [PMID: 19249286 DOI: 10.1016/j.bbrc.2009.02.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
Abstract
Globular adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. We investigated the role of Ca(2+) in gAd-induced ROS and NO generation. Pretreatment with BAPTA-AM, a selective chelator of intracellular Ca(2+) ([Ca(2+)](i)), partially reduced gAd-induced generation of ROS and NO in gAd-treated RAW 264 cells. The lowest [Ca(2+)](i) occurred 30min after gAd treatment, after which [Ca(2+)](i) increased continually and exceeded the initial level. The mitochondrial Ca(2+) ([Ca(2+)](m)) detected by Rhod-2 fluorescence started to increase at 6h after gAd treatment. Pretreatment with a NAD(P)H oxidase inhibitor, diphenyleneiodonium, prevented the reduction of [Ca(2+)](i) in the early phase after gAd treatment. Calcium depletion by BAPTA-AM had no effect on the gAd-induced [Ca(2+)](m) oscillation. The administration of a specific calmodulin inhibitor, calmidazolium, significantly suppressed gAd-induced ROS and NO generation and NOS activity.
Collapse
Affiliation(s)
- Sumio Akifusa
- Department of Preventive Dentistry, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
114
|
Reed R, Potter B, Smith E, Jadhav R, Villalta P, Jo H, Rocic P. Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol 2009; 296:H1811-21. [PMID: 19376806 DOI: 10.1152/ajpheart.00920.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have recently shown that the inability of repetitive ischemia (RI) to activate p38 MAPK (p38) and Akt in metabolic syndrome [JCR:LA-cp (JCR)] rats was associated with impaired coronary collateral growth (CCG). Furthermore, Akt and p38 activation correlated with optimal O(2)(-). levels and were altered in JCR rats, and redox-sensitive p38 activation was required for CCG. Here, we determined whether the activation of Src, a possible upstream regulator, was altered in JCR rats and whether redox-dependent Src and Akt activation were required for CCG. CCG was assessed by myocardial blood flow (microspheres) and kinase activation was assessed by Western blot analysis in the normal zone and collateral-dependent zone (CZ). RI induced Src activation (approximately 3-fold) in healthy [Wistar-Kyoto (WKY)] animals but not in JCR animals. Akt inhibition decreased (approximately 50%), and Src inhibition blocked RI-induced CCG in WKY rats. Src inhibition decreased p38 and Akt activation. Myocardial oxidative stress (O(2)(-). and oxidized/reduced thiols) was measured quantitatively (X-band electron paramagnetic resonance). An antioxidant, apocynin, reduced RI-induced oxidative stress in JCR rats to levels induced by RI in WKY rats versus the reduction in WKY rats to very low levels. This resulted in a significant restoration of p38 (approximately 80%), Akt (approximately 65%), and Src (approximately 90%) activation in JCR rats but decreased the activation in WKY rats (p38: approximately 45%, Akt: approximately 65%, and Src: approximately 100%), correlating with reduced CZ flow in WKY rats (approximately 70%), but significantly restored CZ flow in JCR rats (approximately 75%). We conclude that 1) Akt and Src are required for CCG, 2) Src is a redox-sensitive upstream regulator of RI-induced p38 and Akt activation, and 3) optimal oxidative stress levels are required for RI-induced p38, Akt, and Src activation and CCG.
Collapse
Affiliation(s)
- Ryan Reed
- Department of Biochemistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Brunt KR, Tsuji MR, Lai JH, Kinobe RT, Durante W, Claycomb WC, Ward CA, Melo LG. Heme oxygenase-1 inhibits pro-oxidant induced hypertrophy in HL-1 cardiomyocytes. Exp Biol Med (Maywood) 2009; 234:582-94. [PMID: 19244544 DOI: 10.3181/0810-rm-312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Reactive oxygen species (ROS) activate multiple signaling pathways involved in cardiac hypertrophy. Since HO-1 exerts potent antioxidant effects, we hypothesized that this enzyme inhibits ROS-induced cardiomyocyte hypertrophy. METHODS HL-1 cardiomyocytes were transduced with an adenovirus constitutively expressing HO-1 (AdHO-1) to increase basal HO-1 expression and then exposed to 200 microM hydrogen peroxide (H2O2). Hypertrophy was measured using 3H-leucine incorporation, planar morphometry and cell-size by forward-scatter flow-cytometry. The pro-oxidant effect of H2O2 was assessed by redox sensitive fluorophores. Inducing intracellular redox imbalance resulted in cardiomyocyte hypertrophy through transactivation of nuclear factor kappa B (NF-kappaB). RESULTS Pre-emptive HO-1 overexpression attenuated the redox imbalance and reduced hypertrophic indices. This is the first time that HO-1 has directly been shown to inhibit oxidant-induced cardiomyocyte hypertrophy by a NF-kappaB-dependent mechanism. CONCLUSION These results demonstrate that HO-1 inhibits pro-oxidant induced cardiomyocyte hypertrophy and suggest that HO-1 may yield therapeutic potential in treatment of.
Collapse
Affiliation(s)
- Keith R Brunt
- Department of Physiology, Queen's University, 431 Botterell Hall, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Mariappan N, Elks CM, Fink B, Francis J. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radic Biol Med 2009; 46:462-70. [PMID: 19041937 PMCID: PMC2735225 DOI: 10.1016/j.freeradbiomed.2008.10.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 02/07/2023]
Abstract
Mitochondrial damage is implicated in the progression of cardiac disease. Considerable evidence suggests that proinflammatory cytokines induce oxidative stress and contribute to cardiac dysfunction. This study was conducted to determine whether a TNF-induced increase in superoxide (O(2)(*)(-)) contributes to mitochondrial damage in the left ventricle (LV) by impairing respiratory complex I activity. We employed an electron paramagnetic resonance (EPR) method to measure O(2)(*)(-) and oxygen consumption in mitochondrial respiratory complexes, using an oxygen label. Adult male Sprague-Dawley rats were divided into four groups: control, TNF treatment (ip), TNF+ apocynin (APO; 200 micromol/kg bw, orally), and TNF+ Tempol (Temp; 300 micromol/kg bw, orally). TNF was injected daily for 5 days. Rats were sacrificed, LV tissue was collected, and mitochondria were isolated for EPR studies. Total LV ROS production was significantly higher in TNF animals than in controls; APO or Temp treatment ameliorated TNF-induced LV ROS production. Total mitochondrial ROS production was significantly higher in the TNF and TNF+ APO groups than in the control and TNF+ Temp groups. These findings suggest that TNF alters the cellular redox state, reduces the expression of four complex I subunits by increasing mitochondrial O(2)(*)(-) production and depleting ATP synthesis, and decreases oxygen consumption, thereby resulting in mitochondrial damage and leading to LV dysfunction.
