101
|
Avila-Nava A, Medina-Vera I, Rodríguez-Hernández P, Guevara-Cruz M, Heredia-G Canton PK, Tovar AR, Torres N. Oxalate Content and Antioxidant Activity of Different Ethnic Foods. J Ren Nutr 2020; 31:73-79. [PMID: 32709427 DOI: 10.1053/j.jrn.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE There is not enough information on the classification of oxalate content in several foods, particularly in ethnic foods, to recommend their consumption in subjects with urolithiasis (UL). The objective of the present study was to generate reliable information on the oxalate content and antioxidant activity in different foods and classify them by very low, low, medium, high and very high oxalate content and antioxidant activity. METHODS The oxalate content of 109 foods including ethnic foods was assessed by an enzymatic assay, and the antioxidant activity was measured by the oxygen radical absorbance capacity to determine the oxalate/antioxidant activity ratio. Oxalate consumption was then evaluated in 400 subjects with overweight and obesity using 24-h dietary recalls. RESULTS The main foods with high oxalate content were raw spinach, huanzontle, purslane, chard, almond, and toasted and sweetened roasted amaranth. The highest antioxidant activity was found in strawberries, all types of chocolates, roselle, morita peppers, and pinolillo. Subjects with overweight or obesity exceed the dietary oxalate daily intake recommendation. CONCLUSIONS The classification of foods by their oxalate content and antioxidant activity will be very useful to generate nutritional recommendation in different diseases, mainly UL.
Collapse
Affiliation(s)
- Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Yucatán, México
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, México, México
| | - Pamela Rodríguez-Hernández
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de, México
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de, México
| | - Pamela K Heredia-G Canton
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de, México.
| |
Collapse
|
102
|
Mahmoud AM, Morrow JP, Pizzi D, Azizah AM, Davis TP, Tabor RF, Kempe K. Tuning Cellular Interactions of Carboxylic Acid-Side-Chain-Containing Polyacrylates: The Role of Cyanine Dye Label and Side-Chain Type. Biomacromolecules 2020; 21:3007-3016. [PMID: 32598140 DOI: 10.1021/acs.biomac.0c00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular uptake and intracellular targeting to specific organelles are key events in the cellular processing of nanomaterials. Herein, we perform a detailed structure-property relationship study on carboxylic acid-side-chain-bearing polyacrylates to provide design criteria for the manipulation of their cellular interactions. Redox-initiated reversible addition-fragmentation chain-transfer (RRAFT) polymerization of three tert-butyl-protected N-acylated amino ester-based acrylate monomers of different substitutions and degrees of polymerization (DPs) yielded defined and pH-responsive carboxylic acid-side-chain polymers upon deprotection (N-acetyl, DP 1: P(M1); N-propionyl, DP 1: P(E1), DP 2: P(E2)). Flow cytometry studies revealed time-dependent cell association with P(E2) > P(E1) > P(M1) at any given time point. Importantly, the type of cyanine dye used for labeling was found to significantly influence the cellular processing of the polymers. Changing the dye from Cy5 to its sulfonated version sulfoCy5 resulted in a much lower cellular association. Moreover, Cy5-labeled polymers were targeted to mitochondria, while sulfoCy5 modification caused a significant change in the cellular fate of polymers toward lysosome trafficking. This study highlights the importance of selecting a suitable dye but also demonstrates the possibilities for the rational design of organelle-specific targeting of carboxylated polyacrylates.
Collapse
Affiliation(s)
- Ayaat M Mahmoud
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joshua P Morrow
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David Pizzi
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ailsa M Azizah
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
103
|
Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin Sci (Lond) 2020; 134:1491-1519. [PMID: 32584404 DOI: 10.1042/cs20190559] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the primary risk factor for CVD. The development of vascular dysfunction, including endothelial dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss current evidence for prevention and treatment of vascular aging via lifestyle and pharmacological strategies that improve mitochondrial health. We will also identify promising areas and important considerations ('research gaps') for future investigation.
Collapse
|
104
|
Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, Norouzi P, Akbari H, Ghahremani MH, Soleimani M, Amini M, Samadi H, Dorkoosh FA. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28:818-830. [PMID: 32452217 DOI: 10.1080/1061186x.2020.1774594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biological mechanisms including cellular metabolism and cell death are regulated by mitochondria known as powerhouse of the cell. Recently, let-7b, a tumour-suppressor microRNA has been detected in mitochondria of human cells targeting several mitochondrial-encoded respiratory chain genes. Triphenylphosphonium cation (TPP) is one of the major classes of mitochondriotropics that possess the ability of specifically targeting the mitochondria. PAMAM dendrimers are one of the most available agents in gene delivery due to their well-defined and beneficial features such as large density of surface functional groups. Hyaluronic acid (HA), a natural polysaccharide has been demonstrated to have the abilities such as good biocompatibility and targeting CD44 overexpressed receptors on non-small cell lung cancer (NSCLC) cells. In this research, let-7b-PAMAM (G5)-TPP and let-7b-PAMAM (G5)-TPP-HA nano-carriers were designed to deliver let-7b miRNA mimic to NSCLC cells' mitochondria as a novel way of cancer cells inhibition. Nano-carriers were capable of being successfully taken up by A549 cells and localised in mitochondria environment. Let-7b loaded nanoparticles reduced cell viability and induced apoptosis significantly. Expression of genes involved in mitochondrial oxidative function was decreased resulting in nanoparticles effect on mitochondria. Application of mitochondria targeted-miRNA delivery systems could regulate cellular functions to inhibit lung cancer.
Collapse
Affiliation(s)
- Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Naderi Sohi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Samadi
- Science and Research Center, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
105
|
Regulation of Vascular Function and Inflammation via Cross Talk of Reactive Oxygen and Nitrogen Species from Mitochondria or NADPH Oxidase-Implications for Diabetes Progression. Int J Mol Sci 2020; 21:ijms21103405. [PMID: 32408480 PMCID: PMC7279344 DOI: 10.3390/ijms21103405] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-mediated damage. Here, the pathways and potential mechanisms leading to this cross talk are analyzed in detail and highlighted by selected examples from the current literature and own data including hypoxia, angiotensin II (AT-II)-induced hypertension, nitrate tolerance, aging, and others. The general concept of redox-based activation of RONS sources via “kindling radicals” and enzyme-specific “redox switches” as well as the interaction with redox-sensitive inflammatory pathways are discussed. Here, we present evidence for the existence of such cross talk mechanisms in the setting of diabetes and critically assess their contribution to the severity of diabetic complications.
