101
|
Feng C, Wang JG, Liu HH, Li S, Zhang Y. Arabidopsis adaptor protein 1G is critical for pollen development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:594-599. [PMID: 28544342 DOI: 10.1111/jipb.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Pollen development is a pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultrastructural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development.
Collapse
Affiliation(s)
- Chong Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hai-Hong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
102
|
Paupière MJ, Müller F, Li H, Rieu I, Tikunov YM, Visser RGF, Bovy AG. Untargeted metabolomic analysis of tomato pollen development and heat stress response. PLANT REPRODUCTION 2017; 30:81-94. [PMID: 28508929 PMCID: PMC5486769 DOI: 10.1007/s00497-017-0301-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/02/2017] [Indexed: 05/17/2023]
Abstract
Pollen development metabolomics. Developing pollen is among the plant structures most sensitive to high temperatures, and a decrease in pollen viability is often associated with an alteration of metabolite content. Most of the metabolic studies of pollen have focused on a specific group of compounds, which limits the identification of physiologically important metabolites. To get a better insight into pollen development and the pollen heat stress response, we used a liquid chromatography-mass spectrometry platform to detect secondary metabolites in pollen of tomato (Solanum lycopersicum L.) at three developmental stages under control conditions and after a short heat stress at 38 °C. Under control conditions, the young microspores accumulated a large amount of alkaloids and polyamines, whereas the mature pollen strongly accumulated flavonoids. The heat stress treatment led to accumulation of flavonoids in the microspore. The biological role of the detected metabolites is discussed. This study provides the first untargeted metabolomic analysis of developing pollen under a changing environment that can serve as reference for further studies.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Florian Müller
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Hanjing Li
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ivo Rieu
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yury M Tikunov
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Arnaud G Bovy
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
103
|
Conner JA, Podio M, Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. PLANT REPRODUCTION 2017; 30:41-52. [PMID: 28238020 DOI: 10.1007/s00497-017-0298-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 05/18/2023]
Abstract
The PsASGR - BBML transgene, derived from a wild apomictic grass species, can induce parthenogenesis, embryo formation without fertilization, in rice and maize, leading to the formation of haploid plants. The ability to engineer apomictic crop plants using genes identified from naturally occurring apomicts will depend on the ability of those genes to function in crop plants. The PsASGR-BBML transgene, derived from the apomictic species Pennisetum squamulatum, promotes parthenogenesis in sexual pearl millet, a member of the same genus, leading to the formation of haploid embryos. This study determined that the PsASGR-BBML transgene can induce haploid embryo development in two major monocot crops, maize and rice. Transgene variations tested included two different promoters and the use of both genomic and cDNA PsASGR-BBML-derived sequences. Haploid plants were recovered from mature caryopses (seed) of rice and maize lines at variable rates. The PsASGR-BBML transgenes failed to induce measurable haploid seed development in the model genetic plant system Arabidopsis thaliana. Complexity of embryo development, as documented in transgenic rice lines, identifies the need for further characterization of the PsASGR-BBML gene.
Collapse
Affiliation(s)
- Joann A Conner
- Department of Horticulture, University of Georgia, Tifton Campus, Tifton, GA, 31793, USA.
| | - Maricel Podio
- Department of Horticulture, University of Georgia, Tifton Campus, Tifton, GA, 31793, USA
| | - Peggy Ozias-Akins
- Department of Horticulture, University of Georgia, Tifton Campus, Tifton, GA, 31793, USA
| |
Collapse
|
104
|
Zheng H, Wu H, Pan X, Jin W, Li X. Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea mays L.) Under Low Nitrogen Supply. PLANT & CELL PHYSIOLOGY 2017; 58:342-353. [PMID: 28007967 DOI: 10.1093/pcp/pcw195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Pollen germination is an essential step towards successful pollination during maize reproduction. How low niutrogen (N) affects pollen germination remains an interesting biological question to be addressed. We found that only low N resulted in a significantly lower germination rate of pollen grains after 4 weeks of low N, phosphorus or potassium treatment in maize production. Importantly, cytological analysis showed 7-fold more micronuclei in male meiocytes under the low N treatment than in the control, indicating that the lower germination rate of pollen grains was partially due to numerous chromosome loss events resulting from preceding meiosis. The appearance of 10 bivalents in the control and low N cells at diakinesis suggested that chromosome pairing and recombination in meiosis I was not affected by low N. Further gene expression analysis revealed dramatic down-regulation of Nuclear Division Cycle 80 (Ndc80) and Regulator of Chromosome Condensation 1 (Rcc1-1) expression and up-regulation of Cell Division Cycle 20 (Cdc20-1) expression, although no significant difference in the expression level of kinetochore foundation proteins Centromeric Histone H3 (Cenh3) and Centromere Protein C (Cenpc) and cohesion regulators Recombination 8 (Rec8) and Shugoshin (Sgo1) was observed. Aberrant modulation of three key meiotic regulators presumably resulted in a high likelihood of erroneous chromosome segregation, as testified by pronounced lagging chromosomes at anaphase I or cell cycle disruption at meiosis II. Thus, we proposed a cytogenetic mechanism whereby low N affects male meiosis and causes a higher chromosome loss frequency and eventually a lower germination rate of pollen grains in a staple crop plant.
Collapse
Affiliation(s)
- Hongyan Zheng
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Huamao Wu
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoying Pan
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Weiwei Jin
- The National Maize Center, and Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
105
|
Twell D, Brownfield L. Analysis of Fluorescent Reporter Activity in the Male Germline During Pollen Development by Confocal Microscopy. Methods Mol Biol 2017; 1669:67-75. [PMID: 28936650 DOI: 10.1007/978-1-4939-7286-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The male germline of flowering plants develops within the vegetative cell of the male gametophyte (pollen). The germline is established by asymmetric division of the microspore to form the generative cell. Mitotic division of the generative cell then produces the two sperm cells required for double fertilization. These differentiate to produce the proteins required for gamete attachment and fusion. An important aspect of understanding germline development is the characterization of germline gene expression. Here, we describe the use of a fluorescent reporter to study germline gene expression in developing pollen to assess the timing and specificity of expression.
Collapse
Affiliation(s)
- David Twell
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
106
|
Abstract
In the last decade, the accumulation and roles of small RNAs have been slowly uncovered. Recently, the RNA silencing pathways active in the male gametophyte of plants have started to be analyzed in depth. Although several studies have shed light on the small RNA populations present in the pollen, we still lack a clear picture of their regulatory activity. This chapter outlines an extraction method of mature pollen grains and its different downstream applications for the purification and detection of small RNAs.