Collapse
Affiliation(s)
- Nithya Mariappan
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Carrie M. Elks
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Bruno Fink
- Noxygen Science Transfer and Diagnostics GmbH, Lindenmatte 42, 79215 Elzach, Germany
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Corresponding author. Fax: +1 225 578 9895. E-mail address: (J. Francis)
| |
Collapse
|
117
|
Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 2009; 47:5-14. [PMID: 19336275 DOI: 10.1016/j.yjmcc.2009.01.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/02/2009] [Accepted: 01/09/2009] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS)-induced cardiac cell injury via expression changes of multiple genes plays a critical role in the pathogenesis of numerous heart diseases. MicroRNAs (miRNAs) comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate about 30% of the genes in a cell via degradation or translational inhibition of their target mRNAs. Currently, the effects of ROS on miRNA expression and the roles of miRNAs in ROS-mediated injury on cardiac myocytes are uncertain. Using quantitative real-time RT-PCR (qRT-PCR), we demonstrated that microRNA-21 (miR-21) was upregulated in cardiac myocytes after treatment with hydrogen peroxide (H(2)O(2)). To determine the potential roles of miRNAs in H(2)O(2)-mediated gene regulation and cellular injury, miR-21 expression was downregulated by miR-21 inhibitor and upregulated by pre-miR-21. H(2)O(2)-induced cardiac cell death and apoptosis were increased by miR-21 inhibitor and was decreased by pre-miR-21. Programmed cell death 4 (PDCD4) that was regulated by miR-21 and was a direct target of miR-21 in cardiac myocytes. Pre-miR-21-mediated protective effect on cardiac myocyte injury was inhibited in H(2)O(2)-treated cardiac cells via adenovirus-mediated overexpression of PDCD4 without miR-21 binding site. Moreover, Activator protein 1 (AP-1) was a downstream signaling molecule of PDCD4 that was involved in miR-21-mediated effect on cardiac myocytes. The results suggest that miR-21 is sensitive to H(2)O(2) stimulation. miR-21 participates in H(2)O(2)-mediated gene regulation and functional modulation in cardiac myocytes. miR-21 might play an essential role in heart diseases related to ROS such as cardiac hypertrophy, heart failure, myocardial infarction, and myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yunhui Cheng
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | | | | | | | | | | |
Collapse
|
118
|
Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 2009; 177:142-52. [DOI: 10.1016/j.cbi.2008.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/07/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
119
|
Role of kallistatin in prevention of cardiac remodeling after chronic myocardial infarction. J Transl Med 2008; 88:1157-66. [PMID: 18762777 DOI: 10.1038/labinvest.2008.85] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oxidative stress causes cardiomyocyte death and subsequent ventricular dysfunction and cardiac remodeling after myocardial infarction (MI), thus contributing to high mortality in chronic heart failure patients. We investigated the effects of kallistatin in cardiac remodeling in a chronic MI rat model and in primary cardiac cells. Human kallistatin gene was injected intramyocardially 20 min after ligation of the left coronary artery. At 4 weeks after MI, expression of human kallistatin in rat hearts was identified by reverse transcription-polymerase chain reaction, immunohistochemistry and ELISA. Kallistatin administration improved cardiac performance, increased mean arterial pressure, decreased myocardial infarct size and restored left ventricular wall thickness. Kallistatin treatment significantly attenuated cardiomyocyte size and atrial natriuretic peptide expression. Kallistatin also reduced collagen accumulation, collagen fraction volume and expression of collagen types I and III, transforming growth factor-beta1 (TGF-beta1) and plasminogen activator inhibitor-1 in the myocardium. Inhibition of cardiac hypertrophy and fibrosis by kallistatin was associated with increased cardiac nitric oxide (NO) levels and decreased superoxide formation, NADH oxidase activity and p22-phox expression. Moreover, in both primary cultured rat cardiomyocytes and myofibroblasts, recombinant kallistatin inhibited intracellular superoxide formation induced by H(2)O(2), and the antioxidant effect of kallistatin was abolished by Nomega-nitro-L-arginine methyl ester (L-NAME), indicating a NO-mediated event. Kallistatin promoted survival of cardiomyocytes subjected to H(2)O(2) treatment, and inhibited H(2)O(2)-induced Akt and ERK phosphorylation, as well as NF-kappaB activation. Furthermore, kallistatin abrogated TGF-beta-induced collagen synthesis and secretion in cultured myofibroblasts. This is the first study to demonstrate that kallistatin improves cardiac performance and prevents post-MI-induced cardiac hypertrophy and fibrosis through its antioxidant action.
Collapse
|
120
|
Lu Z, Fassett J, Xu X, Hu X, Zhu G, French J, Zhang P, Schnermann J, Bache RJ, Chen Y. Adenosine A3 receptor deficiency exerts unanticipated protective effects on the pressure-overloaded left ventricle. Circulation 2008; 118:1713-21. [PMID: 18838560 DOI: 10.1161/circulationaha.108.788307] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endogenous adenosine can protect the overloaded heart against the development of hypertrophy and heart failure, but the contribution of A(1) receptors (A(1)R) and A(3) receptors (A(3)R) is not known. METHODS AND RESULTS To test the hypothesis that A(1)R and A(3)R can protect the heart against systolic overload, we exposed A(3)R gene-deficient (A(3)R knockout [KO]) mice and A(1)R KO mice to transverse aortic constriction (TAC). Contrary to our hypothesis, A(3)R KO attenuated 5-week TAC-induced left ventricular hypertrophy (ratio of ventricular mass/body weight increased to 7.6+/-0.3 mg/g in wild-type mice compared with 6.3+/-0.4 mg/g in KO mice), fibrosis, and dysfunction (left ventricular ejection fraction decreased to 43+/-2.5% and 55+/-4.2% in wild-type and KO mice, respectively). A(3)R KO also attenuated the TAC-induced increases of myocardial atrial natriuretic peptide and the oxidative stress markers 3'-nitrotyrosine and 4-hydroxynonenal. In contrast, A(1)R KO increased TAC-induced mortality but did not alter ventricular hypertrophy or dysfunction compared with wild-type mice. In mice in which extracellular adenosine production was impaired by CD73 KO, TAC caused greater hypertrophy and dysfunction and increased myocardial 3'-nitrotyrosine. In neonatal rat cardiomyocytes induced to hypertrophy with phenylephrine, the adenosine analogue 2-chloroadenosine reduced cell area, protein synthesis, atrial natriuretic peptide, and 3'-nitrotyrosine. Antagonism of A(3)R significantly potentiated the antihypertrophic effects of 2-chloroadenosine. CONCLUSIONS Adenosine exerts protective effects on the overloaded heart, but the A(3)R acts counter to the protective effect of adenosine. The data suggest that selective attenuation of A(3)R activity might be a novel approach to treat pressure overload-induced left ventricular hypertrophy and dysfunction.
Collapse
Affiliation(s)
- Zhongbing Lu
- Center for Vascular Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Paulis L, Matuskova J, Adamcova M, Pelouch V, Simko J, Krajcirovicova K, Potacova A, Hulin I, Janega P, Pechanova O, Simko F. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: effect of L-arginine and spironolactone. Acta Physiol (Oxf) 2008; 194:45-55. [PMID: 18419778 DOI: 10.1111/j.1748-1716.2008.01862.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM We investigated, whether the substrate for nitric oxide (NO) formation -L-arginine - and the aldosterone receptor antagonist - spironolactone - are able to reverse alterations of the left ventricle (LV) and aorta in N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. METHODS Six groups of male adult Wistar rats were investigated: controls after 4 and 7 weeks of experiment, rats treated with L-NAME for 4 weeks and three recovery groups: spontaneous-reversion (4 weeks L-NAME + 3 weeks placebo), spironolactone-induced reversion (4 weeks L-NAME + 3 weeks spironolactone) and L-arginine-induced reversion (4 weeks L-NAME+ 3 weeks L-arginine). Blood pressure was measured by tail-cuff plethysmography. Relative weight of the LV, myocardial fibrosis (based upon histomorphometry and hydroxyproline determination) and conjugated dienes in the LV and aortic cross-sectional area, inner diameter and wall thickness were determined. NO-synthase activity was investigated in the LV and aorta. RESULTS L-NAME administration induced hypertension, left ventricular hypertrophy (LVH), LV fibrosis, aortic thickening and diminution of NO-synthase activity in the LV and aorta. Reduction in blood pressure and regression of LVH were observed in all recovery groups, yet reduction in LV fibrosis and aortic thickening were not. NO-synthase activity was restored only in the L-arginine and spironolactone group. CONCLUSION In our study, the reversion of hypertension and LVH was not dependent on the restoration of NO-synthase activity. Moreover, LV fibrosis and aortic remodelling seem to be more resistant to conditions resulting in regression of LVH. Preserved level of fibrosis in the initial period of LVH regression might result in loss of structural homogeneity and possible functional alterations of the LV.