Collapse
|
106
|
Liu J, Liao X, Xiong K, Kuang S, Jin C, Ji L, Chao H. Boosting two-photon photodynamic therapy with mitochondria-targeting ruthenium-glucose conjugates. Chem Commun (Camb) 2020; 56:5839-5842. [PMID: 32330213 DOI: 10.1039/d0cc01148g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we present a series of dual-targeted ruthenium-glucose conjugates that can function as two-photon absorption (TPA) PDT agents to effectively destroy tumors by preferentially targeting both tumor cells and mitochondria. The in vivo experiments revealed an excellent tumor inhibitory efficiency of the dual-targeted TPA PSs.
Collapse
Affiliation(s)
- Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
107
|
Khoury A, Deo KM, Aldrich-Wright JR. Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J Inorg Biochem 2020; 207:111070. [PMID: 32299045 DOI: 10.1016/j.jinorgbio.2020.111070] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Abstract
Current platinum-based drugs used in chemotherapy, like cisplatin and its derivatives, are greatly limited due to side-effects and drug resistance. This has inspired the search for novel platinum-based drugs that deviate from the conventional mechanism of action seen with current chemotherapeutics. This review highlights recent advances in platinum(II) and platinum(IV)-based complexes that have been developed within the past six years. The platinum compounds explored within this review are those that display a more targeted approach by incorporating ligands that act on selected cellular targets within cancer cells. This includes mitochondria, overexpressed receptors or proteins and enzymes that contribute to cancer cell proliferation. These types of platinum compounds have shown significant improvements in anticancer activity and as such, this review highlights the importance of pursuing these new designed platinum drugs for cancer therapy, with the potential of undergoing clinical trials.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Krishant M Deo
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | | |
Collapse
|
108
|
Wang JY, Li JQ, Xiao YM, Fu B, Qin ZH. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design. ChemMedChem 2020; 15:404-410. [PMID: 32020724 DOI: 10.1002/cmdc.201900695] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.
Collapse
Affiliation(s)
- Jiayao Y Wang
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Jiaqi Q Li
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Yumei M Xiao
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Bin Fu
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Zhaohai H Qin
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| |
Collapse
|
109
|
Cabral-Costa J, Kowaltowski A. Neurological disorders and mitochondria. Mol Aspects Med 2020; 71:100826. [DOI: 10.1016/j.mam.2019.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/26/2022]
|
110
|
Yang Y, Zhou T, Jin M, Zhou K, Liu D, Li X, Huo F, Li W, Yin C. Thiol-Chromene "Click" Reaction Triggered Self-Immolative for NIR Visualization of Thiol Flux in Physiology and Pathology of Living Cells and Mice. J Am Chem Soc 2020; 142:1614-1620. [PMID: 31887253 DOI: 10.1021/jacs.9b12629] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the pathological process of biological systems can greatly improve the prevention and treatment of diseases. The study of pathological processes has now reached the molecular level, and molecular fluorescent probes have become a powerful tool. Chromene, also known as benzo-pyran molecule, is a structural element of natural products with good biological compatibility and was developed as a fluorescent probe. The thiol-chromene "click" nucleophilic pyran ring-opening reaction allows the quick detection of thiol. In this work, the chromene alcohol can function as an efficient self-immolative spacer, which covalently links NIR fluorophore via a carbonyl ester. Due to its favorable characteristics and superior applicability, the self-immolative amplifier NIR-HMPC achieves the specific, rapid, sensitive, NIR fluorescent detection of thiols. Furthermore, the indoles iodized salt in the system can specifically target thiols in mitochondria. Thus, this probe was used to visualize the fluctuations of thiols during oxidative stress and cell apoptosis, cerebral ischemia reperfusion, demonstrating that it is valuable for elucidating pathophysiology process in living organism. This discovery provides an effective means for studying the pathological process of thiol related diseases.
Collapse
Affiliation(s)
- Yutao Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science , Shanxi University , Taiyuan 030006 , P. R. China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Tingting Zhou
- Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Ming Jin
- Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Keyan Zhou
- Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Xue Li
- Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Fangjun Huo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science , Shanxi University , Taiyuan 030006 , P. R. China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province , Hebei University , Baoding 071002 , P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science , Shanxi University , Taiyuan 030006 , P. R. China
| |
Collapse
|
111
|
Wu D, Rong S, Liu Y, Zheng F, Zhao Y, Yang R, Du X, Meng F, Zou P, Wang G. Detecting and imaging of SO 2 derivatives in living cells with zero cross-talk colorimetric mitochondria-targeted fluorescent probe. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that excessive levels of sulfur dioxide and its derivatives are connected to diverse diseases. Therefore, developing highly sensitive probes to detect and monitor sulfite in living cells is important for the diagnosis of disease and the study of biochemical processes in vivo. In this report, two zero cross-talk ratiometric fluorescent probes were synthesized (CA-ID-MC and CA-BI-MC), which were derived from carbazole-indolenine π-conjugated system for effective detection of sulfite in living cells. Observably, CA-BI-MC exhibited the largest emission shift of 157 nm from 617 to 460 nm with the addition of various concentrations of sulfite, which is beneficial for high-resolution imaging of the sulfite. CA-BI-MC also exhibits high sensitivity and low cytotoxicity. More importantly, this probe successfully located mitochondria and sensed the sulfite in HeLa cells caused by exogenous stimulation.
