101
|
Hong YS, Lee HJ, You CH, Roh MS, Kwak JY, Lee MJ, Kim JY. DNMT3b 39179GT polymorphism and the risk of adenocarcinoma of the colon in Koreans. Biochem Genet 2007; 45:155-63. [PMID: 17318376 DOI: 10.1007/s10528-006-9047-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 05/24/2006] [Indexed: 10/23/2022]
Abstract
DNA-methyltransferase-3B (DNMT3b) plays an important role in the generation of aberrant methylation in carcinogenesis. DNMT3b SNP has been associated with susceptibility to lung, head, neck, and breast cancer, but its association with the development of colon cancer has not been reported. We investigated the relationship between the 39179GT polymorphism in the DNMT3b gene, which is involved in de novo methylation and is associated with the risk of adenocarcinoma of the colon in Koreans. The DNMT3b 39179GT genotypes were determined by a PCR-RFLP method in 248 adenocarcinomas of colon cancer patients and in 248 healthy controls matched as to age and sex. When stratified by sex and age, a significantly reduced risk of the combined GT and GG genotypes was observed in younger patients (<59, adjusted OR = 0.255, 95% CI = 0.133-0.489) and in male patients (adjusted OR = 0.383, 95% CI = 0.225-0.652). The DNMT3b 39179GT polymorphism may be a genetic determinant of adenocarcinoma of the colon, especially in younger Korean men.
Collapse
Affiliation(s)
- Young-Seoub Hong
- Research Society of Environmental Genetic Epidemiology, Department of Preventive Medicine, Dong-A University School of Medicine, 3-1 Dongdaeshin-Dong, Seo-Gu, Busan 602-715, Korea.
| | | | | | | | | | | | | |
Collapse
|
102
|
Morey SR, Smiraglia DJ, James SR, Yu J, Moser MT, Foster BA, Karpf AR. DNA methylation pathway alterations in an autochthonous murine model of prostate cancer. Cancer Res 2007; 66:11659-67. [PMID: 17178860 DOI: 10.1158/0008-5472.can-06-1937] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the DNA methylation pathway in an autochthonous murine prostate cancer model, transgenic adenocarcinoma of mouse prostate (TRAMP). We observed that, compared with strain-matched normal prostates, primary and metastatic TRAMP tumors display increased cytosine DNA methyltransferase (Dnmt) activity, Dnmt1 and Dnmt3b protein expression, and Dnmt1, Dnmt3a, and Dnmt3b mRNA expression. Increased expression of Dnmt genes correlates with increased expression of cyclin A and E2F target genes, implicating increased cell proliferation and Rb inactivation in Dnmt overexpression. We analyzed DNA methylation in TRAMP and found that global levels of 5-methyl-2'-deoxycytidine are unaltered, whereas specific tumors display centromeric repeat hypomethylation. To interrogate locus-specific methylation, we did restriction landmark genomic scanning (RLGS) on normal prostates and primary tumors. In primary tumors, 2.3% of approximately 1,200 analyzed loci display aberrant DNA hypermethylation, whereas a considerably smaller number of events show hypomethylation. The pattern of RLGS changes was nonrandom, indicating a coordinated methylation defect. Two specific genes identified by RLGS were studied in detail. Surprisingly, methylation of a downstream exon of p16(INK4a) (p16) was the highest frequency hypermethylation event identified in TRAMP, where it is associated with increased p16 mRNA and protein expression. In contrast, hypermethylation of the 5' CpG island region of the homeobox gene Irx3 in TRAMP is associated with reduced gene expression. In summary, our data reveal a systemic DNA methylation pathway defect in TRAMP reminiscent of human prostate cancer, supporting the use of this model to investigate the functional role of DNA methylation pathway alterations in prostate cancer development.
Collapse
Affiliation(s)
- Shannon R Morey
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Torrisani J, Unterberger A, Tendulkar SR, Shikimi K, Szyf M. AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Mol Cell Biol 2007; 27:395-410. [PMID: 17030625 PMCID: PMC1800664 DOI: 10.1128/mcb.01236-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 07/28/2006] [Accepted: 09/22/2006] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.
Collapse
Affiliation(s)
- Jerome Torrisani
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
104
|
Abstract
The DNA methylation level in patients with chronic lymphocytic leukemia is generally lower than healthy individuals. Although DNA methylation is globally decreased, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. Unlike mutations or deletions, hypermethylation is potentially reversible after inhibition with DNA methylation modulators. Myelodysplastic syndrome has been a model disease in which treatment of patients results in demethylation of specific genes. The story in patients with chronic lymphocytic leukemia is slowly unraveling as epigenetic modifications likely also play an important role. Ongoing clinical trials correlating clinical response to gene expression after treatment with DNA methylation inhibitors will ultimately allow us to better risk stratify and predict the subgroup of patients who will benefit from treatment with this class of drugs.
Collapse
Affiliation(s)
- Margaret K Yu
- Division of Hematology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
105
|
Spada F, Rothbauer U, Zolghadr K, Schermelleh L, Leonhardt H. Regulation of DNA methyltransferase 1. ACTA ACUST UNITED AC 2006; 46:224-34. [PMID: 16859735 DOI: 10.1016/j.advenzreg.2006.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fabio Spada
- Biocenter, Department of Biology II, Ludwig Maximilians University Munich, Germany
| | | | | | | | | |
Collapse
|
106
|
Butler JS, Lee JH, Skalnik DG. PAGE separation of hemi-methylated or unmethylated oligonucleotide substrates to distinguish between maintenance and de novo DNA methyltranferase activity. ACTA ACUST UNITED AC 2006; 68:195-9. [PMID: 16901546 DOI: 10.1016/j.jbbm.2006.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/15/2006] [Indexed: 11/30/2022]
Abstract
DNA methyltransferase (DNMT) enzymes catalyze the addition of a methyl group to cytosine residues in DNA. Appropriate cytosine methylation of CpG dinucleotides is required for normal mammalian development and homeostasis, and quantitative methods are necessary to assess DNMT activity in various cell extracts. The method described in this report utilizes incorporation of S-[methyl-(3)H]-adenosyl-L-methionine into hemi-methylated or unmethylated oligonucleotides to distinguish between maintenance and de novo DNMT activity, respectively. However, unlike previously described methods, this protocol uses native polyacrylamide gel electrophoresis to detect the incorporation of radioactivity into substrate oligonucleotides. This approach distinguishes between incorporation of radioactivity into target substrate oligonucleotides and incorporation into non-specific cellular DNA that often contaminates nuclear extracts, and permits the reproducible quantitation and comparison of de novo and maintenance DNMT activities in various cell lines. Electrophoretic separation of the methylated substrates is a cost-effective, specific, and reproducible approach to quantitate DNMT activities in nuclear extracts.
Collapse
Affiliation(s)
- Jill S Butler
- Herman B Wells Center of Pediatric Research, Section of Pediatric Hematology/Oncology, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | | |
Collapse
|
107
|
Herath CB, Ishiwata H, Shiojima S, Kadowaki T, Katsuma S, Ushizawa K, Imai K, Takahashi T, Hirasawa A, Takahashi S, Izaike Y, Tsujimoto G, Hashizume K. Developmental Aberrations of Liver Gene Expression in Bovine Fetuses Derived from Somatic Cell Nuclear Transplantation. CLONING AND STEM CELLS 2006; 8:79-95. [PMID: 16776600 DOI: 10.1089/clo.2006.8.79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cloning by somatic cell nuclear transfer (NT) has been accomplished. However, the process itself is inefficient since most clones die before birth and survivors often display various anomalies. In an effort to determine global expression profiles of developmentally regulated liver genes in NT bovine fetuses, we employed a custom-made bovine liver complementary DNA (cDNA) microarray. The NT fetuses in early pregnancy were derived from cumulus cells as the nuclear donor cells. Normal fetuses were derived from in vitro fertilization (IVF) and artificial insemination (AI). Gene expression levels in NT, IVF, and AI fetal livers were obtained by comparing individual fetal liver samples with that of adult liver of nonpregnant cycling cows. Statistical analyses of the expression data showed widespread dysregulation of developmentally important genes in the three NT fetuses examined. It was found that the number of dysregulated genes was within a range of 3.5-7.7% of the tested genes in the NT fetal livers. The analyses revealed that one NT fetus was markedly different in liver gene expression profile from the other two NT fetal livers in which the expression profiles were highly correlated. Thus, our findings demonstrate that widespread dysregulation of liver genes occurs in the developing liver of NT bovine fetuses. It is possible that inappropriate genomic reprogramming after NT is a key factor associated with abnormal gene expressions in the livers of NT fetuses, whereas distinct expression patterns between the fellow cloned fetuses likely have resulted from variable epigenetic status of the donor nuclei.
