101
|
Luan G, Gao Q, Zhai F, Chen Y, Li T. Upregulation of HMGB1, toll-like receptor and RAGE in human Rasmussen's encephalitis. Epilepsy Res 2016; 123:36-49. [PMID: 27108105 DOI: 10.1016/j.eplepsyres.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 10/21/2022]
Abstract
Rasmussen encephalitis (RE) is a rare neurological disorder of childhood characterized by uni-hemispheric inflammation, progressive neurological deficits and intractable focal epilepsy. The pathogenesis of RE is still enigmatic. Activation of endogenous high-mobility group box-1 (HMGB1) and Toll-like receptor (TLR) has been proved to be with pro-inflammatory as well as pro-convulsant effects. We hypothesized that the epileptogenic mechanisms underlying RE are related to activation of HMGB1/TLR signaling. Immunnohistochemistry approach was used to examine the expression of HMGB1, TLR2, TLR4, receptor for advanced glycation end products (RAGE) in surgically resected human epileptic cortical specimens from RE (n=12), and compared that with control cortical issue (n=6). HMGB1 was ubiquitously detected in nuclei of astrocytes while its receptors were not detected in control cortex specimens. Marked expression of the receptors were observed in the lesions of RE. In particular, HMGB1 was in stead detected in cytoplasm of reactive astrocytes in RE cortex, predictive its release from glial cells. Significant greater HMGB1 and its receptors expression in RE vs. control was demonstrated by western blot. These results provide the novel evidence of intrinsic activation of these pro-inflammation pathways in RE, which suggest the specific targets in the treatment of epilepsy associated with RE.
Collapse
Affiliation(s)
- Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Qing Gao
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yin Chen
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
102
|
Expression and cellular distribution of transient receptor potential vanilloid 4 in cortical tubers of the tuberous sclerosis complex. Brain Res 2016; 1636:183-192. [DOI: 10.1016/j.brainres.2016.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 11/24/2022]
|
103
|
Polymorphisms in the receptor for advanced glycation end products gene are associated with susceptibility to drug-resistant epilepsy. Neurosci Lett 2016; 619:137-41. [PMID: 26828298 DOI: 10.1016/j.neulet.2016.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/21/2015] [Accepted: 01/25/2016] [Indexed: 01/14/2023]
|
104
|
Mühlebner A, Iyer AM, van Scheppingen J, Anink JJ, Jansen FE, Veersema TJ, Braun KP, Spliet WGM, van Hecke W, Söylemezoğlu F, Feucht M, Krsek P, Zamecnik J, Bien CG, Polster T, Coras R, Blümcke I, Aronica E. Specific pattern of maturation and differentiation in the formation of cortical tubers in tuberous sclerosis omplex (TSC): evidence from layer-specific marker expression. J Neurodev Disord 2016; 8:9. [PMID: 27042238 PMCID: PMC4818922 DOI: 10.1186/s11689-016-9142-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/08/2016] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multisystem disorder that results from mutations in the TSC1 or TSC2 genes, leading to constitutive activation of the mammalian target of rapamycin (mTOR) signaling pathway. Cortical tubers represent typical lesions of the central nervous system (CNS) in TSC. The pattern of cortical layering disruption observed in brain tissue of TSC patients is not yet fully understood, and little is known about the origin and phenotype of individual abnormal cell types recognized in tubers. METHODS In the present study, we aimed to characterize dysmorphic neurons (DNs) and giant cells (GCs) of cortical tubers using neocortical layer-specific markers (NeuN, SMI32, Tbr1, Satb2, Cux2, ER81, and RORβ) and to compare the features with the histo-morphologically similar focal cortical dysplasia (FCD) type IIb. We studied a cohort of nine surgically resected cortical tubers, five FCD type IIb, and four control samples using immunohistochemistry and in situ hybridization. RESULTS Cortical tuber displayed a prominent cell loss in all cortical layers. Moreover, we observed altered proportions of layer-specific markers within the dysplastic region. DNs, in both tubers and FCD type IIb, were found positive for different cortical layer markers, regardless of their laminar location, and their immunophenotype resembles that of cortical projection neurons. CONCLUSIONS These findings demonstrate that, similar to FCD type IIb, cortical layering is markedly disturbed in cortical tubers of TSC patients. Distribution of these disturbances is comparable in all tubers and suggests a dysmaturation affecting early and late migratory patterns, with a more severe impairment of the late stage of maturation.
Collapse
Affiliation(s)
- Angelika Mühlebner
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands ; Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Anand M Iyer
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jasper J Anink
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim J Veersema
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees P Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Martha Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Pavel Krsek
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | | | - Tilman Polster
- Epilepsy Centre Bethel, Krankenhaus Mara, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands ; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands ; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
105
|
van Scheppingen J, Iyer AM, Prabowo AS, Mühlebner A, Anink JJ, Scholl T, Feucht M, Jansen FE, Spliet WG, Krsek P, Zamecnik J, Buccoliero AM, Giordano F, Genitori L, Kotulska K, Jozwiak S, Jaworski J, Liszewska E, van Vliet EA, Aronica E. Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures. Glia 2016; 64:1066-82. [PMID: 27014996 DOI: 10.1002/glia.22983] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease presenting with multiple neurological symptoms including epilepsy, mental retardation, and autism. Abnormal activation of various inflammatory pathways has been observed in astrocytes in brain lesions associated with TSC. Increasing evidence supports the involvement of microRNAs in the regulation of astrocyte-mediated inflammatory response. To study the role of inflammation-related microRNAs in TSC, we employed real-time PCR and in situ hybridization to characterize the expression of miR21, miR146a, and miR155 in TSC lesions (cortical tubers and subependymal giant cell astrocytomas, SEGAs). We observed an increased expression of miR21, miR146a, and miR155 in TSC tubers compared with control and perituberal brain tissue. Expression was localized in dysmorphic neurons, giant cells, and reactive astrocytes and positively correlated with IL-1β expression. In addition, cultured human astrocytes and SEGA-derived cell cultures were used to study the regulation of the expression of these miRNAs in response to the proinflammatory cytokine IL-1β and to evaluate the effects of overexpression or knockdown of miR21, miR146a, and miR155 on inflammatory signaling. IL-1β stimulation of cultured glial cells strongly induced intracellular miR21, miR146a, and miR155 expression, as well as miR146a extracellular release. IL-1β signaling was differentially modulated by overexpression of miR155 or miR146a, which resulted in pro- or anti-inflammatory effects, respectively. This study provides supportive evidence that inflammation-related microRNAs play a role in TSC. In particular, miR146a and miR155 appear to be key players in the regulation of astrocyte-mediated inflammatory response, with miR146a as most interesting anti-inflammatory therapeutic candidate.
