101
|
Chen F, Li S, Guo R, Song F, Zhang Y, Wang X, Huo X, Lv Q, Ullah H, Wang G, Ma Y, Yan Q, Ma X. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J Adv Res 2022:S2090-1232(22)00214-4. [PMID: 36198381 DOI: 10.1016/j.jare.2022.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Viruses have been reported as inducers of tumorigenesis. Little studies have explored the impact of the gut virome on the progression of colorectal cancer. However, there is still a problem with the repeatability of viral signatures across multiple cohorts. OBJECTIVES The present study aimed to reveal the repeatable gut vial signatures of colorectal cancer and adenoma patients and decipher the potential of viral markers in disease risk assessment for diagnosis. METHODS 1,282 available fecal metagenomes from 9 published studies for colorectal cancer and adenoma were collected. A gut viral catalog was constructed via a reference-independent approach. Viral signatures were identified by cross-cohort meta-analysis and used to build predictive models based on machine learning algorithms. New fecal samples were collected to validate the generalization of predictive models. RESULTS The gut viral composition of colorectal cancer patients was drastically altered compared with healthy, as evidenced by changes in some Siphoviridae and Myoviridae viruses and enrichment of Microviridae, whereas the virome variation in adenoma patients was relatively low. Cross-cohort meta-analysis identified 405 differential viruses for colorectal cancer, including several phages of Porphyromonas, Fusobacterium, and Hungatella that were enriched in patients and some control-enriched Ruminococcaceae phages. In 9 discovery cohorts, the optimal risk assessment model obtained an average cross-cohort area under the curve of 0.830 for discriminating colorectal cancer patients from controls. This model also showed consistently high accuracy in 2 independent validation cohorts (optimal area under the curve, 0.906). Gut virome analysis of adenoma patients identified 88 differential viruses and achieved an optimal area under the curve of 0.772 for discriminating patients from controls. CONCLUSION Our findings demonstrate the gut virome characteristics in colorectal cancer and adenoma and highlight gut virus-bacterial synergy in the progression of colorectal cancer. The gut viral signatures may be new targets for colorectal cancer treatment. In addition, high repeatability and predictive power of the prediction models suggest the potential of gut viral biomarkers in non-invasive diagnostic tests of colorectal cancer and adenoma.
Collapse
Affiliation(s)
- Fang Chen
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Puensum Genetech Institute, Wuhan, China; Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | | | - Fanghua Song
- Ambulatory Chemotherapy Center, Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
102
|
Differential Response of Ileal and Colonic Microbiota in Rats with High-Fat Diet-Induced Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911154. [PMID: 36232451 PMCID: PMC9569969 DOI: 10.3390/ijms231911154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Growing evidence suggests that gut microbiota are associated with atherosclerosis (AS). However, the functional heterogeneity of each gut segment gives rise to regional differences in gut microbiota. We established a rat model of AS by feeding the rats a high-fat diet for a long period. The pathological and microbiota changes in the ileum and colon of the rats were examined, and correlations between AS and microbiota were analyzed. The aortic mesothelium of the experimental rats was damaged. The intima showed evident calcium salt deposition, indicating that the AS rat model was successfully developed. We noted varying degrees of pathological damage in the ileum and colon of the experimental rats. The 16S rDNA high-throughput sequencing showed significant differences in α-diversity, β-diversity, and microbiota comparisons in the ileum and colon. Furthermore, the ileum and colon of AS rats showed varying degrees of intestinal microbiota disturbance. This article contributes to the study of the relationship between the microbiota in different regions of the gut and AS, and provides new approaches in gut microbiota intervention for the treatment of AS.
Collapse
|
103
|
Centurion VB, Campanaro S, Basile A, Treu L, Oliveira VM. Microbiome structure in biofilms from a volcanic island in Maritime Antarctica investigated by genome-centric metagenomics and metatranscriptomics. Microbiol Res 2022; 265:127197. [PMID: 36174355 DOI: 10.1016/j.micres.2022.127197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Antarctica is the coldest and driest continent on Earth, characterized by polyextreme environmental conditions, where species adapted form complex networks of interactions. Microbial communities growing in these harsh environments can form biofilms that help the associated species to survive and thrive. A rich body of knowledge describes environmental biofilm communities; however, most studies have focused on dominant community members rather than functional complexity and metabolic potential. To overcome these limitations, the present study used genome-centric metagenomics to describe two biofilm samples subjected to different temperature collected in Deception Island, Maritime Antarctica. The results unraveled a complex biofilm microbiome represented by 180 metagenome-assembled genomes. The potential metabolic interactions were investigated using metabolic flux balance analysis and revealed that purple bacteria are the community members with the highest correlations with other bacteria. Due to their predicted mixotrophic behavior, they may play a crucial role in the microbiome, likely supporting the heterotrophic species in biofilms. Metatranscriptomics results revealed that the chaperone system and proteins counteracting ROS and toxic compounds have a major role in maintaining bacterial cell homeostasis in sediments of volcanic origin.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil.
| | - S Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy.
| | - A Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - L Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
104
|
Qiu Z, Verma JP, Liu H, Wang J, Batista BD, Kaur S, de Araujo Pereira AP, Macdonald CA, Trivedi P, Weaver T, Conaty WC, Tissue DT, Singh BK. Response of the plant core microbiome to Fusarium oxysporum infection and identification of the pathobiome. Environ Microbiol 2022; 24:4652-4669. [PMID: 36059126 DOI: 10.1111/1462-2920.16194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jay Prakash Verma
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Bruna D Batista
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Simranjit Kaur
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Tim Weaver
- CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, Australia
| | - Warren C Conaty
- CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
105
|
Chen P, Jia L, Zhou Y, Guo Y, Fang C, Li T. Interaction between endometrial microbiota and host gene regulation in recurrent implantation failure. J Assist Reprod Genet 2022; 39:2169-2178. [PMID: 35881269 PMCID: PMC9474991 DOI: 10.1007/s10815-022-02573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
AIM To learn about the interaction between endometrial microbiota and host gene regulation in recurrent implantation failure. METHODS The endometrial microbiota of 111 patients (RIF, 75; CON, 36) was analyzed by using 16 s rRNA sequencing technology. Transcriptome sequencing analysis of the endometrial of 60 patients was performed by using high-throughput sequencing. RESULTS We found that the structure and composition of endometrium microbiota community of RIF patients were significantly different from those in control group. The abnormality of microbial structure and composition might interfere with the implantation of embryos by affecting the immune adaptation of the endometrium and the formation of endometrial blood vessels. CONCLUSIONS Our research described the host-microbe interaction in RIF. The structure and composition of endometrium microbiota community of RIF patients were significantly different from those in CON group. The abnormality of microbial structure and composition might interfere with the implantation of embryos by affecting the immune adaptation of the endometrium and the formation of endometrial blood vessels.
Collapse
Affiliation(s)
- Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Lei Jia
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yi Zhou
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yingchun Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Cong Fang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Tingting Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
106
|
Mohr AE, Jasbi P, Vander Wyst KB, van Woerden I, Shi X, Gu H, Whisner CM, Bruening M. Association of food insecurity on gut microbiome and metabolome profiles in a diverse college-based sample. Sci Rep 2022; 12:14358. [PMID: 35999348 PMCID: PMC9399224 DOI: 10.1038/s41598-022-18515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
Voluntary caloric restriction (e.g., eating disorders) often results in alterations in the gut microbiota composition and function. However, these findings may not translate to food insecurity, where an individual experiences inconsistent access to healthy food options. In this study we compared the fecal microbiome and metabolome of racially and ethnically diverse first year college students (n = 60) experiencing different levels of food access. Students were dichotomized into food secure (FS) and food insecure (FI) groups using a validated, 2-question screener assessing food security status over the previous 30 days. Fecal samples were collected up to 5 days post survey-completion. Gut microbiome and metabolome were established using 16S rRNA amplicon sequencing, targeted liquid chromatography-tandem mass spectrometry, and gas chromatography-mass spectrometry. FI students experienced significantly greater microbial diversity with increased abundance of Enterobacteriaceae and Eisenbergiella, while FS students had greater abundance of Megasphaera and Holdemanella. Metabolites related to energy transfer and gut–brain-axis communication (picolinic acid, phosphocreatine, 2-pyrrolidinone) were elevated in FI students (q < 0.05). These findings suggest that food insecurity is associated with differential gut microbial and metabolite composition for which the future implications are unknown. Further work is needed to elucidate the longitudinal metabolic effects of food insecurity and how gut microbes influence metabolic outcomes.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Irene van Woerden
- Community and Public Health, Idaho State University, Pocatello, ID, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA. .,Biodesign Institute Health Through Microbiomes Center, Arizona State University, Tempe, AZ, USA.
| | - Meg Bruening
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
107
|
Nel Van Zyl K, Whitelaw AC, Hesseling AC, Seddon JA, Demers AM, Newton-Foot M. Fungal diversity in the gut microbiome of young South African children. BMC Microbiol 2022; 22:201. [PMID: 35978282 PMCID: PMC9387017 DOI: 10.1186/s12866-022-02615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal microbiome, or mycobiome, is a poorly described component of the gut ecosystem and little is known about its structure and development in children. In South Africa, there have been no culture-independent evaluations of the child gut mycobiota. This study aimed to characterise the gut mycobiota and explore the relationships between fungi and bacteria in the gut microbiome of children from Cape Town communities. METHODS Stool samples were collected from children enrolled in the TB-CHAMP clinical trial. Internal transcribed spacer 1 (ITS1) gene sequencing was performed on a total of 115 stool samples using the Illumina MiSeq platform. Differences in fungal diversity and composition in relation to demographic, clinical, and environmental factors were investigated, and correlations between fungi and previously described bacterial populations in the same samples were described. RESULTS Taxa from the genera Candida and Saccharomyces were detected in all participants. Differential abundance analysis showed that Candida spp. were significantly more abundant in children younger than 2 years compared to older children. The gut mycobiota was less diverse than the bacterial microbiota of the same participants, consistent with the findings of other human microbiome studies. The variation in richness and evenness of fungi was substantial, even between individuals of the same age. There was significant association between vitamin A supplementation and higher fungal alpha diversity (p = 0.047), and girls were shown to have lower fungal alpha diversity (p = 0.003). Co-occurrence between several bacterial taxa and Candida albicans was observed. CONCLUSIONS The dominant fungal taxa in our study population were similar to those reported in other paediatric studies; however, it remains difficult to identify the true core gut mycobiota due to the challenges set by the low abundance of gut fungi and the lack of true gut colonising species. The connection between the microbiota, vitamin A supplementation, and growth and immunity warrants exploration, especially in populations at risk for micronutrient deficiencies. While we were able to provide insight into the gut mycobiota of young South African children, further functional studies are necessary to explain the role of the mycobiota and the correlations between bacteria and fungi in human health.