Collapse
Affiliation(s)
- German Martinez
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07, Uppsala, Sweden.
| |
Collapse
|
107
|
Sharma SK, Yamamoto M, Mukai Y. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids. PROTOPLASMA 2017; 254:161-165. [PMID: 26769710 DOI: 10.1007/s00709-015-0925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan.
| | - Maki Yamamoto
- Department of Rehabilitation Sciences, Kansai University of Welfare Sciences, Kashiwara, Osaka, Japan
| | - Yasuhiko Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| |
Collapse
|
108
|
Nguyen TD, Moon S, Oo MM, Tayade R, Soh MS, Song JT, Oh SA, Jung KH, Park SK. Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. PLANT REPRODUCTION 2016; 29:291-300. [PMID: 27796586 DOI: 10.1007/s00497-016-0293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Rice microspore-promoters. Based on microarray data analyzed for developing anthers and pollen grains, we identified nine rice microspore-preferred (RMP) genes, designated RMP1 through RMP9. To extend their biotechnological applicability, we then investigated the activity of RMP promoters originating from monocotyledonous rice in a heterologous system of dicotyledonous Arabidopsis. Expression of GUS was significantly induced in transgenic plants from the microspore to the mature pollen stages and was driven by the RMP1, RMP3, RMP4, RMP5, and RMP9 promoters. We found it interesting that, whereas RMP2 and RMP6 directed GUS expression in microspore at the early unicellular and bicellular stages, RMP7 and RMP8 seemed to be expressed at the late tricellular and mature pollen stages. Moreover, GUS was expressed in seven promoters, RMP3 through RMP9, during the seedling stage, in immature leaves, cotyledons, and roots. To confirm microspore-specific expression, we used complementation analysis with an Arabidopsis male-specific gametophytic mutant, sidecar pollen-2 (scp-2), to verify the activity of three promoters. That mutant shows defects in microspore development prior to pollen mitosis I. These results provide strong evidence that the SIDECAR POLLEN gene, driven by RMP promoters, successfully complements the scp-2 mutation, and they strongly suggest that these promoters can potentially be applied for manipulating the expression of target genes at the microspore stage in various species.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Rupesh Tayade
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
109
|
Kim M, Kim MJ, Pandey S, Kim J. Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development. PLANT & CELL PHYSIOLOGY 2016; 57:2291-2299. [PMID: 27519310 DOI: 10.1093/pcp/pcw145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor gene family members play key roles in diverse aspects of plant development. LBD10 and LBD27 have been shown to be essential for pollen development in Arabidopsis thaliana. From the previous RNA sequencing (RNA-Seq) data set of Arabidopsis pollen, we identified the mRNAs of LBD22, LBD25 and LBD36 in addition to LBD10 and LBD27 in Arabidopsis pollen. Here we conducted expression and cellular analysis using GFP:GUS (green fluorescent protein:β-glucuronidase) reporter gene and subcellular localization assays using LBD:GFP fusion proteins expressed under the control of their own promoters in Arabidopsis. We found that these LBD proteins display spatially and temporally distinct and overlapping expression patterns during pollen development. Bimolecular fluorescence complementation and GST (glutathione S-transferase) pull-down assays demonstrated that protein-protein interactions occur among the LBDs exhibiting overlapping expression during pollen development. We further showed that LBD10, LBD22, LBD25, LBD27 and LBD36 interact with each other to form heterodimers, which are localized to the nucleus in Arabidopsis protoplasts. Taken together, these results suggest that combinatorial interactions among LBD proteins may be important for their function in pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Mirim Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Shashank Pandey
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| |
Collapse
|
110
|
Kozłowska M, Niedojadło K, Brzostek M, Bednarska-Kozakiewicz E. Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth. PLANT REPRODUCTION 2016; 29:251-263. [PMID: 27422435 PMCID: PMC4978762 DOI: 10.1007/s00497-016-0289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.
Collapse
Affiliation(s)
- Marlena Kozłowska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Marta Brzostek
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
111
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
112
|
Hafidh S, Fíla J, Honys D. Male gametophyte development and function in angiosperms: a general concept. PLANT REPRODUCTION 2016; 29:31-51. [PMID: 26728623 DOI: 10.1007/s00497-015-0272-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 05/23/2023]
Abstract
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - Jan Fíla
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
113
|
Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. PLANT REPRODUCTION 2016; 29:3-20. [PMID: 26676144 DOI: 10.1007/s00497-015-0270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
Phosphoinositides in pollen. In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
114
|
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. PLANT REPRODUCTION 2016; 29:119-32. [PMID: 27271282 PMCID: PMC4909805 DOI: 10.1007/s00497-016-0283-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
Pollen development and stress. In angiosperms, pollen or pollen grain (male gametophyte) is a highly reduced two- or three-cell structure which plays a decisive role in plant reproduction. Male gametophyte development takes place in anther locules where diploid sporophytic cells undergo meiotic division followed by two consecutive mitotic processes. A desiccated and metabolically quiescent form of mature pollen is released from the anther which lands on the stigma. Pollen tube growth takes place followed by double fertilization. Apart from its importance in sexual reproduction, pollen is also an interesting model system which integrates fundamental cellular processes like cell division, differentiation, fate determination, polar establishment, cell to cell recognition and communication. Recently, pollen functionality has been studied by multidisciplinary approaches which also include OMICS analyses like transcriptomics, proteomics and metabolomics. Here, we review recent advances in proteomics of pollen development and propose the process of developmental priming playing a key role to guard highly sensitive developmental processes.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector No-15, CBD, Belapur, Navi Mumbai, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
115
|
Müller F, Rieu I. Acclimation to high temperature during pollen development. PLANT REPRODUCTION 2016; 29:107-18. [PMID: 27067439 PMCID: PMC4909792 DOI: 10.1007/s00497-016-0282-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/28/2016] [Indexed: 05/15/2023]
Abstract
KEY MESSAGE Pollen heat acclimation. As a consequence of global warming, plants have to face more severe and more frequently occurring periods of high temperature stress. While this affects the whole plant, development of the male gametophyte, the pollen, seems to be the most sensitive process. Given the great importance of functioning pollen for the plant life cycle and for agricultural production, it is necessary to understand this sensitivity. While changes in temperature affect different components of all cells and require a cellular response and acclimation, high temperature effects and responses in developing pollen are distinct from vegetative tissues at several points. This could be related to specific physiological characteristics of developing pollen and supporting tissues which make them vulnerable to high temperature, or its derived effects such as ROS accumulation and carbohydrate starvation. But also expression of heat stress-responsive genes shows unique patterns in developing pollen when compared to vegetative tissues that might explain the failure to withstand high temperatures. As an alternative to viewing pollen failure under high temperature as a result of inherent sensitivity of a specific developmental process, we end by discussing whether it might actually be an adaptation.