Collapse
Affiliation(s)
- Chandana B Herath
- Department of Developmental Biology, National Institute of Agrobiological Sciences, Tsukuba City, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
The 14-3-3sigma gene is a direct target of the p53 tumor suppressor and its product inhibits cell cycle progression. Recently, a proteomic analysis revealed that 14-3-3sigma regulates additional cellular processes relevant to carcinogenesis, as migration and MAP-kinase signalling. The expression of 14-3-3sigma is down-regulated by CpG methylation in several types of human cancer, among them prostate, lung, breast and several types of skin cancer. The epigenetic inactivation of 14-3-3sigma occurs at an early stage of tumor development and may allow evasion from senescence and promote genomic instability. In the future the detection of CpG methylation of 14-3-3sigma may be used for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Dmitri Lodygin
- Molecular Oncology, Independent Max-Planck Research Group, Max-Planck-Institute of Biochemistry, Martinsried, Munich, Germany
| | | |
Collapse
|
109
|
Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 2005; 83:296-321. [PMID: 15959557 DOI: 10.1139/o05-036] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While specific genes are hypermethylated in the genome of cancer cells, overall methylcytosine content is often decreased as a consequence of hypomethylation affecting many repetitive sequences. Hypomethylation is also observed at a number of single-copy genes. While global hypomethylation is highly prevalent across all cancer types, it often displays considerable specificity with regard to tumor type, tumor stage, and sequences affected. Following an overview of hypomethylation alterations in various cancers, this review focuses on 3 hypotheses. First, hypomethylation at a single-copy gene may occur as a 2-step process, in which selection for gene function follows upon random hypo methylation. In this fashion, hypomethylation facilitates the adaptation of cancer cells to the ever-changing tumor tissue microenvironment, particularly during metastasis. Second, the development of global hypomethylation is intimately linked to chromatin restructuring and nuclear disorganization in cancer cells, reflected in a large number of changes in histone-modifying enzymes and other chromatin regulators. Third, DNA hypomethylation may occur at least partly as a consequence of cell cycle deregulation disturbing the coordination between DNA replication and activity of DNA methyltransferases. Finally, because of their relation to tumor progression and metastasis, DNA hypomethylation markers may be particularly useful to classify cancer and predict their clinical course.
Collapse
|
110
|
Jacob S, Moley KH. Gametes and embryo epigenetic reprogramming affect developmental outcome: implication for assisted reproductive technologies. Pediatr Res 2005; 58:437-46. [PMID: 16148054 DOI: 10.1203/01.pdr.0000179401.17161.d3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is concern about the health of children who are conceived with the use assisted reproductive technologies (ART). In addition to reports of low birth weight and chromosomal anomalies, there is evidence that ART may be associated with increased epigenetic disorders in the infants who are conceived using these procedures. Epigenetic reprogramming is critical during gametogenesis and at preimplantation stage and involves DNA methylation, imprinting, RNA silencing, covalent modifications of histones, and remodeling by other chromatin-associated complexes. Epigenetic regulation is involved in early embryo development, fetal growth, and birth weight. Disturbances in epigenetic reprogramming may lead to developmental problems and early mortality. Recent reports suggest the increased incidence of imprinting disorders such as Beckwith-Wiedemann syndrome, Angelman syndrome, and retinoblastoma in children who are conceived with the use of ART. These may result from an accumulation of epigenetic alterations during embryo culture and/or by altered embryonic developmental timing. Further research is urgently needed to determine whether a causal relationship between ART and epigenetic disorders exists. Until then, cautious review of both short-term and long-term ART outcomes at a national level is recommended.
Collapse
Affiliation(s)
- Saji Jacob
- Washington University School of Medicine, Department of Obstetrics & Gynecology, St. Louis, MO 63110, USA
| | | |
Collapse
|
111
|
Wang YM, Wang R, Wen DG, Li Y, Guo W, Wang N, Wei LZ, He YT, Chen ZF, Zhang XF, Zhang JH. Single nucleotide polymorphism in DNA methyltransferase 3B promoter and its association with gastric cardiac adenocarcinoma in North China. World J Gastroenterol 2005; 11:3623-7. [PMID: 15962389 PMCID: PMC4315975 DOI: 10.3748/wjg.v11.i23.3623] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 09/01/2004] [Accepted: 11/04/2004] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between single nucleotide polymorphism (SNP) in promoter of the DNA methyltransferase 3B (DNMT3B) gene and risk for development and lymphatic metastasis of gastric cardiac adenocarcinoma (GCA). METHODS The hospital based case-control study included 212 GCA patients and 294 control subjects without overt cancer. The DNMT3B SNP was genotyped by PCR and restriction fragment length polymorphism (RFLP) analysis. RESULTS The C/C genotype was not detected in both GCA patients and controls. In control subjects, the frequency of T/T and C/T genotypes was 94.9% and 5.1% respectively, and that of T and C alleles was 97.4% and 2.6%, respectively. The genotype and allelotype distribution in the GCA patients was not significantly different from that in controls (P=0.34 and 0.33, respectively). When stratified by smoking status and family history of upper gastrointestinal cancer, significant difference in the genotype distribution was not observed between GCA patients and controls. The distribution of DNMT3B genotypes in GCA patients with or without lymphatic metastasis did not show significant difference (P=0.42). CONCLUSION The distribution of DNMT3B SNP in North China is distinct from that in Caucasians. Although this SNP has been associated with susceptibility to lung, head, neck and breast cancer, it may not be used as a stratification marker to predict susceptibility and lymphatic metastasis of GCA, at least in the population of North China.
Collapse
Affiliation(s)
- Yi-Min Wang
- Hebei Cancer Institute, Hebei Medical University, Jiankanglu 12, Shijiazhuang 050011, Hebei Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Agoston AT, Argani P, Yegnasubramanian S, De Marzo AM, Ansari-Lari MA, Hicks JL, Davidson NE, Nelson WG. Increased Protein Stability Causes DNA Methyltransferase 1 Dysregulation in Breast Cancer. J Biol Chem 2005; 280:18302-10. [PMID: 15755728 DOI: 10.1074/jbc.m501675200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report that DNA methyltransferase 1 (DNMT1) expression is dysregulated in breast cancer. The elevated protein levels are not a result of increased mRNA levels, but rather an increase in protein half-life. We found that DNMT1 protein levels were elevated in breast cancer tissues and in MCF-7 breast cancer cells relative to normal human mammary epithelial cells (HMECs) without a concomitant increase in DNMT1 mRNA or proliferative fraction. Although DNMT1 mRNA levels were properly S-phase-regulated in both cell types, DNMT1 protein levels did not follow S-phase fraction in MCF-7 cells. Rather, an increase in DNMT1 protein stability was found for MCF-7 cells relative to HMECs, and a destruction domain was mapped to the N-terminal 120 amino acids of DNMT1, which was required for its proper ubiquitination and degradation in HMECs. Furthermore, overexpression of DNMT1 with this deleted destruction domain in HMECs resulted in significantly increased genomic 5-methylcytosine levels relative to overexpression of the full-length protein. The regulation of DNMT1 destruction via this domain may be dysfunctional in cancer cells leading to subsequent cytosine hypermethylation in the genome.