Collapse
Affiliation(s)
- K Nel Van Zyl
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa.
| | - A C Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- African Microbiome Institute, Stellenbosch University, Stellenbosch, South Africa
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - J A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A-M Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Service de Microbiologie, Département Clinique de Médecine de Laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | - M Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
108
|
Nie F, Wang L, Huang Y, Yang P, Gong P, Feng Q, Yang C. Characteristics of Microbial Distribution in Different Oral Niches of Oral Squamous Cell Carcinoma. Front Cell Infect Microbiol 2022; 12:905653. [PMID: 36046741 PMCID: PMC9421053 DOI: 10.3389/fcimb.2022.905653] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common malignant tumors of the head and neck, is closely associated with the presence of oral microbes. However, the microbiomes of different oral niches in OSCC patients and their association with OSCC have not been adequately characterized. In this study, 305 samples were collected from 65 OSCC patients, including tumor tissue, adjacent normal tissue (paracancerous tissue), cancer surface tissue, anatomically matched contralateral normal mucosa, saliva, and tongue coat. 16S ribosomal DNA (16S rDNA) sequencing was used to compare the microbial composition, distribution, and co-occurrence network of different oral niches. The association between the microbiome and the clinical features of OSCC was also characterized. The oral microbiome of OSCC patients showed a regular ecological distribution. Tumor and paracancerous tissues were more microbially diverse than other oral niches. Cancer surface, contralateral normal mucosa, saliva, and tongue coat showed similar microbial compositions, especially the contralateral normal mucosa and saliva. Periodontitis-associated bacteria of the genera Fusobacterium, Prevotella, Porphyromonas, Campylobacter, and Aggregatibacter, and anaerobic bacteria were enriched in tumor samples. The microbiome was highly correlated with tumor clinicopathological features, with several genera (Lautropia, Asteroleplasma, Parvimonas, Peptostreptococcus, Pyramidobacter, Roseburia, and Propionibacterium) demonstrating a relatively high diagnostic power for OSCC metastasis, potentially providing an indicator for the development of OSCC.
Collapse
Affiliation(s)
- Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lihua Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingying Huang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Stomatology, Shandong University, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Pizhang Gong
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qiang Feng, ; Chengzhe Yang,
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Stomatology, Shandong University, Jinan, China
- *Correspondence: Qiang Feng, ; Chengzhe Yang,
| |
Collapse
|
109
|
Zhao C, Liu L, Gao L, Bai L. A comprehensive comparison of fecal microbiota in three ecological bird groups of raptors, waders, and waterfowl. Front Microbiol 2022; 13:919111. [PMID: 36003944 PMCID: PMC9393522 DOI: 10.3389/fmicb.2022.919111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota plays a vital role in maintaining the health and immunity of wild birds. However, less is known about the comparison of fecal microbiota between different ecological groups of wild birds, particularly in the Yellow River National Wetland in Baotou, China, an important transit point for birds migrating all over the East Asia-Australian and Central Asian flyways. In this study, we characterized the fecal microbiota and potential microbial function in nine bird species of raptors, waders, and waterfowl using 16S rRNA gene amplicon sequencing to reveal the microbiota differences and interaction patterns. The results indicated that there was no significant difference in α-diversity, but a significant difference in β-diversity between the three groups of birds. The fecal bacterial microbiota was dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes in all groups of birds. Furthermore, we identified five bacterial genera that were significantly higher in raptors, five genera that were significantly higher in waders, and two genera that were more abundant in waterfowl. The bacterial co-occurrence network results revealed 15 and 26 key genera in raptors and waterfowls, respectively. The microbial network in waterfowl exhibited a stronger correlation pattern than that in raptors. PICRUSt2 predictions indicated that fecal bacterial function was significantly enriched in the antibiotic biosynthesis pathway in all three groups. Metabolic pathways related to cell motility (bacterial chemotaxis and flagellar assembly) were significantly more abundant in raptors than in waders, whereas waders were enriched in lipid metabolism (synthesis and degradation of ketone bodies and fatty acid biosynthesis). The fecal microbiota in waterfowl harbored more abundant vitamin B6 metabolism, RNA polymerase, and tyrosine and tryptophan biosynthesis. This comparative study revealed the microbial community structure, microbial co-occurrence patterns, and potential functions, providing a better understanding of the ecology and conservation of wild birds. Future studies may focus on unraveling metagenomic functions and dynamics along with the migration routine or different seasons by metagenomics or metatranscriptomics.
Collapse
|
110
|
Kim H, Jeon J, Lee KK, Lee YH. Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Commun Biol 2022; 5:772. [PMID: 35915150 PMCID: PMC9343636 DOI: 10.1038/s42003-022-03726-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vertical transmission of microbes is crucial for the persistence of host-associated microbial communities. Although vertical transmission of seed microbes has been reported from diverse plants, ecological mechanisms and dynamics of microbial communities from parent to progeny remain scarce. Here we reveal the veiled ecological mechanism governing transmission of bacterial and fungal communities in rice across two consecutive seasons. We identify 29 bacterial and 34 fungal members transmitted across generations. Abundance-based regression models allow to classify colonization types of the microbes. We find that they are late colonizers dominating each community at the ripening stage. Ecological models further show that the observed temporal colonization patterns are affected by niche change and neutrality. Source-sink modeling reveals that parental seeds and stem endosphere are major origins of progeny seed microbial communities. This study gives empirical evidence for ecological mechanism and dynamics of bacterial and fungal communities as an ecological continuum during seed-to-seed transmission.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea.,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kiseok Kieth Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL, 60637, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Republic of Korea. .,Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
111
|
Habibi N, Uddin S, Behbehani M, Al Salameen F, Razzack NA, Zakir F, Shajan A, Alam F. Bacterial and fungal communities in indoor aerosols from two Kuwaiti hospitals. Front Microbiol 2022; 13:955913. [PMID: 35966680 PMCID: PMC9366136 DOI: 10.3389/fmicb.2022.955913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The airborne transmission of COVID-19 has drawn immense attention to bioaerosols. The topic is highly relevant in the indoor hospital environment where vulnerable patients are treated and healthcare workers are exposed to various pathogenic and non-pathogenic microbes. Knowledge of the microbial communities in such settings will enable precautionary measures to prevent any hospital-mediated outbreak and better assess occupational exposure of the healthcare workers. This study presents a baseline of the bacterial and fungal population of two major hospitals in Kuwait dealing with COVID patients, and in a non-hospital setting through targeted amplicon sequencing. The predominant bacteria of bioaerosols were Variovorax (9.44%), Parvibaculum (8.27%), Pseudonocardia (8.04%), Taonella (5.74%), Arthrospira (4.58%), Comamonas (3.84%), Methylibium (3.13%), Sphingobium (4.46%), Zoogloea (2.20%), and Sphingopyxis (2.56%). ESKAPEE pathogens, such as Pseudomonas, Acinetobacter, Staphylococcus, Enterococcus, and Escherichia, were also found in lower abundances. The fungi were represented by Wilcoxinia rehmii (64.38%), Aspergillus ruber (9.11%), Penicillium desertorum (3.89%), Leptobacillium leptobactrum (3.20%), Humicola grisea (2.99%), Ganoderma sichuanense (1.42%), Malassezia restricta (0.74%), Heterophoma sylvatica (0.49%), Fusarium proliferatum (0.46%), and Saccharomyces cerevisiae (0.23%). Some common and unique operational taxonomic units (OTUs) of bacteria and fungi were also recorded at each site; this inter-site variability shows that exhaled air can be a source of this variation. The alpha-diversity indices suggested variance in species richness and abundance in hospitals than in non-hospital sites. The community structure of bacteria varied spatially (ANOSIM r 2 = 0.181-0.243; p < 0.05) between the hospital and non-hospital sites, whereas fungi were more or less homogenous. Key taxa specific to the hospitals were Defluvicoccales, fungi, Ganodermataceae, Heterophoma, and H. sylvatica compared to Actinobacteria, Leptobacillium, L. leptobacillium, and Cordycipitaceae at the non-hospital site (LefSe, FDR q ≤ 0.05). The hospital/non-hospital MD index > 1 indicated shifts in the microbial communities of indoor air in hospitals. These findings highlight the need for regular surveillance of indoor hospital environments to prevent future outbreaks.
Collapse
Affiliation(s)
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | | | | | | | | | | | | |
Collapse
|
112
|
Zhou F, He K, Li Q, Chapkin RS, Ni Y. Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization. Biostatistics 2022; 23:891-909. [PMID: 33634824 PMCID: PMC9291645 DOI: 10.1093/biostatistics/kxab002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/08/2020] [Accepted: 01/10/2021] [Indexed: 12/26/2022] Open
Abstract
High-throughput sequencing technology provides unprecedented opportunities to quantitatively explore human gut microbiome and its relation to diseases. Microbiome data are compositional, sparse, noisy, and heterogeneous, which pose serious challenges for statistical modeling. We propose an identifiable Bayesian multinomial matrix factorization model to infer overlapping clusters on both microbes and hosts. The proposed method represents the observed over-dispersed zero-inflated count matrix as Dirichlet-multinomial mixtures on which latent cluster structures are built hierarchically. Under the Bayesian framework, the number of clusters is automatically determined and available information from a taxonomic rank tree of microbes is naturally incorporated, which greatly improves the interpretability of our findings. We demonstrate the utility of the proposed approach by comparing to alternative methods in simulations. An application to a human gut microbiome data set involving patients with inflammatory bowel disease reveals interesting clusters, which contain bacteria families Bacteroidaceae, Bifidobacteriaceae, Enterobacteriaceae, Fusobacteriaceae, Lachnospiraceae, Ruminococcaceae, Pasteurellaceae, and Porphyromonadaceae that are known to be related to the inflammatory bowel disease and its subtypes according to biological literature. Our findings can help generate potential hypotheses for future investigation of the heterogeneity of the human gut microbiome.