Collapse
Affiliation(s)
- L Paulis
- Institute of Pathophysiology, School of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Radovanovic S, Krotin M, Simic DV, Mimic-Oka J, Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Ninkovic N, Ivanovic B, Simic T. Markers of oxidative damage in chronic heart failure: role in disease progression. Redox Rep 2008; 13:109-16. [PMID: 18544228 DOI: 10.1179/135100008x259204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND We aimed to study the relationship between markers of oxidative lipid or protein damage and ventricular remodeling and the validity of 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)) as an indicator of disease severity in patients with ischemic chronic heart failure (CHF). PATIENTS AND METHODS We enrolled four groups of 12 patients with varying CHF according to the New York Heart Association (NYHA) classification and 25 controls. Urinary 8-epi-PGF(2alpha) and plasma malondialdehyde and protein thiol (P-SH) groups were correlated with echocardiographic indices of remodeling. The reliability of isoprostanes was analyzed by a receiver operating characteristics (ROC) curve. RESULTS NYHA class III and IV patients exhibited elevated 8-epi-PGF(2alpha) levels, increased malondialdehyde concentrations and decreased P-SH groups when compared to controls and NYHA I and II patients. 8-Epi-PGF(2alpha) and P-SH groups correlated significantly with indices of remodeling. The ROC curve drawn for 8-epi-PGF(2alpha) allowed us to differentiate NYHA class III and IV patients from NYHA class I and II patients with a sensitivity of 95.8% and specificity of 95.8% (cut off 0.84 ng/mg creatinine; area under curve 0.99; P < 0.001). CONCLUSIONS Markers of oxidative damage are unlikely to play a significant role in early stages of CHF. However, they might become important in the course of CHF when their concentrations reach critical levels. Urinary 8-epi-PGF(2alpha) is a reliable indicator of symptomatic CHF.
Collapse
|
123
|
Xing J, Zhang Z, Mao H, Schnellmann RG, Zhuang S. Src regulates cell cycle protein expression and renal epithelial cell proliferation via PI3K/Akt signaling-dependent and -independent mechanisms. Am J Physiol Renal Physiol 2008; 295:F145-52. [PMID: 18434386 PMCID: PMC2494517 DOI: 10.1152/ajprenal.00092.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/17/2008] [Indexed: 11/22/2022] Open
Abstract
Our recent studies showed that Src family kinases (SFKs) are important mediators of proliferation in renal proximal tubular cells (RPTC). In this study, we elucidate the signaling mechanisms that mediate SFK regulation of cell proliferation and cycle protein expression, and identify the SFK member responsible for these responses in a mouse RPTC line. Akt, a target of phosphoinositide-3-kinase (PI3K), and ERK1/2 were constitutively phosphorylated in RPTC cultured in the presence of serum. While treatment of cells with PP1, a specific SFK inhibitor, completely blocked phosphorylation of ERK1/2 and Akt, only inhibition of PI3K/Akt resulted in decreased RPTC proliferation. Incubation of cells with PP1 decreased cyclin D1 expression, decreased p27 and p57 phosphorylation, and increased p27 and p57 expression, two cyclin-dependent kinase inhibitors. Inhibition of the PI3K pathway decreased expression of cyclin D1 without altering expression of p27 and p57. In contrast, PP1 and PI3K inhibition had no effect on cyclin E and p21. Although RPTC expressed Src, Fyn, and Lyn, only siRNA-mediated knockdown of Src decreased RPTC proliferation, decreased cyclin D1 expression, and increased p27 and p57 expression. These data reveal that Src is a crucial mediator of RPTC proliferation and Src-mediated proliferation is associated with PI3K-dependent upregulation of cyclin D1 and PI3K-independent downregulation of p27 and p57.
Collapse
Affiliation(s)
- Jingping Xing
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital Middle, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
124
|
Kwon D, Choi K, Choi C, Benveniste EN. Hydrogen peroxide enhances TRAIL-induced cell death through up-regulation of DR5 in human astrocytic cells. Biochem Biophys Res Commun 2008; 372:870-4. [PMID: 18534188 DOI: 10.1016/j.bbrc.2008.05.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 12/01/2022]
Abstract
The central nervous system (CNS) is particularly vulnerable to reactive oxygen species (ROS), which have been implicated in the pathogenesis of various neurological disorders. The TNF superfamily of cytokines, especially tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces caspase-dependent cell death and is also implicated in various neurodegenerative diseases. In this study, we investigated the relationship between ROS and TRAIL-induced cell death. Exposure to hydrogen peroxide (H(2)O(2)) (100 microM) sensitized human astrocytic cells to TRAIL-induced cell death (up to 7-fold induction). To delineate the molecular mechanisms responsible for H(2)O(2)-induced sensitization, we examined expression of various genes (Caspase-8, Fas, FasL, DR4, DR5, DcR1, DcR2, TRAIL, TNFRp55) related to TRAIL-induced cell death. Treatment with H(2)O(2) significantly increased DR5 mRNA and protein expression in a time- and dose-dependent manner. H(2)O(2)-mediated cell death was blocked upon treatment with DR5:Fc protein, a TRAIL-specific antagonistic protein. These findings collectively suggest that oxidative stress sensitizes human astroglial cells to TRAIL-induced cell death through up-regulation of DR5 expression.
Collapse
Affiliation(s)
- Daeho Kwon
- Medical Research Center for Environmental Toxico-Genomics and Proteomics, Korea University College of Medicine, Anam dong-5ga 126-1, Seongbuk-gu, Seoul 136-705, Republic of Korea.
