101
|
McCabe MJ, Tarulli GA, Laven-Law G, Matthiesson KL, Meachem SJ, McLachlan RI, Dinger ME, Stanton PG. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction. Hum Reprod 2016; 31:875-86. [PMID: 26908839 DOI: 10.1093/humrep/dew009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are Sertoli cell tight junctions (TJs) disrupted in men undergoing hormonal contraception? SUMMARY ANSWER Localization of the key Sertoli cell TJ protein, claudin-11, was markedly disrupted by 8 weeks of gonadotropin suppression, the degree of which was related to the extent of adluminal germ cell suppression. WHAT IS KNOWN ALREADY Sertoli cell TJs are vital components of the blood-testis barrier (BTB) that sequester developing adluminal meiotic germ cells and spermatids from the vascular compartment. Claudin-11 knockout mice are infertile; additionally claudin-11 is spatially disrupted in chronically gonadotropin-suppressed rats coincident with a loss of BTB function, and claudin-11 is disorganized in various human testicular disorders. These data support the Sertoli cell TJ as a potential site of hormonal contraceptive action. STUDY DESIGN, SIZE, DURATION BTB proteins were assessed by immunohistochemistry (n = 16 samples) and mRNA (n = 18 samples) expression levels in available archived testis tissue from a previous study of 22 men who had undergone 8 weeks of gonadotropin suppression and for whom meiotic and post-meiotic germ cell numbers were available. The gonadotropin suppression regimens were (i) testosterone enanthate (TE) plus the GnRH antagonist, acyline (A); (ii) TE + the progestin, levonorgestrel, (LNG); (iii) TE + LNG + A or (iv) TE + LNG + the 5α-reductase inhibitor, dutasteride (D). A control group consisted of seven additional men, with three archived samples available for this study. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Immunohistochemical localization of claudin-11 (TJ) and other junctional type markers [ZO-1 (cytoplasmic plaque), β-catenin (adherens junction), connexin-43 (gap junction), vinculin (ectoplasmic specialization) and β-actin (cytoskeleton)] and quantitative PCR was conducted using matched frozen testis tissue. MAIN RESULTS AND THE ROLE OF CHANCE Claudin-11 formed a continuous staining pattern at the BTB in control men. Regardless of gonadotropin suppression treatment, claudin-11 localization was markedly disrupted and was broadly associated with the extent of meiotic/post-meiotic germ cell suppression; claudin-11 staining was (i) punctate (i.e. 'spotty' appearance) at the basal aspect of tubules when the average numbers of adluminal germ cells were <15% of control, (ii) presented as short fragments with cytoplasmic extensions when numbers were 15-25% of control or (iii) remained continuous when numbers were >40% of control. Changes in localization of connexin-43 and vinculin were also observed (smaller effects than for claudin-11) but ZO-1, β-catenin and β-actin did not differ, compared with control. LIMITATIONS, REASONS FOR CAUTION Claudin-11 was the only Sertoli cell TJ protein investigated, but it is considered to be the most pivotal of constituent proteins given its known implication in infertility and BTB function. We were limited to testis samples which had been gonadotropin-suppressed for 8 weeks, shorter than the 74-day spermatogenic wave, which may account for the heterogeneity in claudin-11 and germ cell response observed among the men. Longer suppression (12-24 weeks) is known to suppress germ cells further and claudin-11 disruption may be more uniform, although we could not access such samples. WIDER IMPLICATIONS OF THE FINDINGS These findings are important for our understanding of the sites of action of male hormonal contraception, because they suggest that BTB function could be ablated following long-term hormone suppression treatment. STUDY FUNDING/COMPETING INTERESTS National Health and Medical Research Council (Australia) Program Grants 241000 and 494802; Research Fellowship 1022327 (to R.I.M.) and the Victorian Government's Operational Infrastructure Support Program. None of the authors have any conflicts to disclose. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- M J McCabe
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Applied Biology/Biotechnology, Royal Melbourne Institute of Technology University, Bundoora, VIC 3088, Australia Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
| | - G A Tarulli
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - G Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - K L Matthiesson
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - S J Meachem
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia
| | - R I McLachlan
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - M E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
| | - P G Stanton
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
102
|
Chojnacka K, Zarzycka M, Mruk DD. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. Results Probl Cell Differ 2016; 58:225-251. [PMID: 27300181 DOI: 10.1007/978-3-319-31973-5_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
103
|
Toocheck C, Clister T, Shupe J, Crum C, Ravindranathan P, Lee TK, Ahn JM, Raj GV, Sukhwani M, Orwig KE, Walker WH. Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling. Biol Reprod 2015; 94:11. [PMID: 26607719 PMCID: PMC4809556 DOI: 10.1095/biolreprod.115.132068] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023] Open