Collapse
Affiliation(s)
- Agoston T Agoston
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Cancer cells show characteristic alterations in DNA methylation patterns. Aberrant CpG methylation of specific promoters results in inactivation of tumor suppressor genes and therefore plays an important role in carcinogenesis. The p53-regulated gene 14-3-3sigma undergoes frequent epigenetic silencing in several types of cancer, including carcinoma of the breast, prostate, and skin, suggesting that the loss of 14-3-3sigma expression may be causally involved in tumor progression. Functional studies demonstrated that 14-3-3sigma is involved in cell-cycle control and prevents the accumulation of chromosomal damage. The recent identification of novel 14-3-3sigma-associated proteins by a targeted proteomics approach implies that 14-3-3sigma regulates diverse cellular processes, which may become deregulated after silencing of 14-3-3sigma expression in cancer cells.
Collapse
Affiliation(s)
- Dmitri Lodygin
- Molecular Oncology, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | | |
Collapse
|
114
|
Missiaglia E, Donadelli M, Palmieri M, Crnogorac-Jurcevic T, Scarpa A, Lemoine NR. Growth delay of human pancreatic cancer cells by methylase inhibitor 5-aza-2'-deoxycytidine treatment is associated with activation of the interferon signalling pathway. Oncogene 2005; 24:199-211. [PMID: 15637593 DOI: 10.1038/sj.onc.1208018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alteration of methylation status has been recognized as a possible epigenetic mechanism of selection during tumorigenesis in pancreatic cancer. This type of cancer is characterized by poor prognosis partly due to resistance to conventional drug treatments. We have used microarray technology to investigate the changes in global gene expression observed after treatment of different pancreatic cancer cell lines with the methylase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). We have observed that this agent is able to inhibit to various degrees the growth of three pancreatic cancer cell lines. In particular, this inhibition was associated with induction of interferon (IFN)-related genes, as observed in other tumour types. Thus, expression of STAT1 seems to play a key role in the cellular response to treatment with the cytosine analogue. Moreover, we found increased p21(WAF1) and gadd45A expression to be associated with the efficacy of the treatment; this induction may correlate with activation of the IFN signalling pathway. Expression of the p16(INK) protein was also linked to the ability of cells to respond to 5-aza-CdR. Finally, genome-wide demethylation induced sensitization that significantly increased response to further treatment with various chemotherapy agents.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Cancer Research UK, Molecular Oncology Unit, Imperial College School of Medicine at Hammersmith Campus, London, UK
| | | | | | | | | | | |
Collapse
|
115
|
Dhillon VS, Aslam M, Husain SA. The contribution of genetic and epigenetic changes in granulosa cell tumors of ovarian origin. Clin Cancer Res 2005; 10:5537-45. [PMID: 15328194 DOI: 10.1158/1078-0432.ccr-04-0228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Granulosa cell tumors (GCTs) are relatively rare and are subtypes of the sex-cord stromal neoplasms. A better understanding of the molecular genetics underlying various steps in malignant transformation is critical to success in the battle against this disease. Changes in the status of methylation, known as epigenetic alterations, are one of the most common molecular alterations in human cancers, including GCTs. Chromosomal instability and microsatellite instability (MSI) are common in these GCTs. We tested the hypothesis that C-->T transition polymorphism in the promoter region of cytosine DNA-methyltransferase-3B (DNMT3B) and its altered expression are also associated with hypermethylation of the genes. We also attempted to determine the relationship between MSI of ovarian carcinoma and hMLH1 hypermethylation in these tumors. EXPERIMENTAL DESIGN We studied chromosome instability in 25 GCTs by detecting gross chromosome rearrangements in cultured peripheral blood lymphocytes. MSI was assessed using six microsatellite markers (BAT25, BAT26, D2S123, D5S346, D11S1318, and D17S250). Using sensitive methylation-specific PCR, we searched for aberrant promoter hypermethylation in a panel of genes including p16, BRCA1, RASSF1A, ER-alpha, TMS1, TIMP3, Twist, GSTP1, AR, and hMLH1. Polymorphism in the DNMT3B gene was assessed by the PCR-RFLP method, and DNMT3B expression was studied by reverse transcription-PCR assay. RESULTS Chromosome instability was indicated by significantly higher frequencies of chromosome aberrations (6.24%; P < 0.001) compared with controls (2.12%). The most frequently observed changes include trisomy 14 and monosomy 22. MSI has been found in 19 of 25 tumors, and loss of heterozygosity has been found in 9 of 25 tumors. Frequencies of methylation in GCTs were 40% for p16 and ER-alpha; 36% for BRCA1 and RASSF1A; 28% for hMLH1; 24% for TIMP3, Twist, and GSTP1; and 20% in TMS1 and AR. TT genotype was found only in two cases; the remainder were either CC or CT type. There was no significant alteration in the expression of DNMT3B in these patients. CONCLUSIONS Coexistence of chromosome instability, MSI, and hypermethylation suggests that both genetic and epigenetic mechanisms may act in concert to inactivate the above-mentioned genes in these GCTs. These mechanisms can be an early event in the pathogenesis of these tumors, and it can be a critical step in the tumorigenic process. All these events might play an important role in early clinical diagnosis and in chemotherapeutic management and treatment of the disease. Larger studies may lend further understanding to the etiology and clinical behavior of these tumors.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Cytogenetics Laboratory, Department of Biosciences, Jamia Milia Islamia, New Delhi, India.
| | | | | |
Collapse
|
116
|
Abstract
DNA hypermethylation in CpG-rich promoters is now recognized as a common feature of human neoplasia. However, the pathophysiology of hyper-methylation (why, when, where) remains obscure. Cancers can be classified according to their degree of methylation, and those cancers with high degrees of methylation (the CpG island methylator phenotype, or CIMP) represent a clinically and aetiologically distinct group that is characterized by 'epigenetic instability'. Furthermore, CIMP-associated cancers seem to have a distinct epidemiology, a distinct histology, distinct precursor lesions and distinct molecular features.
Collapse
Affiliation(s)
- Jean-Pierre Issa
- Jean-Pierre Issa is at the Department of Leukemia, M. D. Anderson Cancer Center, Unit 425, 1515 Holcombe, Houston, Texas 77030, USA.
| |
Collapse
|
117
|
Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, Marquez VE, Greer S, Orntoft TF, Thykjaer T, Jones PA. Preferential response of cancer cells to zebularine. Cancer Cell 2004; 6:151-8. [PMID: 15324698 DOI: 10.1016/j.ccr.2004.06.023] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 06/07/2004] [Accepted: 06/23/2004] [Indexed: 12/31/2022]
Abstract
The frequent silencing of tumor suppressor genes by altered cytosine methylation and chromatin structural changes makes this process an attractive target for epigenetic therapy. Here we show that zebularine, a stable DNA cytosine methylation inhibitor, is preferentially incorporated into DNA and exhibits greater cell growth inhibition and gene expression in cancer cell lines compared to normal fibroblasts. In addition, zebularine preferentially depleted DNA methyltransferase 1 (DNMT1) and induced expression of cancer-related antigen genes in cancer cells relative to normal fibroblasts. Our results demonstrate that zebularine can be selective toward cancer cells and may hold clinical promise as an anticancer therapy.