| | | | | | | |
Collapse
|
125
|
Chow JM, Huang GC, Lin HY, Shen SC, Yang LY, Chen YC. Cytotoxic effects of metal protoporphyrins in glioblastoma cells: Roles of albumin, reactive oxygen species, and heme oxygenase-1. Toxicol Lett 2008; 177:97-107. [DOI: 10.1016/j.toxlet.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
126
|
ÁLVAREZ MC, CALDIZ C, FANTINELLI JC, GARCIARENA CD, CONSOLE GM, CHIAPPE DE CINGOLANI GE, MOSCA SM. Is Cardiac Hypertrophy in Spontaneously Hypertensive Rats the Cause or the Consequence of Oxidative Stress? Hypertens Res 2008; 31:1465-76. [DOI: 10.1291/hypres.31.1465] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
127
|
Gurusamy N, Goswami S, Malik G, Das DK. Oxidative injury induces selective rather than global inhibition of proteasomal activity. J Mol Cell Cardiol 2007; 44:419-28. [PMID: 18078953 DOI: 10.1016/j.yjmcc.2007.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 12/27/2022]
Abstract
Oxidative injury has been found to be associated with proteasomal inactivity. In this study, the extent of oxidative damage and its effects on proteasomal function has been critically assessed. Left anterior descending coronary artery was occluded (ischemia) and reperfused with or without preconditioning in male Sprague-Dawley rats. For further validation, H9c2 cardiac myoblasts cultures were used. We demonstrate that ischemia-reperfusion causes extensive endoplasmic reticulum stress as evident from the degradation of GRP78 transcript followed by its rapid induction. Western blot analysis and immunohistochemistry showed that increasing duration of ischemia and reperfusion causes accumulation of phosphorylated IkappaB (p-IkappaB), thereby suggesting proteasomal inactivity. However, similar analysis for Nrf2, a key mediator of antioxidant defense, showed sustained activation, suggesting intact proteasomal function. Preconditioning of the myocardium preserves the degradation of p-IkappaB, suggesting effective functioning of proteasome after preconditioning. Further analysis with specific proteosomal inhibitors like epoxomicin (100 nM, inhibits chymotrypsin-like activities of proteasomes) and lactacystin (2 microM, inhibits chymotrypsin as well as some trypsin-like activities of proteasomes) suggests that degradation of p-IkappaB and Keap-1 in the proteasome occurs by independent mechanisms. This study gives further insight into interrelationship between oxidative injury and catalytic function of the proteasome in heart, where oxidative injury causes selective rather than global inhibition of proteasome.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
| | | | | | | |
Collapse
|
128
|
Koklu E, Akcakus M, Narin F, Saraymen R. The relationship between birth weight, oxidative stress and bone mineral status in newborn infants. J Paediatr Child Health 2007; 43:667-72. [PMID: 17854450 DOI: 10.1111/j.1440-1754.2007.01184.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND It was shown that oxygen-derived free radicals, and particularly the superoxide anion, are intermediaries in the formation and activation of osteoclasts. Many antioxidant defence systems depend on micronutrients or are micronutrients themselves. Oxidative stress might be related to bone indices in newborn infants. AIM To assess the relationship between oxidative status and bone indices in small-for-gestational-age (SGA), large-for-gestational-age (LGA) and appropriate-for-gestational-age (AGA) babies born to healthy mothers. METHODS Umbilical cord venous blood samples were obtained at the delivery from 100 term newborn infants to measure plasma malondialdhyde, superoxide dismutase (SOD) and myeloperoxidase concentrations. Forty of the newborn infants had birth weights AGA, 30 were SGA and 30 LGA. Data were acquired using the whole body dual-energy X-ray absorptiometry scanner in the first 24 h after birth. RESULTS Plasma malondialdhyde and SOD concentrations of the mothers and their newborn infants were positively correlated; however, plasma myeloperoxidase concentrations were not. SOD concentrations of SGA infants were significantly higher than those of AGA and LGA infants. Whole body bone mineral density and content were lower in SGA but higher in LGA babies than in AGA babies. Oxidative stress status of both infants and their mothers was not related to the bone indices. CONCLUSION Our study does not provide support for the hypothesis that oxidative status of the infants and mothers may play a major role in the regulation of bone metabolism in the developing skeleton.
Collapse
Affiliation(s)
- Esad Koklu
- Division of Neonatology, Department of Paediatrics, Department of Biochemistry School of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | | | | | | |
Collapse
|
129
|
Hoshino Y, Shioji K, Nakamura H, Masutani H, Yodoi J. From oxygen sensing to heart failure: role of thioredoxin. Antioxid Redox Signal 2007; 9:689-99. [PMID: 17511584 DOI: 10.1089/ars.2007.1575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress has been widely recognized to be involved in the pathogenesis of cardiopulmonary disorders. In ischemic heart diseases, it is involved not only in the development of atherosclerosis but also in ongoing ischemic injury, especially in the reperfusion process. Cardiomyopathy is another cardiac disorder in which oxidative stress is involved. In diabetic cardiomyopathy, homocysteine, a well-known source of oxidative stress, is believed to play major roles in its development. Thioredoxin (TRX) is a redox-acting protein ubiquitously present in the human body. It also is inducible by a wide variety of oxidative stresses. TRX is a multifunctional protein and has anti-inflammatory and antiapoptotic effects, as well as antioxidative effects. It is therefore feasible to think that TRX is a potential therapy for cardiac disease. Moreover, serum TRX is a well-recognized biomarker of various diseases involving oxidative stress, and this is also the case for cardiac disorders. Here we discuss how TRX is useful as a biomarker of and therapeutic agent for cardiopulmonary disorders, especially focusing on ischemic heart disease, myocarditis and oxygen sensing, and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yuma Hoshino
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
130
|
Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007; 18:567-79. [PMID: 17360173 DOI: 10.1016/j.jnutbio.2006.10.007] [Citation(s) in RCA: 485] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/29/2006] [Accepted: 10/31/2006] [Indexed: 01/11/2023]
Abstract
During normal cellular activities, various processes inside of cells produce reactive oxygen species (ROS). Some of the most common ROS are hydrogen peroxide (H(2)O(2)), superoxide ion (O(2)(-)), and hydroxide radical (OH(-)). These compounds, when present in a high enough concentration, can damage cellular proteins and lipids or form DNA adducts that may promote carcinogenic activity. The purpose of antioxidants in a physiological setting is to prevent ROS concentrations from reaching a high-enough level within a cell that damage may occur. Cellular antioxidants may be enzymatic (catalase, glutathione peroxidase, superoxide dismutase) or nonenzymatic (glutathione, thiols, some vitamins and metals, or phytochemicals such as isoflavones, polyphenols, and flavanoids). Reactive oxygen species are a potential double-edged sword in disease prevention and promotion. Whereas generation of ROS once was viewed as detrimental to the overall health of the organism, advances in research have shown that ROS play crucial roles in normal physiological processes including response to growth factors, the immune response, and apoptotic elimination of damaged cells. Notwithstanding these beneficial functions, aberrant production or regulation of ROS activity has been demonstrated to contribute to the development of some prevalent diseases and conditions, including cancer and cardiovascular disease (CVD). The topic of antioxidant usage and ROS is currently receiving much attention because of studies linking the use of some antioxidants with increased mortality in primarily higher-risk populations and the lack of strong efficacy data for protection against cancer and heart disease, at least in populations with adequate baseline dietary consumption. In normal physiological processes, antioxidants effect signal transduction and regulation of proliferation and the immune response. Reactive oxygen species have been linked to cancer and CVD, and antioxidants have been considered promising therapy for prevention and treatment of these diseases, especially given the tantalizing links observed between diets high in fruits and vegetables (and presumably antioxidants) and decreased risks for cancer.
Collapse
Affiliation(s)
- Harold E Seifried
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20862, USA.
| | | | | | | |
Collapse
|
131
|
Kobayashi-Miura M, Shioji K, Hoshino Y, Masutani H, Nakamura H, Yodoi J. Oxygen sensing and redox signaling: the role of thioredoxin in embryonic development and cardiac diseases. Am J Physiol Heart Circ Physiol 2007; 292:H2040-50. [PMID: 17293486 DOI: 10.1152/ajpheart.01316.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is important to regulate the oxygen concentration and scavenge oxygen radicals throughout the life of animals. In mammalian embryos, proper oxygen concentration gradually increases in utero and excessive oxygen is rather toxic during early embryonic development. Reactive oxygen species (ROS) are generated as by-products in the respiratory system and increased under inflammatory conditions. In the pathogenesis of a variety of adult human diseases such as cancer and cardiovascular disorders, ROS cause an enhancement of tissue injuries. ROS promote not only the development of atherosclerosis but also tissue injury during the reperfusion process. The thioredoxin (TRX) system is one of the most important mechanisms for regulating the redox balance. TRX is a small redox active protein distributed ubiquitously in various mammalian tissues and cells. TRX acts as not only an antioxidant but also an anti-inflammatory and an antiapoptotic protein. TRX is induced by oxidative stress and released from cells in response to oxidative stress. In various human diseases, the serum/plasma level of TRX is a well-recognized biomarker of oxidative stress. Here we discuss the roles of TRX on oxygen stress and redox regulation from different perspectives, in embryogenesis and in adult diseases focusing on cardiac disorders.