Collapse
Affiliation(s)
- Florian Müller
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
116
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
117
|
Marshall DL, Evans AS. Can selection on a male mating character result in evolutionary change? A selection experiment on California wild radish, Raphanus sativus. AMERICAN JOURNAL OF BOTANY 2016; 103:553-567. [PMID: 26872491 DOI: 10.3732/ajb.1500171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Whenever more pollen grains arrive on stigmas than necessary to fertilize ovules, sexual selection is possible. However, the role of sexual selection remains controversial, in part because of lack of evidence on genetic bases of traits and the response of relevant characters to selection. METHODS In an experiment with Raphanus sativus, we selected on tendency to sire seeds in the stylar or basal regions of fruits. This character is likely related to pollen tube growth rate, and seed position affects rates of abortion and seed predation. We measured differences among families in seed siring and related characters and evaluated responses to selection. KEY RESULTS All replicates showed strong effects of pollen donor family on proportion of seeds sired per fruit in mixed pollinations. Most also showed effects of pollen donor family on number of pollen grains per flower and pollen diameter. Two of four replicates showed a response to selection on position of seeds sired. In responding replicates, we found trade-offs in pollen grain size and number; plants with larger pollen grains sired more seeds in the basal region. CONCLUSIONS Our data suggest a genetic basis for pollen donor ability to sire seeds in competition. The significant response to selection in two replicates shows that position of seeds sired can respond to selection. Thus, all components for sexual selection to occur and affect traits are present. Variation in results among replicates might be due to changes in greenhouse conditions. Environmental effects may contribute to the maintenance of variation in these fitness-related characters.
Collapse
Affiliation(s)
- Diane L Marshall
- Department of Biology, MSC03-2020, 1 University of New Mexico, Albuquerque, New Mexico 87131 USA
| | - Ann S Evans
- Department of Biology, 99 Thomas Nelson Drive, Thomas Nelson Community College, Hampton, Virginia 23666 USA
| |
Collapse
|
118
|
Kim MJ, Kim J. Semi-thin Sectioning, Light and Fluorescence Microscopy of Floral Bud to Study Microspore Development in Arabidopsis. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
119
|
Paul P, Chaturvedi P, Selymesi M, Ghatak A, Mesihovic A, Scharf KD, Weckwerth W, Simm S, Schleiff E. The membrane proteome of male gametophyte in Solanum lycopersicum. J Proteomics 2016; 131:48-60. [DOI: 10.1016/j.jprot.2015.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
|
120
|
Liu X, Liu Y, Liu C, Guan M, Yang C. Identification of genes associated with male sterility in a mutant of white birch (Betula platyphylla Suk.). Gene 2015; 574:247-54. [PMID: 26260014 DOI: 10.1016/j.gene.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 08/06/2015] [Indexed: 11/15/2022]
Abstract
White birch (Betula platyphylla Suk.) is a monoecious tree species with unisexual flowers. In this study, we used a spontaneous mutant genotype that produced normal-like male (NLM) inflorescences and mutant male (MM) inflorescences at different locations within the tree to investigate the genes necessary for pollen development. A cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was used to identify genes differentially expressed between the two types of inflorescences. Of approximately 5000 transcript-derived fragments (TDFs) obtained, 323 were significantly differentially expressed, of which 141 were successfully sequenced. BLAST analyses revealed 51.8% of the sequenced TDFs showed significant homology with proteins of known or predicted functions, 10.6% showed significant homology with putative proteins without any known or predicted function, and the remaining 37.6% had no hits in the NCBI database. Further, in a functional categorization based on the BLAST analyses, the protein fate, metabolism, energy categories had in order the highest percentages of the proteins. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the known TDFs were mainly involved in metabolic (28.4%), signal transduction (23.5%) and folding, sorting and degradation (13.6%) pathways. Ten genes from the NLM and MM development stages in the mutant were analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). The information generated in this study can provide some useful clues to help understand male sterility in B. platyphylla.
Collapse
Affiliation(s)
- Xuemei Liu
- Northeast Forestry University, Harbin 150040, PR China
| | - Ying Liu
- Forestry Investigation and Planning Institute of Liaoning Province, Shenyang 110122, PR China
| | - Chuang Liu
- Northeast Forestry University, Harbin 150040, PR China
| | - Minxiao Guan
- Northeast Forestry University, Harbin 150040, PR China
| | - Chuanping Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
121
|
Chaturvedi P, Doerfler H, Jegadeesan S, Ghatak A, Pressman E, Castillejo MA, Wienkoop S, Egelhofer V, Firon N, Weckwerth W. Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA). J Proteome Res 2015; 14:4463-71. [DOI: 10.1021/pr501240n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Palak Chaturvedi
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Hannes Doerfler
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Sridharan Jegadeesan
- Department
of Vegetable Research, Institute of Plant Sciences, The Volcani Centre, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Arindam Ghatak
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- School
of Biotechnology and Bioinformatics, D.Y. Patil University, Sector
15, CBD Belapur, Navi Mumbai, Maharashtra 400614, India
| | - Etan Pressman
- Department
of Vegetable Research, Institute of Plant Sciences, The Volcani Centre, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Maria Angeles Castillejo
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Stefanie Wienkoop
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Volker Egelhofer
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Nurit Firon
- Department
of Vegetable Research, Institute of Plant Sciences, The Volcani Centre, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Wolfram Weckwerth
- Department
of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
122
|
Mirgorodskaya OE, Koteyeva NK, Volchanskaya AV, Miroslavov EA. Pollen development in Rhododendron in relation to winter dormancy and bloom time. PROTOPLASMA 2015; 252:1313-23. [PMID: 25643916 DOI: 10.1007/s00709-015-0764-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/19/2015] [Indexed: 05/23/2023]
Abstract
Microsporogenesis and microgametogenesis of Rhododendron ledebourii (semi-deciduous), Rhododendron luteum (deciduous), and Rhododendron catawbiense (evergreen) were studied by light and electron microscopies in order to determine the stages of pollen development in relation to period of winter dormancy and bloom time throughout an annual growth cycle. Development of generative organs starts in June in R. ledebourii and in July in R. luteum and R. catawbiense and reaches completion about 11 months later. R. luteum and R. catawbiense microspores undergo meiosis at the end of the August and spend winter at the vacuolization stage. Mitosis with the formation of bicellular pollen grain occurs shortly before flowering at the beginning of June. R. ledebourii develops two types of flowers which differ in the timing of microgametogenesis. The first type is characterized by early microspore meiosis and mitosis leading to development of bicellular pollen grains by the end of August, and is prone to fall blooming during warm autumn temperatures. Microspores of the second flower type have a more prolonged vacuolization stage with mitosis and subsequent bicellular pollen grains occurring in November. By winter, flower buds in R. ledebourii are more advanced developmentally than in R. catawbiense and R. luteum, and bloom about 1 month earlier. The different strategies of pollen development identified both within and between these three Rhododendron species were recognized which are not associated with leaf drop during winter but appear to be related to the time of spring flowering and the frequency of autumn flowering.