Collapse
Affiliation(s)
- Jonathan C Cheng
- USC/Norris Comprehensive Cancer Center, Departments of Urology, Biochemistry, and Molecular Biology, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Casillas MA, Lopatina N, Andrews LG, Tollefsbol TO. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 2004; 252:33-43. [PMID: 14577574 DOI: 10.1023/a:1025548623524] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although it has been known for quite some time that genomic methylation is significantly altered in aging and neoplastic tissues and cells, the underlying mechanisms responsible for these alterations are not yet known. Since DNA methylation affects many different cellular processes including, most significantly, gene expression, elucidation of the basis for aberrations in DNA methylation in aging and cancer is of high priority. To address this problem, we sought to analyze changes in gene expression, protein production and enzyme activity of the three major DNA methyltransferases (Dnmtl, 3a, and 3b) in aging and neoplastically-transformed WI-38 human fetal lung fibroblasts. We have found that the gene expression of each of the three Dnmts parallels changes in protein production and enzyme activity of the Dnmts not only in aging cells, but also in WI-38 fibroblasts induced to undergo neoplastic transformation using defined genetic elements. These findings strongly implicate change in gene expression as an underlying mechanism in the altered genomic methylation of these cells. Striking changes in the gene expression of the Dnmts were observed in aging cells with the mRNA of Dnmtl becoming reduced while the mRNA of Dnmt3b increased steadily in aging cells consistent with our observations in protein production and activity of these enzymes. Surprisingly, Dnmt3a actually decreased in gene expression in aging cells. We therefore propose that the transcriptional control of Dnmt1, the predominant maintenance methyltransferase, is significantly suppressed in aging cells and contributes to the reduced genomic methylation of these cells. The paradoxical sporadic gene hypermethylation in aging cells appears to be related to transcriptional up-regulation of the Dnmt3b gene. In addition, we sought to explore the coordinated changes in gene expression, protein production, and enzyme activity of these Dnmts in early cellular transformation. In these cells, the gene expression of all the three major Dnmts were up-regulated followed by marked increases in Dnmt protein and enzyme activity. These results therefore collectively indicate that changes in transcriptional control of the Dnmts are the likely cause for the known alterations in DNA methylation in aging cells and in cells undergoing tumorigenesis. They also show that changes in transcription of Dnmtl and Dnmt3b are probably most important in affecting the generalized hypomethylation and specific hypermethylation seen in aging cells while gene expression of all the Dnmts is significantly increased in cancer cells. These findings should have broad implications in elucidating the underlying causes of changes in DNA methylation in aging and tumorigenesis and point to variations in gene expression of the individual Dnmts as a likely mechanism involved in these processes.
Collapse
Affiliation(s)
- Mark A Casillas
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
119
|
Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, Marquez VE, Jones PA. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 2004; 24:1270-8. [PMID: 14729971 PMCID: PMC321446 DOI: 10.1128/mcb.24.3.1270-1278.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Recently, we reported that zebularine [1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one] acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. Here we show that continuous application of zebularine to T24 cells induces and maintains p16 gene expression and sustains demethylation of the 5' region for over 40 days, preventing remethylation. In addition, continuous zebularine treatment effectively and globally demethylated various hypermethylated regions, especially CpG-poor regions. The drug caused a complete depletion of extractable DNA methyltransferase 1 (DNMT1) and partial depletion of DNMT3a and DNMT3b3. Last, sequential treatment with 5-aza-2'-deoxycytidine followed by zebularine hindered the remethylation of the p16 5' region and gene resilencing, suggesting the possible combination use of both drugs as a potential anticancer regimen.
Collapse
Affiliation(s)
- Jonathan C Cheng
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9181, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Teerawanichpan P, Chandrasekharan MB, Jiang Y, Narangajavana J, Hall TC. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. PLANTA 2004; 218:337-349. [PMID: 14513380 DOI: 10.1007/s00425-003-1112-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 08/16/2003] [Indexed: 05/24/2023]
Abstract
Two genomic clones ( OsMET1-1, AF 462029 and OsMET1-2, TPA BK001405), each encoding a cytosine-5 DNA methyltransferase (MTase), were isolated from rice ( Oryza sativa L.) BAC libraries. OsMET1-1 has an open reading frame of 4,566 nucleotides with 12 exons and 11 introns while OsMET1-2 has an open reading frame of 4,491 nucleotides with 11 exons and 10 introns. Although OsMET1-1 and OsMET1-2 have high sequence similarity overall, they share only 24% identity in exon 1, and intron 3 of OsMET1-1 is absent from OsMET1-2. As for other eukaryotic DNA MTases of the Dnmt1/MET l class, the derived amino acid sequences of OsMET1-1 and OsMET1-2 suggest that they are comprised of two-thirds regulatory domain and one-third catalytic domain. Most functional domains identified for other MTases were present in the rice MET1 sequences. Amino acid sequence comparison indicated high similarity (56-75% identity) of rice MET1 proteins to other plant MET1 sequences but limited similarity (approx. 24% identity) to animal Dnmt1 proteins. Genomic blot and database analysis indicated the presence of a single copy of OsMET1-1 (on chromosome 3) and single copy of OsMET1-2 (on chromosome 7). Ribonuclease protection assays revealed expression of both OsMET1-1 and OsMET1-2 in highly dividing cells, but the steady-state level of OsMET1-2 was 7- to 12-fold higher than that for OsMET1-1 in callus, root and inflorescence. The functional involvement of the rice DNA MTases in gene silencing was investigated using an RNAi strategy. Inverted repeat constructs of either the N- or C-terminal regions of OsMET1-1 were supertransformed into calli derived from a rice line bearing a silenced 35S-uidA-nos transgene. Restoration of uidA expression in the bombarded calli was consistent with the inactivation of maintenance methylation and with previous evidence for the involvement of methylation in silencing of this line.
Collapse
|
121
|
Abstract
Abstract
Several alternatively spliced variants of DNA methyltransferase (DNMT) 3b have been described. Here, we identified new murine Dnmt3b mRNA isoforms and found that mouse embryonic stem (ES) cells expressed only Dnmt3b transcripts that contained exons 10 and 11, whereas the Dnmt3b transcripts in somatic cells lacked these exons, suggesting that this region is important for embryonic development. DNMT3b2 and 3b3 were the major isoforms expressed in human cell lines and the mRNA levels of these isoforms closely correlated with their protein levels. Although DNMT3b3 may be catalytically inactive, it still may be biologically important because D4Z4 and satellites 2 and 3 repeat sequences, all known DNMT3b target sequences, were methylated in cells that predominantly expressed DNMT3b3. Treatment of cells with the mechanism-based inhibitor 5-aza-2′-deoxycytidine (5-Aza-CdR) caused a complete depletion of DNMT1, 3a, 3b1, and 3b2 proteins. Human DNMT3b3 and the murine Dnmt3b3-like isoform, Dnmt3b6, were also depleted although less efficiently, suggesting that DNMT3b3 also may be capable of DNA binding. Moreover, de novo methylation of D4Z4 in T24 cancer cells after 5-Aza-CdR treatment only occurred when DNMT3b3 was expressed, reinforcing its role as a contributing factor of DNA methylation. The expression of either DNMT3b2 or 3b3, however, was not sufficient to explain the abnormal methylation of DNMT3b target sequences in human cancers, which may therefore be dependent on factors that affect DNMT3b targeting. Methylation analyses of immunodeficiency, chromosomal instabilities, and facial abnormalities cells revealed that an Alu repeat sequence was highly methylated, suggesting that Alu sequences are not DNMT3b targets.
Collapse
|
122
|
Baqir S, Smith LC. Growth RestrictedIn VitroCulture Conditions Alter the Imprinted Gene Expression Patterns of Mouse Embryonic Stem Cells. CLONING AND STEM CELLS 2003; 5:199-212. [PMID: 14588138 DOI: 10.1089/153623003769645866] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem (ES) cell-derived clones and chimeras are often associated with growth abnormalities during fetal development, leading to the production of over/under-weight offspring that show elevated neonatal mortality and morbidity. Due to the role played by imprinted genes in controlling fetal growth, much of the blame is pointed at improper epigenetic reprogramming of cells used in the procedures. We have analyzed the expression pattern of two growth regulatory imprinted genes, namely insulin like growth factor II (Igf2) and H19, in mouse ES cells cultured under growth restricted conditions and after in vitro aging. Culture of cells with serum-depleted media (starvation) and at high cell density (confluence) increased the expression of both imprinted genes and led to aberrant methylation profiles of differentially methylated regions in key regulatory sites of Igf2 and H19. These findings confirm that growth constrained cultures of ES cells are associated with alterations to methylation of the regulatory domains and the expression patterns of imprinted genes, suggesting a possible role of epigenetic factors in the loss of developmental potential.