Abstract
Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Corey Toocheck
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Terri Clister
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Shupe
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chelsea Crum
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Preethi Ravindranathan
- Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas
| | - Tae-Kyung Lee
- Department of Chemistry, University of Texas, Dallas, Richardson, Texas
| | - Jung-Mo Ahn
- Department of Chemistry, University of Texas, Dallas, Richardson, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas
| | - Meena Sukhwani
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William H Walker
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
104
|
Manku G, Hueso A, Brimo F, Chan P, Gonzalez-Peramato P, Jabado N, Gayden T, Bourgey M, Riazalhosseini Y, Culty M. Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas. Andrology 2015; 4:95-110. [PMID: 26588606 DOI: 10.1111/andr.12122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of cancer in young men and their incidence has been steadily increasing for the past decades. TGCTs and their precursor carcinoma in situ (CIS) are thought to arise from the deficient differentiation of gonocytes, precursors of spermatogonial stem cells. However, the mechanisms relating failed gonocyte differentiation to CIS formation remain unknown. The goal of this study was to uncover genes regulated during gonocyte development that would show abnormal patterns of expression in testicular tumors, as prospective links between failed gonocyte development and TGCT. To identify common gene and protein signatures between gonocytes and seminomas, we first performed gene expression analyses of transitional rat gonocytes, spermatogonia, human normal testicular, and TGCT specimens. Gene expression arrays, pathway analysis, and quantitative real-time PCR analysis identified cell adhesion molecules as a functional gene category including genes downregulated during gonocyte differentiation and highly expressed in seminomas. In particular, the mRNA and protein expressions of claudins 6 and 7 were found to decrease during gonocyte transition to spermatogonia, and to be abnormally elevated in seminomas. The dynamic changes in these genes suggest that they may play important physiological roles during gonocyte development. Moreover, our findings support the idea that TGCTs arise from a disruption of gonocyte differentiation, and position claudins as interesting genes to further study in relation to testicular cancer.
Collapse
Affiliation(s)
- G Manku
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - A Hueso
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - F Brimo
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Pathology, McGill University, Montreal, QC, Canada
| | - P Chan
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Surgery, McGill University, Montreal, QC, Canada
| | - P Gonzalez-Peramato
- Department of Pathology, La Paz University Hospital, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Jabado
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - T Gayden
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - M Bourgey
- Department of Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Y Riazalhosseini
- Department of Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - M Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
105
|
Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 2015; 151:R15-27. [PMID: 26556893 DOI: 10.1530/rep-15-0366] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023]
Abstract
The gap junction protein connexin43 (CX43) plays a vital role in mammalian spermatogenesis by allowing for direct cytoplasmic communication between neighbouring testicular cells. In addition, different publications suggest that CX43 in Sertoli cells (SC) might be important for blood-testis barrier (BTB) formation and BTB homeostasis. Thus, through the use of the Cre-LoxP recombination system, a transgenic mouse line was developed in which only SC are deficient of the gap junction protein, alpha 1 (Gja1) gene. Gja1 codes for the protein CX43. This transgenic mouse line has been commonly defined as the SC specific CX43 knockout (SCCx43KO) mouse line. Within the seminiferous tubule, SC aid in spermatogenesis by nurturing germ cells and help them to proliferate and mature. Owing to the absence of CX43 within the SC, homozygous KO mice are infertile, have reduced testis size, and mainly exhibit spermatogenesis arrest at the level of spermatogonia, seminiferous tubules containing only SC (SC-only syndrome) and intratubular SC-clusters. Although the SC specific KO of CX43 does not seem to have an adverse effect on BTB integrity, CX43 influences BTB composition as the expression pattern of different BTB proteins (like OCCLUDIN, β-CATENIN, N-CADHERIN, and CLAUDIN11) is altered in mutant males. The supposed roles of CX43 in dynamic BTB regulation, BTB assembly and/or disassembly and its possible interaction with other junctional proteins composing this unique barrier are discussed. Data collectively indicate that CX43 might represent an important regulator of dynamic BTB formation, composition and function.