Collapse
Affiliation(s)
- Olga E Mirgorodskaya
- V.L. Komarov Botanical Institute of Russian Academy of Science, 2, Prof. Popov St., 197376, St. Petersburg, Russia
| | | | | | | |
Collapse
|
123
|
Borg M, Berger F. Chromatin remodelling during male gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:177-188. [PMID: 25892182 DOI: 10.1111/tpj.12856] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/28/2023]
Abstract
The plant life cycle alternates between a diploid sporophytic phase and haploid gametophytic phase, with the latter giving rise to the gametes. Male gametophyte development encompasses two mitotic divisions that results in a simple three-celled structure knows as the pollen grain, in which two sperm cells are encased within a larger vegetative cell. Both cell types exhibit a very different type of chromatin organization - highly condensed in sperm cell nuclei and highly diffuse in the vegetative cell. Distinct classes of histone variants have dynamic and differential expression in the two cell lineages of the male gametophyte. Here we review how the dynamics of histone variants are linked to reprogramming of chromatin activities in the male gametophyte, compaction of the sperm cell genome and zygotic transitions post-fertilization.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
124
|
Same same but different: sperm-activating EC1 and ECA1 gametogenesis-related family proteins. Biochem Soc Trans 2015; 42:401-7. [PMID: 24646251 DOI: 10.1042/bst20140039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During double fertilization in Arabidopsis thaliana, the egg cell secretes small cysteine-rich EC1 (egg cell 1) proteins, which enable the arriving sperm pair to rapidly interact with the two female gametes. EC1 proteins are members of the large and unexplored group of ECA1 (early culture abundant 1) gametogenesis-related family proteins, characterized by a prolamin-like domain with six conserved cysteine residues that may form three pairs of disulfide bonds. The distinguishing marks of egg-cell-expressed EC1 proteins are, however, two short amino acid sequence motifs present in all EC1-like proteins. EC1 genes appear to encode the major CRPs (cysteine-rich proteins) expressed by the plant egg cell, and they are restricted to flowering plants, including the most basal extant flowering plant Amborella trichopoda. Many other ECA1 gametogenesis-related family genes are preferentially expressed in the synergid cell. Functional diversification among the ECA1 gametogenesis-related family is suggested by the different patterns of expression in the female gametophyte and the low primary sequence conservation.
Collapse
|
125
|
Lu Y, Wei L, Wang T. Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for "omics" analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:391. [PMID: 26082789 PMCID: PMC4451641 DOI: 10.3389/fpls.2015.00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/16/2015] [Indexed: 05/05/2023]
Abstract
The development of sperm cells (SCs) from microspores involves a set of finely regulated molecular and cellular events and the coordination of these events. The mechanisms underlying these events and their interconnections remain a major challenge. Systems analysis of genome-wide molecular networks and functional modules with high-throughput "omics" approaches is crucial for understanding the mechanisms; however, this study is hindered because of the difficulty in isolating a large amount of cells of different types, especially generative cells (GCs), from the pollen. Here, we optimized the conditions of tomato pollen germination and pollen tube growth to allow for long-term growth of pollen tubes in vitro with SCs generated in the tube. Using this culture system, we developed methods for isolating GCs, SCs and vegetative cell nuclei (VN) from just-germinated tomato pollen grains and growing pollen tubes and their purification by Percoll density gradient centrifugation. The purity and viability of isolated GCs and SCs were confirmed by microscopy examination and fluorescein diacetate staining, respectively, and the integrity of VN was confirmed by propidium iodide staining. We could obtain about 1.5 million GCs and 2.0 million SCs each from 180 mg initiated pollen grains, and 10 million VN from 270 mg initiated pollen grains germinated in vitro in each experiment. These methods provide the necessary preconditions for systematic biology studies of SC development and differentiation in higher plants.
Collapse
Affiliation(s)
- Yunlong Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Liqin Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
126
|
Shemesh-Mayer E, Ben-Michael T, Rotem N, Rabinowitch HD, Doron-Faigenboim A, Kosmala A, Perlikowski D, Sherman A, Kamenetsky R. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. FRONTIERS IN PLANT SCIENCE 2015; 6:271. [PMID: 25972879 PMCID: PMC4411974 DOI: 10.3389/fpls.2015.00271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/05/2015] [Indexed: 05/18/2023]
Abstract
Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Tomer Ben-Michael
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Neta Rotem
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Haim D. Rabinowitch
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Adi Doron-Faigenboim
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Amir Sherman
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| | - Rina Kamenetsky
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| |
Collapse
|
127
|
Pearce S, Ferguson A, King J, Wilson ZA. FlowerNet: a gene expression correlation network for anther and pollen development. PLANT PHYSIOLOGY 2015; 167:1717-30. [PMID: 25667314 PMCID: PMC4378160 DOI: 10.1104/pp.114.253807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/04/2015] [Indexed: 05/19/2023]
Abstract
Floral formation, in particular anther and pollen development, is a complex biological process with critical importance for seed set and for targeted plant breeding. Many key transcription factors regulating this process have been identified; however, their direct role remains largely unknown. Using publicly available gene expression data from Arabidopsis (Arabidopsis thaliana), focusing on those studies that analyze stamen-, pollen-, or flower-specific expression, we generated a network model of the global transcriptional interactions (FlowerNet). FlowerNet highlights clusters of genes that are transcriptionally coregulated and therefore likely to have interacting roles. Focusing on four clusters, and using a number of data sets not included in the generation of FlowerNet, we show that there is a close correlation in how the genes are expressed across a variety of conditions, including male-sterile mutants. This highlights the important role that FlowerNet can play in identifying new players in anther and pollen development. However, due to the use of general floral expression data in FlowerNet, it also has broad application in the characterization of genes associated with all aspects of floral development and reproduction. To aid the dissection of genes of interest, we have made FlowerNet available as a community resource (http://www.cpib.ac.uk/anther). For this resource, we also have generated plots showing anther/flower expression from a variety of experiments: These are normalized together where possible to allow further dissection of the resource.