Collapse
Affiliation(s)
- Senan Baqir
- CRRA, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | | |
Collapse
|
123
|
Kimura F, Seifert HH, Florl AR, Santourlidis S, Steinhoff C, Swiatkowski S, Mahotka C, Gerharz CD, Schulz WA. Decrease of DNA methyltransferase 1 expression relative to cell proliferation in transitional cell carcinoma. Int J Cancer 2003; 104:568-78. [PMID: 12594811 DOI: 10.1002/ijc.10988] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many common cancers such as transitional cell carcinoma (TCC), specific genes are hypermethylated, whereas overall DNA methylation is diminished. Genome-wide DNA hypomethylation mostly affects repetitive sequences such as LINE-1 retrotransposons. Methylation of these sequences depends on adequate expression of DNA methyltransferase I (DNMT1) during DNA replication. Therefore, DNMT1 expression relative to proliferation was investigated in TCC cell lines and tissue as well as in renal carcinoma (RCC) cell lines, which also display hypomethylation, as indicated by decreased LINE-1 methylation. Cultured normal uroepithelial cells or normal bladder tissue served as controls. In all tumor cell lines, DNMT1 mRNA as well as protein was decreased relative to the DNA replication factor PCNA, and DNA hypomethylation was present. However, the extents of hypomethylation and DNMT1 downregulation did not correlate. Reporter gene assays showed that the differences in DNMT1 expression between normal and tumor cells were not established at the level of DNMT1 promoter regulation. Diminished DNMT1:PCNA mRNA ratios were also found in 28/45 TCC tissues but did not correlate with the extent of DNA hypomethylation. In addition, expression of the presumed de novo methyltransferases DNMT3A and DNMT3B mRNAs was investigated. DNMT3B overexpression was observed in about half of all high-stage TCC (DNMT3B vs. tumor stage, chi(2): p = 0.03), whereas overexpression of DNMT3A was rarer and less pronounced. Expression of DNMT3A and DNMT3B in most RCC lines was higher than in TCC lines. Our data indicate that DNMT1 expression does not increase adequately with cell proliferation in bladder cancer. This relative downregulation probably contributes to hypomethylation of repetitive DNA but does not determine its extent alone.
Collapse
Affiliation(s)
- Fumihiro Kimura
- Urologische Klinik, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Hypermethylation of CpG islands, an epigenetic event that is not accompanied by changes in DNA sequence, represents an alternative mechanism to deletions or mutations to inactivate tumor suppressor genes. Recent evidence supports the notion that CpG island hypermethylation, by silencing key cancer-related genes, plays a major causal role in cancer. However, a long-standing issue in the field is the sequence of molecular events leading to epigenetic gene silencing. A new model has been proposed that chromatin remodeling, as a result of histone deacetylation and methylation, is the primary event in abrogating transcriptional initiation; subsequently, CpG island hypermethylation establishes a permanent state of gene silencing. Accumulating evidence indicates that CpG island hypermethylation is an early event in cancer development and, in some cases, may precede the neoplastic process. Because of their heritable nature, hypermethylated CpG islands leave 'molecular footprints' in evolving cancer cells and can be used as molecular markers to reconstruct epigenetic progression during tumorigenesis. Furthermore, hypermethylated CpG islands are proving to be useful for molecular classification of different cancer types.
Collapse
Affiliation(s)
- Kenneth P Nephew
- Medical Sciences, School of Medicine, Indiana University, Bloomington, IN 47405-4401, USA
| | | |
Collapse
|
125
|
Beheshti B, Braude I, Marrano P, Thorner P, Zielenska M, Squire JA. Chromosomal localization of DNA amplifications in neuroblastoma tumors using cDNA microarray comparative genomic hybridization. Neoplasia 2003; 5:53-62. [PMID: 12659670 PMCID: PMC1502121 DOI: 10.1016/s1476-5586(03)80017-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Conventional comparative genomic hybridization (CGH) profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available) algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb) than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1) no amplifications evident, 2) a small MYCN amplicon as the only detectable imbalance, and 3) a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.
Collapse
Affiliation(s)
- Ben Beheshti
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
126
|
Choi MS, Shim YH, Hwa JY, Lee SK, Ro JY, Kim JS, Yu E. Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol 2003; 34:11-7. [PMID: 12605361 DOI: 10.1053/hupa.2003.5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypermethylation of cell cycle regulators and increased DNA methyltransferase 1 (Dnmt1) mRNA level have been reported in hepatocarcinogenesis. However, the expression of Dnmts has not yet been examined in hepatocellular carcinomas (HCCs). We examined 13 cases of HCCs in dysplastic nodules (DNs) and 28 cases of advanced HCCs for Dnmt1 and Dnmt3a, and compared the results with those of 9 cases of low-grade DNs, 24 cases of high-grade DNs, and 59 cases of nonneoplastic liver tissues from 59 cases of surgically resected livers by immunohistochemical staining. Nuclear expression of Dnmt1 was increased significantly in all HCCs in DNs and advanced HCCs compared with those of nonneoplastic livers, low-grade DNs, and high-grade DNs (P <0.05). Nuclear expression of Dnmt3a was not detectable in nonneoplastic liver and low-grade DN, whereas it was observed in high-grade DNs (7 of 24, 29.2%), HCCs in DNs (7 of 13, 53.8%), and advanced HCCs (11 of 28, 39.3%). Different from Dnmt1 immunostaining, cytoplasmic immunoreactivity for Dmnt3a was significantly decreased or absent in 13 of 24 cases of high-grade DNs (54.1%), 12 of 13 cases of HCCs in DNs (92.3%), and 22 of 28 cases of advanced HCCs (78.6%), compared with nonneoplastic livers and low-grade DNs (P <0.05). Our data suggest that Dnmt1 and Dnmt3a play a role in the early stage of hepatocarcinogenesis and that dysregulation of Dnmt3a may be involved in the progression of HCC. Furthermore, the significantly decreased cytoplasmic immunoreactivity for Dnmt3a in high-grade DNs and HCCs can be used as a diagnostic adjunct.
Collapse
Affiliation(s)
- Mi Sun Choi
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
127
|
Neumeister P, Albanese C, Balent B, Greally J, Pestell RG. Senescence and epigenetic dysregulation in cancer. Int J Biochem Cell Biol 2002; 34:1475-90. [PMID: 12200040 DOI: 10.1016/s1357-2725(02)00079-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian cells have a finite proliferative lifespan, at the end of which they are unable to enter S phase in response to mitogenic stimuli. They undergo morphological changes and synthesize an altered repertoire of cell type-specific proteins. This non-proliferative state is termed replicative senescence and is regarded as a major tumor suppressor mechanism. The ability to overcome senescence and obtain a limitless replicative potential is called immortalization, and considered to be one of the prerequisites of cancer formation. While senescence mainly represents a genetically governed process, epigenetic changes in cancer have received increasing attention as an alternative mechanism for mediating gene expression changes in transformed cells. DNA methylation of promoter-containing CpG islands has emerged as an epigenetic mechanism of silencing tumor suppressor genes. New insights are being gained into the mechanisms causing aberrant methylation in cancer and evidence suggests that aging is accompanied by accumulation of cells with aberrant CpG island methylation. Aberrant methylation may contribute to many of the physiological and pathological changes associated with aging including tumor development. Finally, we describe how genes involved in promoting longevity might inhibit pathways promoting tumorigenesis.