Collapse
Affiliation(s)
- Jonathan Gerber
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Julia Heinrich
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Ralph Brehm
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
106
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
107
|
Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ, Shi QH. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice. Asian J Androl 2015; 16:572-80. [PMID: 24713828 PMCID: PMC4104086 DOI: 10.4103/1008-682x.125401] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Hua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China; Institute of Physics, Chinese Academy of Sciences, Hefei, China,
| |
Collapse
|
108
|
Al-Asmakh M, Hedin L. Microbiota and the control of blood-tissue barriers. Tissue Barriers 2015; 3:e1039691. [PMID: 26451344 DOI: 10.1080/21688370.2015.1039691] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022] Open
Abstract
The gastro-intestinal tract is an ecosystem containing trillions of commensal bacteria living in symbiosis with the host. These microbiota modulate a variety of our physiological processes, including production of vitamins, absorption of nutrients and development of the immune system. One of their major functions is to fortify the intestinal barrier, thereby helping to prevent pathogens and harmful substances from crossing into the general circulation. Recently, effects of these microbiota on other blood-tissue barriers have also been reported. Here, we review the evidence indicating that gut bacteria play a role in regulating the blood-brain and blood-testis barriers. The underlying mechanisms include control of the expression of tight junction proteins by fermentation products such as butyrate, which also influences the activity of histone deacetylase.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Health Sciences; College of Arts and Sciences; Qatar University ; Doha, Qatar
| | - Lars Hedin
- Sidra Medical and Research Center; Division of Clinical Epidemiology ; Doha, Qatar
| |
Collapse
|
109
|
Abstract
The gastro-intestinal tract is an ecosystem containing trillions of commensal bacteria living in symbiosis with the host. These microbiota modulate a variety of our physiological processes, including production of vitamins, absorption of nutrients and development of the immune system. One of their major functions is to fortify the intestinal barrier, thereby helping to prevent pathogens and harmful substances from crossing into the general circulation. Recently, effects of these microbiota on other blood-tissue barriers have also been reported. Here, we review the evidence indicating that gut bacteria play a role in regulating the blood-brain and blood-testis barriers. The underlying mechanisms include control of the expression of tight junction proteins by fermentation products such as butyrate, which also influences the activity of histone deacetylase.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Health Sciences; College of Arts and Sciences; Qatar University ; Doha, Qatar
| | - Lars Hedin
- Sidra Medical and Research Center; Division of Clinical Epidemiology ; Doha, Qatar
| |
Collapse
|
110
|
Rode K, Sieme H, Richterich P, Brehm R. Characterization of the equine blood-testis barrier during tubular development in normal and cryptorchid stallions. Theriogenology 2015; 84:763-72. [PMID: 26074069 DOI: 10.1016/j.theriogenology.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 11/29/2022]
Abstract
The formation of the blood-testis barrier (BTB) is defined as occurring with the first appearance of spermatocytes at around puberty and is vital for normal spermatogenesis. This barrier between two adjacent Sertoli cells (SCs) consists of a cell junctional protein complex, which includes tight junctions (TJs), adherens junctions, and gap junctions. In many mammalian species, BTB composition has already been investigated, whereas little is known about the equine BTB. In the present study, immunohistochemistry and qualitative Western Blot analysis were used to assess the expression and distribution patterns of the junctional proteins claudin-11 (TJ), zonula occludens-1 (TJ associated), N-cadherin (adherens junctions), and connexin 43 (gap junctions) in equine testes during tubular development and in testes of stallions exhibiting unilateral cryptorchidism. Therefore, testes of 21 warmblood stallions (aged 12 months-11 years) were obtained during routine surgical castration. In the normal adult equine testis, the junctional proteins are localized at the basolateral region of the seminiferous tubules forming a circumferential seal corresponding to the known BTB localization. N-cadherin is additionally expressed along the lateral SC surface. In immature seminiferous cords still lacking a lumen, a diffuse distribution pattern of the junctional proteins throughout the SC cytoplasm is visible. As lumen formation advances, the immunolocalization shifts progressively toward the basolateral SC membranes. Additionally, apoptotic germ cells were detected and quantified in prepubertal stallions using terminal deoxynucleotidyl transferase dUTP nick end labeling assay and correlated with junctional protein localization. In the retained testis of cryptorchid stallions, which exhibit an aberrant testicular morphology, a deviating expression of the junctional proteins is visible. The present data show for the first time that (1) the equine SC junctional complex contains claudin-11, zonula occludens-1, N-Cadherin, and connexin 43, as already described for men or mice, and that (2) different distribution patterns of these proteins exist during testicular development in the context of lumen formation (lumen scores: 1-7) and in retained testes of unilateral cryptorchid stallions.