Collapse
Affiliation(s)
- Fangting Zhou
- Department of Statistics, Texas A&M University, College Station, TX, USA and Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Kejun He
- Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Robert S Chapkin
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Yang Ni
- Department of Statistics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
113
|
Duncan KT, Elshahed MS, Sundstrom KD, Little SE, Youssef NH. Influence of tick sex and geographic region on the microbiome of Dermacentor variabilis collected from dogs and cats across the United States. Ticks Tick Borne Dis 2022; 13:102002. [PMID: 35810549 DOI: 10.1016/j.ttbdis.2022.102002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
Abstract
As tick-borne diseases continue to increase across North America, current research strives to understand how the tick microbiome may affect pathogen acquisition, maintenance, and transmission. Prior high throughput amplicon-based microbial diversity surveys of the widespread tick Dermacentor variabilis have suggested that life stage, sex, and geographic region may influence the composition of the tick microbiome. Here, adult D. variabilis ticks (n = 145) were collected from dogs and cats from 32 states with specimens originating from all four regions of the United States (West, Midwest, South, and Northeast), and the tick microbiome was examined via V4-16S rRNA gene amplification and Illumina sequencing. A total of 481,246 bacterial sequences were obtained (median 2924 per sample, range 399-11,990). Fifty genera represented the majority (>80%) of the sequences detected, with the genera Allofrancisella and Francisella being the most abundant. Further, 97%, 23%, and 5.5% of the ticks contained sequences belonging to Francisella spp., Rickettsia spp., and Coxiella spp., respectively. No Ehrlichia spp. or Anaplasma spp. were identified. Co-occurrence analysis, by way of correlation coefficients, between the top 50 most abundant genera demonstrated five strong positive and no strong negative correlation relationships. Geographic region had a consistent effect on species richness with ticks from the Northeast having a significantly greater level of richness. Alpha diversity patterns were dependent on tick sex, with males exhibiting higher levels of diversity, and geographical region, with higher level of diversity observed in ticks obtained from the Northeast, but not on tick host. Community structure, or beta diversity, of tick microbiome was impacted by tick sex and geographic location, with microbiomes of ticks from the western US exhibiting a distinct community structure when compared to those from the other three regions (Northeast, South, and Midwest). In total, LEfSe (Linear discriminant analysis Effect Size) identified 18 specific genera driving these observed patterns of diversity and community structure. Collectively, these findings highlight the differences in bacterial diversity of D. variabilis across the US and supports the interpretation that tick sex and geographic region affects microbiome composition across a broad sampling distribution.
Collapse
Affiliation(s)
- Kathryn T Duncan
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Kellee D Sundstrom
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Susan E Little
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
114
|
Pagenkopp Lohan KM, Darling JA, Ruiz GM. International shipping as a potent vector for spreading marine parasites. DIVERS DISTRIB 2022; 28:1922-1933. [PMID: 38269301 PMCID: PMC10807284 DOI: 10.1111/ddi.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Aim The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 μm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 μm dataset). Results In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 μm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.
Collapse
Affiliation(s)
| | - John A. Darling
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Durham, North Carolina, USA
| | - Gregory M. Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
115
|
Park T, Ma L, Gao S, Bu D, Yu Z. Heat stress impacts the multi-domain ruminal microbiota and some of the functional features independent of its effect on feed intake in lactating dairy cows. J Anim Sci Biotechnol 2022; 13:71. [PMID: 35701804 PMCID: PMC9199214 DOI: 10.1186/s40104-022-00717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heat stress (HS) affects the ruminal microbiota and decreases the lactation performance of dairy cows. Because HS decreases feed intake, the results of previous studies were confounded by the effect of HS on feed intake. This study examined the direct effect of HS on the ruminal microbiota using lactating Holstein cows that were pair-fed and housed in environmental chambers in a 2 × 2 crossover design. The cows were pair-fed the same amount of identical total mixed ration to eliminate the effect of feed or feed intake. The composition and structure of the microbiota of prokaryotes, fungi, and protozoa were analyzed using metataxonomics and compared between two thermal conditions: pair-fed thermoneutrality (PFTN, thermal humidity index: 65.5) and HS (87.2 for daytime and 81.8 for nighttime). Results The HS conditions altered the structure of the prokaryotic microbiota and the protozoal microbiota, but not the fungal microbiota. Heat stress significantly increased the relative abundance of Bacteroidetes (primarily Gram-negative bacteria) while decreasing that of Firmicutes (primarily Gram-positive bacteria) and the Firmicutes-to-Bacteroidetes ratio. Some genera were exclusively found in the heat-stressed cows and thermal control cows. Some co-occurrence and mutual exclusion between some genera were also found exclusively for each thermal condition. Heat stress did not significantly affect the overall functional features predicted using the 16S rRNA gene sequences and ITS1 sequences, but some enzyme-coding genes altered their relative abundance in response to HS. Conclusions Overall, HS affected the prokaryotes, fungi, and protozoa of the ruminal microbiota in lactating Holstein cows to a different extent, but the effect on the structure of ruminal microbiota and functional profiles was limited when not confounded by the effect on feed intake. However, some genera and co-occurrence were exclusively found in the rumen of heat-stressed cows. These effects should be attributed to the direct effect of heat stress on the host metabolism, physiology, and behavior. Some of the “heat-stress resistant” microbes may be useful as potential probiotics for cows under heat stress. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00717-z.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.,Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, Beijing, 100193, People's Republic of China.
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
116
|
Olm MR, Dahan D, Carter MM, Merrill BD, Yu FB, Jain S, Meng XD, Tripathi S, Wastyk H, Neff N, Holmes S, Sonnenburg ED, Jha AR, Sonnenburg JL. Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science 2022; 376:1220-1223. [PMID: 35679413 PMCID: PMC9894631 DOI: 10.1126/science.abj2972] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infant microbiome assembly has been intensely studied in infants from industrialized nations, but little is known about this process in nonindustrialized populations. We deeply sequenced infant stool samples from the Hadza hunter-gatherers of Tanzania and analyzed them in a global meta-analysis. Infant microbiomes develop along lifestyle-associated trajectories, with more than 20% of genomes detected in the Hadza infant gut representing novel species. Industrialized infants-even those who are breastfed-have microbiomes characterized by a paucity of Bifidobacterium infantis and gene cassettes involved in human milk utilization. Strains within lifestyle-associated taxonomic groups are shared between mother-infant dyads, consistent with early life inheritance of lifestyle-shaped microbiomes. The population-specific differences in infant microbiome composition and function underscore the importance of studying microbiomes from people outside of wealthy, industrialized nations.
Collapse
Affiliation(s)
- Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dylan Dahan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew M. Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bryan D. Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hannah Wastyk
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Susan Holmes
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
117
|
Auchtung TA, Stewart CJ, Smith DP, Triplett EW, Agardh D, Hagopian WA, Ziegler AG, Rewers MJ, She JX, Toppari J, Lernmark Å, Akolkar B, Krischer JP, Vehik K, Auchtung JM, Ajami NJ, Petrosino JF. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat Commun 2022; 13:3151. [PMID: 35672407 PMCID: PMC9174155 DOI: 10.1038/s41467-022-30686-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are a major health problem that often begin in the gastrointestinal tract. Gut microbe interactions in early childhood are critical for proper immune responses, yet there is little known about the development of the fungal population from infancy into childhood. Here, as part of the TEDDY (The Environmental Determinants of Diabetes in the Young) study, we examine stool samples of 888 children from 3 to 48 months and find considerable differences between fungi and bacteria. The metagenomic relative abundance of fungi was extremely low but increased while weaning from milk and formula. Overall fungal diversity remained constant over time, in contrast with the increase in bacterial diversity. Fungal profiles had high temporal variation, but there was less variation from month-to-month in an individual than among different children of the same age. Fungal composition varied with geography, diet, and the use of probiotics. Multiple Candida spp. were at higher relative abundance in children than adults, while Malassezia and certain food-associated fungi were lower in children. There were only subtle fungal differences associated with the subset of children that developed islet autoimmunity or type 1 diabetes. Having proper fungal exposures may be crucial for children to establish appropriate responses to fungi and limit the risk of infection: the data here suggests those gastrointestinal exposures are limited and variable.
Collapse
Grants
- U01 DK063821 NIDDK NIH HHS
- UC4 DK063863 NIDDK NIH HHS
- UL1 TR002535 NCATS NIH HHS
- U01 DK063790 NIDDK NIH HHS
- UL1 TR000064 NCATS NIH HHS
- HHSN267200700014C NLM NIH HHS
- U01 DK063836 NIDDK NIH HHS
- U01 DK063829 NIDDK NIH HHS
- U01 DK063865 NIDDK NIH HHS
- UC4 DK095300 NIDDK NIH HHS
- UC4 DK063861 NIDDK NIH HHS
- UC4 DK063829 NIDDK NIH HHS
- UC4 DK063821 NIDDK NIH HHS
- UC4 DK117483 NIDDK NIH HHS
- UC4 DK063836 NIDDK NIH HHS
- UC4 DK112243 NIDDK NIH HHS
- U01 DK124166 NIDDK NIH HHS
- U01 DK063861 NIDDK NIH HHS
- P30 ES030285 NIEHS NIH HHS
- U01 DK128847 NIDDK NIH HHS
- UC4 DK063865 NIDDK NIH HHS
- U01 DK063863 NIDDK NIH HHS
- UC4 DK106955 NIDDK NIH HHS
- UC4 DK100238 NIDDK NIH HHS
- This research was performed on behalf of the TEDDY Study Group, which is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, U01 DK124166, U01 DK128847, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535).
Collapse
Affiliation(s)
- Thomas A Auchtung
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | | | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes, Technische Universität München, Klinikum Rechts der Isar, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Jinfiniti Precision Medicine, Inc, Augusta, GA, USA
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jennifer M Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
118
|
Feng K, Peng X, Zhang Z, Gu S, He Q, Shen W, Wang Z, Wang D, Hu Q, Li Y, Wang S, Deng Y. iNAP: An integrated network analysis pipeline for microbiome studies. IMETA 2022; 1:e13. [PMID: 38868563 PMCID: PMC10989900 DOI: 10.1002/imt2.13] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023]
Abstract
Integrated network analysis pipeline (iNAP) is an online analysis pipeline for generating and analyzing comprehensive ecological networks in microbiome studies. It is implemented in two sections, that is, network construction and network analysis, and integrates many open-access tools. Network construction contains multiple feasible alternatives, including correlation-based approaches (Pearson's correlation and Spearman's rank correlation along with random matrix theory, and sparse correlations for compositional data) and conditional dependence-based methods (extended local similarity analysis and sparse inverse covariance estimation for ecological association inference), while network analysis provides topological structures at different levels and the potential effects of environmental factors on network structures. Considering the full workflow, from microbiome data set to network result, iNAP contains the molecular ecological network analysis pipeline and interdomain ecological network analysis pipeline (IDENAP), which correspond to the intradomain and interdomain associations of microbial species at multiple taxonomic levels. Here, we describe the detailed workflow by taking IDENAP as an example and show the comprehensive steps to assist researchers to conduct the relevant analyses using their own data sets. Afterwards, some auxiliary tools facilitating the pipeline are introduced to effectively aid in the switch from local analysis to online operations. Therefore, iNAP, as an easy-to-use platform that provides multiple network-associated tools and approaches, can enable researchers to better understand the organization of microbial communities. iNAP is available at http://mem.rcees.ac.cn:8081 with free registration.