Collapse
Affiliation(s)
- Peter Neumeister
- Department of Development and Molecular Biology, Division of Hormone-Responsive Tumors, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
128
|
Abstract
Methylation of cytosines within the CpG dinucleotide by DNA methyltransferases is involved in regulating transcription and chromatin structure, controlling the spread of parasitic elements, maintaining genome stability in the face of vast amounts of repetitive DNA, and X chromosome inactivation. Cellular DNA methylation is highly compartmentalized over the mammalian genome and this compartmentalization is essential for embryonic development. When the complicated mechanisms that control which DNA sequences become methylated go awry, a number of inherited genetic diseases and cancer may result. Much new information has recently come to light regarding how cellular DNA methylation patterns may be established during development and maintained in somatic cells. Emerging evidence indicates that various chromatin states such as histone modifications (acetylation and methylation) and nucleosome positioning (modulated by ATP-dependent chromatin remodeling machines) determine DNA methylation patterning. Additionally, various regulatory factors interacting with the DNA methyltransferases may direct them to specific DNA sequences, regulate their enzymatic activity, and allow their use as transcriptional repressors. Continued studies of the connections between DNA methylation and chromatin structure and the DNA methyltransferase-associated proteins, will likely reveal that many, if not all, epigenetic modifications of the genome are directly connected. Such studies should also yield new insights into treating diseases involving aberrant DNA methylation.
Collapse
Affiliation(s)
- Keith D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
129
|
Beaulieu N, Morin S, Chute IC, Robert MF, Nguyen H, MacLeod AR. An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 2002; 277:28176-81. [PMID: 12015329 DOI: 10.1074/jbc.m204734200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abnormal methylation and associated silencing of tumor suppressor genes is a common feature of many types of cancers. The observation of persistent methylation in human cancer cells lacking the maintenance methyltransferase DNMT1 suggests the involvement of other DNA methyltransferases in gene silencing in cancer. To test this hypothesis, we have evaluated methylation and gene expression in cancer cells specifically depleted of DNMT3A or DNMT3B, de novo methyltransferases that are expressed in adult tissues. Here we have shown that depletion of DNMT3B, but not DNMT3A, induced apoptosis of human cancer cells but not normal cells. DNMT3B depletion reactivated methylation-silenced gene expression but did not induce global or juxtacentromeric satellite demethylation as did specific depletion of DNMT1. Furthermore, the effect of DNMT3B depletion was rescued by exogenous expression of either of the splice variants DNMT3B2 or DNMT3B3 but not DNMT1. These results indicate that DNMT3B has significant site selectivity that is distinct from DNMT1, regulates aberrant gene silencing, and is essential for cancer cell survival.
Collapse
Affiliation(s)
- Normand Beaulieu
- Department of Molecular Biology, MethylGene Inc., Montreal H4S 2A1, Canada
| | | | | | | | | | | |
Collapse
|
130
|
Zardo G, Reale A, Passananti C, Pradhan S, Buontempo S, De Matteis G, Adams RLP, Caiafa P. Inhibition of poly(ADP-ribosyl)ation induces DNA hypermethylation: a possible molecular mechanism. FASEB J 2002; 16:1319-21. [PMID: 12154007 DOI: 10.1096/fj.01-0827fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pattern of DNA methylation established during embryonic development is necessary for the control of gene expression and is preserved during the replicative process. DNA regions of about 1-2 kb in size, termed CpG islands and located mostly in the promoter regions of housekeeping genes, are protected from methylation, despite being about 6-10 times richer in the dinucleotide CpG than the rest of DNA. Their unmethylated state guarantees the expression of the corresponding housekeeping genes. At present, the mechanism by which CpG islands remain protected from methylation is not clear. However, some results suggest that poly(ADP-ribosyl)ation, an enzymatic process that introduces a postsynthetic modification onto chromatin proteins, might be involved. Here we show in L929 mouse fibroblast cells that inhibition of poly(ADP-ribose) polymerase(s) at different cell-cycle phases increases the mRNA and protein levels of the major maintenance DNA methyltransferase (DNMT1) in G1/S border. Increase of DNMT1 results in a premature PCNA-DNMT1 complex formation, which facilitates robust maintenance, as well as de novo DNA methylation processes during the G1/S border, which leads to abnormal hypermethylation.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Department of Cellular Biotechnologies and Haematology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Majumder S, Ghoshal K, Datta J, Bai S, Dong X, Quan N, Plass C, Jacob ST. Role of de novo DNA methyltransferases and methyl CpG-binding proteins in gene silencing in a rat hepatoma. J Biol Chem 2002; 277:16048-58. [PMID: 11844796 PMCID: PMC2241740 DOI: 10.1074/jbc.m111662200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of metallothionein-I (MT-I), a known antioxidant, was suppressed in a transplanted rat hepatoma because of promoter methylation and was induced by heavy metals only after demethylation by 5-azacytidine (5-AzaC). Treatment of the tumor-bearing rats with 5-AzaC resulted in significant regression of the hepatoma. When the inhibitor-treated tumor was allowed to grow in a new host, MT-I promoter was remethylated, which suggested de novo methylation. The activities of both de novo (3-fold) and maintenance DNA methyltransferases (DNMT) (5-fold) were higher in the hepatoma than in the host liver. The mRNA levels of the de novo methyltransferases DNMT3a and DNMT3b were 3- and 6-fold higher, respectively, in the tumor implicating transcriptional up-regulation of these two genes in this tissue. Immunohistochemical analysis showed exclusive localization of DNMT3a in the nuclei of both the liver and hepatoma, whereas DNMT3b was detected in the nuclei as well as the cytoplasm. Immunoblot assay showed that the levels of DNMT1, DNMT3a, and DNMT3b proteins in the hepatoma were 5-, 10-, and 4-fold higher, respectively, than in the liver. The mRNA level of the major methyl CpG-binding protein (MeCP2) was 8-fold higher in the tumor compared with the liver. Immunohistochemical studies showed that MeCP2 is localized exclusively in the nuclei of both tissues. A chromatin immunoprecipitation assay demonstrated that MeCP2 was associated with the MT-I promoter in the hepatoma implicating its involvement in repressing the methylated promoter. Analysis of the DNA isolated from the liver and hepatoma by RLGS-M (restriction landmark genomic scanning with methylation-sensitive enzyme) (NotI) showed that many genes in addition to MT-I were methylated in the hepatoma. These data demonstrate suppression of the MT-I gene and probably other genes in a solid tumor by promoter methylation and have provided potential molecular mechanisms for the altered methylation profile of the genes in this tumor.