Collapse
Affiliation(s)
- J van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A M Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A S Prabowo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A Mühlebner
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - J J Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - F E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - J Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - A M Buccoliero
- Pathology Unit, Anna Meyer Children's Hospital, Florence, Italy
| | - F Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - L Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - K Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - S Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - J Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - E Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - E A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| |
Collapse
|
106
|
Walker A, Russmann V, Deeg CA, von Toerne C, Kleinwort KJH, Szober C, Rettenbeck ML, von Rüden EL, Goc J, Ongerth T, Boes K, Salvamoser JD, Vezzani A, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav Immun 2016; 53:138-158. [PMID: 26685804 DOI: 10.1016/j.bbi.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis. Taken together, the findings deepen our understanding of modulation of inflammatory signaling during epileptogenesis providing an excellent and comprehensive basis for the identification of target and biomarker candidates.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | | | - Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joanna Goc
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Boes
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annamaria Vezzani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
107
|
Chen X, Sun FJ, Wei YJ, Wang LK, Zang ZL, Chen B, Li S, Liu SY, Yang H. Increased Expression of Transient Receptor Potential Vanilloid 4 in Cortical Lesions of Patients with Focal Cortical Dysplasia. CNS Neurosci Ther 2016; 22:280-90. [PMID: 26842013 DOI: 10.1111/cns.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Focal cortical dysplasia (FCD) represents a well-known cause of medically intractable epilepsy. Studies found that transient receptor potential vanilloid receptor 4 (TRPV4) may participate in the occurrence of seizures. This study investigated the expression patterns of TRPV4 in FCD and the cascade that regulate functional state of TRPV4 in cortical neurons. METHODS Thirty-nine surgical specimens from FCD patients and 10 age-matched control samples from autopsies were included in this study. Protein expression and distribution were detected by Western blot, immunohistochemistry, and immunofluorescence staining. Calcium imaging was used to detect the TRPV4-mediated Ca(2+) influx in cortical neurons. RESULTS (1) The protein levels of TRPV4 and of an upstream factor, protein kinase C (PKC), were markedly elevated in FCD. (2) TRPV4 staining was stronger in the dysplastic cortices of FCD and mainly observed in neuronal microcolumns and malformed cells. (3) The activation of TRPV4 was central for [Ca(2+)]i elevation in cortical neurons, and this activity of TRPV4 in cortical neurons was regulated by the PKC, but not the PKA, pathway. CONCLUSION The overexpression and altered cellular distribution of TRPV4 in FCD suggest that TRPV4 may potentially contribute to the epileptogenesis of FCD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhen-Le Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
108
|
Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W. Infections, inflammation and epilepsy. Acta Neuropathol 2016; 131:211-234. [PMID: 26423537 DOI: 10.1007/s00401-015-1481-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 12/15/2022]
Abstract
Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled "epilepsy." Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology, University of Utah, Salt Lake City, UT, USA
| | - Pierre-Marie Preux
- INSERM UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, University of Limoges, Limoges, France
- Center of Epidemiology, Biostatistics, and Research Methodology, CHU Limoges, Limoges, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, WC1N £BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
109
|
Abstract
This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milano, Italy
| | - Bethan Lang
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands Department of (Neuro)Pathology, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands SEIN-Stichting Epilepsie Instellingen Nederland, Heemstede 2103 SW, The Netherlands
| |
Collapse
|
110
|
Li X, Yang H, Ouyang Q, Liu F, Li J, Xiang Z, Yuan H. Enhanced RAGE Expression in the Dorsal Root Ganglion May Contribute to Neuropathic Pain Induced by Spinal Nerve Ligation in Rats. PAIN MEDICINE 2015; 17:803-12. [PMID: 26814270 DOI: 10.1093/pm/pnv035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/12/2015] [Indexed: 01/02/2023]
Abstract
OBJECTIVE There is some evidence implicating receptor for advanced glycation end products (RAGE) signaling in the pathogenesis of neuropathic pain (NP). The objective was to investigate whether RAGE signaling in the dorsal root ganglion (DRG) might contribute to NP following peripheral nerve injury. DESIGN Experimental study before and after spinal nerve ligation (SNL) surgery. SETTING Caged in a controlled environment. SUBJECTS Male Sprague-Dawley rats. METHODS A SNL rat model of NP was used. Mechanical hyperalgesia was measured by the paw withdrawal threshold (PWT) to mechanical stimuli (1.4-15 g). Protein expressions of RAGE (immunofluorescence and western blotting), glial fibrillary acidic protein (GFAP; satellite glial cell [SGC] activation marker), IL-1β (ELISA), TNF-α (ELISA), and NF-κB (western blotting) in the DRG were determined. RAGE signaling was inhibited by intrathecal injection of anti-RAGE antibody. RESULTS After 7 days, SNL surgery reduced the PWT and upregulated the protein expression of RAGE, GFAP, NF-κB, TNF-α, and IL-1β. Intrathecal injection of RAGE-neutralizing antibody attenuated the SNL-induced mechanical hyperalgesia, activation of SGCs, and upregulation of NF-κB, TNF-α, and IL-1β in the DRG. CONCLUSION RAGE signaling may contribute to the pain hypersensitivity observed in the rat SNL model of NP. Although the precise mechanism remains to be established, NF-κB, TNF-α, and IL-1β likely play a role, together with the activation of SGCs.
Collapse
Affiliation(s)
- Xiangnan Li
- *Department of Anesthesiology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China; Department of Anesthesiology, the Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Haiqin Yang
- *Department of Anesthesiology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China
| | - Qing Ouyang
- *Department of Anesthesiology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China
| | - Fangting Liu
- *Department of Anesthesiology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China
| | - Jian Li
- *Department of Anesthesiology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, China
| | - Hongbin Yuan
- *Department of Anesthesiology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China;
| |
Collapse
|
111
|
Gershen LD, Zanotti-Fregonara P, Dustin IH, Liow JS, Hirvonen J, Kreisl WC, Jenko KJ, Inati SK, Fujita M, Morse CL, Brouwer C, Hong JS, Pike VW, Zoghbi SS, Innis RB, Theodore WH. Neuroinflammation in Temporal Lobe Epilepsy Measured Using Positron Emission Tomographic Imaging of Translocator Protein. JAMA Neurol 2015; 72:882-8. [PMID: 26052981 DOI: 10.1001/jamaneurol.2015.0941] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Neuroinflammation may play a role in epilepsy. Translocator protein 18 kDa (TSPO), a biomarker of neuroinflammation, is overexpressed on activated microglia and reactive astrocytes. A preliminary positron emission tomographic (PET) imaging study using carbon 11 ([11C])-labeled PBR28 in patients with temporal lobe epilepsy (TLE) found increased TSPO ipsilateral to seizure foci. Full quantitation of TSPO in vivo is needed to detect widespread inflammation in the epileptic brain. OBJECTIVES To determine whether patients with TLE have widespread TSPO overexpression using [11C]PBR28 PET imaging, and to replicate relative ipsilateral TSPO increases in patients with TLE using [11C]PBR28 and another TSPO radioligand, [11C]DPA-713. DESIGN, SETTING, AND PARTICIPANTS In a cohort study from March 2009 through September 2013 at the Clinical Epilepsy Section of the National Institute of Neurological Disorders and Stroke, participants underwent brain PET and a subset had concurrent arterial sampling. Twenty-three patients with TLE and 11 age-matched controls were scanned with [11C]PBR28, and 8 patients and 7 controls were scanned with [11C]DPA-713. Patients with TLE had unilateral temporal seizure foci based on ictal electroencephalography and structural magnetic resonance imaging. Participants with homozygous low-affinity TSPO binding were excluded. MAIN OUTCOMES AND MEASURES The [11C]PBR28 distribution volume (VT) corrected for free fraction (fP) was measured in patients with TLE and controls using FreeSurfer software and T1-weighted magnetic resonance imaging for anatomical localization of bilateral temporal and extratemporal regions. Side-to-side asymmetry in patients with TLE was calculated as the ratio of ipsilateral to contralateral [11C]PBR28 and [11C]DPA-713 standardized uptake values from temporal regions. RESULTS The [11C]PBR28 VT to fp ratio was higher in patients with TLE than in controls for all ipsilateral temporal regions (27%-42%; P < .05) and in contralateral hippocampus, amygdala, and temporal pole (approximately 30%-32%; P < .05). Individually, 12 patients, 10 with mesial temporal sclerosis, had asymmetrically increased hippocampal [11C]PBR28 uptake exceeding the 95% confidence interval of the controls. Binding of [11C]PBR28 was increased significantly in thalamus. Relative [11C]PBR28 and [11C]DPA-713 uptakes were higher ipsilateral than contralateral to seizure foci in patients with TLE ([11C]PBR28: 2%-6%; [11C]DPA-713: 4%-9%). Asymmetry of [11C]DPA-713 was greater than that of [11C]PBR28 (F = 29.4; P = .001). CONCLUSIONS AND RELEVANCE Binding of TSPO is increased both ipsilateral and contralateral to seizure foci in patients with TLE, suggesting ongoing inflammation. Anti-inflammatory therapy may play a role in treating drug-resistant epilepsy.