Collapse
Affiliation(s)
- Dan Wu
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Shiqi Rong
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Yi Liu
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Fei Zheng
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Yankun Zhao
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Guangtu Wang
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| |
Collapse
|
112
|
Mathieu E, Bernard AS, Quévrain E, Zoumpoulaki M, Iriart S, Lung-Soong C, Lai B, Medjoubi K, Henry L, Nagarajan S, Poyer F, Scheitler A, Ivanović-Burmazović I, Marco S, Somogyi A, Seksik P, Delsuc N, Policar C. Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese(ii) superoxide dismutase mimic complex. Chem Commun (Camb) 2020; 56:7885-7888. [DOI: 10.1039/d0cc03398g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of Mn-based superoxide dismutase mimic conjugated with a multimodal Re-probe in a cellular model of oxidative stress revealed that its bioactivity is associated with its accumulation at the mitochondria.
Collapse
|
113
|
Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 2019; 71:100840. [PMID: 31882067 DOI: 10.1016/j.mam.2019.100840] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.
Collapse
Affiliation(s)
- Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
114
|
Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxel-triphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
115
|
Tabujew I, Willig M, Leber N, Freidel C, Negwer I, Koynov K, Helm M, Landfester K, Zentel R, Peneva K, Mailänder V. Overcoming the barrier of CD8 +T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomater 2019; 100:338-351. [PMID: 31586726 DOI: 10.1016/j.actbio.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Bioengineering immune cells via gene therapy offers treatment opportunities for currently fatal viral infections. Also cell therapeutics offer most recently a breakthrough technology to combat cancer. These primary human cells, however, are sensitive to toxic influences, which make the utilization of optimized physical transfection techniques necessary. The otherwise commonly applied delivery agents such as LipofectamineⓇ or strongly cationic polymer structures are not only unsuitable for in vivo experiments, but are also highly toxic to immune cells. This study aimed to improve the design of polymeric carrier systems for small interfering RNA, which would allow efficient internalization into CD8+T-cells without affecting their viability and thereby removing the current limitations in the field. Here, two new carrier systems for small interfering RNA were tested. One is a cationic diblock copolymer, in which less than 10% of the monomers were modified with triphenylphosphonium cations. This moiety is lipophilic, promotes uptake and it is mostly known for its mitotropic properties. Furthermore, cationic nanohydrogel particles were synthesized in exceedingly small sizes (Rh < 14 nm). After full physicochemical characterization of the two carriers, extensive cytotoxicity studies were performed and the concentration dependent uptake into CD8+T-cells was tested in correlation to incubation time and protein content of the surrounding medium. Both carriers facilitated efficient complexation of siRNA as well as significant internalization into primary human cells in less than three hours of incubation. In addition, neither of the delivery systems reduced cell viability making them good candidates to transport siRNA into CD8+T-cells efficiently. STATEMENT OF SIGNIFICANCE: This study provides insights into the design of polymeric delivery agents as the method of choice for overcoming the limitations of cell manipulation. Until now, CD8+T-cells, which have become a treatment tool for currently fatal diseases, have not yet been made accessible for gene silencing by polymeric siRNA carrier systems. Choosing appropriate modification approaches for two chemically different polymer structures, we were, in both cases, able to achieve significant uptake in these cells even at low concentrations and without inducing cytotoxicity. These results remove current limitations and pave the way for bioengineering via gene therapy.
Collapse
|
116
|
Fluorescence Imaging of Mitochondria with Three Different Sets of Signals Based on Fluorene Cation Fluorescent Probe. J Fluoresc 2019; 29:1457-1465. [DOI: 10.1007/s10895-019-02451-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
|
117
|
Momcilovic M, Jones A, Bailey ST, Waldmann CM, Li R, Lee JT, Abdelhady G, Gomez A, Holloway T, Schmid E, Stout D, Fishbein MC, Stiles L, Dabir DV, Dubinett SM, Christofk H, Shirihai O, Koehler CM, Sadeghi S, Shackelford DB. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 2019; 575:380-384. [PMID: 31666695 DOI: 10.1038/s41586-019-1715-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria are essential regulators of cellular energy and metabolism, and have a crucial role in sustaining the growth and survival of cancer cells. A central function of mitochondria is the synthesis of ATP by oxidative phosphorylation, known as mitochondrial bioenergetics. Mitochondria maintain oxidative phosphorylation by creating a membrane potential gradient that is generated by the electron transport chain to drive the synthesis of ATP1. Mitochondria are essential for tumour initiation and maintaining tumour cell growth in cell culture and xenografts2,3. However, our understanding of oxidative mitochondrial metabolism in cancer is limited because most studies have been performed in vitro in cell culture models. This highlights a need for in vivo studies to better understand how oxidative metabolism supports tumour growth. Here we measure mitochondrial membrane potential in non-small-cell lung cancer in vivo using a voltage-sensitive, positron emission tomography (PET) radiotracer known as 4-[18F]fluorobenzyl-triphenylphosphonium (18F-BnTP)4. By using PET imaging of 18F-BnTP, we profile mitochondrial membrane potential in autochthonous mouse models of lung cancer, and find distinct functional mitochondrial heterogeneity within subtypes of lung tumours. The use of 18F-BnTP PET imaging enabled us to functionally profile mitochondrial membrane potential in live tumours.
Collapse
Affiliation(s)
- Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Anthony Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Sean T Bailey
- The Mouse Phase I Unit, Lineberger School of Medicine at the University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Christopher M Waldmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Rui Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Jason T Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Crump Institute for Molecular Imaging, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Gihad Abdelhady
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Adrian Gomez
- Department of Chemistry and Biochemistry, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Travis Holloway
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Ernst Schmid
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Endocrinology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, CA, USA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Heather Christofk
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,UCLA Metabolomics Center, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Orian Shirihai
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Department of Endocrinology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Saman Sadeghi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
118
|
Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics 2019; 11:E543. [PMID: 31635367 PMCID: PMC6836276 DOI: 10.3390/pharmaceutics11100543] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
119
|
Cohen-Erez I, Issacson C, Lavi Y, Shaco-Levy R, Milam J, Laster B, Gheber LA, Rapaport H. Antitumor Effect of Lonidamine-Polypeptide-Peptide Nanoparticles in Breast Cancer Models. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32670-32678. [PMID: 31414594 DOI: 10.1021/acsami.9b09886] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials folded into nanoparticles (NPs) can be utilized as targeted drug delivery systems for cancer therapy. NPs may provide a vehicle for the anticancer drug lonidamine (LND), which inhibits glycolysis but was suspended from use at the clinical trial stage because of its hepatotoxicity due to poor solubility and pharmacokinetic properties. The NPs prepared by coassembly of the anionic polypeptide poly gamma glutamic acid (γ-PGA) and a designed amphiphilic and positively charged peptide (designated as mPoP-NPs) delivered LND to the mitochondria in cell cultures. In this study, we demonstrate that LND-mPoP-NP effective drug concentrations can be increased to reach therapeutically relevant concentrations. The self-assembled NP solution was subjected to snap-freezing and lyophilization and the resultant powder was redissolved in a tenth of the original volume. The NP size and their ability to target the proximity of the mitochondria of breast cancer cells were both maintained in this new formulation, C-LND-mPoP-NPs. Furthermore, these NPs exhibited 40% better cytotoxicity, relative to the nonlyophilized LND-mPoP-NPs and led to tumor growth inhibition with no adverse side effects upon intravenous administration in a xenograft breast cancer murine model.