Collapse
Affiliation(s)
- Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Collegeof Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Zheng Zhang
- Institute for Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Songsong Gu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Collegeof Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Wenli Shen
- Institute for Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Zhujun Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Collegeof Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Collegeof Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Qiulong Hu
- College of HorticultureHunan Agricultural UniversityChangshaChina
| | - Yan Li
- West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduChina
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Collegeof Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Institute for Marine Science and TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
119
|
Bazany KE, Wang JT, Delgado-Baquerizo M, Singh BK, Trivedi P. Water deficit affects inter-kingdom microbial connections in plant rhizosphere. Environ Microbiol 2022; 24:3722-3734. [PMID: 35582745 PMCID: PMC9545320 DOI: 10.1111/1462-2920.16031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
The frequency and severity of drought are increasing due to anthropogenic climate change and are already limiting cropping system productivity in many regions around the world. Few microbial groups within plant microbiomes can potentially contribute towards the fitness and productivity of their hosts under abiotic stress events including water deficits. However, microbial communities are complex and integrative work considering the multiple co-existing groups of organisms is needed to better understand how the entire microbiome responds to environmental stresses. We hypothesize that water deficit stress will differentially shape bacterial, fungal, and protistan microbiome composition and influence inter-kingdom microbial interactions in the rhizospheres of corn and sugar beet. We used amplicon sequencing to profile bacterial, fungal, and protistan communities in corn and sugar beet rhizospheres grown under irrigated and water deficit conditions. The water deficit treatment had a stronger influence than host species on bacterial composition, whereas the opposite was true for protists. These results indicate that different microbial kingdoms have variable responses to environmental stress and host factors. Water deficit also influenced intra- and inter-kingdom microbial associations, wherein the protist taxa formed a separate cluster under water deficit conditions. Our findings help elucidate the influence of environmental and host drivers of bacterial, fungal, and protistan community assembly and co-occurrence in agricultural rhizosphere environments.
Collapse
Affiliation(s)
- Kathryn E Bazany
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC Av. Reina Mercedes 10, E-41012, Sevilla, Spain.,Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
120
|
Li YJ, Chuang CH, Cheng WC, Chen SH, Chen WL, Lin YJ, Lin CY, Shih YH. A metagenomics study of hexabromocyclododecane degradation with a soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128465. [PMID: 35739659 DOI: 10.1016/j.jhazmat.2022.128465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/15/2023]
Abstract
Hexabromocyclododecanes (HBCDs) are globally prevalent and persistent organic pollutants (POPs) listed by the Stockholm Convention in 2013. They have been detected in many environmental media from waterbodies to Plantae and even in the human body. Due to their highly bioaccumulative characterization, they pose an urgent public health issue. Here, we demonstrate that the indigenous microbial community in the agricultural soil in Taiwan could decompose HBCDs with no additional carbon source incentive. The degradation kinetics reached 0.173 day-1 after the first treatment and 0.104 day-1 after second exposure. With additional C-sources, the rate constants decreased to 0.054-0.097 day-1. The hydroxylic debromination metabolites and ring cleavage long-chain alkane metabolites were identified to support the potential metabolic pathways utilized by the soil microbial communities. The metagenome established by Nanopore sequencing showed significant compositional alteration in the soil microbial community after the HBCD treatment. After ranking, comparing relative abundances, and performing network analyses, several novel bacterial taxa were identified to contribute to HBCD biotransformation, including Herbaspirillum, Sphingomonas, Brevundimonas, Azospirillum, Caulobacter, and Microvirga, through halogenated / aromatic compound degradation, glutathione-S-transferase, and hydrolase activity. We present a compelling and applicable approach combining metagenomics research, degradation kinetics, and metabolomics strategies, which allowed us to decipher the natural attenuation and remediation mechanisms of HBCDs.
Collapse
Affiliation(s)
- Yi-Jie Li
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Chia-Hsien Chuang
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Wen-Chih Cheng
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University (TMU), No. 250 Wu-Hsing St., Taipei, Taiwan
| | - Wen-Ling Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Yu-Jie Lin
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
121
|
Dynamic changes in fecal bacterial microbiota of dairy cattle across the production line. BMC Microbiol 2022; 22:132. [PMID: 35568809 PMCID: PMC9107139 DOI: 10.1186/s12866-022-02549-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Background Microbiota play important roles in the gastrointestinal tract (GIT) of dairy cattle as the communities are responsible for host health, growth, and production performance. However, a systematic characterization and comparison of microbial communities in the GIT of cattle housed in different management units on a modern dairy farm are still lacking. We used 16S rRNA gene sequencing to evaluate the fecal bacterial communities of 90 dairy cattle housed in 12 distinctly defined management units on a modern dairy farm. Results We found that cattle from management units 5, 6, 8, and 9 had similar bacterial communities while the other units showed varying levels of differences. Hutch calves had a dramatically different bacterial community than adult cattle, with at least 10 genera exclusively detected in their samples but not in non-neonatal cattle. Moreover, we compared fecal bacteria of cattle from every pair of the management units and detailed the number and relative abundance of the significantly differential genera. Lastly, we identified 181 pairs of strongly correlated taxa in the community, showing possible synergistic or antagonistic relationships. Conclusions This study assesses the fecal microbiota of cattle from 12 distinctly defined management units along the production line on a California dairy farm. The results highlight the similarities and differences of fecal microbiota between cattle from each pair of the management units. Especially, the data indicate that the newborn calves host very different gut bacterial communities than non-neonatal cattle, while non-neonatal cattle adopt one of the two distinct types of gut bacterial communities with subtle differences among the management units. The gut microbial communities of dairy cattle change dramatically in bacterial abundances at different taxonomic levels along the production line. The findings provide a reference for research and practice in modern dairy farm management. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02549-3.
Collapse
|
122
|
Qiu Z, Paungfoo-Lonhienne C, Ye J, Garcia AG, Petersen I, Di Bella L, Hobbs R, Ibanez M, Heenan M, Wang W, Reeves S, Schmidt S. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environ Microbiol 2022; 24:3655-3671. [PMID: 35506306 PMCID: PMC9544788 DOI: 10.1111/1462-2920.16027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Jun Ye
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Axa Gonzalez Garcia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ian Petersen
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Lawrence Di Bella
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Richard Hobbs
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Minka Ibanez
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Marijke Heenan
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Weijin Wang
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Steven Reeves
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
123
|
Gibson K, Song H, Chen N. Metabarcoding analysis of microbiome dynamics during a Phaeocystis globosa bloom in the Beibu Gulf, China. HARMFUL ALGAE 2022; 114:102217. [PMID: 35550291 DOI: 10.1016/j.hal.2022.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Phaeocystis globosa is an ecologically important haptophyte that can form harmful algal blooms (HABs). In this study, we used 16S rDNA V3-V4 amplicon sequencing data to explore the ecological mechanisms underlying a P. globosa bloom in the Beibu Gulf, China. Using field samples collected from three time points of a bloom, we observed a distinct succession in the bacteria, archaea and phytoplankton community composition throughout the bloom. We also observed temporal variation in response to the bloom at the nucleotide level, which supports a previously underappreciated amount of intragroup variation in the niches taken up by microbes during HABs. We developed a preliminary model for the development and progression of the P. globosa bloom using the spatial-temporal dynamics of P. globosa and the bacteria, archaea, phytoplankton and environmental variables. We also identified microbes with putative interactions with P. globosa during the bloom by identifying microbes correlated with P. globosa in interaction networks, identifying particle-associated microbes and exploring the P. globosa colony microbiome using sequences from whole P. globosa colonies collected during the bloom. This study revealed novel insight into the development of P. globosa HABs and many testable hypotheses that will guide future research on the mechanisms of P. globosa HABs.
Collapse
Affiliation(s)
- Kate Gibson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
124
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
125
|
Cho G, Gang GH, Jung HY, Kwak YS. Exploration of Mycobiota in Cypripedium japonicum, an Endangered Species. MYCOBIOLOGY 2022; 50:142-149. [PMID: 35571859 PMCID: PMC9067997 DOI: 10.1080/12298093.2022.2064409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Orchids live with mycorrhizal fungi in mutualism. This symbiotic relationship plays an essential role in the overall life cycle of orchids from germination, growth, settlement, and reproduction. Among the 1000 species of the orchid, the Korean lady's slipper, Cypripedium japonicum, is known as an endangered species. Currently, only five natural habitats of the Korean lady's slipper remain in South Korea, and the population of Korean lady's slipper in their natural habitat is not increasing. To prevent extinction, this study was designed to understand the fungal community interacting in the rhizosphere of the Korean lady's slipper living in the native and artificial habitats. In-depth analyses were performed to discover the vital mycorrhizal fungi contributing to habitat expansion and cultivation of the endangered orchid species. Our results suggested that Lycoperdon nigrescens contributed most to the increase in natural habitats and Russula violeipes as a characteristic of successful cultivation. And the fungi that helped L. nigrescens and R. violeipes to fit into the rhizosphere community in Korean lady's slipper native place were Paraboeremia selaginellae and Metarhizium anisopliae, respectively. The findings will contribute to restoring and maintaining the endangered orchid population in natural habitats.