Collapse
Affiliation(s)
- Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Trinh BN, Long TI, Nickel AE, Shibata D, Laird PW. DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair. Mol Cell Biol 2002; 22:2906-17. [PMID: 11940649 PMCID: PMC133764 DOI: 10.1128/mcb.22.9.2906-2917.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have introduced DNA methyltransferase 1 (Dnmt1) mutations into a mouse strain deficient for the Mlh1 protein to study the interaction between DNA mismatch repair deficiency and DNA methylation. Mice harboring hypomorphic Dnmt1 mutations showed diminished RNA expression and DNA hypomethylation but developed normally and were tumor free. When crossed to Mlh1(-/-) homozygosity, they were less likely to develop the intestinal cancers that normally arise in this tumor-predisposed, mismatch repair-deficient background. However, these same mice developed invasive T- and B-cell lymphomas earlier and at a much higher frequency than their Dnmt1 wild-type littermates. Thus, the reduction of Dnmt1 activity has significant but opposing outcomes in the development of two different tumor types. DNA hypomethylation and mismatch repair deficiency interact to exacerbate lymphomagenesis, while hypomethylation protects against intestinal tumors. The increased lymphomagenesis in Dnmt1 hypomorphic, Mlh1(-/-) mice may be due to a combination of several mechanisms, including elevated mutation rates, increased expression of proviral sequences or proto-oncogenes, and/or enhanced genomic instability. We show that CpG island hypermethylation occurs in the normal intestinal mucosa, is increased in intestinal tumors in Mlh1(-/-) mice, and is reduced in the normal mucosa and tumors of Dnmt1 mutant mice, consistent with a role for Dnmt1-mediated CpG island hypermethylation in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Binh N Trinh
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA
| | | | | | | | | |
Collapse
|
133
|
Patra SK, Patra A, Zhao H, Dahiya R. DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 2002; 33:163-71. [PMID: 11870882 DOI: 10.1002/mc.10033] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies have shown that cytosine-5 methylation at CpG islands in the regulatory sequence of a gene is one of the key mechanisms of inactivation. The enzymes responsible for CpG methylation are DNA methyltransferase (DNMT) 1, DNMT3a, and DNMT3b, and the enzyme responsible for demethylation is DNA demethylase (MBD2). Studies on methylation-demethylation enzymes are lacking in human prostate cancer. We hypothesize that MBD2 enzyme activity is repressed and that DNMT1 enzyme activity is elevated in human prostate cancer. To test this hypothesis, we analyzed enzyme activities, mRNA, and protein levels of MBD2 and DNMT1, DNMT3a, and DNMT3b in human prostate cancer cell lines and tissues. The enzyme activities of DNMTs and MBD2 were analyzed by biochemical assay. The mRNA expression was analyzed by reverse transcriptase-polymerase chain reaction and by Northern blotting. The protein expression was measured by immunohistochemistry with specific antibodies. The results of these experiments demonstrated that (1) the activity of DNMTs was twofold to threefold higher in cancer cell lines and cancer tissues, as compared with a benign prostate epithelium cell line (BPH-1) and benign prostatic hyperplasia (BPH) tissues; (2) MBD2 activity was lacking in prostate cancer cell lines but present in BPH-1 cells; (3) immunohistochemical analyses exhibited higher expression of DNMT1 in all prostate cancer cell lines and cancer tissues, as compared with BPH-1 cell lines and BPH tissues; (4) MBD2 protein expression was significantly higher in BPH-1 cells and lacking in prostate cancer cell lines and, in BPH tissues, MBD2 protein expression was poorly observed, as compared with no expression in prostate cancer tissues; and (5) mRNA expression for DNMT1 was upregulated in prostate cancer, as compared with BPH-1, and mRNA expression for MBD2 was found to be significantly expressed in all cases. The results of these studies clearly demonstrate that DNMT1 activity is upregulated, whereas MBD2 is repressed at the level of translation in human prostate cancer. These results may demonstrate molecular mechanisms of CpG hypermethylation of various genes in prostate cancer.
Collapse
Affiliation(s)
- Samir K Patra
- Department of Urology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
134
|
Abstract
Studies of the retinoblastoma gene (Rb) have shown that its protein product (pRb) acts to restrict cell proliferation, inhibit apoptosis, and promote cell differentiation. The frequent mutation of the Rb gene, and the functional inactivation of pRb in tumor cells, have spurred interest in the mechanism of pRb action. Recently, much attention has focused on pRb's role in the regulation of the E2F transcription factor. However, biochemical studies have suggested that E2F is only one of many pRb-targets and, to date, at least 110 cellular proteins have been reported to associate with pRb. The plethora of pRb-binding proteins raises several important questions. How many functions does pRb possess, which of these functions are important for development, and which contribute to tumor suppression? The goal of this review is to summarize the current literature of pRb-associated proteins.
Collapse
Affiliation(s)
- E J Morris
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
135
|
Szyf M, Detich N. Regulation of the DNA methylation machinery and its role in cellular transformation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:47-79. [PMID: 11550798 DOI: 10.1016/s0079-6603(01)69044-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation, a covalent modification of the genome, is emerging as an important player in the regulation of gene expression. This review discusses the different components of the DNA methylation machinery responsible for replicating the DNA methylation pattern. Recent data have changed our basic understanding of the DNA methylation machinery. A number of DNA methyltransferases (DNMT) have been identified and a demethylase has recently been reported. Because the DNA methylation pattern is critical for gene expression programs, the cell possesses a number of mechanisms to coordinate DNA replication and methylation. DNMT1 levels are regulated with the cell cycle and are induced upon entry into the S phase of the cell cycle. DNMT1 also regulates expression of cell-cycle proteins by its other regulatory functions and not through its DNA methylation activity. Once the mechanisms that coordinate DNMT1 and the cell cycle are disrupted, DNMT1 exerts an oncogenic activity. Tumor suppressor genes are frequently methylated in cancer but the mechanisms responsible are unclear. Overexpression of DNMT1 is probably not responsible for the aberrant methylation of tumor suppressor genes. Unraveling how the different components of the DNA methylation machinery interact to replicate the DNA methylation pattern, and how they are disrupted in cancer, is critical for understanding the molecular mechanisms of cancer.
Collapse
Affiliation(s)
- M Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
136
|
Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 2001; 82:299-304. [PMID: 11531283 DOI: 10.1006/gyno.2001.6284] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether expression of the enzymes that catalyze cytosine CpG island methylation, DNA methyltransferases, DNMT1, DNMT3a, and DNMT3b is altered in human ovarian cancer. Aberrations in DNA methylation are common in cancer and have important roles in tumor initiation and progression. Tumors that display frequent and concurrent inactivation of multiple genes by methylation are designated as having a CpG Island methylator phenotype, or CIMP. To date, colon, gastric, and most recently ovarian cancers meet the CIMP criteria for cancer. We hypothesized that altered expression of DNA methyltransferases can result in hypermethylation events seen in CIMP cancers. METHODS DNMT1, DNMT3a, and DNMT3b mRNA levels in eight ovarian cancer cells lines (Hey, HeyA8, HeyC2, OVCAR-3, SK-OV-3, PA-1, A2780, and A2780-P5) were compared to DNMT expression in normal ovarian surface epithelial cells using semi-quantitative reverse transcription-polymerase chain reaction. RESULTS In HeyA8 and HeyC2 ovarian cancer cells, DNMT1 expression levels were up to threefold higher (P < 0.05) than in normal ovarian surface epithelial cells. SK-OV-3 and PA-1 displayed increased DNMT3b expression (P < 0.05) compared to normal ovarian surface epithelial cells. Transcript levels for DNMT3a, however, were similar in cancer and normal ovarian cells. CONCLUSIONS We observed differential expression of the DNMT genes in some ovarian cancer cell lines and conclude that alterations in DNMT expression might contribute to the CIMP phenotype in ovarian cancer. However, based on the lack of aberrant DNMT expression in some of the cancer cell lines examined, we further suggest that another mechanism(s), in addition to DNMT overexpression, accounts for methylation anomalies commonly observed in ovarian cancer.
Collapse
Affiliation(s)
- A Ahluwalia
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
137
|
Detich N, Ramchandani S, Szyf M. A conserved 3'-untranslated element mediates growth regulation of DNA methyltransferase 1 and inhibits its transforming activity. J Biol Chem 2001; 276:24881-90. [PMID: 11335728 DOI: 10.1074/jbc.m103056200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectopic expression of DNA methyltransferase 1 (DNMT1) has been proposed to play an important role in cancer. dnmt1 mRNA is undetectable in growth-arrested cells but is induced upon entrance into the S phase of the cell cycle, and until now, the mechanisms responsible for this regulation were unknown. In this report, we demonstrate that the 3'-untranslated region (3'-UTR) of the dnmt1 mRNA can confer a growth-dependent regulation on its own message as well as a heterologous beta-globin mRNA. Our results indicate that a 54-nucleotide highly conserved element within the 3'-UTR is necessary and sufficient to mediate this regulation. Cell-free mRNA decay experiments demonstrate that this element increases mRNA turnover rates and does so to a greater extent in the presence of extracts prepared from arrested cells. A specific RNA-protein complex is formed with the 3'-UTR only in growth-arrested cells, and a UV cross-linking analysis revealed a 40-kDa protein (p40), the binding of which is dramatically increased in growth-arrested cells and is inversely correlated with dnmt1 mRNA levels as cells are induced into the cell cycle. Although ectopic expression of human DNMT1 lacking the 3'-UTR can transform NIH-3T3 cells, inclusion of the 3'-UTR prevents transformation. These results support the hypothesis that deregulated expression of DNMT1 with the cell cycle is important for cellular transformation.