Collapse
Affiliation(s)
| | | | | | - Ruthy Shaco-Levy
- Pathology Institute , Soroka Medical Center , Beer-Sheva 84105 , Israel
| | | | | | | | | |
Collapse
|
120
|
Mahmoud AM, de Jongh PAJM, Briere S, Chen M, Nowell CJ, Johnston APR, Davis TP, Haddleton DM, Kempe K. Carboxylated Cy5-Labeled Comb Polymers Passively Diffuse the Cell Membrane and Target Mitochondria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31302-31310. [PMID: 31369228 DOI: 10.1021/acsami.9b09395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A detailed understanding of the cellular uptake and trafficking of nanomaterials is essential for the design of "smart" intracellular drug delivery vehicles. Typically, cellular interactions can be tailored by endowing materials with specific properties, for example, through the introduction of charges or targeting groups. In this study, water-soluble carboxylated N-acylated poly(amino ester)-based comb polymers of different degree of polymerization and side-chain modification were synthesized via a combination of spontaneous zwitterionic copolymerization and redox-initiated reversible addition-fragmentation chain-transfer polymerization and fully characterized by 1H NMR spectroscopy and size exclusion chromatography. The comb polymers showed no cell toxicity against NIH/3T3 and N27 cell lines nor hemolysis. Detailed cellular association and uptake studies by flow cytometry and confocal laser scanning microscopy (CLSM) revealed that the carboxylated polymers were capable of passively diffusing cell membranes and targeting mitochondria. The interplay of pendant carboxylic acids of the comb polymers and the Cy5-label was identified as major driving force for this behavior, which was demonstrated to be applicable in NIH/3T3 and N27 cell lines. Blocking of the carboxylic acids through modification with 2-methoxyethylamine and poly(2-ethyl-2-oxazoline) or replacement of the dye label with a different dye (e.g., fluorescein) resulted in an alteration of the cellular uptake mechanism toward endocytosis as demonstrated by CLSM. In contrast, partial modification of the carboxylic acid groups allowed to retain the cellular interaction, hence, rendering these comb polymers a highly functional mitochondria targeted carrier platform for future drug delivery applications and imaging purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Haddleton
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | | |
Collapse
|
121
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
122
|
Cohen‐Erez I, Harduf N, Rapaport H. Oligonucleotide loaded polypeptide‐peptide nanoparticles towards mitochondrial‐targeted delivery. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ifat Cohen‐Erez
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the Negev Beer‐Sheva Israel
| | - Noa Harduf
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the Negev Beer‐Sheva Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the Negev Beer‐Sheva Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI)Ben‐Gurion University of the Negev Beer‐Sheva Israel
| |
Collapse
|
123
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2019; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
124
|
Multifunctional radical quenchers as potential therapeutic agents for the treatment of mitochondrial dysfunction. Future Med Chem 2019; 11:1605-1624. [DOI: 10.4155/fmc-2018-0481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with a wide range of human diseases, including neurodegenerative diseases, and is believed to cause or contribute to the etiology of these diseases. These disorders are frequently associated with increased levels of reactive oxygen species. One of the design strategies for therapeutic intervention involves the development of novel small molecules containing redox cores, which can scavenge reactive oxygen radicals and selectively block oxidative damage to the mitochondria. Presently, we describe recent research dealing with multifunctional radical quenchers as antioxidants able to scavenge reactive oxygen radicals. The review encompasses ubiquinone and tocopherol analogs, as well as novel pyri(mi)dinol derivatives, and their ability to function as protective agents in cellular models of mitochondrial diseases.
Collapse
|
125
|
Grymel M, Zawojak M, Adamek J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:1719-1730. [PMID: 31141361 DOI: 10.1021/acs.jnatprod.8b00830] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring pentacyclic lupane triterpenoids such as betulin (1) or betulinic acid (2) and their synthetic derivatives display a broad spectrum of biological activities and, therefore, have been the subject of great interest. However, the use of these compounds as potential therapeutic agents is limited by their low bioavailability, high hydrophobicity, and insufficient intracellular accumulation. In this context, research on modifications of the parent structures that will improve their pharmacokinetic properties is particularly important. In the past few years, methods of synthesis as well as cytotoxic and antiparasitic properties of a series of lupane triterpenoids modified by introducing one or two triphenylphosphonium moieties at the C-2, C-3, C-28, or C-30 positions by carbon-carbon or ester bonds have been described. The presence of triphenylphosphonium groups affects not only physical properties but also the mechanism of action of a potential drug. This review summarizes published findings on synthetic methods and biological properties of the triphenylphosphonium derivatives of betulin and betulinic acid.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
| | - Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| |
Collapse
|
126
|
Liu Y, Song X, Li S, Liu X, Tian J, Xu J, Yan S. Three pairs of enantiomers bearing mitochondria‐targeted TPP
+
groups as potential anti‐cancer agents. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yue Liu
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Xue‐Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical University Tianjin 300070 China
| | - Si‐Tong Li
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Xin Liu
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Jin‐Lei Tian
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Jing‐Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical University Tianjin 300070 China
| | - Shi‐Ping Yan
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| |
Collapse
|
127
|
Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019; 11:cancers11060761. [PMID: 31159324 PMCID: PMC6627730 DOI: 10.3390/cancers11060761] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.