Collapse
Affiliation(s)
- M Kobayashi-Miura
- Departmrnt of Biological Responses, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 6068507, Japan.
| | | | | | | | | | | |
Collapse
|
132
|
Bhattacharya SK, Ahokas RA, Carbone LD, Newman KP, Gerling IC, Sun Y, Weber KT. Macro- and micronutrients in African-Americans with heart failure. Heart Fail Rev 2006; 11:45-55. [PMID: 16819577 DOI: 10.1007/s10741-006-9192-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging body of evidence suggests secondary hyperparathyroidism (SHPT) may be an important covariant of congestive heart failure (CHF), especially in African-Americans (AA) where hypovitaminosis D is prevalent given that melanin, a natural sunscreen, mandates prolonged exposure of skin to sunlight and where a housebound lifestyle imposed by symptomatic CHF limits outdoor activities and hence sunlight exposure. In addition to the role of hypovitaminosis D in contributing to SHPT is the increased urinary and fecal losses of macronutrients Ca(2+) and Mg(2+) associated with the aldosteronism of CHF and their heightened urinary losses with furosemide treatment of CHF. Thus, a precarious Ca(2+) balance seen with reduced serum 25(OH)D is further compromised when AA develop CHF with circulating RAAS activation and are then treated with a loop diuretic. SHPT accounts for a paradoxical Ca(2+) overloading of diverse tissues and the induction of oxidative stress at these sites which spills over to the systemic circulation. In addition to SHPT, hypozincemia and hyposelenemia have been found in AA with compensated and decompensated heart failure and where an insufficiency of these micronutrients may have its origins in inadequate dietary intake, altered rates of absorption or excretion and/or tissue redistribution, and treatment with an ACE inhibitor or AT(1) receptor antagonist. Zn and Se deficiencies, which compromise the activity of several endogenous antioxidant defenses, could prove contributory to the severity of heart failure and its progressive nature. These findings call into question the need for nutriceutical treatment of heart failure and which is complementary to today's pharmaceuticals, especially in AA.
Collapse
|
133
|
Liu L, Li J, Liu J, Yuan Z, Pierre SV, Qu W, Zhao X, Xie Z. Involvement of Na+/K+-ATPase in hydrogen peroxide-induced hypertrophy in cardiac myocytes. Free Radic Biol Med 2006; 41:1548-56. [PMID: 17045923 DOI: 10.1016/j.freeradbiomed.2006.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 08/08/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
We have shown that increased production of reactive oxygen species (ROS) was required for ouabain-induced hypertrophy in cultured cardiac myocytes. In the present study we assessed whether long-term exposure of myocytes to nontoxic ROS stress alone is sufficient to induce hypertrophy. A moderate amount of H2O2 was continuously generated in culture media by glucose oxidase. This resulted in a steady increase in intracellular ROS in cultured cardiac myocytes for at least 12 h. Such sustained, but not transient, increase in intracellular ROS at a level comparable to that induced by ouabain was sufficient to stimulate protein synthesis, increase cell size, and change the expression of several hypertrophic marker genes. Like ouabain, glucose oxidase increased intracellular Ca2+ and activated extracellular signal-regulated kinases 1 and 2 (ERK1/2). These effects of glucose oxidase were additive to ouabain-induced cellular changes. Furthermore, glucose oxidase stimulated endocytosis of the plasma membrane Na+/K+-ATPase, resulting in significant inhibition of sodium pump activity. While inhibition of ERK1/2 abolished glucose oxidase-induced increases in protein synthesis, chelating intracellular Ca2+ by BAPTA-AM showed no effect. These results, taken together with our prior observations, suggest that ROS may cross talk with Na+/K+-ATPase, leading to the activation of hypertrophic pathways in cardiac myocytes.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 2006; 41:851-861. [PMID: 16934665 DOI: 10.1016/j.freeradbiomed.2006.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 01/12/2023]
Abstract
Diabetic cardiomyopathy has become a major contributor to the increased mortality of diabetic patients. Although the development and progression of diabetic cardiomyopathy are considered to be associated with diabetes-derived oxidative stress, the precise mechanisms for and effectively preventive approaches to diabetic cardiomyopathy remain to be explored. Recent studies showed that reactive oxygen or nitrogen species (ROS/RNS) not only play a critical role in the initiation of diabetic cardiomyopathy, but also play an important role in physiological signaling. Therefore, this review will first discuss the dual roles of ROS/RNS in the physiological signaling and pathogenic remodeling leading to cardiomyopathy under diabetic conditions. The significant prevention of diabetic cardiomyopathy by metallothionein (MT) as a potent and nonspecific antioxidant will be also summarized. It is clearly revealed that although dual roles of peroxynitrite-nitrated proteins have been indicated under both physiological and pathogenic conditions, suppression of nitrative damage by MT in the diabetic heart is the major mechanism responsible for its prevention of diabetic cardiomyopathy. Finally the potential for clinical enhancement of the cardiac MT expression to prevent or delay the occurrence of cardiomyopathy in diabetic patients will also be addressed.
Collapse
Affiliation(s)
- Lu Cai
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
135
|
Laezza C, Mazziotti G, Fiorentino L, Gazzerro P, Portella G, Gerbasio D, Carella C, Matarese G, Bifulco M. HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras-MAPK pathway. J Mol Med (Berl) 2006; 84:967-73. [PMID: 16947002 DOI: 10.1007/s00109-006-0079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to evaluate in vivo the antiproliferative effect of an inhibitor of isoprenoids metabolism, lovastatin, in an experimental model of propylthiouracil-induced goiter. In thyroid cells, thyrotropin (TSH)-induced proliferation requires active isoprenoid synthesis, and the HMG-CoA reductase inhibitors have antiproliferative effects in vitro. Propylthiouracil treatment (PTU) of rats led to thyroid hypertrophy and hyperplasia by TSH-induced activation of the mitogen-activated protein kinase (MAPK) pathway. Immunohistochemistry showed an increased number of proliferating cell nuclear antigen (PCNA)-positive cells in the thyroid gland of PTU-treated rats. Moreover, the phosphorylation of ERK1 and ERK2 was increased in the extract from goiter tissue as compared with the thyroid tissue of untreated rats. To determine whether the inhibition of selected pro-survival pathways (i.e., p21ras-MAPK) was sufficient to affect goitrogenesis, thyroids from 12 PTU-treated rats were injected in vivo with an adenovirus transducing a dominant-negative ras gene (Rad-L61.S186) and another set of 12 rats were injected with a pharmacological inhibitor of MAPK (PD98059). Both Rad-L61.S186 and PD98059 were able to inhibit the PTU-induced goiter. It is interesting to note that lovastatin, when administered in drinking water, significantly prevented the thyroid gland enlargement. Therefore, lovastatin-treated thyroid glands were significantly smaller than those treated with PTU alone. In addition, the lovastatin-treated glands also showed a decreased expression of phosphorylated ERK1/2 and a number of PCNA-positive cells. Our data suggest that lovastatin is an efficient inhibitor of goitrogenesis and provide a rationale for innovative therapeutic strategies employing statins in the treatment of nodular goiter in humans.