Collapse
Affiliation(s)
- Simon Pearce
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| | - Alison Ferguson
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| | - John King
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| | - Zoe A Wilson
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| |
Collapse
|
128
|
Schmidt A, Schmid MW, Grossniklaus U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 2015; 142:229-41. [PMID: 25564620 DOI: 10.1242/dev.102103] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| |
Collapse
|
129
|
Kim MJ, Kim M, Lee MR, Park SK, Kim J. LATERAL ORGAN BOUNDARIES DOMAIN (LBD)10 interacts with SIDECAR POLLEN/LBD27 to control pollen development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:794-809. [PMID: 25611322 DOI: 10.1111/tpj.12767] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 05/10/2023]
Abstract
During male gametophyte development in Arabidopsis thaliana, the microspores undergo an asymmetric division to produce a vegetative cell and a generative cell, which undergoes a second division to give rise to two sperm cells. SIDECAR POLLEN/LATERAL ORGAN BOUNDARIES DOMAIN (LBD) 27 plays a key role in the asymmetric division of microspores. Here we provide molecular genetic evidence that a combinatorial role of LBD10 with LBD27 is crucial for male gametophyte development in Arabidopsis. Expression analysis, genetic transmission and pollen viability assays, and pollen development analysis demonstrated that LBD10 plays a role in the male gametophyte function primarily at germ cell mitosis. In the mature pollen of lbd10 and lbd10 expressing a dominant negative version of LBD10, LBD10:SRDX, aberrant microspores such as bicellular and smaller tricellular pollen appeared at a ratio of 10-15% with a correspondingly decreased ratio of normal tricellular pollen, whereas in lbd27 mutants, 70% of the pollen was aborted. All pollen in the lbd10 lbd27 double mutants was aborted and severely shrivelled compared with that of the single mutants, indicating that LBD10 and LBD27 are essential for pollen development. Gene expression and subcellular localization analyses of LBD10:GFP and LBD27:RFP during pollen development indicated that posttranscriptional and/or posttranslational controls are involved in differential accumulation and subcellular localization of LBD10 and LBD27 during pollen development, which may contribute in part to combinatorial and distinct roles of LBD10 with LBD27 in microspore development. In addition, we showed that LBD10 and LBD27 interact to form a heterodimer for nuclear localization.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | | | |
Collapse
|
130
|
Lankinen Å, Karlsson Green K. Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AOB PLANTS 2015; 7:plv008. [PMID: 25613227 PMCID: PMC4344479 DOI: 10.1093/aobpla/plv008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today it is accepted that the theories of sexual selection and sexual conflict are general and can be applied to both animals and plants. However, potentially due to a controversial history, plant studies investigating sexual selection and sexual conflict are relatively rare. Moreover, these theories and concepts are seldom implemented in research fields investigating related aspects of plant ecology and evolution. Even though these theories are complex, and can be difficult to study, we suggest that several fields in plant biology would benefit from incorporating and testing the impact of selection pressures generated by sexual selection and sexual conflict. Here we give examples of three fields where we believe such incorporation would be particularly fruitful, including (i) mechanisms of pollen-pistil interactions, (ii) mating-system evolution in hermaphrodites and (iii) plant immune responses to pests and pathogens.
Collapse
Affiliation(s)
- Åsa Lankinen
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| | - Kristina Karlsson Green
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| |
Collapse
|
131
|
Kim MJ, Kim M, Kim J. Combinatorial interactions between LBD10 and LBD27 are essential for male gametophyte development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1044193. [PMID: 26252070 PMCID: PMC4622844 DOI: 10.1080/15592324.2015.1044193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 05/29/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes encodes a unique class of transcription factors that play roles in diverse aspects of lateral organ development in plants. The Arabidopsis LBD gene family comprises 42 members and biological functions of most of the LBD genes are unknown. Our molecular genetic analysis and a variety of functional assays including expression analysis, genetic transmission and pollen viability assays, and pollen development analysis demonstrated that LBD10 co-acts with SIDECAR POLLEN(SCP)/LBD27 to control an early stage of microspore development but also plays a distinct role at later bicellular and tricellular pollen stages and that these 2 LBD genes are essential for Arabidopsis pollen development. We also showed that LBD10 and LBD27 interact with each other to be localized into the nucleus. Our subcellular localization analysis of LBD10 in comparison with LBD27 during pollen development indicated that regulated protein degradation may be involved in determining spatially and temporally distinct and overlapping expression patterns of these LBD transcription factors, contributing to distinct and combinatorial roles of LBD10 and LBD27 in Arabidopsis pollen development.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Bioenergy Science and Technology; Chonnam National University; Gwangju, Korea
| | - Mirim Kim
- Department of Bioenergy Science and Technology; Chonnam National University; Gwangju, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology; Chonnam National University; Gwangju, Korea
| |
Collapse
|
132
|
Jiang J, Yao L, Yu Y, Liang Y, Jiang J, Ye N, Miao Y, Cao J. PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:66-75. [PMID: 25443834 DOI: 10.1016/j.plantsci.2014.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 05/13/2023]
Abstract
Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation.
Collapse
Affiliation(s)
- Jingjing Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; State Key Lab of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Lina Yao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
| | - Youjian Yu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
| | - Ying Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
| | - Jianxia Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
| | - Nenghui Ye
- State Key Lab of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Ying Miao
- The Center of Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
133
|
Wu J, Shahid MQ, Guo H, Yin W, Chen Z, Wang L, Liu X, Lu Y. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. PLANT REPRODUCTION 2014; 27:181-96. [PMID: 25262386 DOI: 10.1007/s00497-014-0250-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Autotetraploid rice has greater genetic variation and higher vigor than diploid rice, but low pollen fertility is one of the major reasons for low yield of autotetraploid rice. Very little is known about the molecular mechanisms of low pollen fertility of autotetraploid rice. In this study, cytological observations and microarray analysis were used to assess the genetic variation during pollen development in autotetraploid and diploid rice. Many abnormal chromosome behaviors, such as mutivalents, lagged chromosomes, asynchronous cell division, and so on, were found during meiosis in autotetraploid. Microsporogenesis and microgametogenesis in autotetraploid rice was similar to diploid rice, but many different kinds of abnormalities, including microspores degeneration, multi-aperture, and abnormal cell walls, were found in autotetraploid rice. Compared with diploid rice, a total of 1,251 genes were differentially expressed in autotetraploid rice in pollen transcriptome, among them 1,011 and 240 genes were up-regulated and down-regulated, respectively. 124 and 6 genes were co-up-regulated and co-down-regulated during three pollen development stages, respectively. These results suggest that polyploidy induced up-regulation for most of the genes during pollen development. Quantitative RT-PCR was done to validate 12 differentially expressed genes selected from functional categories based on the gene ontology analysis. These stably expressed genes not only related to the pollen development genes, but also involved in cell metabolism, cell physiology, binding, catalytic activity, molecular transducer activity, and transcription regulator activity. The present study suggests that differential expression of some key genes may lead to complex gene regulation and abnormal pollen development in autotetraploid rice.