Collapse
|
128
|
Zhou X, Fang Y, Lesiak L, Stains CI. A Phosphinate-Containing Fluorophore Capable of Selectively Inducing Apoptosis in Cancer Cells. Chembiochem 2019; 20:1712-1716. [PMID: 30753755 DOI: 10.1002/cbic.201800811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 11/10/2022]
Abstract
Chemotherapeutic agents generally suffer from off-target cytotoxicity in noncancerous cell types, leading to undesired side effects. As a result, significant effort has been put into identifying compounds that are selective for cancerous over noncancerous cell types. Our laboratory has recently developed a series of near-infrared (NIR) fluorophores containing a phosphinate functionality at the bridging position of a xanthene scaffold, termed Nebraska Red (NR) fluorophores. Herein, we report the selective cytotoxicity of one NR derivative, NR744 , against HeLa (cervical cancer) cells versus NIH-3T3 (noncancerous fibroblast) cells. Mechanistic studies based on the NIR fluorescence signal of NR744 showed distinct subcellular localization in HeLa (mitochondrial) versus NIH-3T3 (lysosomal) that resulted from the elevated mitochondrial potential in HeLa cells. This study provides a new, NIR scaffold for the further development of reagents for targeted cancer therapy.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Yuan Fang
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Lauren Lesiak
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, 68588, USA.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
129
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria-Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019; 58:7657-7661. [PMID: 30994955 DOI: 10.1002/anie.201901699] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Mitochondria are key organelles in mammalian cells whose dysfunction is linked to various diseases. Drugs targeting mitochondrial proteins provide a highly promising strategy for potential therapeutics. Methods for the delivery of small-molecule drugs to the mitochondria are available, but these are not suitable for macromolecules, such as proteins. Herein, we report the delivery of native proteins and antibodies to the mitochondria using biodegradable silica nanoparticles (BS-NPs). The modification of the nanoparticle surface with triphenylphosphonium (TPP) and cell-penetrating poly(disulfide)s (CPD) facilitated their rapid intracellular uptake with minimal endolysosomal trapping, providing sufficient time for effective mitochondrial localization followed by glutathione-triggered biodegradation and of native, functional proteins into the mitochondria.
Collapse
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaofeng Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
130
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria‐Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiyan Yuan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat-sen University Guangzhou 510275 China
| | - Xin Mao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiaofeng Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Si Si Liew
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM)Nanjing Tech University 30 South Puzhu Road Nanjing 21816 China
| | - Shao Q. Yao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
131
|
Zhang W, Hu X, Shen Q, Xing D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 2019; 10:1704. [PMID: 30979885 PMCID: PMC6461692 DOI: 10.1038/s41467-019-09566-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics.
Collapse
Affiliation(s)
- Wenjia Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China.
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China.
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, 510631, Guangzhou, China.
- College of Biophotonics, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
132
|
Qin X, Cheng J, Zhong Y, Mahgoub OK, Akter F, Fan Y, Aldughaim M, Xie Q, Qin L, Gu L, Jian Z, Xiong X, Liu R. Mechanism and Treatment Related to Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. Front Mol Neurosci 2019; 12:88. [PMID: 31031592 PMCID: PMC6470360 DOI: 10.3389/fnmol.2019.00088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is a type of neonatal brain injury, which occurs due to lack of supply and oxygen deprivation to the brain. It is associated with a high morbidity and mortality rate. There are several therapeutic strategies that can be used to improve outcomes in patients with HIE. These include cell therapies such as marrow mesenchymal stem cells (MSCs) and umbilical cord blood stem cells (UCBCs), which are being incorporated into the new protocols for the prevention of ischemic brain damage. The focus of this review is to discuss the mechanism of oxidative stress in HIE and summarize the current available treatments for HIE. We hope that a better understanding of the relationship between oxidative stress and HIE will provide new insights on the potential therapy of this devastating condition.
Collapse
Affiliation(s)
- Xingping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Farhana Akter
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States.,Department of Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yanqin Fan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mohammed Aldughaim
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Qiurong Xie
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingxia Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renzhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
133
|
Booty LM, Gawel JM, Cvetko F, Caldwell ST, Hall AR, Mulvey JF, James AM, Hinchy EC, Prime TA, Arndt S, Beninca C, Bright TP, Clatworthy MR, Ferdinand JR, Prag HA, Logan A, Prudent J, Krieg T, Hartley RC, Murphy MP. Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo. Cell Chem Biol 2019; 26:449-461.e8. [PMID: 30713096 PMCID: PMC6436940 DOI: 10.1016/j.chembiol.2018.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 02/02/2023]
Abstract
Mitochondrial glutathione (GSH) and thioredoxin (Trx) systems function independently of the rest of the cell. While maintenance of mitochondrial thiol redox state is thought vital for cell survival, this was not testable due to the difficulty of manipulating the organelle's thiol systems independently of those in other cell compartments. To overcome this constraint we modified the glutathione S-transferase substrate and Trx reductase (TrxR) inhibitor, 1-chloro-2,4-dinitrobenzene (CDNB) by conjugation to the mitochondria-targeting triphenylphosphonium cation. The result, MitoCDNB, is taken up by mitochondria where it selectively depletes the mitochondrial GSH pool, catalyzed by glutathione S-transferases, and directly inhibits mitochondrial TrxR2 and peroxiredoxin 3, a peroxidase. Importantly, MitoCDNB inactivates mitochondrial thiol redox homeostasis in isolated cells and in vivo, without affecting that of the cytosol. Consequently, MitoCDNB enables assessment of the biomedical importance of mitochondrial thiol homeostasis in reactive oxygen species production, organelle dynamics, redox signaling, and cell death in cells and in vivo.