Collapse
Affiliation(s)
- Leah D Gershen
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland2University of Bordeaux, Aquitaine Institute for Cognitive and Integrative Neuroscience, National Centre for Scientific Research, Talence, Fran
| | - Irene H Dustin
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku, Turku, Finland
| | - William C Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sara K Inati
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Chad Brouwer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jinsoo S Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - William H Theodore
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
112
|
Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin Chim Acta 2015; 452:1-9. [PMID: 26506013 DOI: 10.1016/j.cca.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
There is a need to develop innovative therapeutic strategies to counteract epilepsy, a common disabling neurological disorder. Despite the recent advent of additional antiepileptic drugs and respective surgery, the treatment of epilepsy remains a major challenge. The available therapies are largely based on symptoms, and these approaches do not affect the underlying disease processes and are also associated frequently with severe side effects. This is mainly because of the lack of well-defined targets in epilepsy. The discovery that inflammatory mediators significantly contribute to the onset and recurrence of seizures in experimental seizure models, as well as the presence of inflammatory molecules in human epileptogenic tissue, highlights the possibility of targeting specific inflammation related pathways to control seizures that are otherwise resistant to the available AEDs. Emerging studies suggest that miRNAs have a significant role in regulating inflammatory pathways shown to be involved in epilepsy. These miRNAs can possibly be used as novel therapeutic targets in the treatment of epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. This review highlights the immunological features underlying the pathogenesis of epileptic seizures and the possible miRNA mediated approaches for drug resistant epilepsies that modulate the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Arpna Srivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
113
|
Mishto M, Raza ML, de Biase D, Ravizza T, Vasuri F, Martucci M, Keller C, Bellavista E, Buchholz TJ, Kloetzel PM, Pession A, Vezzani A, Heinemann U. The immunoproteasome β5i subunit is a key contributor to ictogenesis in a rat model of chronic epilepsy. Brain Behav Immun 2015; 49:188-196. [PMID: 26044087 DOI: 10.1016/j.bbi.2015.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 02/08/2023] Open
Abstract
The proteasome is the core of the ubiquitin-proteasome system and is involved in synaptic protein metabolism. The incorporation of three inducible immuno-subunits into the proteasome results in the generation of the so-called immunoproteasome, which is endowed of pathophysiological functions related to immunity and inflammation. In healthy human brain, the expression of the key catalytic β5i subunit of the immunoproteasome is almost absent, while it is induced in the epileptogenic foci surgically resected from patients with pharmaco-resistant seizures, including temporal lobe epilepsy. We show here that the β5i immuno-subunit is induced in experimental epilepsy, and its selective pharmacological inhibition significantly prevents, or delays, 4-aminopyridine-induced seizure-like events in acute rat hippocampal/entorhinal cortex slices. These effects are stronger in slices from epileptic vs normal rats, likely due to the more prominent β5i subunit expression in neurons and glia cells of diseased tissue. β5i subunit is transcriptionally induced in epileptogenic tissue likely by Toll-like receptor 4 signaling activation, and independently on promoter methylation. The recent availability of selective β5i subunit inhibitors opens up novel therapeutic opportunities for seizure inhibition in drug-resistant epilepsies.
Collapse
Affiliation(s)
- Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Muhammad L Raza
- Institut für Neurophysiology, Charité - Universitätsmedizin Berlin, Garystr. 5, 14195 Berlin, Germany
| | - Dario de Biase
- Dept. of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Francesco Vasuri
- Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine, DIMES, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Morena Martucci
- Dept. of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy
| | - Christin Keller
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena Bellavista
- Dept. of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy
| | - Tonia J Buchholz
- Onyx Pharmaceuticals Inc., Amgen Subsidiary, 249 E. Grand Ave., South San Francisco, CA 94080, USA
| | - Peter M Kloetzel
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, FaBiT, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Uwe Heinemann
- Institut für Neurophysiology, Charité - Universitätsmedizin Berlin, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
114
|
Dixit AB, Tripathi M, Chandra PS, Banerjee J. Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. Int J Surg 2015; 36:483-491. [PMID: 26306771 DOI: 10.1016/j.ijsu.2015.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Despite great advances in our understanding of the process of epileptogenesis we are yet to develop reliable biomarkers that have the potential to accurately localize the epileptogenic zone (EZ), and to resolve the issue of heterogeneity in epilepsy surgery outcome. Inability to precisely localize the epileptogenic foci is one of the reason why more than 30% of these DRE patients are not benefited. Molecular and cellular biomarkers in combination with imaging and electrical investigations will provide a more specific platform for defining epileptogenic zone. Potential molecular biomarkers of epileptogenesis including markers of inflammation, synaptic alterations and neurodegeneration may also have the potential for localizing EZ. At molecular level components derived from epileptogenic tissues, such as metabolites, proteins, mRNAs and miRNAs that are significantly altered can serve as biomarkers and can be clubbed with existing techniques to preoperatively localize the EZ. Neurosurgeons across the world face problems while defining the margins of the epileptogenic tissues to be resected during surgery. In this review we discuss molecular biomarkers reported so far in the context of epileptogenesis and some of the unexplored markers which may have the potential to localize EZ during surgery. We also discuss "Intelligent knife" technique that couples electrosurgery and mass spectrometry allowing near-real-time characterization of human tissue and may prove to be instrumental in defining the margins of the epileptogenic zone during surgery.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, National Brain Research Centre, Manesar, 122051, India
| | - Manjari Tripathi
- Dept. of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Sarat Chandra
- Dept. of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, National Brain Research Centre, Manesar, 122051, India.
| |
Collapse
|
115
|
Zang Z, Li S, Zhang W, Chen X, Zheng D, Shu H, Guo W, Zhao B, Shen K, Wei Y, Zheng X, Liu S, Yang H. Expression Patterns of TRPC1 in Cortical Lesions from Patients with Focal Cortical Dysplasia. J Mol Neurosci 2015; 57:265-72. [PMID: 26280213 DOI: 10.1007/s12031-015-0615-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/30/2015] [Indexed: 02/05/2023]
Abstract
Focal cortical dysplasia (FCD) is known as a common cause of chronic refractory epilepsy, but the underlying mechanisms of the factors that lead to FCD-related epilepsy are unclear. Previous studies have shown that canonical transient receptor potential channels (TRPCs) might be involved in the process of epileptogenesis. Canonical transient receptor potential channel 1 (TRPC1), which is ubiquitously expressed in the brain, has been shown to be involved in epileptiform bust firing in knockout mice. In this study, we examined the expression of TRPC1 in FCD type Ia (FCDIa), FCD type IIa (FCDIIa), and FCD type IIb (FCDIIb) surgical specimens from patients and age-matched autopsy control samples. Real-time quantitative PCR and western blotting indicated that TRPC1 mRNA and protein levels were increased in FCDIa, FCDIIa, and FCDIIb samples compared to control samples. Immunohistochemistry results revealed that TRPC1 was mainly distributed in microcolumns, dysmorphic neurons, and balloon cells. Further double immunofluorescent staining showed that TRPC1 was co-localized with glutamatergic and GABAergic markers. Taken together, our results demonstrate that the overexpression and specific cellular location of TRPC1 might be related to the epileptogenesis of FCD.
Collapse
Affiliation(s)
- Zhenle Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Wei Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Dahai Zheng
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Haifeng Shu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.,Department of Neurosurgery, Chengdu Military General Hospital of PLA, Chengdu, Sichuan, 610083, China
| | - Wei Guo
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Bangyun Zhao
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Kaifeng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - YuJia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shiyong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
116
|
TLR1 expression in mouse brain was increased in a KA-induced seizure model. Inflamm Res 2015; 64:487-95. [PMID: 26021825 DOI: 10.1007/s00011-015-0828-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Toll-like receptors (TLRs) that mediate inflammatory responses play an important role in epilepsy; however, whether TLR1 is also involved in epileptogenesis remains unclear. Thus, in this study, we investigated the extent and pattern of TLR1 expression in epileptic tissues. METHODS One-hundred and thirty-two mice were intra-cerebroventricularly injected with PBS or kainic acid (KA) and were examined at 1, 3, 8 and 24 h. The expression pattern and distribution of TLR1 were examined by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry staining. RESULTS The mRNA and protein levels of TLR1 were significantly upregulated in the hippocampus and temporal cortex of epileptic mice compared with those of controls. TLR1 expression was increased as early as 1 h following KA treatment and peaked at 8 and 24 h. Immunohistochemistry staining demonstrated that TLR1 was distributed in the CA1-3, dentate gyrus and hilus regions of the hippocampus and different cortical regions. Immunofluorescent staining further revealed that TLR1 was primarily expressed in the neurons, microglia, and astrocytes of epileptogenic tissue. SIGNIFICANCE These results demonstrate that cortical and hippocampal sub-regional expression of TLR1 is altered during epileptogenesis in a time- and location-specific manner, suggesting a close association with the process of epilepsy.
Collapse
|
117
|
Lei C, Zhang S, Cao T, Tao W, Liu M, Wu B. HMGB1 may act via RAGE to promote angiogenesis in the later phase after intracerebral hemorrhage. Neuroscience 2015; 295:39-47. [PMID: 25813710 DOI: 10.1016/j.neuroscience.2015.03.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
Following intracerebral hemorrhage (ICH), high-mobility group box 1 protein (HMGB1) may promote vascular remodeling. Whether HMGB1 supports angiogenesis after ICH is unclear, as are the receptors and downstream signaling pathway(s) involved. We used the rat model of collagenase-induced ICH to determine whether HMGB1 acts via the receptor for advanced glycation end-products (RAGE) to upregulate vascular endothelial growth factor (VEGF), a potent mitogen of endothelial cells and key regulator of normal and abnormal angiogenesis in the late phase of injury. At 3d after ICH induction, rats were treated with saline, ethyl pyruvate (EP) or N-benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1). ICH induced the movement of HMGB1 from the nucleus into the cytoplasm. Levels of HMGB1 and RAGE in the ipsilateral striatum increased within a few days of induction and continued to rise for 7-14d afterward. By 14d after induction, levels of VEGF and vessel density were higher than in the Sham group. Administering EP 3 days after ICH induction prevented much of the stroke-induced increases in vessel density and in expression of HMGB1, RAGE, and VEGF. Administering FPS-ZM1 after ICH blocked much of the stroke-induced increases in vessel density and VEGF expression. Our results suggest that after ICH, HMGB1 may upregulate VEGF in the ipsilateral striatum predominantly via RAGE. Hence, targeting the HMGB1/RAGE signaling pathway may help reduce inappropriate angiogenesis after ICH.