Collapse
Affiliation(s)
- Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Sharma KD, Nayyar H. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.). BMC Res Notes 2014; 7:717. [PMID: 25306382 PMCID: PMC4201710 DOI: 10.1186/1756-0500-7-717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 10/02/2014] [Indexed: 01/05/2023] Open
Abstract
Background Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. Results DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Conclusions Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-717) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamal Dev Sharma
- Department of Agricultural Biotechnology, CSK HP Agricultural University, Palampur 176062 HP, India.
| | | |
Collapse
|
135
|
Muñoz-Strale D, León G. Identification of two highly specific pollen promoters using transcriptomic data. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:292-299. [PMID: 25208507 DOI: 10.1016/j.plaphy.2014.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The mature pollen grain displays a highly specialized function in angiosperms. Accordingly, the male gametophyte development involves many specific biological activities, making it a complex and unique process in plants. In order to accomplish this, during pollen development, a massive transcriptomic remodeling takes place, indicating the switch from a sporophytic to a gametophytic program and involving the expression of many pollen specific genes. Using microarray databases we selected genes showing pollen-specific accumulation of their mRNAs and confirmed this through RT-PCR. We selected five genes (POLLEN SPECIFIC GENE1-5) to investigate the pollen specificity of their expression. Transcriptional fusions between the putative promoters of these genes and the uidA reporter gene in Arabidopsis confirmed the pollen specific expression for at least two of these genes. The expression of the cytotoxin Barnase controlled by these promoters generated pollen specific ablation and male sterility. Through the selection of pollen specific genes from public datasets, we were able to identify promoter regions that confer pollen expression. The use of the cytotoxin Barnase allowed us to demonstrate its expression is exclusively limited to the pollen. These new promoters provide a powerful tool for the expression of genes exclusively in pollen.
Collapse
Affiliation(s)
- Daniela Muñoz-Strale
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, Av. República 217, Santiago, Chile
| | - Gabriel León
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, Av. República 217, Santiago, Chile.
| |
Collapse
|
136
|
Wu DD, Wang X, Li Y, Zeng L, Irwin DM, Zhang YP. "Out of pollen" hypothesis for origin of new genes in flowering plants: study from Arabidopsis thaliana. Genome Biol Evol 2014; 6:2822-9. [PMID: 25237051 PMCID: PMC4224333 DOI: 10.1093/gbe/evu206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
New genes, which provide material for evolutionary innovation, have been extensively studied for many years in animals where it is observed that they commonly show an expression bias for the testis. Thus, the testis is a major source for the generation of new genes in animals. The source tissue for new genes in plants is unclear. Here, we find that new genes in plants show a bias in expression to mature pollen, and are also enriched in a gene coexpression module that correlates with mature pollen in Arabidopsis thaliana. Transposable elements are significantly enriched in the new genes, and the high activity of transposable elements in the vegetative nucleus, compared with the germ cells, suggests that new genes are most easily generated in the vegetative nucleus in the mature pollen. We propose an "out of pollen" hypothesis for the origin of new genes in flowering plants.
Collapse
Affiliation(s)
- Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Wang
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | - Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
137
|
Cigan AM, Haug-Collet K, Clapp J. Transcriptional silencing of heterologous anther promoters in maize: a genetic method to replace detasseling for seed production. PLANT REPRODUCTION 2014; 27:109-120. [PMID: 24966130 DOI: 10.1007/s00497-014-0244-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
The promoter of the maize male fertility gene ZmMs45, and other anther-specific maize promoters, was previously shown to be transcriptionally silenced by constitutively expressed promoter-inverted repeat RNAs (pIRs). In addition, ZmMS45pIR-mediated male sterility was reversed by co-expression of Ms45 transcribed by promoters not targeted by pIR RNA silencing. In this report, male fertility was restored to ms45 maize by fusing non-maize inflorescence promoters to the ZmMS45 coding region. This complementation assay also established that these rice or Arabidopsis promoters, when expressed as pIRs, functioned to silence sequence identical promoters. These observations were exploited to develop a genetic method to replace maize detasseling during hybrid seed production. In this system, the ZmMS45 coding region was fused to one of two dissimilar non-maize promoters to generate paired sets of ms45 recessive inbred parents which could be self-pollinated and maintained independently. Linked to each unique Ms45 gene was a non-maize pIR which targeted the promoter transcribing the Ms45 copy contained in the paired inbred parent plant. A cross of these pairs brings the dissimilar pIR cassettes together and resulted in silencing both transformed copies of Ms45. The net result uncovers the ms45 allele carried by the inbreds yielding male sterile progeny. The application of heterologous promoters and transcriptional silencing in plants provides an alternative to post-transcriptional gene silencing as a means to restore and silence gene function in plants.
Collapse
Affiliation(s)
- A Mark Cigan
- Trait Enabling Technologies, DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, 50131, USA,
| | | | | |
Collapse
|
138
|
Qu G, Quan S, Mondol P, Xu J, Zhang D, Shi J. Comparative metabolomic analysis of wild type and mads3 mutant rice anthers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:849-63. [PMID: 25073727 DOI: 10.1111/jipb.12245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/27/2014] [Indexed: 05/24/2023]
Abstract
Rice (Oryza sativa L.) MADS3 transcription factor regulates the homeostasis of reactive oxygen species (ROS) during late anther development, and one MADS3 mutant, mads3-4, has defective anther walls, aborted microspores and complete male sterility. Here, we report the untargeted metabolomic analysis of both wild type and mads3-4 mature anthers. Mutation of MADS3 led to an unbalanced redox status and caused oxidative stress that damages lipid, protein, and DNA. To cope with oxidative stress in mads3-4 anthers, soluble sugars were mobilized and carbohydrate metabolism was shifted to amino acid and nucleic acid metabolism to provide substrates for the biosynthesis of antioxidant proteins and the repair of DNA. Mutation of MADS3 also affected other aspects of rice anther development such as secondary metabolites associated with cuticle, cell wall, and auxin metabolism. Many of the discovered metabolic changes in mads3-4 anthers were corroborated with changes of expression levels of corresponding metabolic pathway genes. Altogether, this comparative metabolomic analysis indicated that MADS3 gene affects rice anther development far beyond the ROS homeostasis regulation.
Collapse
Affiliation(s)
- Guorun Qu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
139
|
Dukowic-Schulze S, Chen C. The meiotic transcriptome architecture of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:220. [PMID: 24926296 PMCID: PMC4046320 DOI: 10.3389/fpls.2014.00220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 05/21/2023]
Abstract
Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during plant meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings in plant systems reach back as far as the 1960's. Frequently, whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis, and only few studies addressed the transcriptome of female meiosis. For this review, we compiled meiotic transcriptome studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies so far and what should be addressed next.