Collapse
Affiliation(s)
- Lee M Booty
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Justyna M Gawel
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Filip Cvetko
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | | | - Andrew R Hall
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Elizabeth C Hinchy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Sabine Arndt
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Cristiane Beninca
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas P Bright
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | | | - John R Ferdinand
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
134
|
Zhu Z, Wang Z, Zhang C, Wang Y, Zhang H, Gan Z, Guo Z, Wang X. Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem Sci 2019; 10:3089-3095. [PMID: 30996891 PMCID: PMC6428137 DOI: 10.1039/c8sc04871a] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are potential therapeutic targets for anticancer drugs. A series of mitochondrion-targeted monofunctional platinum complexes, [Pt(ortho-PPh3CH2Py)(NH3)2Cl](NO3)2 (OPT), [Pt(meta-PPh3CH2Py)(NH3)2Cl](NO3)2 (MPT), and [Pt(para-PPh3CH2Py)(NH3)2Cl](NO3)2 (PPT) (PPh3 = triphenylphosphonium, Py = pyridine), are studied in this article. The antitumor activity and mechanism of action have been investigated in vitro and in vivo as well as on molecular levels. OPT exhibits higher efficacy than cisplatin against A549 lung cancer cells; furthermore, it shows a strong inhibition towards the growth of non-small-cell lung cancer in nude mice. The DNA binding ability of these complexes follows an order of PPT > OPT > MPT. Cellular uptake and distribution studies show that OPT accumulates mainly in mitochondria, while MPT and PPT accumulate more preferentially in nuclei than in mitochondria. As a result, OPT induces remarkable changes in the ultrastructure and membrane of mitochondria, leading to more radical mitochondrial dysfunctions than cisplatin. The release of cytochrome c from mitochondria is more evident for cells treated with OPT than with cisplatin, though the apoptosis of A549 cells induced by OPT is similar to that induced by cisplatin. Disruption to mitochondrial oxidative phosphorylation and glycolysis is involved in the antitumor mechanism of these compounds. The results indicate that in addition to DNA binding, bioenergetic pathways also play crucial roles in the antitumor activity of mitochondrion-targeted monofunctional platinum complexes.
Collapse
Affiliation(s)
- Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| | - Zenghui Wang
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89689006
| | - Changli Zhang
- School of Biochemical and Environmental Engineering , Nanjing Xiaozhuang University , Nanjing , P. R. China
| | - Yanjun Wang
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| | - Hongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology , Model Animal Research Center of Nanjing University , Nanjing , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89689006
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| |
Collapse
|
135
|
Li Z, Forshaw TE, Holmila RJ, Vance SA, Wu H, Poole LB, Furdui CM, King SB. Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function. Chem Res Toxicol 2019; 32:526-534. [PMID: 30784263 DOI: 10.1021/acs.chemrestox.8b00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Redox-mediated protein modifications control numerous processes in both normal and disease metabolism. Protein sulfenic acids, formed from the oxidation of protein cysteine residues, play a critical role in thiol-based redox signaling. The reactivity of protein sulfenic acids requires their identification through chemical trapping, and this paper describes the use of the triphenylphosphonium (TPP) ion to direct known sulfenic acid traps to the mitochondria, a verified source of cellular reactive oxygen species. Coupling of the TPP group with the 2,4-(dioxocyclohexyl)propoxy (DCP) unit and the bicyclo[6.1.0]nonyne (BCN) group produces two new probes, DCP-TPP and BCN-TPP. DCP-TPP and BCN-TPP react with C165A AhpC-SOH, a model protein sulfenic acid, to form the expected adducts with second-order rate constants of k = 1.1 M-1 s-1 and k = 5.99 M-1 s-1, respectively, as determined by electrospray ionization time-of-flight mass spectrometry. The TPP group does not alter the rate of DCP-TPP reaction with protein sulfenic acid compared to dimedone but slows the rate of BCN-TPP reaction compared to a non-TPP-containing BCN-OH control by 4.6-fold. The hydrophobic TPP group may interact with the protein, preventing an optimal reaction orientation for BCN-TPP. Unlike BCN-OH, BCN-TPP does not react with the protein persulfide, C165A AhpC-SSH. Extracellular flux measurements using A549 cells show that DCP-TPP and BCN-TPP influence mitochondrial energetics, with BCN-TPP producing a drastic decrease in basal respiration, perhaps due to its faster reaction kinetics with sulfenylated proteins. Further control experiments with BCN-OH, TPP-COOH, and dimedone provide strong evidence for mitochondrial localization and accumulation of DCP-TPP and BCN-TPP. These results reveal the compatibility of the TPP group with reactive sulfenic acid probes as a mitochondrial director and support the use of the TPP group in the design of sulfenic acid traps.
Collapse
Affiliation(s)
- Zhe Li
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27101 , United States
| | - Tom E Forshaw
- Department of Internal Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Reetta J Holmila
- Department of Internal Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Stephen A Vance
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27101 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Hanzhi Wu
- Department of Internal Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Leslie B Poole
- Department of Biochemistry , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Cristina M Furdui
- Department of Internal Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - S Bruce King
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27101 , United States.,Center for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| |
Collapse
|
136
|
Cheng Y, Liu DZ, Zhang CX, Cui H, Liu M, Zhang BL, Mei QB, Lu ZF, Zhou SY. Mitochondria-targeted antioxidant delivery for precise treatment of myocardial ischemia–reperfusion injury through a multistage continuous targeted strategy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:236-249. [DOI: 10.1016/j.nano.2018.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
137
|
Sung J, Rho JG, Jeon GG, Chu Y, Min JS, Lee S, Kim JH, Kim W, Kim E. A New Infrared Probe Targeting Mitochondria via Regulation of Molecular Hydrophobicity. Bioconjug Chem 2019; 30:210-217. [PMID: 30562008 DOI: 10.1021/acs.bioconjchem.8b00845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we developed a near-infrared (NIR) fluorescent probe for mitochondrial staining based on the NIR fluorochrome, silicon-rhodamine. The hydrophobicity of the fluorescent core was systematically modified by conjugation with 10 different commercial amines. The resulting fluorescent compounds exhibited similar photophysical properties but diverse hydrophobicity. We identified the optimal level of hydrophobicity associated with high mitochondrial targeting efficiency. In particular, the SiR-Mito 8 probe provided excellent mitochondrial staining and successfully differentiated the live Hep3B cancer cells from normal L02 cells in vitro.