Collapse
Affiliation(s)
- N Detich
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
138
|
Wrenzycki C, Wells D, Herrmann D, Miller A, Oliver J, Tervit R, Niemann H. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod 2001; 65:309-17. [PMID: 11420254 DOI: 10.1095/biolreprod65.1.309] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The successful production of embryos by nuclear transfer (NT) employing cultured somatic donor cells depends upon a variety of factors. The objective of the present study was to investigate the effects 1) of two different activation protocols, 2) the use of quiescent or nonquiescent donor cells (G(0) or G(1) of the cell cycle), and 3) passage number of donor cells on the relative abundance (RA) of eight specific mRNAs (DNA methyltransferase, DNMT; mammalian achaete-scute homologue, Mash2; glucose transporter-1, Glut-1; heat shock protein 70.1, Hsp; desmocollin II, Dc II; E-cadherin, E-cad; interferon tau, IF; insulin-like growth factor 2 receptor, Igf2r) in single blastocysts employing a semiquantitative reverse transcription-polymerase chain reaction assay. The results were compared with those for their in vitro (IVP)- and in vivo-generated noncloned counterparts. In experiment 1, employing either FBA (fusion before activation) or AFS (fusion and activation simultaneously) to generate NT blastocysts, Hsp mRNAs were not found in NT embryos from either protocol, whereas Hsp transcripts were detectable in IVP embryos. The relative abundance (RA) of IF transcripts was significantly increased in the AFS and IVP groups compared to the FBA treatment. In experiment 2, the use of either G(0) or G(1) donor cells to produce cloned embryos both significantly reduced the relative amount of DNMT transcripts and significantly increased the RA of Mash2 compared to the IVP embryos. In addition, IF transcript levels were significantly elevated in NT blastocysts employing G(1) donor cells for NT compared to IVP embryos and those generated using G(0) cells. In experiment 3, donor cells, either from passsage 5/6 or 8, were employed for NT. DNMT transcripts were significantly decreased, whereas Mash2 transcripts were significantly increased in both NT groups compared to their IVP counterparts. The amount of IF mRNA was significantly higher in P8-derived than in P5/6 and IVP embryos. In experiment 4, the RA of DNMT transcripts was decreased in in vivo-derived blastocysts compared to those produced in vitro. Mash2 expression was increased in in vivo embryos and those IVP embryos produced in medium containing Sigma BSA. The RA of Hsp was higher in IVP embryos produced in serum containing medium than in those produced in Sigma BSA or in vivo. In vivo embryos and those produced in Life Technologies BSA had the lowest expression of IF transcripts. Expression of all other genes was not affected by variation in NT methodology or IVP culture systems throughout experiments 1-4. In conclusion, depending on steps of the cloning procedure NT-derived embryos display marked differences from their IVP- and in vivo-derived counterparts. An aberrant expression pattern in NT embryos was found with respect to genes thought to be involved in stress adaptation, trophoblastic function, and DNA methylation during preimplantation development.
Collapse
Affiliation(s)
- C Wrenzycki
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Mariensee, 31535 Neustadt, Germany
| | | | | | | | | | | | | |
Collapse
|
139
|
Gowher H, Jeltsch A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol 2001; 309:1201-8. [PMID: 11399089 DOI: 10.1006/jmbi.2001.4710] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present the first in vitro study investigating the catalytic properties of a mammalian de novo DNA methyltransferase. Dnmt3a from mouse was cloned and expressed in Escherichia coli. It was shown to be catalytically active in E. coli cells in vivo. The methylation activity of the purified protein was highest at pH 7.0 and 30 mM KCl. Our data show that recombinant Dnmt3a protein is indeed a de novo methyltransferase, as it catalyzes the transfer of methyl groups to unmethylated substrates with similar efficiency as to hemimethylated substrates. With oligonucleotide substrates, the catalytic activity of Dnmt3a is similar to that of Dnmt1: the K(m) values for the unmethylated and hemimethylated oligonucleotide substrates are 2.5 microM, and the k(cat) values are 0.05 h(-1) and 0.07 h(-1), respectively. The enzyme catalyzes the methylation of DNA in a distributive manner, suggesting that Dnmt3a and Dnmt1 may cooperate during de novo methylation of DNA. Further, we investigated the methylation activity of Dnmt3a at non-canonical sites. Even though the enzyme shows maximum activity at CpG sites, with oligonucleotide substrates, a high methylation activity was also found at CpA sites, which are modified only twofold slower than CpG sites. Therefore, the specificity of Dnmt3a is completely different from that of the maintenance methyltransferase Dnmt1, which shows a 40 to 50-fold preference for hemimethylated over unmethylated CpG sites and has almost no methylation activity at non-CpG sites.
Collapse
Affiliation(s)
- H Gowher
- Institut für Biochemie Fachbereich 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, Giessen, 35392, Germany
| | | |
Collapse
|
140
|
Abstract
The field of epigenetics has recently moved to the forefront of studies relating to diverse processes such as transcriptional regulation, chromatin structure, genome integrity, and tumorigenesis. Recent work has revealed how DNA methylation and chromatin structure are linked at the molecular level and how methylation anomalies play a direct causal role in tumorigenesis and genetic disease. Much new information has also come to light regarding the cellular methylation machinery, known as the DNA methyltransferases, in terms of their roles in mammalian development and the types of proteins they are known to interact with. This information has forced a new view for the role of DNA methyltransferases. Rather than enzymes that act in isolation to copy methylation patterns after replication, the types of interactions discovered thus far indicate that DNA methyltransferases may be components of larger complexes actively involved in transcriptional control and chromatin structure modulation. These new findings will likely enhance our understanding of the myriad roles of DNA methylation in disease as well as point the way to novel therapies to prevent or repair these defects.
Collapse
Affiliation(s)
- K D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, NIH, Bldg. 41, 41 Library Dr., Bethesda, Maryland, MD 20892, USA
| |
Collapse
|
141
|
Thompson SL, Konfortova G, Gregory RI, Reik W, Dean W, Feil R. Environmental effects on genomic imprinting in mammals. Toxicol Lett 2001; 120:143-50. [PMID: 11323171 DOI: 10.1016/s0378-4274(01)00292-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genomic imprinting is an epigenetic marking mechanism by which certain genes become repressed on one of the two parental alleles. Imprinting plays important roles in mammalian development, and in humans its deregulation may result in disease and carcinogenesis. During different medical, technological and scientific interventions, pre-implantation embryos and cells are taken from their natural environment and subjected to culture in artificial media. Studies in the mouse demonstrate that environmental stress, such as in vitro culture, can affect the somatic maintenance of epigenetic marks at imprinted loci. These effects are associated with aberrant growth and morphology at fetal and perinatal stages of development.
Collapse
Affiliation(s)
- S L Thompson
- Programme in Developmental Genetics, The Babraham Institute, CB2 4AT, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
142
|
Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 2001; 64:918-26. [PMID: 11207209 DOI: 10.1095/biolreprod64.3.918] [Citation(s) in RCA: 447] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.
Collapse
Affiliation(s)
- S Khosla
- Laboratory of Developmental Genetics and Imprinting and Laboratory of Computational Neuroscience, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|