Collapse
Affiliation(s)
- K Rode
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - H Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Richterich
- Tierärztliche Klinik für Pferde auf Boyenstein, Beckum, Germany
| | - R Brehm
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
111
|
Park CJ, Ha CM, Lee JE, Gye MC. Claudin 11 inter-sertoli tight junctions in the testis of the korean soft-shelled turtle (Pelodiscus maackii). Biol Reprod 2015; 92:96. [PMID: 25761591 DOI: 10.1095/biolreprod.114.117804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/03/2015] [Indexed: 11/01/2022] Open
Abstract
Expression of claudin 11 (CLDN11), a tight junction (TJ) protein, was examined in the Korean soft-shelled turtle (Pelodiscus maackii) testis. Spermatogenesis began during the breeding season and peaked at the end of the breeding season. Spermiation started in summer and peaked in autumn. The deduced amino acid sequence of P. maackii CLDN11 was similar to those of avian and mammalian species. During the nonbreeding season when spermatogenesis and testosterone production were active, testicular Cldn11 levels were high. In the seminiferous epithelium, strong, wavy CLDN11 strands parallel to the basement membrane delaminate the spermatogonia, and early spermatocytes are in the open compartment. Otherwise, CLDN11 was found beneath the early spermatocytes and in the Sertoli cell cytoplasm. Punctate zonula occludens 1 (ZO-1) immunoreactivity was found within the CLDN11 strands parallel to the basement membrane or at the outermost periphery of the seminiferous epithelium close to the basal lamina. During the breeding season, when circulating testosterone levels and spermatogenic activity was low, testicular CLDN11 level was lower than those during the nonbreeding season. CLDN11 was found at apicolateral contact sites between adjacent Sertoli cells devoid of the postmeiotic germ cells. At this time, lanthanum tracer diffused to the adluminal compartment of seminiferous epithelium. In cultured testis tissues, testosterone propionate significantly increased the level of Cldn11 mRNA. In P. maackii testis, CLDN11 participates in the development of the blood-testis barrier (BTB), where the CLDN11 expression was coupled with spermatogenic activity and circulating androgen levels, indicating the conserved nature of TJs expressing CLDN11 at the BTB in amniotes.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Cheol Min Ha
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Jae Eun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Myung Chan Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
112
|
Jiang X, Ma T, Zhang Y, Zhang H, Yin S, Zheng W, Wang L, Wang Z, Khan M, Sheikh SW, Bukhari I, Iqbal F, Cooke HJ, Shi Q. Specific deletion of Cdh2 in Sertoli cells leads to altered meiotic progression and subfertility of mice. Biol Reprod 2015; 92:79. [PMID: 25631347 DOI: 10.1095/biolreprod.114.126334] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
CDH2 (cadherin 2, Neural-cadherin, or N-cadherin) is the predominant protein of testicular basal ectoplasmic specializations (basal ES; a testis-specific type of adhesion junction), one of the major cell junctions composing the blood-testis barrier (BTB). The BTB is found between adjacent Sertoli cells in seminiferous tubules, which divides the tubules into basal and adluminal compartments and prevents the deleterious exchange of macromolecules between blood and seminiferous tubules. However, the exact roles of basal ES protein CDH2 in BTB function and spermatogenesis is still unknown. We thus generated mice with Cdh2 specifically knocked out in Sertoli cells by crossing Cdh2 loxP mice with Amh-Cre mice. Cdh2 deletion in Sertoli cells did not affect Sertoli cell counts, but led to compromised BTB function, delayed meiotic progression from prophase to metaphase I in testes, increased germ cell apoptosis, sloughing of meiotic cells, and, subsequently, reduced sperm counts in epididymides and subfertility of mice. However, the testes with Cdh2-specific deletion in germ cells did not show any difference from the normal control testes, and phenotypes observed in Sertoli cell and germ cell Cdh2 double-knockout mice were indistinguishable from those in mice with Cdh2 specifically knocked out only in Sertoli cells. Taken together, our data demonstrate that the adhesion junction component, Cdh2, functions just in Sertoli cells, but not in germ cells during spermatogenesis, and is essential for the integrity of BTB function, its deletion in Sertoli cells would lead to the BTB damage and subsequently meiosis and spermatogenesis failure.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Tieliang Ma
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Yuanwei Zhang
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Huan Zhang
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Shi Yin
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Wei Zheng
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Liu Wang
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Zheng Wang
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Manan Khan
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Salma W Sheikh
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Ihtisham Bukhari
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Furhan Iqbal
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China Institute of Pure and Applied Biology, Zoology Division. Bahauddin Zakariya University, Multan, Pakistan
| | - Howard J Cooke
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China Medical Research Council Human Genetics Unit and Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Qinghua Shi
- Laboratory of Molecular and Cell Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Hefei Institutes of Physical Science, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| |
Collapse
|
113
|
Anagawa-Nakamura A, Kakimoto K, Miyajima K, Yasui Y, Kemmochi Y, Toyoda K, Taniai E, Takahashi A, Shoda T. Immunohistochemical Characterization of Spontaneous Sertoli Cell Clusters in the Seminiferous Tubules of C57BL/6J Mice. Toxicol Pathol 2015; 43:743-6. [DOI: 10.1177/0192623314565368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell clusters were observed in the seminiferous tubules of C57BL/6J mice as a spontaneous lesion in a 2-week toxicity study, and they were demonstrated to be basically composed of Sertoli cells by immunohistochemistry for claudin-11 and GATA-4 (GATA-binding protein 4), which are both Sertoli cell markers. The clusters were composed of about 5 to 50 cells, which had eosinophilic and occasionally vacuolated cytoplasm with an unclear cell boundary. The cell clusters involved some sperm. No mitotic figures were observed and no immunoreactivity for proliferating cell nuclear antigen (PCNA) was detected in the clusters. In most cases, the cell clusters were observed in seminiferous tubules that also showed degenerative changes. In rare instances, cell aggregates immunohistochemically positive for claudin-11 were observed in the lumen of the epididymis, suggesting that some of the Sertoli cell clusters were sloughed off from the seminiferous epithelium into the epididymal ducts. To our knowledge, this is the first report of Sertoli cell clusters in any animal species except for transgenic or surgically altered animals.