Collapse
Affiliation(s)
| | | | | | - Yeonjeong Chu
- Center for Neuro-Medicine, Brain Science Institute , Korea Institute of Science and Technology , Seoul 02792 , Korea
| | | | - Sanghee Lee
- Center for Neuro-Medicine, Brain Science Institute , Korea Institute of Science and Technology , Seoul 02792 , Korea
| | | | | | | |
Collapse
|
138
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
139
|
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O'Neill LA, Mills EL. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 2019; 1:16-33. [PMID: 31032474 PMCID: PMC6485344 DOI: 10.1038/s42255-018-0014-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for "non-metabolic" signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases.
Collapse
Affiliation(s)
- Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
140
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
141
|
Rossman MJ, LaRocca TJ, Martens CR, Seals DR. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol (1985) 2018; 125:1888-1900. [PMID: 30212305 PMCID: PMC6842891 DOI: 10.1152/japplphysiol.00521.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 12/19/2022] Open
Abstract
This review summarizes a presentation given at the 2016 Gerontological Society of America Annual Meeting as part of the Vascular Aging Workshop. The development of age-related vascular dysfunction increases the risk of cardiovascular disease as well as other chronic age-associated disorders, including chronic kidney disease and Alzheimer's disease. Healthy lifestyle behaviors, most notably regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies for the prevention and/or treatment of vascular dysfunction with aging. Despite the well-established benefits of these strategies, however, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related vascular dysfunction. Time-efficient forms of exercise training, hormetic exposure to mild environmental stress, fasting "mimicking" dietary paradigms, and nutraceutical/pharmaceutical approaches to favorably modulate cellular and molecular pathways activated by exercise and healthy dietary patterns may hold promise as such alternative approaches. Determining the efficacy of these novel strategies is important to provide alternatives for adults with low adherence to conventional healthy lifestyle practices for healthy vascular aging.
Collapse
Affiliation(s)
- Matthew J Rossman
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Christopher R Martens
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| |
Collapse
|
142
|
Han Y, Tian Z, Zhang S, Liu X, Li J, Li Y, Liu Y, Gao M, Liu Z. Half-sandwich IridiumIII N-heterocyclic carbene antitumor complexes and biological applications. J Inorg Biochem 2018; 189:163-171. [DOI: 10.1016/j.jinorgbio.2018.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
|
143
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 526] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
144
|
Zielonka J, Kalyanaraman B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 2018; 128:3-22. [PMID: 29567392 PMCID: PMC6146080 DOI: 10.1016/j.freeradbiomed.2018.03.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in both pathogenic cellular damage events and physiological cellular redox signaling and regulation. To unravel the biological role of ROS, it is very important to be able to detect and identify the species involved. In this review, we introduce the reader to the methods of detection of ROS using luminescent (fluorescent, chemiluminescent, and bioluminescent) probes and discuss typical limitations of those probes. We review the most widely used probes, state-of-the-art assays, and the new, promising approaches for rigorous detection and identification of superoxide radical anion, hydrogen peroxide, and peroxynitrite. The combination of real-time monitoring of the dynamics of ROS in cells and the identification of the specific products formed from the probes will reveal the role of specific types of ROS in cellular function and dysfunction. Understanding the molecular mechanisms involving ROS may help with the development of new therapeutics for several diseases involving dysregulated cellular redox status.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
145
|
Erlich TH, Sharkia I, Landolina N, Assayag M, Goldberger O, Berkman N, Levi-Schaffer F, Razin E. Modulation of allergic responses by mitochondrial STAT3 inhibitors. Allergy 2018; 73:2160-2171. [PMID: 29683527 DOI: 10.1111/all.13467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recently, we have shown that mast cell mitochondrial STAT3 could serve as a new target for the regulation of the allergic response as it plays an essential role in immunologically mediated degranulation of mast cells. In the present work, we explored how two recently developed mitochondrial STAT3 inhibitors (Mitocur-1 and Mitocur-3) modulate the allergic response. METHODS Experiments were performed both in vitro in cultured human/mouse mast cells and with rat basophilic leukemia (RBL) cells and also in vivo in mice. The effect of mitochondrial STAT3 inhibition on mast cell function was determined via checking degranulation and several cytokines secretion levels. RESULTS Here, we show that treatment of rodent and human cultured mast cells with low concentrations of mitochondrial STAT3 inhibitors had no effect on STAT3 target gene expression. However, these inhibitors caused a significant reduction in mast cell exocytosis and cytokine release, due to a decrease in OXPHOS activity and STAT3 serine 727 phosphorylation. It was also observed in an OVA mouse model of allergic asthma that one of the inhibitors used significantly reduced eosinophilia and neutrophilia compared to the control mice group. Furthermore, it was observed that treatment with this inhibitor resulted in a significant reduction in blood histamine levels in mice after IgE-Ag challenge. CONCLUSION The present data strongly suggest that the development of mitochondrial STAT3 inhibitors could serve as a potential treatment for allergy-associated diseases.
Collapse
Affiliation(s)
- T. H. Erlich
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
| | - I. Sharkia
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
| | - N. Landolina
- Faculty of Medicine; Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Hebrew University of Jerusalem; Jerusalem Israel
| | - M. Assayag
- The Institute of Pulmonary Medicine at Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - O. Goldberger
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
| | - N. Berkman
- The Institute of Pulmonary Medicine at Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - F. Levi-Schaffer
- Faculty of Medicine; Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Hebrew University of Jerusalem; Jerusalem Israel
| | - E. Razin
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
- Singapore-HUJI Alliance for Research and Enterprise; Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group; Campus for Research Excellence and Technological Enterprise; Singapore city Singapore
| |
Collapse
|
146
|
Bresolí-Obach R, Gispert I, Peña DG, Boga S, Gulias Ó, Agut M, Vázquez ME, Nonell S. Triphenylphosphonium cation: A valuable functional group for antimicrobial photodynamic therapy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800054. [PMID: 29882394 DOI: 10.1002/jbio.201800054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Light-mediated killing of pathogens by cationic photosensitisers is a promising antimicrobial approach that avoids the development of resistance inherent to the use of antimicrobials. In this study, we demonstrate that modification of different photosensitisers with the triphenylphosphonium cation yields derivatives with excellent photoantimicrobial activity against Gram-positive bacteria (ie, Staphylococcus aureus and Enterococcus faecalis). Thus, the triphenylphosphonium functional group should be considered for the development of photoantimicrobials for the selective killing of Gram-positive bacteria in the presence of Gram-negative species.