Collapse
Affiliation(s)
- Gyeongjun Cho
- Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Geun-Hye Gang
- Species Restoration Technology Institute, Korea National Park Service, Muju, Korea
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Youn-Sig Kwak
- Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
- Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
126
|
Zhou C, Gao X, Cao X, Tian G, Huang C, Guo L, Zhao Y, Hu G, Liu P, Guo X. Gut Microbiota and Serum Metabolite Potential Interactions in Growing Layer Hens Exposed to High-Ambient Temperature. Front Nutr 2022; 9:877975. [PMID: 35571932 PMCID: PMC9093710 DOI: 10.3389/fnut.2022.877975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence has revealed the dysbiosis of gut microbiota contributes to development of metabolic diseases in animals. However, the potential interaction between gut microbiota and host metabolism in growing hens under metabolic disorder induced by chronic heat exposure (CHE) remains inconclusive. The aim of our study was to examine the potential association among the cecal microbiota community, physiological indicators, and serum metabolite profiles in CHE hens. One hundred and eighty Hy-Line Brown hens were randomly allocated into three groups: thermoneutral control (TN), heat stress (HS), and pair-fed (PF). The experiment lasted for 5 weeks, with the first 2 weeks serving as the adaptation period. Results showed that the expression level of heat shock protein 70 (HSP70) in both serum and cecal tissues was significantly increased in the HS group. Serum parameters analysis also revealed that CHE caused physiological function damage and metabolic disorders. These results suggest the experiment was successful, inducing chronic heat stress. 16S rRNA sequencing analysis showed that the CHE can clearly induce dysbiosis of the gut microbial community reflected in the increment of the F/B ratio. Besides, serum untargeted metabolomics revealed the relative concentrations of 40 metabolites were significantly altered in the HS group compared with the TN group. Pathway analysis showed that these metabolites were mainly involving the increased proteolysis rather than lipolysis, and this tendency could be a specific metabolic adaptation of the poultry. The pair-feed experiment showed that the above changes induced by CHE were partly independent from the reduction of feed intake. Mantel correlation analysis between gut microorganisms and physiological indicators showed that the phylum Firmicutes and Euryarchaeota have a potential interaction with a serum lipid parameter. Random forest analysis showed that both genus Faecalibacterium and Methanobrevibacter were important predictors of the CHE-induced lipid metabolism disorder. Taken together, our findings may contribute to a better understanding of the metabolic mechanisms underlying the energy metabolism imbalance caused by the CHE and provide novel insights into the host-microbes interactions and its effects on the metabolic adaptation of hens under chronic heat exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
127
|
Li J, Cui L, Delgado-Baquerizo M, Wang J, Zhu Y, Wang R, Li W, Lei Y, Zhai X, Zhao X, Singh BK. Fungi drive soil multifunctionality in the coastal salt marsh ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151673. [PMID: 34793796 DOI: 10.1016/j.scitotenv.2021.151673] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Salt marshes are highly productive intertidal wetlands located in temperate climatic zones, in which marine-to-terrestrial transition significantly influences microbial life. Numerous studies revealed the important coupling relationship between microbial diversity and ecosystem functions in terrestrial ecosystems, however, the importance of microbial diversity in maintaining soil functions in coastal ecosystems remains poorly understood. Here, we studied the shifts of microbial communities and soil multifunctionality (SMF; nine functions related with C, N and P cycling) along a vegetation gradient in a salt marsh ecosystem and investigated the microbial diversity - ecosystem function relationship. The aboveground vegetation shifted from mud flat (MF) to Scirpus triqueter (SM) and then Phragmites australis (PA) with increasing distance away from the sea. Average approach showed that the SMF was much higher in halophytes covered zones including SM and PA than in MF. Structural equation model (SEM) analysis confirmed that vegetation was an important predictor on SMF besides moisture and organic carbon. Linear regression and multiple threshold methods showed that in MF and SM zones, fungal rather than bacterial richness was significantly and positively correlated with SMF, while in the PA zone microbial diversity did not relate with SMF. Random forest analysis identified several Ascomycota taxa with preference over marine environment as strong predictors of SMF. Taken together, our study lays the basis for a better understanding on the relationships between belowground microbial diversity and soil functions in coastal ecosystems.
Collapse
Affiliation(s)
- Jing Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China.
| | - Manuel Delgado-Baquerizo
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW 2751, Australia
| | - Yinuo Zhu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Rumiao Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Yinru Lei
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Xiajie Zhai
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Xinsheng Zhao
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW 2751, Australia
| |
Collapse
|
128
|
Xing L, Zhi Q, Hu X, Liu L, Xu H, Zhou T, Yin H, Yi Z, Li J. Influence of Association Network Properties and Ecological Assembly of the Foliar Fugal Community on Crop Quality. Front Microbiol 2022; 13:783923. [PMID: 35479639 PMCID: PMC9037085 DOI: 10.3389/fmicb.2022.783923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Revealing community assembly and their impacts on ecosystem service is a core issue in microbial ecology. However, what ecological factors play dominant roles in phyllosphere fungal community assembly and how they link to crop quality are largely unknown. Here, we applied internal transcriptional spacer high-throughput sequencing to investigate foliar fungal community assembly across three cultivars of a Solanaceae crop (tobacco) and two planting regions with different climatic conditions. Network analyses were used to reveal the pattern in foliar fungal co-occurrence, and phylogenetic null model analysis was used to elucidate the ecological assembly of foliar fungal communities. We found that the sensory quality of crop leaves and the composition of foliar fungal community varied significantly across planting regions and cultivars. In Guangcun (GC), a region with relatively high humidity and low precipitation, there was a higher diversity and more unique fungal species than the region of Wuzhishan (WZS). Further, we found that the association network of foliar fungal communities in GC was more complex than that in WZS, and the network properties were closely related to the sensory quality of crop. Finally, the results of the phylogenetic analyses show that the stochastic processes played important roles in the foliar fungal community assembly, and their relative importance was significantly correlated with the sensory quality of crop leaves, which implies that ecological assembly processes could affect crop quality. Taken together, our results highlight that climatic conditions, and plant cultivars play key roles in the assembly of foliar fungal communities and crop quality, which enhances our understanding of the connections between the phyllosphere microbiome and ecosystem services, especially in agricultural production.
Collapse
Affiliation(s)
- Lei Xing
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xi Hu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Lulu Liu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Heng Xu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Ting Zhou
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
129
|
Li PD, Zhu ZR, Zhang Y, Xu J, Wang H, Wang Z, Li H. The phyllosphere microbiome shifts toward combating melanose pathogen. MICROBIOME 2022; 10:56. [PMID: 35366955 PMCID: PMC8976405 DOI: 10.1186/s40168-022-01234-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/23/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants can recruit beneficial microbes to enhance their ability to defend against pathogens. However, in contrast to the intensively studied roles of the rhizosphere microbiome in suppressing plant pathogens, the collective community-level change and effect of the phyllosphere microbiome in response to pathogen invasion remains largely elusive. RESULTS Here, we integrated 16S metabarcoding, shotgun metagenomics and culture-dependent methods to systematically investigate the changes in phyllosphere microbiome between infected and uninfected citrus leaves by Diaporthe citri, a fungal pathogen causing melanose disease worldwide. Multiple microbiome features suggested a shift in phyllosphere microbiome upon D. citri infection, highlighted by the marked reduction of community evenness, the emergence of large numbers of new microbes, and the intense microbial network. We also identified the microbiome features from functional perspectives in infected leaves, such as enriched microbial functions for iron competition and potential antifungal traits, and enriched microbes with beneficial genomic characteristics. Glasshouse experiments demonstrated that several bacteria associated with the microbiome shift could positively affect plant performance under D. citri challenge, with reductions in disease index ranging from 65.7 to 88.4%. Among them, Pantoea asv90 and Methylobacterium asv41 identified as "recruited new microbes" in the infected leaves, exhibited antagonistic activities to D. citri both in vitro and in vivo, including inhibition of spore germination and/or mycelium growth. Sphingomonas spp. presented beneficial genomic characteristics and were found to be the main contributor for the functional enrichment of iron complex outer membrane receptor protein in the infected leaves. Moreover, Sphingomonas asv20 showed a stronger suppression ability against D. citri in iron-deficient conditions than iron-sufficient conditions, suggesting a role of iron competition during their antagonistic action. CONCLUSIONS Overall, our study revealed how phyllosphere microbiomes differed between infected and uninfected citrus leaves by melanose pathogen, and identified potential mechanisms for how the observed microbiome shift might have helped plants cope with pathogen pressure. Our findings provide novel insights into understanding the roles of phyllosphere microbiome responses during pathogen challenge. Video abstract.
Collapse
Affiliation(s)
- Pu-Dong Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zeng-Rong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Hongkai Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhengyi Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
130
|
Crosbie DB, Mahmoudi M, Radl V, Brachmann A, Schloter M, Kemen E, Marín M. Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus. THE NEW PHYTOLOGIST 2022; 234:242-255. [PMID: 35067935 DOI: 10.1111/nph.17988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nodule microbiota are dominated by symbiotic nitrogen-fixing rhizobia, however, other non-rhizobial bacteria also colonise this niche. Although many of these bacteria harbour plant-growth-promoting functions, it is not clear whether these less abundant nodule colonisers impact root-nodule symbiosis. We assessed the relationship between the nodule microbiome and nodulation as influenced by the soil microbiome, by using a metabarcoding approach to characterise the communities inside nodules of healthy and starved Lotus species. A machine learning algorithm and network analyses were used to identify nodule bacteria of interest, which were re-inoculated onto plants in controlled conditions to observe their potential functionality. The nodule microbiome of all tested species differed according to inoculum, but only that of Lotus burttii varied with plant health. Amplicon sequence variants representative of Pseudomonas species were the most indicative non-rhizobial signatures inside healthy L. burttii nodules and negatively correlated with Rhizobium sequences. A representative Pseudomonas isolate co-colonised nodules infected with a beneficial Mesorhizobium, but not with an ineffective Rhizobium isolate and another even reduced the number of ineffective nodules induced on Lotus japonicus. Our results show that nodule endophytes influence the overall outcome of the root-nodule symbiosis, albeit in a plant host-specific manner.
Collapse
Affiliation(s)
| | - Maryam Mahmoudi
- Microbial Interactions in Plant Ecosystems, Centre for Plant Molecular Biology, University of Tübingen, Tübingen, 72076, Germany
| | - Viviane Radl
- Comparative Microbiome Analysis, Helmholtz Centre for Environmental Health, Oberschleissheim, 85764, Germany
| | | | - Michael Schloter
- Comparative Microbiome Analysis, Helmholtz Centre for Environmental Health, Oberschleissheim, 85764, Germany
- Chair for Soil Science, Technical University of Munich, Freising, 85354, Germany
| | - Eric Kemen
- Microbial Interactions in Plant Ecosystems, Centre for Plant Molecular Biology, University of Tübingen, Tübingen, 72076, Germany
| | - Macarena Marín
- Genetics, Biocentre, LMU Munich, Martinsried, 82152, Germany
| |
Collapse
|
131
|
Xie Y, Ouyang Y, Han S, Se J, Tang S, Yang Y, Ma Q, Wu L. Crop rotation stage has a greater effect than fertilisation on soil microbiome assembly and enzymatic stoichiometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152956. [PMID: 34999069 DOI: 10.1016/j.scitotenv.2022.152956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Agronomic practises, such as fertilisation and crop rotation, affect soil microbial communities and functions. However, limited information is available regarding the relative importance of fertilisation and crop rotation stages in determining the soil microbiome and assembly processes. In addition, insights into the connections between the soil microbiome and enzymatic stoichiometry are scarce. In this study, soil samples were collected from a wheat-rice rotation system that received mineral and organic fertiliser inputs for 6 years to investigate soil microbiome assembly, and the relationship between the soil microbiome and enzymatic stoichiometry. Our results revealed that the crop rotation stage strongly affected the soil microbial community structure, assembly, and enzymatic functions compared to that of the fertilisation regime. Enzymatic stoichiometry results and vector analysis implied that mineral and organic fertilisation could alleviate the microbial N limitation. However, no-manure fertilisation led to microbial P limitation during the wheat stage. The decreases in soil pH mainly drove microbial P limitation due to the acidification induced by the mineral fertilisers. Microbial N/P limitation correlated more strongly with the bacterial assembly than with fungal assembly. Moreover, co-occurrence network analysis showed that ecological relationships between microbial taxa and enzymes were more complex during the wheat stage than that during the rice stage. Microbial nodes linked to acid phosphomonoesterase correlated significantly with the soil pH. Our study highlights the distinct responses of the soil microbiome to fertilisation in different crop-rotation stages, and provides novel insights into connections between microbial assembly and enzymatic stoichiometry.