Collapse
Affiliation(s)
| | - Changbin Chen
- Department of Horticultural Science, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
140
|
Liu M, Shi S, Zhang S, Xu P, Lai J, Liu Y, Yuan D, Wang Y, Du J, Yang C. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:153. [PMID: 24893774 PMCID: PMC4189105 DOI: 10.1186/1471-2229-14-153] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND MMS21 is a SUMO E3 ligase that is conserved in eukaryotes, and has previously been shown to be required for DNA repair and maintenance of chromosome integrity. Loss of the Arabidopsis MMS21 causes defective meristems and dwarf phenotypes. RESULTS Here, we show a role for AtMMS21 during gametophyte development. AtMMS21 deficient plants are semisterile with shorter mature siliques and abortive seeds. The mms21-1 mutant shows reduced pollen number, and viability, and germination and abnormal pollen tube growth. Embryo sac development is also compromised in the mutant. During meiosis, chromosome mis-segregation and fragmentation is observed, and the products of meiosis are frequently dyads or irregular tetrads. Several transcripts for meiotic genes related to chromosome maintenance and behavior are altered. Moreover, accumulation of SUMO-protein conjugates in the mms21-1 pollen grains is distinct from that in wild-type. CONCLUSIONS Thus, these results suggest that AtMMS21 mediated SUMOylation may stabilize the expression and accumulation of meiotic proteins and affect gametophyte development.
Collapse
Affiliation(s)
- Ming Liu
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
- Vegetable Research Institute Guangdong Academy of Agriculture Sciences, Guangzhou, Guangdong 510640, China
| | - Songfeng Shi
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Panglian Xu
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiyang Liu
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dongke Yuan
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yaqin Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jinju Du
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
141
|
Qin Z, Zhang X, Zhang X, Xin W, Li J, Hu Y. The Arabidopsis transcription factor IIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2521-31. [PMID: 24723406 PMCID: PMC4036515 DOI: 10.1093/jxb/eru140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Male gametogenesis in angiosperms involves two rounds of mitosis that are essential for the generation of two sperm cells to achieve double fertilization, a distinct event in the sexual reproduction of flowering plants. Precise regulation of mitosis during male gametogenesis is critically important for the establishment of the male germline. However, the molecular mechanisms underlying mitotic division during male gametophyte development have not been characterized fully. Here, we report that the Arabidopsis transcription initiation factor TFIIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. BRP4 was expressed predominately in developing male gametophytes. Knockdown expression of BRP4 by a native promoter-driven RNA interference construct in Arabidopsis resulted in arrest of the mitotic progression of male gametophytes, leading to a defect in pollen development. Moreover, we showed that the level of expression of a gene encoding a subunit of the origin recognition complex, ORC6, was decreased in BRP4 knockdown plants, and that the ORC6 knockdown transgenic plants phenocopied the male gametophyte defect observed in BRP4 knockdown plants, suggesting that ORC6 acts downstream of BRP4 to mediate male mitotic progression. Taken together, our results reveal that BRP4 plays an important role in the regulation of mitotic cell-cycle progression during male gametogenesis.
Collapse
Affiliation(s)
- Zhixiang Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Xiaoran Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiao Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing, PR China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jia Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China National Center for Plant Gene Research, Beijing, PR China
| |
Collapse
|
142
|
Muñoz-Nortes T, Wilson-Sánchez D, Candela H, Micol JL. Symmetry, asymmetry, and the cell cycle in plants: known knowns and some known unknowns. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2645-55. [PMID: 24474806 DOI: 10.1093/jxb/ert476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The body architectures of most multicellular organisms consistently display both symmetry and asymmetry. Here, we discuss some of the available knowledge and open questions on how symmetry and asymmetry appear in several conspicuous plant cells and tissues. We focus, where possible, on the role of genes that participate in the maintenance or the breaking of symmetry and that are directly or indirectly related to the cell cycle, under an organ-centric point of view and with an emphasis on the leaf.
Collapse
Affiliation(s)
- Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
143
|
Schubert V, Lermontova I, Schubert I. Loading of the centromeric histone H3 variant during meiosis-how does it differ from mitosis? Chromosoma 2014; 123:491-7. [PMID: 24806806 DOI: 10.1007/s00412-014-0466-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
In eukaryotic phyla studied so far, the essential centromeric histone H3 variant (CENH3) is loaded to centromeric nucleosomes after S-phase (except for yeast) but before mitotic segregation (except for metazoan). While the C-terminal part of CENH3 seems to be sufficient for mitotic centromere function in plants, meiotic centromeres neither load nor tolerate impaired CENH3 molecules. However, details about CENH3 deposition in meiocytes are unknown (except for Drosophila). Therefore, we quantified fluorescence signals after the immunostaining of CENH3 along meiotic and mitotic nuclear division cycles of rye, a monocotyledonous plant. One peak of fluorescence intensity appeared in the early meiotic prophase of pollen mother cells and a second one during interkinesis, both followed by a decrease of CENH3. Then, the next loading occurred in the male gametophyte before its first mitotic division. These data indicate that CENH3 loading differs between mitotic and meiotic nuclei. Contrary to the situation in mitotic cycles, CENH3 deposition is biphasic during meiosis and apparently linked with a quality check, a removal of impaired CENH3 molecules, and a general loss of CENH3 after each loading phase. These steps ensure an endowment of centromeres with a sufficient amount of correct CENH3 molecules as a prerequisite for centromere maintenance during mitotic cycles of the microgametophyte and the progeny. From a comparison with data available for Drosophila, we hypothesise that the post-divisional mitotic CENH3 loading in metazoans is evolutionarily derived from the post-divisional meiotic loading phase, while the pre-divisional first meiotic loading has been conserved among eukaryotes.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany,
| | | | | |
Collapse
|
144
|
Oo MM, Bae HK, Nguyen TD, Moon S, Oh SA, Kim JH, Soh MS, Song JT, Jung KH, Park SK. Evaluation of rice promoters conferring pollen-specific expression in a heterologous system, Arabidopsis. PLANT REPRODUCTION 2014; 27:47-58. [PMID: 24550073 DOI: 10.1007/s00497-014-0239-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
Promoters can direct gene expression specifically to targeted tissues or cells. Effective with both crop species and model plant systems, these tools can help researchers overcome the practical obstacles associated with transgenic protocols. Here, we identified promoters that allow one to target the manipulation of gene expression during pollen development. Utilizing published transcriptomic databases for rice, we investigated the promoter activity of selected genes in Arabidopsis. From various microarray datasets, including those for anthers and pollen grains at different developmental stages, we selected nine candidate genes that showed high levels of expression in the late stages of rice pollen development. We named these Oryza sativa late pollen-specific genes. Their promoter regions contained various cis-acting elements that could be responsible for anther-/pollen-specific expression. Promoter::GUS-GFP reporters were constructed and introduced into Arabidopsis plants. Histochemical GUS staining revealed that six of the nine rice promoters conferred strong GUS expression that was restricted to the anthers in Arabidopsis. Further analysis showed that although the GUS signals were not detected at the unicellular stage, they strengthened in the bicellular or tricellular stages, peaking at the mature pollen stage. This paralleled their transcriptomic profiles in rice. Based on our results, we proposed that these six rice promoters, which are active in the late stages of pollen formation in the dicot Arabidopsis, can aid molecular breeders in generating new varieties of a monocot plant, rice.