Collapse
Affiliation(s)
- C Lei
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| | - S Zhang
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China.
| | - T Cao
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| | - W Tao
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| | - M Liu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| | - B Wu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China.
| |
Collapse
|
118
|
Zhu Z, Zhong H, Zhou Q, Hu X, Chen D, Wang J, Wu J, Cai J, Zhou S, Chen AF. Inhibition of PKR impairs angiogenesis through a VEGF pathway. Am J Physiol Endocrinol Metab 2015; 308:E518-24. [PMID: 25587101 DOI: 10.1152/ajpendo.00469.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is a common clinical problem, and its pathophysiological mechanisms are incompletely understood. Double-stranded RNA-activated protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. Although PKR has been reported in antivirus and the immune system, the role of PKR in vascular function, especially in angiogenesis, is still unclear. PKR(-/-) mice were used in our experiments. Blood flow recovery was significantly delayed in PKR(-/-) vs. WT mice (Laser Doppler detection, n = 9, P < 0.01), accompanied by 34% reduced CD31-positive stain in ischemic muscle 28 days after procedure (immunohistochemistry, n = 9, P < 0.05). PKR expression decreased in the first 12 h and increased to peak at 24 h in human umbilical vein endothelial cells (HUVECs) in response to hypoxia (Western blot analyses, n = 3, P < 0.05). Accordingly, phospho-PKR expression increased in HUVECs 24 h after treatment with hypoxia (Western blot analyses, n = 3, P < 0.05). Inhibition of PKR (siRNA transfection) reduced microtubule formation (Matrigel tube formation, n = 3, vs. control siRNA, P < 0.05) and migration (wound healing, n = 3, vs. control siRNA, P < 0.05) by 33 and 59%, respectively. Vascular endothelial growth factor (VEGF) expression in ischemic muscle from PKR(-/-) mice was significantly decreased by 54% 1 day after procedure (n = 3, P < 0.05, vs. WT) and by 63% 7 days after procedure (n = 3, P < 0.01, vs. WT), respectively. At the same time, VEGF expression in HUVECs decreased by 21% (n = 3, P < 0.05, PKR siRNA vs. control siRNA). These findings demonstrate that PKR mediates angiogenesis through a VEGF pathway, which may form the basis for future intervention of PAD.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Hua Zhong
- The Third Xiangya Hospital and the College of Pharmacy, Central South University, Changsha, China
| | - Qin Zhou
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Xinqun Hu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Dandan Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Jiemei Wang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Jinze Wu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Jingjing Cai
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Shenghua Zhou
- The Third Xiangya Hospital and the College of Pharmacy, Central South University, Changsha, China
| | - Alex F Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| |
Collapse
|
119
|
Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol Neurodegener 2015; 10:5. [PMID: 25887709 PMCID: PMC4365525 DOI: 10.1186/s13024-015-0003-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/03/2015] [Indexed: 01/11/2023] Open
Abstract
Background Toll-like receptors (TLR) constitute a highly conserved class of receptors through which the innate immune system responds to both pathogen- and host-derived factors. Although TLRs are involved in a wide range of central nervous system (CNS) disorders including neurodegenerative diseases, the molecular events leading from CNS injury to activation of these innate immune receptors remain elusive. The stress protein heat shock protein 60 (HSP60) released from injured cells is considered an endogenous danger signal of the immune system. In this context, the main objective of the present study was to investigate the impact of extracellular HSP60 on the brain in vivo. Results We show here that HSP60 injected intrathecally causes neuronal and oligodendrocyte injury in the CNS in vivo through TLR4-dependent signaling. Intrathecal HSP60 results in neuronal cell death, axonal injury, loss of oligodendrocytes, and demyelination in the cerebral cortex of wild-type mice. In contrast both mice lacking TLR4 and the TLR adaptor molecule MyD88 are protected against deleterious effects induced by HSP60. In contrast to the exogenous TLR4 ligand, lipopolysaccharide, intrathecal HSP60 does not induce such a considerable inflammatory response in the brain. In the CNS, endogenous HSP60 is predominantly expressed in neurons and released during brain injury, since the cerebrospinal fluid (CSF) from animals of a mouse stroke model contains elevated levels of this stress protein compared to the CSF of sham-operated mice. Conclusions Our data show a direct toxic effect of HSP60 towards neurons and oligodendrocytes in the CNS. The fact that these harmful effects involve TLR4 and MyD88 confirms a molecular pathway mediated by the release of endogenous TLR ligands from injured CNS cells common to many forms of brain diseases that bi-directionally links CNS injury and activation of the innate immune system to neurodegeneration and demyelination in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0003-1) contains supplementary material, which is available to authorized users.
Collapse
|
120
|
Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 2015; 20:569-78. [PMID: 25222915 DOI: 10.2119/molmed.2014.00176] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022] Open
Abstract
Although originally described as a highly conserved nuclear protein, high-mobility group box 1 protein (HMGB1) has emerged as a danger-associated molecular pattern molecule protein (DAMP) and is a mediator of innate and specific immune responses. HMGB1 is passively or actively released in response to infection, injury and cellular stress, providing chemotactic and cytokine-like functions in the extracellular environment, where it interacts with receptors such as receptor for advanced glycation end products (RAGE) and several Toll-like receptors (TLRs). Although HMGB1 was first revealed as a key mediator of sepsis, it also contributes to a number of other conditions and disease processes. Chronic pain arises as a direct consequence of injury, inflammation or diseases affecting the somatosensory system and can be devastating for the affected patients. Emerging data indicate that HMGB1 is also involved in the pathology of persistent pain. Here, we give an overview of HMGB1 as a proinflammatory mediator, focusing particularly on the role of HMGB1 in the induction and maintenance of hypersensitivity in experimental models of pain and discuss the therapeutic potential of targeting HMGB1 in conditions of chronic pain.
Collapse
Affiliation(s)
- Nilesh M Agalave
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
121
|
Lei C, Wu B, Cao T, Zhang S, Liu M. Activation of the High-Mobility Group Box 1 Protein-Receptor for Advanced Glycation End-Products Signaling Pathway in Rats During Neurogenesis After Intracerebral Hemorrhage. Stroke 2015; 46:500-6. [PMID: 25538203 DOI: 10.1161/strokeaha.114.006825] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background and Purpose—
Following intracerebral hemorrhage (ICH), high-mobility group box 1 protein (HMGB1) may promote neurogenesis that supports functional recovery. How HMGB1 regulates or participates in this process is unclear, as are the pattern recognition receptors and signaling pathways involved.
Methods—
ICH was induced by injection of collagenase in Sprague–Dawley rats, which were treated 3 days later with saline, with the HMGB1 inhibitor ethyl pyruvate or with FPS-ZM1, an antagonist of the receptor for advanced glycation end-products. A Sham group was treated with saline solution instead of collagenase and then treated 3 days later with saline again or with ethyl pyruvate or N-benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1). Expression of the following proteins was measured by Western blot, immunohistochemistry, or immunofluorescence: HMGB1, receptor for advanced glycation end-products, toll-like receptor (TLR)-2, TLR4, brain-derived neurotrophic factor, and matrix metalloproteinase-9. The number of cells positive for 5-bromo-2-deoxyuridine or doublecortin was determined by immunohistochemistry and immunofluorescence.
Results—
Levels of HMGB1, receptor for advanced glycation end-products, TLR4, TLR2, brain-derived neurotrophic factor, and matrix metalloproteinase-9 were significantly higher 14 days after ICH than at baseline, as were the numbers of 5-bromo-2-deoxyuridine- or doublecortin-positive cells. At the same time, HMGB1 moved from the nucleus into the cytoplasm. Administering ethyl pyruvate significantly reduced all these ICH-induced increases, except the increase in TLR4 and TLR2. Administering FPS-ZM1 reduced the ICH-induced increases in the expression of brain-derived neurotrophic factor and matrix metalloproteinase-9 and in the numbers of 5-bromo-2-deoxyuridine- or doublecortin-positive cells.