Collapse
Affiliation(s)
- Akiko Anagawa-Nakamura
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Kochi Kakimoto
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Katsuhiro Miyajima
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Yuzo Yasui
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Yusuke Kemmochi
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Kaoru Toyoda
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Eriko Taniai
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Akemi Takahashi
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Toshiyuki Shoda
- Pathology Department, Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| |
Collapse
|
114
|
Fairchild MJ, Smendziuk CM, Tanentzapf G. A somatic permeability barrier around the germline is essential for Drosophila spermatogenesis. Development 2014; 142:268-81. [PMID: 25503408 DOI: 10.1242/dev.114967] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between the soma and germline are essential for gametogenesis. In the Drosophila testis, differentiating germ cells are encapsulated by two somatic cells that surround the germline throughout spermatogenesis. chickadee (chic), the fly ortholog of Profilin, mediates soma-germline interactions. Knockdown of Chic in the soma results in sterility and severely disrupted spermatogenesis due to defective encapsulation. To study this defect further, we developed a permeability assay to analyze whether the germline is isolated from the surrounding environment by the soma. We find that germline encapsulation by the soma is, by itself, insufficient for the formation of a permeability barrier, but that such a barrier gradually develops during early spermatogenesis. Thus, germline stem cells, gonialblasts and early spermatogonia are not isolated from the outside environment. By late spermatocyte stages, however, a permeability barrier is formed by the soma. Furthermore, we find that, concomitant with formation of the permeability barrier, septate junction markers are expressed in the soma and localize to junctional sites connecting the two somatic cells that surround the germline. Importantly, knockdown of septate junction components also disrupts the permeability barrier. Finally, we show that germline differentiation is delayed when the permeability barrier is compromised. We propose that the permeability barrier around the germline serves an important regulatory function during spermatogenesis by shaping the signaling events that take place between the soma and the germline.
Collapse
Affiliation(s)
- Michael J Fairchild
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Christopher M Smendziuk
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
115
|
Bauer HC, Krizbai IA, Bauer H, Traweger A. "You Shall Not Pass"-tight junctions of the blood brain barrier. Front Neurosci 2014; 8:392. [PMID: 25520612 PMCID: PMC4253952 DOI: 10.3389/fnins.2014.00392] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given.