Collapse
Affiliation(s)
- Chiara Laezza
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084, Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y, Sharma RV, Engelhardt JF, Davisson RL. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 2006; 26:180-91. [PMID: 16670255 DOI: 10.1152/physiolgenomics.00029.2005] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (ANG II) has profound effects on the development and progression of pathological cardiac hypertrophy; however, the intracellular signaling mechanisms are not fully understood. In this study, we used genetic tools to test the hypothesis that increased formation of superoxide (O2−·) radicals from a Rac1-regulated Nox2-containing NADPH oxidase is a key upstream mediator of ANG II-induced activation of serine-threonine kinase Akt, and that this signaling cascade plays a crucial role in ANG II-dependent cardiomyocyte hypertrophy. ANG II caused a significant time-dependent increase in Rac1 activation and O2−· production in primary neonatal rat cardiomyocytes, and these responses were abolished by adenoviral (Ad)-mediated expression of a dominant-negative Rac1 (AdN17Rac1) or cytoplasmic Cu/ZnSOD (AdCu/ZnSOD). Moreover, both AdN17Rac1 and AdCu/ZnSOD significantly attenuated ANG II-stimulated increases in cardiomyocyte size. Quantitative real-time PCR analysis demonstrated that Nox2 is the homolog expressed at highest levels in primary neonatal cardiomyocytes, and small interference RNA (siRNA) directed against it selectively decreased Nox2 expression by >95% and abolished both ANG II-induced O2−· generation and cardiomyocyte hypertrophy. Finally, ANG II caused a time-dependent increase in Akt activity via activation of AT1 receptors, and this response was abolished by Ad-mediated expression of cytosolic human O2−· dismutase (AdCu/ZnSOD). Furthermore, pretreatment of cardiomyocytes with dominant-negative Akt (AdDNAkt) abolished ANG II-induced cellular hypertrophy. These findings suggest that O2−· generated by a Nox2-containing NADPH oxidase is a central mediator of ANG II-induced Akt activation and cardiomyocyte hypertrophy, and that dysregulation of this signaling cascade may play an important role in cardiac hypertrophy.
Collapse
Affiliation(s)
- Shawn D Hingtgen
- Department of Anatomy and Cell Biology, The Free Radical and Radiation Biology Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kyoi S, Otani H, Matsuhisa S, Akita Y, Enoki C, Tatsumi K, Hattori R, Imamura H, Kamihata H, Iwasaka T. Role of oxidative/nitrosative stress in the tolerance to ischemia/reperfusion injury in cardiomyopathic hamster heart. Antioxid Redox Signal 2006; 8:1351-61. [PMID: 16910782 DOI: 10.1089/ars.2006.8.1351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the role of oxidative/nitrosative stress in the tolerance to ischemia/reperfusion (I/R) injury in BIO14.6 cardiomyopathy hamster hearts at 6 weeks of age. These hearts showed no significant morphologic change and left ventricular (LV) dysfunction. However, expression and activity of iNOS, nitrotyrosine (NT) formation, and protein kinase C (PKC)-epsilon activity were increased in these hearts. When the BIO14.6 hamster hearts were isolated and subjected to 40 min of global ischemia, they showed smaller myocardial necrosis and greater recovery of LV function during reperfusion compared with the control hamster heart. All of these effects were abrogated by prolonged treatment with the antioxidant, 2-mercaptopropionylglycine (MPG). Brief preischemic treatment with MPG or the iNOS inhibitor 1400W also abrogated NT formation and activation of PKC-epsilon and inhibited the tolerance to I/R injury in the BIO14.6 hamster heart. Brief preischemic treatment with the PKC inhibitor chelerythrine or the K(ATP) channel blockers, 5-hydroxydecanoate (5-HD) and glibenclamide, had no effect on iNOS activation and NT formation but inhibited the tolerance to I/R injury in the cardiomyopathic heart. These results suggest that oxidative/nitrosative stress plays a role in the tolerance to I/R injury in the cardiomyopathic heart through activation of PKC and the downstream effectors, K(ATP) channels.
Collapse
Affiliation(s)
- Shiori Kyoi
- Cardiovascular Center, Kansai Medical University, Moriguchi City, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Dragin N, Smani M, Arnaud-Dabernat S, Dubost C, Moranvillier I, Costet P, Daniel JY, Peuchant E. Acute oxidative stress is associated with cell proliferation in the mouse liver. FEBS Lett 2006; 580:3845-52. [PMID: 16797015 DOI: 10.1016/j.febslet.2006.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/01/2006] [Indexed: 12/18/2022]
Abstract
Oxidative stress is known to produce tissue injury and to activate various signaling pathways. To investigate the molecular events linked to acute oxidative stress in mouse liver, we injected a toxic dose of paraquat. Liver necrosis was first observed, followed by histological marks of cell proliferation. Concomitantly, activation of the MAP kinase pathway and increased levels of the anti-apoptotic protein Bcl-XL were observed. Gene expression profiles revealed that the differentially expressed genes were potentially involved in cell proliferation. These data suggest that paraquat-induced acute oxidative stress triggers the activation of regeneration-related events in the liver.
Collapse
Affiliation(s)
- Nadine Dragin
- EA 3674 - Laboratoire de Biologie de la Différenciation et du Développement, Université de Bordeaux 2, 146 Rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Wilhide ME, Jones WK. Potential therapeutic gene for the treatment of ischemic disease: Ad2/hypoxia-inducible factor-1alpha (HIF-1)/VP16 enhances B-type natriuretic peptide gene expression via a HIF-1-responsive element. Mol Pharmacol 2006; 69:1773-8. [PMID: 16567545 DOI: 10.1124/mol.106.024968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this issue of Molecular Pharmacology, Luo et al. (p. 1953) present a study employing a HIF-1alpha/VP16 chimera to investigate the mechanism by which this constitutively active transcription factor activates expression of brain natriuretic peptide (BNP). The results define a functional hypoxia responsive element (HRE) in the promoter of the human BNP gene and demonstrate that this HRE is necessary for HIF-1alpha/VP16-induced gene expression in human cardiomyocytes grown under normoxic conditions. Luo et al. also show that a consensus E-box DNA binding sequence is necessary for appropriate BNP regulation. Because HIF-1 is known to elicit protective and beneficial gene expression programs in many scenarios and because BNP is known to be cardioprotective, this study provides support for the therapeutic use of the chimeric HIF-1alpha/VP16 protein in coronary heart disease. However, because HIF-1alpha is a key regulatory molecule that acts upon a large number of downstream gene networks, there remains a need for further investigation. Particularly useful would be comprehensive gene expression profiling coupled with functional analysis of HIF-1alpha/VP16-regulated genes. The results of such studies will elucidate the mechanism of beneficial effects and address concerns regarding potential adverse effects of activating specific HIF-1alpha/VP16-dependent gene programs.