Conclusions—
These findings suggest that HMGB1 acts via the receptor for advanced glycation end-products signaling pathway to promote neurogenesis in later phases of ICH.
Collapse
Affiliation(s)
- Chunyan Lei
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Bo Wu
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Tian Cao
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Shuting Zhang
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Liu
- From the Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
122
|
Abstract
Epilepsy affects 50 million persons worldwide, a third of whom continue to experience debilitating seizures despite optimum anti-epileptic drug (AED) treatment. Twelve-month remission from seizures is less likely in female patients, individuals aged 11-36 years and those with neurological insults and shorter time between first seizure and starting treatment. It has been found that the presence of multiple seizures prior to diagnosis is a risk factor for pharmacoresistance and is correlated with epilepsy type as well as intrinsic severity. The key role of neuroinflammation in the pathophysiology of resistant epilepsy is becoming clear. Our work in this area suggests that high-mobility group box 1 isoforms may be candidate biomarkers for treatment stratification and novel drug targets in epilepsy. Furthermore, transporter polymorphisms contributing to the intrinsic severity of epilepsy are providing robust neurobiological evidence on an emerging theory of drug resistance, which may also provide new insights into disease stratification. Some of the rare genetic epilepsies enable treatment stratification through testing for the causal mutation, for example SCN1A mutations in patients with Dravet's syndrome. Up to 50% of patients develop adverse reactions to AEDs which in turn affects tolerability and compliance. Immune-mediated hypersensitivity reactions to AED therapy, such as toxic epidermal necrolysis, are the most serious adverse reactions and have been associated with polymorphisms in the human leucocyte antigen (HLA) complex. Pharmacogenetic screening for HLA-B*15:02 in Asian populations can prevent carbamazepine-induced Stevens-Johnson syndrome. We have identified HLA-A*31:01 as a potential risk marker for all phenotypes of carbamazepine-induced hypersensitivity with applicability in European and other populations. In this review, we explore the currently available key stratification approaches to address the therapeutic challenges in epilepsy.
Collapse
Affiliation(s)
- L E Walker
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - N Mirza
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - V L M Yip
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - A G Marson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - M Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
123
|
Role of Extracellular Damage-Associated Molecular Pattern Molecules (DAMPs) as Mediators of Persistent Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:251-79. [DOI: 10.1016/bs.pmbts.2014.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
124
|
Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F, Gullotta M, Serra A, Mauro PD, Cocuzza S, Vitaliti G. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother 2015; 11:2021-2029. [PMID: 26260962 PMCID: PMC4635700 DOI: 10.1080/21645515.2015.1034921] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Recent experimental studies and pathological analyses of patient brain tissue samples with refractory epilepsy suggest that inflammatory processes and neuroinflammation plays a key-role in the etiopathology of epilepsy and convulsive disorders. These inflammatory processes lead to the secretion of pro-inflammatory cytokines responsible for blood-brain-barrier disruption and involvement of resident immune cells in the inflammation pathway, occurring within the Central Nervous System (CNS). These elements are produced through activation of Toll-Like Receptors (TLRs) by exogenous and endogenous ligands thereby increasing expression of cytokines and co-stimulatory molecules through the activation of TLRs 2, 3, 4, and 9 as reported in murine studies.It has been demonstrated that IL-1β intracellular signaling and cascade is able to alter the neuronal excitability without cell loss. The activation of the IL-1β/ IL-1β R axis is strictly linked to the secretion of the intracellular protein MyD88, which interacts with other cell surface receptors, such as TLR4 during pathogenic recognition. Furthermore, TLR-signaling pathways are able to recognize molecules released from damaged tissues, such as damage-associated molecular patterns/proteins (DAMPs). Among these molecules, High-mobility group box-1 (HMGB1) is a component of chromatin that is passively released from necrotic cells and actively released by cells that are subject to profound stress. Moreover, recent studies have described models of epilepsy induced by the administration of bicuculline and kainic acid that highlight the nature of HMGB1-TLR4 interactions, their intracellular signaling pathway as well as their role in ictiogenesis and epileptic recurrence.The aim of our review is to focus on different branches of innate immunity and their role in epilepsy, emphasizing the role of immune related molecules in epileptogenesis and highlighting the research implications for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nassim Matin
- Tehran University of Medical Sciences; Tehran, Iran
| | | | - Raffaele Falsaperla
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Riccardo Lubrano
- Paediatric Department; Paediatric Nephrology Operative Unit of the Sapienza University of Rome; Rome, Italy
| | - Piero Pavone
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Fahad Mahmood
- University Hospital of North Staffordshire; Stoke-on-Trent, UK
| | - Melissa Gullotta
- University of Medical Science; University of Catania; Catania, Italy
| | - Agostino Serra
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Paola Di Mauro
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Salvatore Cocuzza
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Giovanna Vitaliti
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| |
Collapse
|
125
|
Dupuis N, Auvin S. Inflammation and epilepsy in the developing brain: clinical and experimental evidence. CNS Neurosci Ther 2014; 21:141-51. [PMID: 25604829 DOI: 10.1111/cns.12371] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
There is an increasing evidence to support a role of inflammatory processes in epilepsy. However, most clinical and experimental studies have been conducted in adult patients or using adult rodents. The pediatric epilepsies constitute a varied group of diseases that are most frequently age specific. In this review, we will focus on the possible role of inflammation in pediatric epilepsy syndromes. We will first describe the clinical data available and provide an overview of our current understanding of the role of inflammation in these clinical situations. We will then review experimental data regarding the role of inflammation in epilepsy in the developing brain. To summarize, inflammation contributes to seizure precipitation, and reciprocally, prolonged seizures induce inflammation. There is also a relationship between inflammation and cell injury following status epilepticus, which differs according to the developmental stage. Finally, inflammation seems to contribute to epileptogenesis even in the developing brain. Based on the available data, we highlight the need for further studies dissecting the exact role of inflammation in epilepsy during development.
Collapse
Affiliation(s)
- Nina Dupuis
- INSERM U1141, Paris, France; APHP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, DHU Protect, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
126
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
127
|
Okuma Y, Liu K, Wake H, Liu R, Nishimura Y, Hui Z, Teshigawara K, Haruma J, Yamamoto Y, Yamamoto H, Date I, Takahashi HK, Mori S, Nishibori M. Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1–RAGE interaction. Neuropharmacology 2014; 85:18-26. [DOI: 10.1016/j.neuropharm.2014.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
128
|
Abstract
There is increasing evidence documenting activation of inflammatory processes in focal epilepsies. This review article summarizes current data regarding immune mediated inflammatory processes in patients with symptomatic partial epilepsies such as mesial temporal sclerosis, focal cortical dysplasia, and Rasmussen's encephalitis. We have also reviewed several neuronal surface antibody-associated syndromes, which have been recently described with focal seizures as an important part of clinical presentation, such as antibody-associated limbic encephalitis and N-methyl-D-aspartic acid receptor antibody syndrome. An autoimmune mechanism may be one pathogenic factor in some symptomatic epilepsies acting as a triggering event in the process leading to the development of epilepsy.
Collapse
|
129
|
High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr 2014; 173:1123-36. [PMID: 24809802 DOI: 10.1007/s00431-014-2327-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 02/08/2023]
Abstract
UNLABELLED High-mobility group box protein 1 (HMGB1) is a nonhistone nuclear protein that has a dual function. Inside the cell, HMGB1 binds DNA, regulating transcription and determining chromosomal architecture. Outside the cell, HMGB1 activates the innate system and mediates a wide range of physiological and pathological responses. HMGB1 exerts these actions through differential engagement of multiple surface receptors, including Toll-like receptor (TLR)2, TLR4, and receptor for advanced glycation end products (RAGE). HMGB1 is implicated as a late mediator of sepsis and is also involved in inflammatory and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Interestingly, HMGB1 was associated with tumor progression, becoming a potential therapeutic target, due to its involvement in the resistance to chemotherapy. Its implication on the pathogenesis of systemic vasculitis and inflammatory bowel diseases has also been evaluated. Moreover, it regulates neuroinflammation after traumatic brain injuries or cerebral infectious diseases. The aim of this review is to analyze these different roles of HMGB1, both in physiological and pathological conditions, discussing clinical and scientific implications in the field of pediatrics. CONCLUSION HMGB1 plays a key role in several pediatric diseases, opening new scenarios for diagnostic biomarkers and therapeutic strategies development.