Collapse
Affiliation(s)
- Yinan Xie
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yang Ouyang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.
| | - Shun Han
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.
| | - Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
132
|
Zhao Y, Chen L, Chen L, Huang J, Chen S, Yu Z. Exploration of the Potential Relationship Between Gut Microbiota Remodeling Under the Influence of High-Protein Diet and Crohn's Disease. Front Microbiol 2022; 13:831176. [PMID: 35308389 PMCID: PMC8927681 DOI: 10.3389/fmicb.2022.831176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Diet and gut microbiota are both important factors in the pathogenesis of Crohn’s disease, and changes in diet can lead to alteration in gut microbiome. However, there is still insufficient exploration on interaction within the gut microbiota under high-protein diet (HPD) intervention. We analyzed the gut microbial network and marker taxa from patients with Crohn’s disease in public database (GMrepo, https://gmrepo.humangut.info) combined with investigation of the changes of composition and function of intestinal microbiome in mice fed on HPD by metagenomic sequencing. The results showed that there was an indirect negative correlation between Escherichia coli and Lachnospiraceae in patients with Crohn’s disease, and Escherichia coli was a marker for both Crohn’s disease and HPD intervention. Besides, enriched HH_1414 (one of the orthologs in eggNOG) related to tryptophan metabolism was from Helicobacter, whereas reduced orthologs (OGs) mainly contributed by Lachnospiraceae after HPD intervention. Our research indicates that some compositional changes in gut microbiota after HPD intervention are consistent with those in patients with Crohn’s disease, providing insights into potential impact of altered gut microbes under HPD on Crohn’s disease.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lulu Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
133
|
Cheah CW, Al-Maleki AR, Vaithilingam RD, Vadivelu J, Sockalingam S, Baharuddin NA, Bartold PM. Associations between inflammation-related LL-37 with subgingival microbial dysbiosis in rheumatoid arthritis patients. Clin Oral Investig 2022; 26:4161-4172. [PMID: 35257247 DOI: 10.1007/s00784-022-04388-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study investigated the subgingival microbial profile of rheumatoid arthritis (RA) patients and its associations with disease parameters and the inflammation-related antimicrobial peptide, LL-37. METHODS RA and non-RA (NRA) patients were assessed for periodontal status and divided into periodontitis (CP), gingivitis (G), and healthy (H) groups. Subgingival plaque 16s rRNA gene sequencing data was processed and analyzed using the CLC Genomic Workbench (Qiagen). Bacterial diversity and co-occurrence patterns were examined. Differential abundance between groups was also investigated. Associations between bacterial genera with disease parameters and LL-37 levels were explored qualitatively using canonical correlation analysis. RESULTS Subgingival microbial community clustered in CP status. Co-occurrence network in NRA-H was dominated by health-associated genera, while the rest of the networks' key genera were both health- and disease-associated. RA-CP displayed highly inter-generic networks with a statistically significant increase in periodontal disease-associated genera (p<0.05). In NRA-H, disease parameters and LL-37 were correlated positively with disease-associated genera while negatively with health-associated genera. However, in the remaining groups, mixed positive and negative correlations were noted with genera. CONCLUSION RA patients demonstrated subgingival microbial dysbiosis where the bacteria networks were dominated by health- and disease-associated genera. Mixed correlations with disease parameters and LL-37 levels were noted. CLINICAL RELEVANCE The subgingival microbial dysbiosis in RA may predispose these patients to developing periodontal inflammation with an associated detrimental effect on host immune responses. Routine periodontal assessment may allow initiation of treatment strategies to minimize the effects of gingival inflammation on the existing heightened immune response present in RA patients.
Collapse
Affiliation(s)
- Chia Wei Cheah
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sargunan Sockalingam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
134
|
Ilicic D, Woodhouse J, Karsten U, Zimmermann J, Wichard T, Quartino ML, Campana GL, Livenets A, Van den Wyngaert S, Grossart HP. Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones. Front Microbiol 2022; 13:805694. [PMID: 35308360 PMCID: PMC8931407 DOI: 10.3389/fmicb.2022.805694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/12/2022] [Indexed: 01/04/2023] Open
Abstract
Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.
Collapse
Affiliation(s)
- Doris Ilicic
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Jason Woodhouse
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| | - Jonas Zimmermann
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Berlin, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Gabriela Laura Campana
- Department of Coastal Biology, Argentinean Antarctic Institute, Buenos Aires, Argentina
- Department of Basic Sciences, National University of Luján, Luján, Buenos Aires, Argentina
| | - Alexandra Livenets
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | | | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- *Correspondence: Hans-Peter Grossart,
| |
Collapse
|
135
|
Stamboulian M, Canderan J, Ye Y. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species. PLoS Comput Biol 2022; 18:e1009397. [PMID: 35302987 PMCID: PMC8967034 DOI: 10.1371/journal.pcbi.1009397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/30/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species. Many reference genomes for studying human gut microbiome are available, but knowledge about how microbial organisms work is limited. Identification of proteins at individual species or community level provides direct insight into the functionality of microbial organisms. By analyzing more than a thousand metaproteomics datasets, we examined protein landscapes of more than two thousands of microbial species that may be important to human health and diseases. This work demonstrated new applications of metaproteomic datasets for studying individual genomes. We made the analysis results available through a website (called GutBac), which we believe will become a resource for studying microbial species important for human health and diseases.
Collapse
Affiliation(s)
- Moses Stamboulian
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Jamie Canderan
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Yuzhen Ye
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
136
|
Hu W, Chen ZM, Li XX, Lu L, Yang GH, Lei ZX, You LJ, Cui XB, Lu SC, Zhai ZY, Zeng ZY, Chen Y, Huang SL, Gong W. Faecal microbiome and metabolic signatures in rectal neuroendocrine tumors. Theranostics 2022; 12:2015-2027. [PMID: 35265196 PMCID: PMC8899573 DOI: 10.7150/thno.66464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The prevalence of rectal neuroendocrine tumors (RNET) has increased substantially over the past decades. Little is known on mechanistic alteration in the pathogenesis of such disease. We postulate that perturbations of human gut microbiome-metabolome interface influentially affect the development of RNET. The study aims to characterize the composition and function of faecal microbiome and metabolites in RNET individuals. Methods: We performed deep shotgun metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling of faecal samples from the discovery cohort (18 RNET patients, 40 controls), and validated the microbiome and metabolite-based classifiers in an independent cohort (15 RNET participants, 19 controls). Results: We uncovered a dysbiotic gut ecological microenvironment in RNET patients, characterized by aberrant depletion and attenuated connection of microbial species, and abnormally aggregated lipids and lipid-like molecules. Functional characterization based on our in-house and Human Project Unified Metabolic Analysis Network 2 (HUMAnN2) pipelines further indicated a nutrient deficient gut microenvironment in RNET individuals, evidenced by diminished activities such as energy metabolism, vitamin biosynthesis and transportation. By integrating these data, we revealed 291 robust associations between representative differentially abundant taxonomic species and metabolites, indicating a tight interaction of gut microbiome with metabolites in RNET pathogenesis. Finally, we identified a cluster of gut microbiome and metabolite-based signatures, and replicated them in an independent cohort, showing accurate prediction of such neoplasm from healthy people. Conclusions: Our current study is the first to comprehensively characterize the perturbed interface of gut microbiome and metabolites in RNET patients, which may provide promising targets for microbiome-based diagnostics and therapies for this disorder.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zheng Xia Lei
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Cun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yu Zeng
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Lin Huang
- Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
137
|
The rumen liquid metatranscriptome of post-weaned dairy calves differed by pre-weaning ruminal administration of differentially-enriched, rumen-derived inocula. Anim Microbiome 2022; 4:4. [PMID: 34983694 PMCID: PMC8728904 DOI: 10.1186/s42523-021-00142-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background Targeted modification of the dairy calf ruminal microbiome has been attempted through rumen fluid inoculation to alter productive phenotypes later in life. However, sustainable effects of the early life interventions have not been well studied, particularly on the metabolically active rumen microbiota and its functions. This study investigated the sustained effects of adult-derived rumen fluid inoculations in pre-weaning dairy calves on the active ruminal microbiome of post-weaned dairy calves analyzed via RNA-sequencing. Results Two different adult-derived microbial inocula (bacterial- or protozoal-enriched rumen fluid; BE or PE, respectively) were administered in pre-weaned calves (3–6 weeks) followed by analyzing active rumen microbiome of post-weaned calves (9 weeks). The shared bacterial community at the genus level of 16S amplicon-seq and RNA-seq datasets was significantly different (P = 0.024), 21 out of 31 shared major bacterial genera differed in their relative abundance between the two analytic pipelines. No significant differences were found in any of the prokaryotic alpha- and beta-diversity measurements (P > 0.05), except the archaeota that differed for BE based on the Bray–Curtis dissimilarity matrix (P = 0.009). Even though the relative abundances of potentially transferred microbial and functional features from the inocula were minor, differentially abundant prokaryotic genera significantly correlated to various fermentation and animal measurements including butyrate proportion, body weight, and papillae length and counts. The overall microbial functions were affected quantitatively by BE and qualitatively by PE (P < 0.05), and this might be supported by the individual KEGG module and CAZymes profile differences. Exclusive networks between major active microbial (bacterial and archaeal genera) and functional features (KEGG modules) were determined which were differed by microbial inoculations. Conclusions This study demonstrated that actively transcribed microbial and functional features showed reliable connections with different fermentations and animal development responses through adult rumen fluid inoculations compared to our previous 16S amplicon sequencing results. Exclusive microbial and functional networks of the active rumen microbiome of dairy calves created by BE and PE might also be responsible for the different ruminal and animal characteristics. Further understanding of the other parts of the gastrointestinal tract (e.g., abomasum, omasum, and small intestine) using metatranscriptomics will be necessary to elucidate undetermined biological factors affected by microbial inoculations. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00142-z.