Collapse
Affiliation(s)
| | - Ignacio Gispert
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Diego G Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sonia Boga
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Óscar Gulias
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
147
|
Han C, Zhang C, Ma T, Zhang C, Luo J, Xu X, Zhao H, Chen Y, Kong L. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater 2018; 77:268-281. [PMID: 30006311 DOI: 10.1016/j.actbio.2018.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. STATEMENT OF SIGNIFICANCE Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.
Collapse
Affiliation(s)
- Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ting Ma
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Huijun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yan Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
148
|
Liao C, Xu D, Liu X, Fang Y, Yi J, Li X, Guo B. Iridium (III) complex-loaded liposomes as a drug delivery system for lung cancer through mitochondrial dysfunction. Int J Nanomedicine 2018; 13:4417-4431. [PMID: 30104875 PMCID: PMC6071621 DOI: 10.2147/ijn.s170035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background and aim Iridium (Ir)-based complex is a potential antitumor ingredient, but its poor physicochemical properties such as hydrophobicity and low biocompatibility hamper further application. Liposome provides a potential delivery approach for improving the poor physicochemical property and reducing the side effects of antitumor drug. In this study, we aimed at incorporating Ir ([Ir(ppy)2(BTCP)]PF6) into liposomes to enhance the biocompatibility and sustained release of Ir for intravenous administration and to elucidate the mechanism in A549 cells. Materials and methods Ir-loaded PEGylated liposomes (Lipo-Ir) were formulated by thin-film dispersion and ultrasonic method. Morphology, size distribution, and zeta potential of Lipo-Ir were examined by transmission electron microscopy (TEM) and Zetasizer. The released profile and biocompatibility were investigated by dialysis method and hemolysis test, respectively. Additionally, the cytotoxic activity and mechanism of Lipo-Ir and Ir inducing apoptosis in A549 cells were evaluated. Results Lipo-Ir can keep sustained release, excellent biocompatibility, and physical stability. The average particle size, polydispersity index, zeta potential, encapsulation efficiency, and drug loading are 112.57±1.15 nm, 0.19±0.02, −10.66±0.61 mV, 94.71%±3.21%, and 4.71%±0.41%, respectively. 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT) assay show that Lipo-Ir and Ir display high cytotoxicity against selected cancer cells. Furthermore, the apoptotic features of morphology, depolarization of mitochondrial membrane potential, increase in the reactive oxygen species (ROS) levels, and disorder of Ca2+ homeostasis are observed after treating A549 cells with Ir and Lipo-Ir. Besides, Lipo-Ir can arrest the cell growth in G0/G1 phase. Conclusion The studies demonstrate that Lipo-Ir can trigger apoptosis in A549 cells via ROS-mediated mitochondrial dysfunctions, and the biocompatible and sustained Lipo-Ir will be a promising drug delivery system.
Collapse
Affiliation(s)
- Cancheng Liao
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Danqiao Xu
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Xiaohong Liu
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Yuqi Fang
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Jun Yi
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Xiaofang Li
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| | - Bohong Guo
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China,
| |
Collapse
|
149
|
Wang Z, Chen Y, Zhang H, Li Y, Ma Y, Huang J, Liu X, Liu F, Wang T, Zhang X. Mitochondria-Targeting Polydopamine Nanocomposites as Chemophotothermal Therapeutics for Cancer. Bioconjug Chem 2018; 29:2415-2425. [PMID: 29927240 DOI: 10.1021/acs.bioconjchem.8b00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondria play a key role in a variety of physiological processes, and mitochondria-targeting drug delivery is helpful and effective in cancer therapy. Rhodamine123 (Rhod123) and Doxorubicin (Dox) are not new chemical molecules, and they both can inhibit the growth of cancerous cells. Here, we combine these two "old" chemicals with polydopamine nanoparticles (PDA NPs) to strengthen the antitumor effect with the aid of near-infrared irradiation. PDA NPs carry these two chemicals tightly by hydrogen bonds and π-π stacking besides chemical bonds. The better antitumor profile of PDA-Rhod-Dox comes from the mitochondria-targeting delivery, which decreases ATP in living cells, causing apoptosis of cancerous cells effectively and inhibiting the growth of tumors in mice. The synergistic effect of PDA, Rhod123, and Dox improves the treatment effect of conventional chemotherapy drugs.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yawen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jia Huang
- Department of Hepatobiliary Surgery, Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Xiaolei Liu
- Department of Hepatobiliary Surgery, Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Fang Liu
- Department of Hepatobiliary Surgery, Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Tongxin Wang
- College of Engineering and College of Dentistry , Howard University , Washington , DC 20059 , United States
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
150
|
Carvalho C, Moreira PI. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front Physiol 2018; 9:806. [PMID: 30018565 PMCID: PMC6037979 DOI: 10.3389/fphys.2018.00806] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
The brain is one of the most exquisite organs in the body with high metabolic demands, and requires a tight regulation of the surrounding environment. This tight control is exerted by the neurovascular unit (NVU) comprising different cell types, where endothelial cells play the commander-in-chief role. Thus, it is assumable that even slight perturbations in NVU might affect, in some cases irreversibly, brain homeostasis and health. In this line, recent findings support the two-hit vascular hypothesis for neurodegenerative conditions, where vascular dysfunction underlies the development of neurodegenerative diseases, such as Alzheimer’s disease (AD). Knowing that endothelial cells are rich in mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, two major reactive oxygen species (ROS) sources, this review aims to gather information on how oxidative stress is in the front line of vascular alterations observed in brain aging and neurodegenerative conditions, particularly AD. Also, a brief discussion about the therapeutic strategies aimed to protect against cerebrovascular diseases is included.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|