Collapse
|
130
|
Sakuma S, Tokuhara D, Otsubo H, Yamano T, Shintaku H. Dynamic Change in Cells Expressing IL-1β in Rat Hippocampus after Status Epilepticus. JAPANESE CLINICAL MEDICINE 2014; 5:25-32. [PMID: 25210490 PMCID: PMC4134005 DOI: 10.4137/jcm.s13738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND The time course of cytokine dynamics after seizure remains controversial. Here we evaluated the changes in the levels and sites of interleukin (IL)-1β expression over time in the hippocampus after seizure. METHODS Status epilepticus (SE) was induced in adult Wistar rats by means of intraperitoneal injection of kainic acid (KA). Subsequently, the time courses of cellular localization and IL-1β concentration in the hippocampus were evaluated by means of immunohistochemical and quantitative assays. RESULTS On day 1 after SE, CA3 pyramidal cells showed degeneration and increased IL-1β expression. In the chronic phase (>7 days after SE), glial fibrillary acidic protein (GFAP)—positive reactive astrocytes—appeared in CA1 and became IL-1β immunoreactive. Their IL-1β immunoreactivity increased in proportion to the progressive hypertrophy of astrocytes that led to gliosis. Quantitative analysis showed that hippocampal IL-1β concentration progressively increased during the acute and chronic phases. CONCLUSION IL-1β affects the hippocampus after SE. In the acute phase, the main cells expressing IL-1β were CA3 pyramidal cells. In the chronic phase, the main cells expressing IL-1β were reactive astrocytes in CA1.
Collapse
Affiliation(s)
- Satoru Sakuma
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Tsunekazu Yamano
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
131
|
Chiavegato A, Zurolo E, Losi G, Aronica E, Carmignoto G. The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy. Front Cell Neurosci 2014; 8:155. [PMID: 24936172 PMCID: PMC4047964 DOI: 10.3389/fncel.2014.00155] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable brain tissue and unpredictable seizures, i.e., aberrant firing discharges in large neuronal populations. It is well established that proinflammatory cytokines, in addition to their canonical involvement in the immune response, have a crucial role in the mechanism of seizure generation. The purpose of the present study was to investigate the role of interleukin-1β (IL-1β) and high mobility group B1 (HMGB1) in the generation of seizure-like discharges using two models of focal epilepsy in a rat entorhinal cortex slice preparation. Seizure like-discharges were evoked by either slice perfusion with low Mg2+ and picrotoxin or with a double NMDA local stimulation in the presence of the proconvulsant 4-amino-pyridine. The effects of IL-1β or HMGB1 were evaluated by monitoring seizure discharge generation through laser scanning microscope imaging of Ca2+ signals from neurons and astrocytes. In the picrotoxin model, we revealed that both cytokines increased the mean frequency of spontaneous ictal-like discharges, whereas only IL-1β reduced the latency and prolonged the duration of the first ictal-like event. In the second model, a single NMDA pulse, per se ineffective, became successful when it was performed after IL-β or HMGB1 local applications. These findings demonstrate that both IL-1β and HMGB1 can rapidly lower focal ictal event threshold and strengthen the possibility that targeting these inflammatory pathways may represent an effective therapeutic strategy to prevent seizures.
Collapse
Affiliation(s)
- Angela Chiavegato
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova Padova, Italy
| | - Emanuele Zurolo
- Department of (Neuro)Pathology, Academic Medical Center, and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands ; SEIN - Stichting Epilepsie Instellingen Nederland Heemstede, Netherlands
| | - Gabriele Losi
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova Padova, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands ; SEIN - Stichting Epilepsie Instellingen Nederland Heemstede, Netherlands
| | - Giorgio Carmignoto
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova Padova, Italy
| |
Collapse
|
132
|
Reece AS, Hulse GK. Impact of lifetime opioid exposure on arterial stiffness and vascular age: cross-sectional and longitudinal studies in men and women. BMJ Open 2014; 4:e004521. [PMID: 24889849 PMCID: PMC4054659 DOI: 10.1136/bmjopen-2013-004521] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To characterise and compare the potentiation of arterial stiffness and vascular ageing by opioids in men and women. DESIGN Cross-sectional and longitudinal studies of 576 clinical controls and 687 opioid-dependent patients (ODP) on 710 and 1305 occasions, respectively, over a total of 2382 days (6.52 years), 2006-2011. Methodology Radial pulse wave analysis with Atcor SphygmoCor system (Sydney). SETTING Primary care. CONTROLS General practice patients with non-cardiovascular disorders, and university student controls. ODP: Patients undergoing clinical management of their opioid dependence. CONTROLS had lower chronological ages (CAs) than ODP (30.0±0.5 vs 34.5±0.3, mean±SEM, p<0.0001). 69.6% and 67.7% participants were men, and 16% and 92.3% were smokers (p<0.0001) for controls and ODP, respectively. 86.3%, 10.3% and 3.4% of ODP were treated with buprenorphine (6.98±0.21 mg), methadone (63.04±4.01 mg) or implant naltrexone, respectively. Body mass index (BMI) was depressed in ODP. INTERVENTIONS Nil. PRIMARY OUTCOME MEASURES Vascular Reference Age (RA) and the ratio of vascular age to chronological age (RA/CA). SECONDARY OUTCOME MEASURES Arterial stiffness including Augmentation Index. RESULTS After BMI adjustment, RA in ODP was higher as a function of CA and of time (both p<0.05). Modelled mean RA in control and ODP was 35.6 and 36.3 years (+1.97%) in men, and 34.5 and 39.2 years (+13.43%) in women, respectively. Changes in RA and major arterial stiffness indices were worse in women both as a factor (p = 0.0036) and in interaction with CA (p = 0.0040). Quadratic, cubic and quartic functions of opioid exposure duration outperformed linear models with RA/CA over CA and over time. The opioid dose-response relationship persisted longitudinally after multiple adjustments from p=0.0013 in men and p=0.0073 in women. CONCLUSIONS Data show that lifetime opioid exposure, an interactive cardiovascular risk factor, particularly in women, is related to linear, quadratic, cubic and quartic functions of treatment duration and is consistent with other literature of accelerated ageing in patients with OD.
Collapse
Affiliation(s)
- Albert Stuart Reece
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Gary Kenneth Hulse
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
133
|
Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11:251-68. [PMID: 24481729 PMCID: PMC3996119 DOI: 10.1007/s13311-013-0251-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Structural abnormalities of the brain are increasingly recognized in patients with neurodevelopmental delay and intractable focal epilepsies. The access to clinically well-characterized neurosurgical material has provided a unique opportunity to better define the neuropathological, neurochemical, and molecular features of epilepsy-associated focal developmental lesions. These studies help to further understand the epileptogenic mechanisms of these lesions. Neuropathological evaluation of surgical specimens from patients with epilepsy-associated developmental lesions reveals two major pathologies: focal cortical dysplasia and low-grade developmental tumors (glioneuronal tumors). In the last few years there have been major advances in the recognition of a wide spectrum of developmental lesions associated with a intractable epilepsy, including cortical tubers in patients with tuberous sclerosis complex and hemimegalencephaly. As an increasing number of entities are identified, the development of a unified and comprehensive classification represents a great challenge and requires continuous updates. The present article reviews current knowledge of molecular pathogenesis and the pathophysiological mechanisms of epileptogenesis in this group of developmental disorders. Both emerging neuropathological and basic science evidence will be analyzed, highlighting the involvement of different, but often converging, pathogenetic and epileptogenic mechanisms, which may create the basis for new therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
134
|
Abstract
Few would experience greater benefit from the development of biomarkers than those who suffer from epilepsy. Both the timing of individual seizures and the overall course of the disease are highly unpredictable, and the associated morbidity is considerable. Thus, there is an urgent need to develop biomarkers that can predict the progression of epilepsy and treatment response. Doing so may also shed light on the mechanisms of epileptogenesis and pharmacoresistance, which remain elusive despite decades of study. However, recent advances suggest the possible identification of circulating epilepsy biomarkers – accessible in blood, cerebrospinal fluid or urine. In this review, we focus on advances in several areas: neuroimmunology and inflammation; neurological viral infection; exemplary pediatric syndromes; and the genetics of pharmacoresistance, as relevant to epilepsy. These are fertile areas of study with great potential to yield accessible epilepsy biomarkers.