Collapse
Affiliation(s)
- Michael E Wilhide
- Department of Pharmacology and Cell Biophysics, 231 Albert Sabin Way ML0575, University of Cincinnati, Cincinnati, OH 45267-0575, USA
| | | |
Collapse
|
140
|
Ceylan-Isik AF, LaCour KH, Ren J. Sex difference in cardiomyocyte function in normal and metallothionein transgenic mice: the effect of diabetes mellitus. J Appl Physiol (1985) 2006; 100:1638-46. [PMID: 16410376 DOI: 10.1152/japplphysiol.01273.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests a sex difference in intrinsic physiological and diabetic myocardial contractile function related to antioxidant properties of female ovarian hormones. This study was designed to examine the effect of cardiac overexpression of antioxidant metallothionein on intrinsic and diabetic cardiomyocyte function. Weight-matched wild-type (FVB) and metallothionein transgenic mice of both sexes were made diabetic with streptozotocin (220 mg/kg). Contractile and intracellular Ca2+ properties were evaluated including peak shortening (PS), time to PS, time to 90% relengthening (TR90), maximal velocity of shortening or relengthening (±d L/d t), fura-2 fluorescence intensity change, and Ca2+ decay rate. Akt and transcription factor c-Jun levels were evaluated by Western blot. Myocytes from female FVB mice exhibited lower PS, ±d L/d t, and fura-2 fluorescence intensity change, prolonged time to PS, TR90, and Ca2+ decay compared with male FVB mice. Interestingly, this sex difference was not present in metallothionein mice. Diabetes depressed PS, ±d L/d t and caffeine-induced Ca2+ release, as well as prolonged TR90 and Ca2+ decay in male FVB mice, whereas it only reduced PS in female FVB mice. These diabetic dysfunctions were nullified by metallothionein in both sexes. Females displayed elevated Akt phosphorylation and reduced c-Jun phosphorylation. Diabetes dampened Akt phosphorylation in male FVB mice and enhanced c-Jun in both sexes. Diabetes-induced alterations in Akt phosphorylation and c-Jun were abolished by metallothionein. The sex difference in Akt phosphorylation but not c-Jun levels was reversed by metallothionein. These data indicate that antioxidant capacity plays an important role in sex differences in both intrinsic and diabetic cardiomyocyte contractile properties possibly related to phosphorylation of Akt and c-Jun.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
141
|
Abstract
Over the last decade, the Rho family GTPases have gained considerable recognition as powerful regulators of actin cytoskeletal organization. As with many high profile signal transducers, these molecules soon attracted the attention of the cardiovascular research community. Shortly thereafter, two prominent members known as RhoA and Rac1 were linked to agonist-induced gene expression and myofilament organization using the isolated cardiomyocyte cell model. Subsequent creation of transgenic mouse lines provided evidence for more complex roles of RhoA and Rac1 signaling. Clues from in vitro and in vivo studies suggest the involvement of numerous downstream targets of RhoA and Rac1 signaling including serum response factor, NF-kappaB, and other transcription factors, myofilament proteins, ion channels, and reactive oxygen species generation. Which of these contribute to the observed phenotypic effects of enhanced RhoA and Rac activation in vivo remain to be determined. Current research efforts with a more translational focus have used statins or Rho kinase blockers to assess RhoA and Rac1 as targets for interventional approaches to blunt hypertrophy or heart failure. Generally, salutary effects on remodeling and ischemic damage are observed, but the broad specificity and multiple cellular targets for these drugs within the myocardium demands caution in interpretation. In this review, we assess the evolution of knowledge related to Rac1 and RhoA in the context of hypertrophy and heart failure and highlight the direction that future exploration will lead.
Collapse
Affiliation(s)
- Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, USA
| | | | | |
Collapse
|
142
|
|
143
|
Abstract
Pyridoxamine (PM) is one of three natural forms of vitamin B6. It is a critical transient intermediate in catalysis of transamination reactions by vitamin B6-dependent enzymes. The discovery eight years ago that PM can inhibit the Maillard reaction stimulated new interest in this B6 vitamer as a prospective pharmacological agent for treatment of complications of diabetes. PM application in diabetic nephropathy has now progressed to a phase III clinical trial. Investigation of the PM mechanism of action demonstrated that PM inhibits post-Amadori steps of the Maillard reaction by sequestering catalytic metal ions and blocking oxidative degradation of Amadori intermediate. PM also has the capacity to scavenge toxic carbonyl products of sugar and lipid degradation, and to inhibit reactive oxygen species. These multiple activities position PM as a promising drug candidate for treatment of multifactorial chronic conditions in which oxidative reactions and/or carbonyl compounds confer pathogenicity.
Collapse
Affiliation(s)
- Paul A Voziyan
- Division of Nephrology, Vanderbilt University Medical Center, S-3223 MCN, 1161 21st Avenue South, Nashville, TN 37232-2372, USA.
| | | |
Collapse
|
144
|
CY H, CE M, J D, AS G, C I. Which Comes First—Renal Dysfunction or High Blood Pressure? J Am Soc Nephrol 2005. [DOI: 10.1681/asn.2005080814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
145
|
Lorenz P, Zeh M, Martens-Lobenhoffer J, Schmidt H, Wolf G, Horn TFW. Natural and newly synthesized hydroxy-1-aryl-isochromans: a class of potential antioxidants and radical scavengers. Free Radic Res 2005; 39:535-45. [PMID: 16036330 DOI: 10.1080/10715760500073733] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated the antioxidant and radical scavenging activity of polyphenolic isochromans. To assess the relation between structure and scavenging properties the natural occurring 1-(3'-methoxy-4'-hydroxy)phenyl-6,7-dihydroxy-isochroman (ISO-3, three OH groups) was compared with three newly synthesized derivatives that differ in their degree of hydroxylation by substitution with methoxy-groups (ISO-4: four OH groups; ISO-2: two OH groups and ISO-0: fully methoxylated). We found that ISO-4 is a 2-fold better scavenger for the artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH, 100 microM) with an EC50=10.3 microM compared to the natural ISO-3 (EC50=22.4 microM) and to ISO-2 (EC50=25.1 microM), while ISO-0 did not react with DPPH. The scavenging capacity for superoxide enzymatically generated in a hypoxanthin-xanthinoxidase reaction was the highest for ISO-4 (EC50=34.3 microM) compared to those of ISO-3 (EC50=84.0 microM) and ISO-2 (EC50=91.8 microM), while ISO-0 was inactive. In analogy, ISO-4 scavenged peroxynitrite (ONOO-, EC25=23.0 microM) more effective than ISO-3, ISO-2 and ISO-0. When C6 rat glioma cells loaded with the reactive oxygen/nitrogen (ROS/RNS)-sensitive fluorochrome 2,7-dichlorodihydrofluorescein, were exposed to hydrogen peroxide, the lowest stress level as indicated by the fluorescence signal was detected when the cells were pretreated with ISO-4 or ISO-2 but to a much lesser extent with ISO-3, while ISO-0 did not show any effect. All tested hydroxyisochromans superceded the scavenging effect of trolox.The excellent radical and ROS/RNS scavenging features of the hydroxy-1-aryl isochromans and their simple synthesis let these compounds appear to be interesting candidates for pharmaceutical interventions that protect against the deleterious action of ROS/RNS.
Collapse
Affiliation(s)
- Peter Lorenz
- Institute for Medical Neurobiology, Otto-von-Guericke University, Leipziger Strasse 44, D-39120, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
146
|
Reyes AJ. The increase in serum uric acid concentration caused by diuretics might be beneficial in heart failure. Eur J Heart Fail 2005; 7:461-7. [PMID: 15921780 DOI: 10.1016/j.ejheart.2004.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 01/30/2004] [Accepted: 03/15/2004] [Indexed: 02/04/2023] Open
Abstract
Patients with mild-moderate chronic heart failure (CHF) often have raised levels of serum uric acid (UA). This is due, amongst other factors, to reduced UA excretion by the kidneys, which is partly explained by restriction of sodium intake and treatment with diuretics. The decline in renal function that parallels worsening cardiac function also contributes to elevated serum UA in patients with advanced CHF. However, UA production also appears to be augmented in CHF. Because UA scavenges various reactive oxygen species, diuretic-induced elevations in serum UA could be beneficial in patients with CHF. This concept is supported by the superior performance of antihypertensive therapy with diuretics in preventing heart failure. The present hypothesis may be tested by examining the effects of add-on treatment with a thiazide-type diuretic on morbidity and mortality, or surrogate variables, in asymptomatic patients with left ventricular dysfunction but without fluid retention.