Collapse
|
138
|
Lee MJ, Park YM, Kim B, Tae IH, Kim NE, Pranata M, Kim T, Won S, Kang NJ, Lee YK, Lee DW, Nam MH, Hong SJ, Kim BS. Disordered development of gut microbiome interferes with the establishment of the gut ecosystem during early childhood with atopic dermatitis. Gut Microbes 2022; 14:2068366. [PMID: 35485368 PMCID: PMC9067516 DOI: 10.1080/19490976.2022.2068366] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome influences the development of allergic diseases during early childhood. However, there is a lack of comprehensive understanding of microbiome-host crosstalk. Here, we analyzed the influence of gut microbiome dynamics in early childhood on atopic dermatitis (AD) and the potential interactions between host and microbiome that control this homeostasis. We analyzed the gut microbiome in 346 fecal samples (6-36 months; 112 non-AD, 110 mild AD, and 124 moderate to severe AD) from the Longitudinal Cohort for Childhood Origin of Asthma and Allergic Disease birth cohort. The microbiome-host interactions were analyzed in animal and in vitro cell assays. Although the gut microbiome maturated with age in both AD and non-AD groups, its development was disordered in the AD group. Disordered colonization of short-chain fatty acids (SCFA) producers along with age led to abnormal SCFA production and increased IgE levels. A butyrate deficiency and downregulation of GPR109A and PPAR-γ genes were detected in AD-induced mice. Insufficient butyrate decreases the oxygen consumption rate of host cells, which can release oxygen to the gut and perturb the gut microbiome. The disordered gut microbiome development could aggravate balanced microbiome-host interactions, including immune responses during early childhood with AD.
Collapse
Affiliation(s)
- Min-Jung Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Yoon Mee Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Byunghyun Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - in Hwan Tae
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Marina Pranata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Taewon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
139
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
140
|
Milk microbiome in dairy cattle and the challenges of low microbial biomass and exogenous contamination. Anim Microbiome 2021; 3:80. [PMID: 34794515 PMCID: PMC8600933 DOI: 10.1186/s42523-021-00144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/06/2021] [Indexed: 11/11/2022] Open
Abstract
Background The blanket usage of antimicrobials at the end of lactation (or “drying off”) in dairy cattle is under increasing scrutiny due to concerns about antimicrobial resistance. To lower antimicrobial usage in dairy farming, farmers are now encouraged to use “selective dry cow therapy” whereby only cows viewed as at high risk of mastitis are administered antimicrobial agents. It is important to gain a better understanding of how this practice affects the udder-associated microbiota and the potential knock-on effects on antimicrobial-resistant bacterial populations circulating on the farm. However, there are challenges associated with studying low biomass environments such as milk, due to known contamination effects on microbiome datasets. Here, we obtained milk samples from cattle at drying off and at calving to measure potential shifts in bacterial load and microbiota composition, with a critical assessment of contamination effects. Results Several samples had no detectable 16S rRNA gene copies and crucially, exogenous contamination was detected in the initial microbiome dataset. The affected samples were removed from the final microbiome analysis, which compromised the experimental design and statistical analysis. There was no significant difference in bacterial load between treatments (P > 0.05), but load was lower at calving than at drying off (P = 0.039). Escherichia coli counts by both sequence and culture data increased significantly in the presence of reduced bacterial load and a decreasing trend of microbiome richness and diversity. The milk samples revealed diverse microbiomes not reflecting a typical infection profile and were largely comprised of gut- and skin-associated taxa, with the former decreasing somewhat after prolonged sealing of the teats. Conclusions The drying off period had a key influence on microbiota composition and bacterial load, which appeared to be independent of antimicrobial usage. The interactions between drying off treatment protocol and milk microbiome dynamics are clearly complex, and our evaluations of these interactions were restricted by low biomass samples and contamination effects. Therefore, our analysis will inform the design of future studies to establish whether different selection protocols could be implemented to further minimise antimicrobial usage. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00144-x.
Collapse
|
141
|
Tavella T, Turroni S, Brigidi P, Candela M, Rampelli S. The Human Gut Resistome up to Extreme Longevity. mSphere 2021; 6:e0069121. [PMID: 34494880 PMCID: PMC8550338 DOI: 10.1128/msphere.00691-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance (AR) is indisputably a major health threat which has drawn much attention in recent years. In particular, the gut microbiome has been shown to act as a pool of AR genes, potentially available to be transferred to opportunistic pathogens. Herein, we investigated for the first time changes in the human gut resistome during aging, up to extreme longevity, by analyzing shotgun metagenomics data of fecal samples from a geographically defined cohort of 62 urban individuals, stratified into four age groups: young adults, elderly, centenarians, and semisupercentenarians, i.e., individuals aged up to 109 years. According to our findings, some AR genes are similarly represented in all subjects regardless of age, potentially forming part of the core resistome. Interestingly, aging was found to be associated with a higher burden of some AR genes, including especially proteobacterial genes encoding multidrug efflux pumps. Our results warn of possible health implications and pave the way for further investigations aimed at containing AR accumulation, with the ultimate goal of promoting healthy aging. IMPORTANCE Antibiotic resistance is widespread among different ecosystems, and in humans it plays a key role in shaping the composition of the gut microbiota, enhancing the ecological fitness of certain bacterial populations when exposed to antibiotics. A considerable component of the definition of healthy aging and longevity is associated with the structure of the gut microbiota, and, in this regard, the presence of antibiotic-resistant bacteria is critical to many pathologies that come about with aging. However, the structure of the resistome has not yet been sufficiently elucidated. Here, we show distinct antibiotic resistance assets and specific microbial consortia characterizing the human gut resistome through aging.
Collapse
Affiliation(s)
- Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
142
|
Abstract
Up to 50% of women receiving first-line antibiotics for bacterial vaginosis (BV) experience recurrence within 12 weeks. Evidence suggests that reinfection from an untreated regular sexual partner contributes to recurrence. We conducted a pilot study of 34 heterosexual couples to describe the impact of concurrent partner treatment on the composition of the genital microbiota over a 12-week period. We also determined the acceptability and tolerability of concurrent partner treatment and obtained preliminary estimates of the efficacy of the intervention to inform a randomized controlled trial (RCT). Women received first-line antibiotic treatment for BV (i.e., oral metronidazole or intravaginal clindamycin), and their male partner received oral metronidazole, 400 mg, and 2% clindamycin cream applied topically to penile skin, both twice daily for 7 days. The genital microbiota was characterized at three anatomical sites (women, vaginal; men, cutaneous penile and first-pass urine [representing the urethra]) using 16S rRNA gene sequencing. Immediately posttreatment, concurrent partner treatment significantly reduced the abundance of BV-associated bacteria (false-discovery rate [FDR] corrected P value < 0.05) and altered the overall microbiota composition of all three anatomical sites (P = 0.001). Suppression of BV-associated bacteria was sustained in the majority (81%) of women over the 12-week period (FDR P value < 0.05), despite BV-associated bacteria reemerging at both genital sites in men. In this cohort of women at high risk for recurrence, five recurred within 12 weeks of treatment (17%; 95% confidence interval [CI], 6 to 34%). Importantly, men tolerated and adhered to combination therapy. Our findings provide support for an RCT of combined oral and topical male partner treatment for BV. IMPORTANCE Recurrence of BV following standard treatment is unacceptably high. Posttreatment recurrence is distressing for women, and it imposes a considerable burden on the health care system. Recurrences result in multiple presentations to clinical services and repeated antibiotic use, and the associated obstetric and gynecological sequelae are significant. New treatments to improve long-term BV cure are urgently needed. Here, we used 16S rRNA gene sequencing to investigate changes in the microbiota composition at three genital sites (vagina, penile skin, and male urethra) of heterosexual couples undergoing concurrent partner treatment for bacterial vaginosis (BV). We found that concurrent partner treatment immediately and significantly altered the composition of the genital microbiota of both partners, with a reduction in BV-associated bacteria seen at all three sites. BV cure at 12 weeks posttreatment was higher than expected. These microbiological data provide evidence for continued investigation of partner treatment as a strategy to improve BV cure.
Collapse
|
143
|
Zhou H, Beltrán JF, Brito IL. Functions predict horizontal gene transfer and the emergence of antibiotic resistance. SCIENCE ADVANCES 2021; 7:eabj5056. [PMID: 34678056 PMCID: PMC8535800 DOI: 10.1126/sciadv.abj5056] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phylogenetic distance, shared ecology, and genomic constraints are often cited as key drivers governing horizontal gene transfer (HGT), although their relative contributions are unclear. Here, we apply machine learning algorithms to a curated set of diverse bacterial genomes to tease apart the importance of specific functional traits on recent HGT events. We find that functional content accurately predicts the HGT network [area under the receiver operating characteristic curve (AUROC) = 0.983], and performance improves further (AUROC = 0.990) for transfers involving antibiotic resistance genes (ARGs), highlighting the importance of HGT machinery, niche-specific, and metabolic functions. We find that high-probability not-yet detected ARG transfer events are almost exclusive to human-associated bacteria. Our approach is robust at predicting the HGT networks of pathogens, including Acinetobacter baumannii and Escherichia coli, as well as within localized environments, such as an individual’s gut microbiome.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Juan Felipe Beltrán
- Quantum-Si, Guildford, CT, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Corresponding author.
| |
Collapse
|
144
|
Pérez-Carrascal OM, Tromas N, Terrat Y, Moreno E, Giani A, Corrêa Braga Marques L, Fortin N, Shapiro BJ. Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. MICROBIOME 2021; 9:194. [PMID: 34579777 PMCID: PMC8477515 DOI: 10.1186/s40168-021-01140-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/02/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cyanobacteria from the genus Microcystis can form large mucilaginous colonies with attached heterotrophic bacteria-their microbiome. However, the nature of the relationship between Microcystis and its microbiome remains unclear. Is it a long-term, evolutionarily stable association? Which partners benefit? Here we report the genomic diversity of 109 individual Microcystis colonies-including cyanobacteria and associated bacterial genomes-isolated in situ and without culture from Lake Champlain, Canada and Pampulha Reservoir, Brazil. RESULTS We identified 14 distinct Microcystis genotypes from Canada, of which only two have been previously reported, and four genotypes specific to Brazil. Microcystis genetic diversity was much greater between than within colonies, consistent with colony growth by clonal expansion rather than aggregation of Microcystis cells. We also identified 72 bacterial species in the microbiome. Each Microcystis genotype had a distinct microbiome composition, and more closely related genotypes had more similar microbiomes. This pattern of phylosymbiosis could be explained by co-phylogeny in only two out of the nine most prevalent associated bacterial genera, Roseomonas and Rhodobacter. These phylogenetically associated genera could enrich the metabolic repertoire of Microcystis, for example by encoding the biosynthesis of complementary carotenoid molecules. In contrast, other colony-associated bacteria showed weaker signals of co-phylogeny, but stronger evidence of horizontal gene transfer with Microcystis. These observations suggest that acquired genes are more likely to be retained in both partners (Microcystis and members of its microbiome) when they are loosely associated, whereas one gene copy is sufficient when the association is physically tight and evolutionarily long-lasting. CONCLUSIONS We have introduced a method for culture-free isolation of single colonies from nature followed by metagenomic sequencing, which could be applied to other types of microbes. Together, our results expand the known genetic diversity of both Microcystis and its microbiome in natural settings, and support their long-term, specific, and potentially beneficial associations. Video Abstract.