Collapse
Affiliation(s)
- Manu Hegde
- UCSF Epilepsy Center, Department of Neurology, University of California, San Francisco, 521 Parnassus Avenue C-440, San Francisco, CA 94143-0138, USA
- Epilepsy Center of Excellence, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 127E, San Francisco, CA 94121, USA
| | - Daniel H Lowenstein
- UCSF Epilepsy Center, Department of Neurology, University of California, San Francisco, 521 Parnassus Avenue C-440, San Francisco, CA 94143-0138, USA
| |
Collapse
|
135
|
Expression and Cellular Distribution of the Interleukin 2 Signaling System in Cortical Lesions From Patients With Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2014; 73:206-22. [DOI: 10.1097/nen.0000000000000042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
136
|
Hubbard JA, Hsu MS, Fiacco TA, Binder DK. Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Int 2013; 63:638-51. [DOI: 10.1016/j.neuint.2013.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
137
|
Xu D, Miller SD, Koh S. Immune mechanisms in epileptogenesis. Front Cell Neurosci 2013; 7:195. [PMID: 24265605 PMCID: PMC3821015 DOI: 10.3389/fncel.2013.00195] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a chronic brain disorder that affects 1% of the human population worldwide. Immune responses are implicated in seizure induction and the development of epilepsy. Pre-clinical and clinical evidence have accumulated to suggest a positive feedback cycle between brain inflammation and epileptogenesis. Prolonged or recurrent seizures and brain injuries lead to upregulation of proinflammatory cytokines and activated immune responses to further increase seizure susceptibility, promote neuronal excitability, and induce blood-brain barrier breakdown. This review focuses on the potential role of innate and adaptive immune responses in the pathogenesis of epilepsy. Both human studies and animal models that help delineate the contributions of brain inflammation in epileptogenesis will be discussed. We highlight the critical role of brain-resident immune mediators and emphasize the contribution of brain-infiltrating peripheral leukocytes. Additionally, we propose possible immune mechanisms that underlie epileptogenesis. Several proinflammatory pathways are discussed, including the interleukin-1 receptor/toll-like receptor signaling cascade, the pathways activated by damage-associated molecular patterns, and the cyclooxygenase-2/prostaglandin pathway. Finally, development of better therapies that target the key constituents and processes identified in these mechanisms are considered, for instance, engineering antagonizing agents that effectively block these pathways in an antigen-specific manner.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology and Interdepartmental Immunobiology, Feinberg School of Medicine, Northwestern UniversityChicago IL, USA
- Department of Pediatrics, Division of Neurobiology, Children’s Research Center, Lurie Children’s Hospital of ChicagoChicago IL, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology, Feinberg School of Medicine, Northwestern UniversityChicago IL, USA
| | - Sookyong Koh
- Department of Pediatrics, Division of Neurobiology, Children’s Research Center, Lurie Children’s Hospital of ChicagoChicago IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern UniversityChicago IL, USA
| |
Collapse
|
138
|
HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-κB signaling pathways. Mediators Inflamm 2013; 2013:596716. [PMID: 24302816 PMCID: PMC3834620 DOI: 10.1155/2013/596716] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/05/2013] [Accepted: 09/21/2013] [Indexed: 12/15/2022] Open
Abstract
Synovial fibroblasts (SF) play a central role in the inflammatory and
destructive process in rheumatoid arthritis (RA). High-mobility
group box chromosomal protein 1 (HMGB1) or lipopolysaccharide
(LPS) alone failed to induce significant changes in proliferation
of cultured SF from RA patients, but premixed HMGB1 with LPS
(HMGB1-LPS) significantly facilitated SF proliferation. HMGB1
alone failed to induce IL-6, MMP-3, and MMP-13 production in
cultured SF but greatly enhanced LPS-induced expression of IL-6,
MMP-3, and MMP-13 at both mRNA and protein levels. HMGB1-LPS
synergistically upregulated TLR4 and receptor for advanced
glycation endproducts (RAGE) expression on the surface of SF. Both
blockers of TLR4 and RAGE significantly inhibited the synergistic
effects of HMGB1-LPS on the production of IL-6 and MMPs, but
blocking antibodies to TLR2 failed. HMGB1-LPS synergistically
increased intracellular levels of phosphorylated p38 and
phosphorylated IκB. Furthermore, both NF-κB inhibitor Bay11-7085
and p38 inhibitor SB203580 significantly suppressed the enhanced
production of IL-6 and MMPs induced by HMGB1-LPS. In conclusion,
HMGB1 acts in synergy with LPS to upregulate TLR4 and RAGE
expression on the surface of SF in RA and then to augment IL-6,
MMP-3, and MMP-13 production, which depends on p38 MAPK and NF-κB
activation.
Collapse
|
139
|
Temp FR, Santos AC, Marafiga JR, Jesse AC, Lenz QF, Oliveira SM, Guerra GP, Scimonelli TN, Mello CF. Alpha melanocyte stimulating hormone (α-MSH) does not modify pentylenetetrazol- and pilocarpine-induced seizures. Life Sci 2013; 93:723-31. [DOI: 10.1016/j.lfs.2013.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/09/2013] [Accepted: 09/04/2013] [Indexed: 12/30/2022]
|
140
|
Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 2013; 59:52-62. [PMID: 23867237 PMCID: PMC3775891 DOI: 10.1016/j.nbd.2013.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
141
|
Myoloid-Related Protein 8, an Endogenous Ligand of Toll-Like Receptor 4, Is Involved in Epileptogenesis of Mesial Temporal Lobe Epilepsy Via Activation of the Nuclear Factor-κB Pathway in Astrocytes. Mol Neurobiol 2013; 49:337-51. [DOI: 10.1007/s12035-013-8522-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/24/2013] [Indexed: 11/25/2022]
|
142
|
He JJ, Wu KF, Li S, Shu HF, Zhang CQ, Liu SY, Yang MH, Yin Q, Yang H. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J Neuroimmunol 2013; 262:85-91. [PMID: 23906968 DOI: 10.1016/j.jneuroim.2013.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 01/06/2023]
Abstract
The role of interleukin 17 (IL-17) to epilepsy-associated cortical tubers of tuberous sclerosis complex (TSC) is unknown. We investigated the expression patterns of the IL-17 and IL-17 receptor (IL-17R) in cortical tubers of TSC compared with normal control cortex (CTX). We found that IL-17 and IL-17R were clearly upregulated in cortical tubers at the protein levels. Immunostaining indicated that IL-17 was specifically distributed in the innate immunity cells (DNs, GCs, astrocytes, and microglia) and adaptive immunity cells (T-lymphocytes) as well as the endothelial cells of blood vessels. The overexpression and distribution patterns of IL-17 may be involved in the epileptogenicity of cortical tubers in TSC.
Collapse
Affiliation(s)
- Jiao-Jiang He
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson's disease. Cold Spring Harb Perspect Med 2013; 2:a009381. [PMID: 22315722 DOI: 10.1101/cshperspect.a009381] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immune system is designed to protect the host from infection and injury. However, when an adaptive immune response continues unchecked in the brain, the proinflammatory innate microglial response leads to the accumulation of neurotoxins and eventual neurodegeneration. What drives such responses are misfolded and nitrated proteins. Indeed, the antigen in Parkinson's disease (PD) is an aberrant self-protein, although the adaptive immune responses are remarkably similar in a range of diseases. Ingress of lymphocytes and chronic activation of glial cells directly affect neurodegeneration. With this understanding, new therapies aimed at modulating the immune system's response during PD could lead to decreased neuronal loss and improved clinical outcomes for disease.