Collapse
Affiliation(s)
- Hans-Christian Bauer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Department of Traumatology and Sports Injuries, Paracelsus Medical University Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| | - István A Krizbai
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences Szeged, Hungary ; Institute of Life Sciences, Vasile Goldis Western University of Arad Arad, Romania
| | - Hannelore Bauer
- Department of Organismic Biology, University of Salzburg Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| |
Collapse
|
116
|
Tarulli GA, Stanton PG, Loveland KL, Rajpert-De Meyts E, McLachlan RI, Meachem SJ. A survey of Sertoli cell differentiation in men after gonadotropin suppression and in testicular cancer. SPERMATOGENESIS 2014; 3:e24014. [PMID: 23687617 PMCID: PMC3644048 DOI: 10.4161/spmg.24014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely held that the somatic cell population that is responsible for sperm development and output (Sertoli cells) is terminally differentiated and unmodifiable in adults. It is postulated, with little evidence, that Sertoli cells are not terminally differentiated in some phenotypes of infertility and testicular cancer. This study sought to compare markers of Sertoli cell differentiation in normospermic men, oligospermic men (undergoing gonadotropin suppression) and testicular carcinoma in situ (CIS) and seminoma samples. Confocal microscopy was used to assess the expression of markers of proliferation (PCNA and Ki67) and functional differentiation (androgen receptor). As additional markers of differentiation, the organization of Sertoli cell tight junction and associated proteins were assessed in specimens with carcinoma in situ. In normal men, Sertoli cells exhibited a differentiated phenotype (i.e., PCNA and Ki67 negative, androgen 40 receptor positive). However, after long-term gonadotropin suppression, 1.7 ± 0.6% of Sertoli cells exhibited PCNA reactivity associated with a diminished immunoreactivity in androgen receptor, suggesting an undifferentiated phenotype. Ki67-positive Sertoli cells were also observed. PCNA-positive Sertoli cells were never observed in tubules with carcinoma in situ, and only rarely observed adjacent to seminoma. Tight junction protein localization (claudin 11, JAM-A and ZO-1) was altered in CIS, with a reduction in JAM-A reactivity in Sertoli cells from tubules with CIS and the emergence of strong JAM-A reactivity in seminoma. These findings indicate that adult human Sertoli cells exhibit characteristics of an undifferentiated state in oligospermic men and patients with CIS and seminoma in the presence of germ cell neoplasia.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research; Clayton; Victoria, Australia; Department of Anatomy & Developmental Biology; Monash University; Victoria, Australia
| | - Peter G Stanton
- Prince Henry's Institute of Medical Research; Clayton; Victoria, Australia; Department of Biochemistry and Molecular Biology; Monash University; Victoria, Australia
| | - Kate L Loveland
- Department of Biochemistry and Molecular Biology; Monash University; Victoria, Australia; Monash Institute of Medical Research; Monash University; Victoria, Australia
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction; University of Copenhagen (Rigshospitalet); Copenhagen, Denmark
| | - Robert I McLachlan
- Prince Henry's Institute of Medical Research; Clayton; Victoria, Australia; Department of Obstetrics & Gynaecology; Monash University; Victoria, Australia
| | - Sarah J Meachem
- Prince Henry's Institute of Medical Research; Clayton; Victoria, Australia; Department of Anatomy & Developmental Biology; Monash University; Victoria, Australia
| |
Collapse
|
117
|
Zhang J, Hatakeyama J, Eto K, Abe SI. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen Comp Endocrinol 2014; 205:121-32. [PMID: 24717811 DOI: 10.1016/j.ygcen.2014.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 11/20/2022]
Abstract
Male gonad development is initiated by the aggregation of pre-Sertoli cells (SCs), which surround germ cells to form cords. Several attempts to reconstruct testes from dissociated testicular cells have been made; however, only very limited morphogenesis beyond seminiferous cord formation has been achieved. Therefore, we aimed to reconstruct seminiferous tubules using a 3-dimensional (D) re-aggregate culture of testicular cells, which were dissociated from 6-dpp neonatal mice, inside a collagen matrix. We performed a short-term culture (for 3 days) and a long-term culture (up to 3 wks). The addition of KnockOut Serum Replacement (KSR) promoted (1) the enlargement of SC re-aggregates; (2) the attachment of peritubular myoid (PTM) cells around the SC re-aggregates; (3) the sorting of germ cells inside, and Leydig cells outside, seminiferous cord-like structures; (4) the alignment of SC polarity inside a seminiferous cord-like structure relative to the basement membrane; (5) the differentiation of SCs (the expression of the androgen receptor); (6) the formation of a blood-testis-barrier between the SCs; (7) SC elongation and lumen formation; and (8) the proliferation of SCs and spermatogonia, as well as the differentiation of spermatogonia into primary spermatocytes. Eventually, KSR promoted the formation of seminiferous tubule-like structures, which accompanied germ cell differentiation. However, these morphogenetic events did not occur in the absence of KSR. This in vitro system presents an excellent model with which to identify the possible factors that induce these events and to analyze the mechanisms that underlie cellular interactions during testicular morphogenesis and germ cell differentiation.