Collapse
Affiliation(s)
- Ariel J Reyes
- Institute of Cardiovascular Theory, Sotelo 3908, 11700 Montevideo, Uruguay.
| |
Collapse
|
147
|
Suzuki YJ, Nagase H, Nie K, Park AM. Redox control of growth factor signaling: recent advances in cardiovascular medicine. Antioxid Redox Signal 2005; 7:829-34. [PMID: 15890031 DOI: 10.1089/ars.2005.7.829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growth factors play vital roles in the regulation of various biologic processes, including those in cardiovascular and respiratory systems. Accumulating evidence suggests that reactive oxygen species mediate growth factor signal transduction. The discovery of reactive oxygen species production by angiotensin II in vascular smooth muscle cells via the activation of NAD(P)H oxidase promoted studies of redox control of growth factor signaling. In the past few years, there have been further advances in this field. In addition to established roles of reactive oxygen species in vascular smooth muscle growth, these species have been demonstrated to serve as second messengers for cardiac hypertrophy induced by angiotensin II. NAD(P)H oxidase also produces reactive oxygen species in response to endothelin-1 in vascular smooth muscle and cardiac muscle cells. These results suggest that inhibiting NAD(P)H oxidase might be a useful therapeutic strategy. In fact, adenovirus-mediated gene transfer appears to be an effective approach to prevent vascular hypertrophy in rodent models. Growth factors also induce survival signaling in cardiac and smooth muscle cells, and redox control may play a role in such events. It is likely that studies reporting the mechanisms of redox control of growth factor signaling will rapidly emerge in the next several years, and understanding of such regulation should help in the development of therapeutic strategies against heart and lung diseases.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
148
|
Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 2005; 115:1221-31. [PMID: 15841206 PMCID: PMC1077169 DOI: 10.1172/jci21968] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 02/22/2005] [Indexed: 01/25/2023] Open
Abstract
Cardiac pressure load stimulates hypertrophy, often leading to chamber dilation and dysfunction. ROS contribute to this process. Here we show that uncoupling of nitric oxide synthase-3 (NOS3) plays a major role in pressure load-induced myocardial ROS and consequent chamber remodeling/hypertrophy. Chronic transverse aortic constriction (TAC; for 3 and 9 weeks) in control mice induced marked cardiac hypertrophy, dilation, and dysfunction. Mice lacking NOS3 displayed modest and concentric hypertrophy to TAC with preserved function. NOS3(-/-) TAC hearts developed less fibrosis, myocyte hypertrophy, and fetal gene re-expression (B-natriuretic peptide and alpha-skeletal actin). ROS, nitrotyrosine, and gelatinase (MMP-2 and MMP-9) zymogen activity markedly increased in control TAC, but not in NOS3(-/-) TAC, hearts. TAC induced NOS3 uncoupling in the heart, reflected by reduced NOS3 dimer and tetrahydrobiopterin (BH4), increased NOS3-dependent generation of ROS, and lowered Ca(2+)-dependent NOS activity. Cotreatment with BH4 prevented NOS3 uncoupling and inhibited ROS, resulting in concentric nondilated hypertrophy. Mice given the antioxidant tetrahydroneopterin as a control did not display changes in TAC response. Thus, pressure overload triggers NOS3 uncoupling as a prominent source of myocardial ROS that contribute to dilatory remodeling and cardiac dysfunction. Reversal of this process by BH4 suggests a potential treatment to ameliorate the pathophysiology of chronic pressure-induced hypertrophy.
Collapse
Affiliation(s)
- Eiki Takimoto
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Modesti A, Bertolozzi I, Gamberi T, Marchetta M, Lumachi C, Coppo M, Moroni F, Toscano T, Lucchese G, Gensini GF, Modesti PA. Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress. Diabetes 2005; 54:394-401. [PMID: 15677497 DOI: 10.2337/diabetes.54.2.394] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hyperglycemia was reported to enhance angiotensin (Ang) II generation in rat cardiomyocytes, and Ang II inhibition reduces cardiovascular morbidity and mortality in diabetic patients. In diabetic patients, the enhanced activation of intracellular pathways related with myocyte hypertrophy and gene expression might enhance the progression of cardiac damage. Therefore, we investigated the effects of glucose on Ang II-mediated activation of Janus-activated kinase (JAK)-2, a tyrosine kinase related with myocyte hypertrophy and cytokine and fibrogenetic growth factor overexpression, in ventricular myocytes isolated from nonfailing human hearts (n = 5) and failing human hearts (n = 8). In nonfailing myocytes, JAK2 phosphorylation was enhanced by Ang II only in the presence of high glucose (25 mmol/l) via Ang II type I (AT1) receptors (+79% vs. normal glucose, P < 0.05). JAK2 activation was prevented by inhibitors of reactive oxygen species (ROS) generation (diphenyleneiodonium [DPI], tiron, and apocynin). In myocytes isolated from failing hearts, JAK2 phosphorylation was enhanced by high glucose alone (+107%, P < 0.05). High glucose-induced JAK2 activation was blunted by both ACE inhibition (100 nmol/l ramipril) and AT1 antagonism (1 mumol/l valsartan), thus revealing that the effects are mediated by autocrine Ang II production. Inhibition of ROS generation also prevented high glucose-induced JAK2 phosphorylation. In conclusion, in human nonfailing myocytes, high glucose allows Ang II to activate JAK2 signaling, whereas in failing myocytes, hyperglycemia alone is able to induce Ang II generation, which in turn activates JAK2 via enhanced oxidative stress.
Collapse
Affiliation(s)
- Alessandra Modesti
- Department of Scienze Biochimiche, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Das DK, Maulik N. Mitochondrial function in cardiomyocytes: target for cardioprotection. Curr Opin Anaesthesiol 2005; 18:77-82. [PMID: 16534320 DOI: 10.1097/00001503-200502000-00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cardiac diseases including ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis and congestive heart failure are associated with cardiac cell death as a result of both necrosis and apoptosis. Mitochondria play an essential role in deciding whether a cell lives or dies. This review summarizes current knowledge on the mechanisms by which mitochondria exert such decision-making power. RECENT FINDINGS A wide variety of factors, either directly or indirectly, function in a synchronized manner to regulate the death versus survival signals. Mitochondrial bioenergetics and permeability transition pore plays a crucial role in this process, although several redox-sensitive genes, proteins and transcription factors, such as Bcl-2, Bax, nuclear factor kappa B, regulate the decision-making power of mitochondria, which have the final authority to decide whether a cell lives or dies. Mitochondrially generated reactive oxygen species are critically involved in the decision-making process, by functioning both as executioner by damaging the biomolecules, or as savior by virtue of their ability to perform redox signaling. SUMMARY It appears that mitochondria regulate the life and death of cardiac cells by manipulating several factors, including bioenergetics, mitochondrial permeability transition pore and redox-sensing genes. Redox signaling is likely to be critically involved in this process.
Collapse
Affiliation(s)
- Dipak K Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1110, USA.
| | | |
Collapse
|