Collapse
Affiliation(s)
- R Lee Mosley
- Movement Disorders Program, Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
144
|
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013; 69:16-24. [PMID: 22521336 PMCID: PMC3447120 DOI: 10.1016/j.neuropharm.2012.04.004] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
One compelling challenge in the therapy of epilepsy is to develop anti-epileptogenic drugs with an impact on the disease progression. The search for novel targets has focused recently on brain inflammation since this phenomenon appears to be an integral part of the diseased hyperexcitable brain tissue from which spontaneous and recurrent seizures originate. Although the contribution of specific proinflammatory pathways to the mechanism of ictogenesis in epileptic tissue has been demonstrated in experimental models, the role of these pathways in epileptogenesis is still under evaluation. We review the evidence conceptually supporting the involvement of brain inflammation and the associated blood-brain barrier damage in epileptogenesis, and describe the available pharmacological evidence where post-injury intervention with anti-inflammatory drugs has been attempted. Our review will focus on three main inflammatory pathways, namely the IL-1 receptor/Toll-like receptor signaling, COX-2 and the TGF-β signaling. The mechanisms underlying neuronal-glia network dysfunctions induced by brain inflammation are also discussed, highlighting novel neuromodulatory effects of classical inflammatory mediators such as cytokines and prostaglandins. The increase in knowledge about a role of inflammation in disease progression, may prompt the use of specific anti-inflammatory drugs for developing disease-modifying treatments. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Laboratory Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
145
|
Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica E, Ravizza T, Vezzani A. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis 2013; 58:102-14. [PMID: 23523633 DOI: 10.1016/j.nbd.2013.03.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) activation in neuron and astrocytes by High Mobility Group Box 1 (HMGB1) protein is a key mechanism of seizure generation. HMGB1 also activates the Receptor for Advanced Glycation Endproducts (RAGE), but it was unknown whether RAGE activation contributes to seizures or to HMGB1 proictogenic effects. We found that acute EEG seizures induced by 7ng intrahippocampal kainic acid (KA) were significantly reduced in Rage-/- mice relative to wild type (Wt) mice. The proictogenic effect of HMGB1 was decreased in Rage-/- mice, but less so, than in Tlr4-/- mice. In a mouse mesial temporal lobe epilepsy (mTLE) model, status epilepticus induced by 200ng intrahippocampal KA and the onset of the spontaneous epileptic activity were similar in Rage-/-, Tlr4-/- and Wt mice. However, the number of hippocampal paroxysmal episodes and their duration were both decreased in epileptic Rage-/- and Tlr4-/- mice vs Wt mice. All strains of epileptic mice displayed similar cognitive deficits in the novel object recognition test vs the corresponding control mice. CA1 neuronal cell loss was increased in epileptic Rage-/- vs epileptic Wt mice, while granule cell dispersion and doublecortin (DCX)-positive neurons were similarly affected. Notably, DCX neurons were preserved in epileptic Tlr4-/- mice. We did not find compensatory changes in HMGB1-related inflammatory signaling nor in glutamate receptor subunits in Rage-/- and Tlr4-/- naïve mice, except for ~20% NR2B subunit reduction in Rage-/- mice. RAGE was induced in neurons, astrocytes and microvessels in human and experimental mTLE hippocampi. We conclude that RAGE contributes to hyperexcitability underlying acute and chronic seizures, as well as to the proictogenic effects of HMGB1. RAGE and TLR4 play different roles in the neuropathologic sequelae developing after status epilepticus. These findings reveal new molecular mechanisms underlying seizures, cell loss and neurogenesis which involve inflammatory pathways upregulated in human epilepsy.
Collapse
Affiliation(s)
- Valentina Iori
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
The interleukin 17 system in cortical lesions in focal cortical dysplasias. J Neuropathol Exp Neurol 2013; 72:152-63. [PMID: 23334598 DOI: 10.1097/nen.0b013e318281262e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal cortical dysplasias (FCDs) are increasingly recognized as important causes of medically intractable epilepsy. To understand the potential role of the interleukin 17 (IL-17) system in the epileptogenesis of FCDs, we studied the expression patterns of the IL-17 system in 15 FCD type Ia (FCDIa), 12 FCD type IIa (FCDIIa), and 12 FCD type IIb (FCDIIb) cortical lesions and compared the results with those in cerebral cortex from 10 control patients. Protein levels of IL-17, IL-17 receptor (IL-17R), and downstream factors of the IL-17 pathway (nuclear factor-κB activator 1 [NFκB; ACT1] and NFκB-p65) were markedly elevated in FCDIa, FCDIIa, and FCDIIb. Moreover, protein levels of IL-17 and IL-17R positively correlated with the frequency of seizures in FCD patients. Immunostaining indicated that IL-17 and IL-17R are highly expressed in neuronal microcolumns, dysmorphic neurons, balloon cells, astrocytes, and vascular endothelial cells. Nuclear factor-κB activator 1 and NFκB-p65 were diffusely expressed in FCDs. In addition, we detected a few IL-17-positive, CD4-positive T lymphocytes in FCDIIa and FCDIIb but not in FCDIa. Taken together, these findings suggest that the overexpression of the IL-17 system and the activation of the IL-17 signal transduction pathway may be involved in the epileptogenicity of cortical lesions in FCDs, thus representing a novel potential target for antiepileptic therapy.
Collapse
|
147
|
Schwarz JM, Bilbo SD. Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction. J Neurosci 2013; 33:961-71. [PMID: 23325235 PMCID: PMC3713715 DOI: 10.1523/jneurosci.2516-12.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 02/07/2023] Open
Abstract
Adolescence in humans represents a unique developmental time point associated with increased risk-taking behavior and experimentation with drugs of abuse. We hypothesized that exposure to drugs of abuse during adolescence may increase the risk of addiction in adulthood. To test this, rats were treated with a subchronic regimen of morphine or saline in adolescence, and their preference for morphine was examined using conditioned place preference (CPP) and drug-induced reinstatement in adulthood. The initial preference for morphine did not differ between groups; however, rats treated with morphine during adolescence showed robust reinstatement of morphine CPP after drug re-exposure in adulthood. This effect was not seen in rats pretreated with a subchronic regimen of morphine as adults, suggesting that exposure to morphine specifically during adolescence increases the risk of relapse to drug-seeking behavior in adulthood. We have previously established a role for microglia, the immune cells of the brain, and immune molecules in the risk of drug-induced reinstatement of morphine CPP. Thus, we examined the role of microglia within the nucleus accumbens of these rats and determined that rats exposed to morphine during adolescence had a significant increase in Toll-like receptor 4 (TLR4) mRNA and protein expression specifically on microglia. Morphine binds to TLR4 directly, and this increase in TLR4 was associated with exaggerated morphine-induced TLR4 signaling and microglial activation in rats previously exposed to morphine during adolescence. These data suggest that long-term changes in microglial function, caused by adolescent morphine exposure, alter the risk of drug-induced reinstatement in adulthood.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27705, USA.
| | | |
Collapse
|
148
|
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013; 36:174-84. [PMID: 23298414 DOI: 10.1016/j.tins.2012.11.008] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 11/15/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Epilepsy is characterized by recurrent spontaneous seizures due to hyperexcitability and hypersynchrony of brain neurons. Current theories of pathophysiology stress neuronal dysfunction and damage, and aberrant connections as relevant factors. Most antiepileptic drugs target neuronal mechanisms. However, nearly one-third of patients have seizures that are refractory to available medications; a deeper understanding of mechanisms may be required to conceive more effective therapies. Recent studies point to a significant contribution by non-neuronal cells, the glia--especially astrocytes and microglia--in the pathophysiology of epilepsy. This review critically evaluates the role of glia-induced hyperexcitability and inflammation in epilepsy.
Collapse
Affiliation(s)
- Orrin Devinsky
- Epilepsy Center, Department of Neurology, NYU School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
149
|
Zurolo E, de Groot M, Iyer A, Anink J, van Vliet EA, Heimans JJ, Reijneveld JC, Gorter JA, Aronica E. Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 β. J Neuroinflammation 2012; 9:280. [PMID: 23270518 PMCID: PMC3538650 DOI: 10.1186/1742-2094-9-280] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/09/2012] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K⁺ buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression. METHODS We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (n = 64), comparing the expression in tumor patients with (n = 38) and without epilepsy (n = 26). RESULTS Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1). CONCLUSIONS Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.
Collapse
Affiliation(s)
- Emanuele Zurolo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Marjolein de Groot
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anand Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Jasper Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Heimans
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| |
Collapse
|
150
|
Gabel LA, Manglani M, Ibanez N, Roberts J, Ramos RL, Rosen GD. Differential seizure response in two models of cortical heterotopia. Brain Res 2012. [PMID: 23201443 DOI: 10.1016/j.brainres.2012.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malformations of cortical development (MCD) are linked to epilepsy in humans. MCD encompass a broad spectrum of malformations, which occur as the principal pathology or a secondary disruption. Recently, Rosen et al. (2012) reported that BXD29-Trl4(lps-2J)/J mice have subcortical nodular heterotopias with partial agenesis of the corpus callosum (p-ACC). Additionally Ramos et al. (2008) demonstrated that C57BL/10J mice exhibit cortical heterotopias with no additional cortical abnormalities. We examined the seizure susceptibility of these mice to determine if the presence (BXD29-Trl4(lps-2J)/J) or absence (C57BL/10J) of p-ACC, in strains with MCD, confers a differential response to chemi-convulsive treatment. Our results indicate that C57BL/10J mice with layer I heterotopia are more susceptible, whereas BXD29-Trl4(lps-2J)/J mice with more severe subcortical nodular heterotopia and p-ACC are more resistant to seizure behavior induced by pentylenetetrazole. These data suggest that p-ACC may confer seizure resistance in models of MCD.
Collapse
Affiliation(s)
- Lisa A Gabel
- Department of Psychology, Lafayette College, Easton, PA, United States.
| | | | | | | | | | | |
Collapse
|