Collapse
Affiliation(s)
- Jidong Zhang
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jun Hatakeyama
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Ko Eto
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Shin-Ichi Abe
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
118
|
Al-Asmakh M, Stukenborg JB, Reda A, Anuar F, Strand ML, Hedin L, Pettersson S, Söder O. The gut microbiota and developmental programming of the testis in mice. PLoS One 2014; 9:e103809. [PMID: 25118984 PMCID: PMC4132106 DOI: 10.1371/journal.pone.0103809] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 01/15/2023] Open
Abstract
Nutrients and environmental chemicals, including endocrine disruptors, have been incriminated in the current increase in male reproductive dysfunction, but the underlying mechanisms remain unknown. The gastrointestinal tract represents the largest surface area exposed to our environment and thereby plays a key role in connection with exposure of internal organs to exogenous factors. In this context the gut microbiome (all bacteria and their metabolites) have been shown to be important contributors to body physiology including metabolism, cognitive functions and immunity. Pivotal to male reproduction is a proper development of the testis, including the formation of the blood-testis barrier (BTB) that encapsulates and protects germ cells from stress induced environmental cues, e.g. pathogenic organisms and xenobiotics. Here we used specific pathogen free (SPF) mice and germ-free (GF) mice to explore whether gut microbiota and/or their metabolites can influence testis development and regulation of BTB. Lumen formation in the seminiferous tubules, which coincides with the development of the BTB was delayed in the testes of GF mice at 16 days postpartum. In addition, perfusion experiments (Evans blue) demonstrated increased BTB permeability in these same mice. Reduced expressions of occludin, ZO-2 and E-cadherin in GF testis suggested that the microbiota modulated BTB permeability by regulation of cell-cell adhesion. Interestingly, exposure of GF mice to Clostridium Tyrobutyricum (CBUT), which secrete high levels of butyrate, restored the integrity of the BTB and normalized the levels of cell adhesion proteins. Moreover, the GF mice exhibited lower serum levels of gonadotropins (LH and FSH) than the SPF group. In addition, the intratesticular content of testosterone was lower in GF compared to SPF or CBUT animals. Thus, the gut microbiome can modulate the permeability of the BTB and might play a role in the regulation of endocrine functions of the testis.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Science, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Ahmed Reda
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Farhana Anuar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Lisa Strand
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Lars Hedin
- Sidra Medical and Research Center, Division of Clinical Epidemiology, Doha, Qatar
| | - Sven Pettersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Olle Söder
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
119
|
Sun Y, Yang W, Luo H, Wang X, Chen Z, Zhang J, Wang Y, Li X. Thyroid hormone inhibits the proliferation of piglet Sertoli cell via PI3K signaling pathway. Theriogenology 2014; 83:86-94. [PMID: 25284282 DOI: 10.1016/j.theriogenology.2014.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022]
Abstract
Accumulating researches show that thyroid hormone (TH) inhibits Sertoli cells (SCs) proliferation and stimulates their functional maturation in prepubertal rat testis, confirming that TH plays a key role in testicular development. However, the mechanism under the T3 regulation of piglet SC proliferation remains unclear. In the present study, in order to investigate the possible mechanism of T3 on the suppression of SC proliferation, the expression pattern of TRα1 and cell cycle-related molecules, effect of T3 on SC proliferation, and the role of phosphoinositide 3-kinase (PI3K)/Akt signaling pathway on the T3-mediated SC proliferation in piglet testis were explored. Our results demonstrated that TRα1 was expressed in all tested stages of SCs and decreased along with the ages. T3 inhibited the proliferation of SCs in a time- and dose-dependent manner, and T3 treatment downregulated the expressions of cell cycling molecules, such as cyclinA2, cyclinD1, cyclinE1, PCNA, and Skp2, but upregulated the p27 expression in SCs. Most importantly, the suppressive effects of T3 on SC proliferation seemed dependent on the inhibition of PI3K/Akt signaling pathway, and pre-stimulation of PI3K could enhance such suppressive effects. Together, our findings demonstrate that TH inhibits the proliferation of piglet SCs via the suppression of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China; ChongQing Animal Disease Prevention and Control Center, YuBei, ChongQing, PR China
| | - WeiRong Yang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China
| | - HongLin Luo
- Guanxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, Guangxi, PR China
| | - XianZhong Wang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China
| | - ZhongQiong Chen
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China; ChongQing Animal Disease Prevention and Control Center, YuBei, ChongQing, PR China
| | - JiaoJiao Zhang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China
| | - Yi Wang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China
| | - XiaoMin Li
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, PR China.
| |
Collapse
|
120
|
Abstract
The imbalance between bone formation and resorption during bone remodeling has been documented to be a major factor in the pathogenesis of osteoporosis. Recent evidence suggests a significant role for the tight junction proteins, Claudins (Cldns), in the regulation of bone remodeling processes. In terms of function, whereas Cldns act "canonically" as key determinants of paracellular permeability, there is considerable recent evidence to suggest that Cldns also participate in cell signaling, ie, a "noncanonical function". To this end, Cldns have been shown to regulate cell proliferation, differentiation, and gene expression in a variety of cell types. The present review will discuss Cldns' structure, their expression profile, regulation of expression, and their canonical and non- canonical functions in general with special emphasis on bone cells. In order to shed light on the noncanonical functions of Cldns in bone, we will highlight the role of Cldn-18 in regulating bone resorption and osteoclast differentiation. Collectively, we hope to provide a framework for guiding future research on understanding how Cldns modulate osteoblast and osteoclast function and overall bone homeostasis. Such studies should provide valuable insights into the pathogenesis of osteoporosis, and may highlight Cldns as novel targets for the diagnosis and therapeutic management of osteoporosis.