Collapse
Affiliation(s)
| | - Nicolas Tromas
- Département de Sciences Biologiques, Université́ de Montréal, Montréal, Québec, Canada.
| | - Yves Terrat
- Département de Sciences Biologiques, Université́ de Montréal, Montréal, Québec, Canada
| | - Elisa Moreno
- Département de Sciences Biologiques, Université́ de Montréal, Montréal, Québec, Canada
| | - Alessandra Giani
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nathalie Fortin
- National Research Council of Canada, Montreal, Québec, Canada
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université́ de Montréal, Montréal, Québec, Canada.
- Department of Microbiology & Immunology, McGill University, Montreal, Québec, Canada.
- McGill Genome Centre, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
145
|
Kim H, Jeon J, Lee KK, Lee YH. Compositional Shift of Bacterial, Archaeal, and Fungal Communities Is Dependent on Trophic Lifestyles in Rice Paddy Soil. Front Microbiol 2021; 12:719486. [PMID: 34539610 PMCID: PMC8440912 DOI: 10.3389/fmicb.2021.719486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
The soil environment determines plants’ health and performance during their life cycle. Therefore, ecological understanding on variations in soil environments, including physical, chemical, and biological properties, is crucial for managing agricultural fields. Here, we present a comprehensive and extensive blueprint of the bacterial, archaeal, and fungal communities in rice paddy soils with differing soil types and chemical properties. We discovered that natural variations of soil nutrients are important factors shaping microbial diversity. The responses of microbial diversity to soil nutrients were related to the distribution of microbial trophic lifestyles (oligotrophy and copiotrophy) in each community. The compositional changes of bacterial and archaeal communities in response to soil nutrients were mainly governed by oligotrophs, whereas copiotrophs were mainly involved in fungal compositional changes. Compositional shift of microbial communities by fertilization is linked to switching of microbial trophic lifestyles. Random forest models demonstrated that depletion of prokaryotic oligotrophs and enrichment of fungal copiotrophs are the dominant responses to fertilization in low-nutrient conditions, whereas enrichment of putative copiotrophs was important in high-nutrient conditions. Network inference also revealed that trophic lifestyle switching appertains to decreases in intra- and inter-kingdom microbial associations, diminished network connectivity, and switching of hub nodes from oligotrophs to copiotrophs. Our work provides ecological insight into how soil nutrient-driven variations in microbial communities affect soil health in modern agricultural systems.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kiseok Keith Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
146
|
Tavares TCL, Bezerra WM, Normando LRO, Rosado AS, Melo VMM. Brazilian Semi-Arid Mangroves-Associated Microbiome as Pools of Richness and Complexity in a Changing World. Front Microbiol 2021; 12:715991. [PMID: 34512595 PMCID: PMC8427804 DOI: 10.3389/fmicb.2021.715991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Mangrove microbiomes play an essential role in the fate of mangroves in our changing planet, but the factors regulating the biogeographical distribution of mangrove microbial communities remain essentially vague. This paper contributes to our understanding of mangrove microbiomes distributed along three biogeographical provinces and ecoregions, covering the exuberant mangroves of Amazonia ecoregion (North Brazil Shelf) as well as mangroves located in the southern limit of distribution (Southeastern ecoregion, Warm Temperate Southwestern Atlantic) and mangroves localized on the drier semi-arid coast (Northeastern ecoregion, Tropical Southwestern Atlantic), two important ecotones where poleward and landward shifts, respectively, are expected to occur related to climate change. This study compared the microbiomes associated with the conspicuous red mangrove (Rhizophora mangle) root soils encompassing soil properties, latitudinal factors, and amplicon sequence variants of 105 samples. We demonstrated that, although the northern and southern sites are over 4,000 km apart, and despite R. mangle genetic divergences between north and south populations, their microbiomes resemble each other more than the northern and northeastern neighbors. In addition, the northeastern semi-arid microbiomes were more diverse and displayed a higher level of complexity than the northern and southern ones. This finding may reflect the endurance of the northeast microbial communities tailored to deal with the stressful conditions of semi-aridity and may play a role in the resistance and growing landward expansion observed in such mangroves. Minimum temperature, precipitation, organic carbon, and potential evapotranspiration were the main microbiota variation drivers and should be considered in mangrove conservation and recovery strategies in the Anthropocene. In the face of changes in climate, land cover, biodiversity, and chemical composition, the richness and complexity harbored by semi-arid mangrove microbiomes may hold the key to mangrove adaptability in our changing planet.
Collapse
Affiliation(s)
| | - Walderly Melgaço Bezerra
- Laboratory of Microbial Ecology and Biotechnology, Department of Biology, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | - Alexandre Soares Rosado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vânia Maria Maciel Melo
- Laboratory of Microbial Ecology and Biotechnology, Department of Biology, Federal University of Ceará (UFC), Fortaleza, Brazil
| |
Collapse
|
147
|
Loos D, Zhang L, Beemelmanns C, Kurzai O, Panagiotou G. DAnIEL: A User-Friendly Web Server for Fungal ITS Amplicon Sequencing Data. Front Microbiol 2021; 12:720513. [PMID: 34484161 PMCID: PMC8416086 DOI: 10.3389/fmicb.2021.720513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023] Open
Abstract
Trillions of microbes representing all kingdoms of life are resident in, and on, humans holding essential roles for the host development and physiology. The last decade over a dozen online tools and servers, accessible via public domain, have been developed for the analysis of bacterial sequences; however, the analysis of fungi is still in its infancy. Here, we present a web server dedicated to the comprehensive analysis of the human mycobiome for (i) translating raw sequencing reads to data tables and high-standard figures, (ii) integrating statistical analysis and machine learning with a manually curated relational database and (iii) comparing the user’s uploaded datasets with publicly available from the Sequence Read Archive. Using 1,266 publicly available Internal transcribed spacers (ITS) samples, we demonstrated the utility of DAnIEL web server on large scale datasets and show the differences in fungal communities between human skin and soil sites.
Collapse
Affiliation(s)
- Daniel Loos
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Lu Zhang
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, China
| |
Collapse
|
148
|
Bez C, Esposito A, Thuy HD, Nguyen Hong M, Valè G, Licastro D, Bertani I, Piazza S, Venturi V. The rice foot rot pathogen Dickeya zeae alters the in-field plant microbiome. Environ Microbiol 2021; 23:7671-7687. [PMID: 34398481 PMCID: PMC9292192 DOI: 10.1111/1462-2920.15726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot‐rot symptomatic field‐grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co‐presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture‐dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen‐focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.
Collapse
Affiliation(s)
- Cristina Bez
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Alfonso Esposito
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Hang Dinh Thuy
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| | | | - Giampiero Valè
- DiSIT, Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, Vercelli, 13100, Italy
| | - Danilo Licastro
- ARGO Laboratorio Genomica ed Epigenomica, AREA Science Park, Basovizza, Trieste, 34149, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Silvano Piazza
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| |
Collapse
|
149
|
Borey M, Blanc F, Lemonnier G, Leplat JJ, Jardet D, Rossignol MN, Ravon L, Billon Y, Bernard M, Estellé J, Rogel-Gaillard C. Links between fecal microbiota and the response to vaccination against influenza A virus in pigs. NPJ Vaccines 2021; 6:92. [PMID: 34294732 PMCID: PMC8298503 DOI: 10.1038/s41541-021-00351-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.
Collapse
Affiliation(s)
- Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Maria Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | |
Collapse
|
150
|
Abstract
The influence of human genetic variants on the vaginal bacterial traits (VBTs) of pregnant women is still unknown. Using a genome-wide association approach based on the 16S rRNA bacteriome analysis, a total of 72 host genetic variant (single nucleotide polymorphisms [SNPs], indels, or copy number variations [CNVs])-VBT associations were found that reached the genome-wide significance level (P < 5 × 10-8) with an acceptable genomic inflation factor λ of <1.1. The majority of these SNPs that reached the genome-wide significance level had a relatively low minor allele frequency (MAF), and only seven of them had MAFs greater than 0.05. rs303212, located at the IFIT1 gene on chromosome 10, was the most eye-catching variant, which had a genome-wide association with the relative abundance (RAB) of Actinobacteria and Bifidobacteriaceae and also had a suggestive association with the RAB of a few common vaginal bacteria including Actinobacteriota, Firmicutes, Lactobacillus, and Gardnerella vaginalis and the beta diversity weighted UniFrac (P < 1 × 10-5). The findings of the study suggest that the vaginal bacteriome may be influenced by a number of genetic variants across the human genome and that interferon signaling may have an important influence on vaginal bacterial communities during pregnancy. IMPORTANCE Knowledge about the influence of host genetics on the vaginal bacteriome in pregnancy is still limited. Although a number of environmental and behavioral factors may exert influences on the structure of vaginal bacterial communities, the vaginal bacteriome often undergoes a relatively fixed transition to a more stable and less diverse state as the menstrual cycle stops, which raises questions on the effects of human genetics. We utilized a genome-wide approach to identify the associations between genetic variants and multiple VBTs and performed enrichment analyses. The human genetics during pregnancy may be involved in multiple pathways. The results may disclose innate functional factors involved in shaping the vaginal bacteriome during pregnancy and provide insight into the establishment of specific strategies for prevention and clinical treatment of pregnancy complications.
Collapse
|