Collapse
Affiliation(s)
- Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Ingouff M. Imaging sexual reproduction in Arabidopsis using fluorescent markers. Methods Mol Biol 2014; 1112:117-24. [PMID: 24478011 DOI: 10.1007/978-1-62703-773-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sexual reproduction in higher plants is a stealth process as most events occur within tissues protected by multiple surrounding cell layers. Female gametes are produced inside the embryo sac surrounded by layers of ovule integument cells. Upon double fertilization, two male gametes are released at one end of the embryo sac and migrate towards their respective female partner to generate the embryo and its feeding tissue, the endosperm, within a seed. Since the early discovery of plant reproduction, advances in microscopy have contributed enormously to our understanding of this process (Faure and Dumas, Plant Physiol 125:102-104, 2001). Recently, live imaging of double fertilization has been possible using a set of fluorescent markers for gametes in Arabidopsis. The following chapter will detail protocols to study male and female gametogenesis and double fertilization in living tissues using fluorescent markers.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Faculté des Sciences, Université Montpellier2, Montpellier, France
| |
Collapse
|
146
|
Dehghan Nayeri F. Identification of transcription factors linked to cell cycle regulation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e972864. [PMID: 25482767 PMCID: PMC4622563 DOI: 10.4161/15592316.2014.972864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/04/2023]
Abstract
Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovered TFs that are involved in the control of cell cycle progression. With the aid of multi-parallel quantitative RT-PCR, the expression changes of 1880 TFs represented in the Arabidopsis TF platform was monitored in Arabidopsis synchronous MM2d cells during a 19 h period representing different time points corresponding to the 4 cell cycle phases after treatment of MM2d cells with Aphidicolin. Comparative TF expression analyses performed on synchronous cells resulted in the identification of 239 TFs differentially expressed during the cell cycle, while about one third of TFs were constitutively expressed through all time points. Phase-specific TFs were also identified.
Collapse
Affiliation(s)
- Fatemeh Dehghan Nayeri
- Max-Planck Institute of Molecular Plant Physiology; Am Mühlenberg 1; Potsdam-Golm, Germany
- Department of Agricultural Biotechnology; Faculty of Engineering and Technology; Imam Khomeini International University; Qazvin, Iran
| |
Collapse
|
147
|
Nic-Can G, Hernández-Castellano S, Kú-González A, Loyola-Vargas VM, De-la-Peña C. An efficient immunodetection method for histone modifications in plants. PLANT METHODS 2013; 9:47. [PMID: 24341414 PMCID: PMC3868413 DOI: 10.1186/1746-4811-9-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/02/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. RESULTS Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. CONCLUSIONS There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.
Collapse
Affiliation(s)
- Geovanny Nic-Can
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Sara Hernández-Castellano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Angela Kú-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| |
Collapse
|
148
|
Hough J, Williamson RJ, Wright SI. Patterns of Selection in Plant Genomes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135851] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants show a wide range of variation in mating system, ploidy level, and demographic history, allowing for unique opportunities to investigate the evolutionary and genetic factors affecting genome-wide patterns of positive and negative selection. In this review, we highlight recent progress in our understanding of the extent and nature of selection on plant genomes. We discuss differences in selection as they relate to variation in demography, recombination, mating system, and ploidy. We focus on the population genetic consequences of these factors and argue that, although variation in the magnitude of purifying selection is well documented, quantifying rates of positive selection and disentangling the relative importance of recombination, demography, and ploidy are ongoing challenges. Large-scale comparative studies that examine the relative and joint importance of these processes, combined with explicit models of population history and selection, are key and feasible goals for future work.
Collapse
Affiliation(s)
- Josh Hough
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Robert J. Williamson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| |
Collapse
|
149
|
Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C, Zluvova J, Siroky J, Kovacova V, Blavet H, Danihelka J, Oxelman B, Widmer A, Vyskot B. Evolution of sex determination systems with heterogametic males and females in silene. Evolution 2013; 67:3669-77. [PMID: 24299418 DOI: 10.1111/evo.12223] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 07/29/2013] [Indexed: 02/03/2023]
Abstract
The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex-determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex-determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family.
Collapse
Affiliation(s)
- Veronika Slancarova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Nemorin A, David J, Maledon E, Nudol E, Dalon J, Arnau G. Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. ANNALS OF BOTANY 2013; 112:811-9. [PMID: 23912697 PMCID: PMC3747798 DOI: 10.1093/aob/mct145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/15/2013] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Dioscorea alata is a polyploid species with a ploidy level ranging from diploid (2n = 2x = 40) to tetraploid (2n = 4x = 80). Ploidy increase is correlated with better agronomic performance. The lack of knowledge about the origin of D. alata spontaneous polyploids (triploids and tetraploids) limits the efficiency of polyploid breeding. The objective of the present study was to use flow cytometry and microsatellite markers to understand the origin of D. alata polyploids. METHODS Different progeny generated by intracytotype crosses (2x × 2x) and intercytotype crosses (2x × 4x and 3x × 2x) were analysed in order to understand endosperm incompatibility phenomena and gamete origins via the heterozygosity rate transmitted to progeny. RESULTS This work shows that in a 2x × 2x cross, triploids with viable seeds are obtained only via a phenomenon of diploid female non-gametic reduction. The study of the transmission of heterozygosity made it possible to exclude polyspermy and polyembryony as the mechanisms at the origin of triploids. The fact that no seedlings were obtained by a 3x × 2x cross made it possible to confirm the sterility of triploid females. Flow cytometry analyses carried out on the endosperm of seeds resulting from 2x × 4x crosses revealed endosperm incompatibility phenomena. CONCLUSIONS The major conclusion is that the polyploids of D. alata would have appeared through the formation of unreduced gametes. The triploid pool would have been built and diversified through the formation of 2n gametes in diploid females as the result of the non-viability of seeds resulting from the formation of 2n sperm and of the non-viability of intercytotype crosses. The tetraploids would have appeared through bilateral sexual polyploidization via the union of two unreduced gametes due to the sterility of triploids.
Collapse
Affiliation(s)
- A. Nemorin
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), Station de Roujol, 97170 Petit Bourg, Guadeloupe, France
| | - J. David
- UMR AGAP, Montpellier Supagro, 2, place Viala, 34060 Montpellier Cedex 2, France
| | - E. Maledon
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), Station de Roujol, 97170 Petit Bourg, Guadeloupe, France
| | - E. Nudol
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), Station de Roujol, 97170 Petit Bourg, Guadeloupe, France
| | - J. Dalon
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), Station de Roujol, 97170 Petit Bourg, Guadeloupe, France
| | - G. Arnau
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), Station de Roujol, 97170 Petit Bourg, Guadeloupe, France
| |
Collapse
|