Collapse
Affiliation(s)
- Fatima Z Alshbool
- Musculoskeletal Disease Center (F.Z.A., S.M.), Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357; Departments of Medicine (S.M.), Biochemistry (S.M.), Physiology (S.M.), and Pharmacology (F.Z.A., S.M.), Loma Linda University, Loma Linda, California 92354
| | | |
Collapse
|
121
|
Yang Q, Hao J, Chen M, Li G. Dermatopontin is a novel regulator of the CdCl2-induced decrease in claudin-11 expression. Toxicol In Vitro 2014; 28:1158-64. [PMID: 24909373 DOI: 10.1016/j.tiv.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/08/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Cadmium (Cd) is a ubiquitous environmental heavy metal, which may be harmful to the reproductive functions through injury to the blood-testis barrier (BTB). However, the underlying mechanism of this adverse effect on the BTB remains uncharacterized. A preliminary study revealed that dermatopontin (DPT) expression was significantly increased in Cd chloride (CdCl2)-treated Sertoli cells in vitro, which suggested that an increase in DPT expression is crucial for CdCl2-induced BTB damage. To explore this further, in the present study we initially determined that DPT is expressed in testis Sertoli cells. The treatment of cells with CdCl2 resulted in a significant increase in DPT expression and a parallel decrease in claudin-11 expression, both in vivo and in vitro. To confirm the relationship between DPT and claudin-11, a DPT-silenced 15P-1 Sertoli cell model was established. We determined that DPT silencing could partly reduce the CdCl2-induced decrease in claudin-11 expression. Additionally, western blot analyses demonstrated that the p38 signaling pathway is involved in the effect of CdCl2 on DPT expression. In conclusion, the present study provides the first evidence that DPT may be a novel effector of CdCl2, highlighting the significant role of DPT in the regulation of claudin-11 expression.
Collapse
Affiliation(s)
- Qiaozhen Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jie Hao
- The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Maoxin Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
122
|
Chakraborty P, William Buaas F, Sharma M, Smith BE, Greenlee AR, Eacker SM, Braun RE. Androgen-dependent sertoli cell tight junction remodeling is mediated by multiple tight junction components. Mol Endocrinol 2014; 28:1055-72. [PMID: 24825397 DOI: 10.1210/me.2013-1134] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sertoli cell tight junctions (SCTJs) of the seminiferous epithelium create a specialized microenvironment in the testis to aid differentiation of spermatocytes and spermatids from spermatogonial stem cells. SCTJs must be chronically broken and rebuilt with high fidelity to allow the transmigration of preleptotene spermatocytes from the basal to adluminal epithelial compartment. Impairment of androgen signaling in Sertoli cells perturbs SCTJ remodeling. Claudin (CLDN) 3, a tight junction component under androgen regulation, localizes to newly forming SCTJs and is absent in Sertoli cell androgen receptor knockout (SCARKO) mice. We show here that Cldn3-null mice do not phenocopy SCARKO mice: Cldn3(-/-) mice are fertile, show uninterrupted spermatogenesis, and exhibit fully functional SCTJs based on imaging and small molecule tracer analyses, suggesting that other androgen-regulated genes must contribute to the SCARKO phenotype. To further investigate the SCTJ phenotype observed in SCARKO mutants, we generated a new SCARKO model and extensively analyzed the expression of other tight junction components. In addition to Cldn3, we identified altered expression of several other SCTJ molecules, including down-regulation of Cldn13 and a noncanonical tight junction protein 2 isoform (Tjp2iso3). Chromatin immunoprecipitation was used to demonstrate direct androgen receptor binding to regions of these target genes. Furthermore, we demonstrated that CLDN13 is a constituent of SCTJs and that TJP2iso3 colocalizes with tricellulin, a constituent of tricellular junctions, underscoring the importance of androgen signaling in the regulation of both bicellular and tricellular Sertoli cell tight junctions.
Collapse
Affiliation(s)
- Papia Chakraborty
- The Jackson Laboratory (P.C., F.W.B., M.S., B.E.S., A.R.G., R.E.B.), Bar Harbor, Maine 04609; and Department of Neurology (S.M.E.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
123
|
Haverfield JT, Meachem SJ, Nicholls PK, Rainczuk KE, Simpson ER, Stanton PG. Differential permeability of the blood-testis barrier during reinitiation of spermatogenesis in adult male rats. Endocrinology 2014; 155:1131-44. [PMID: 24424039 DOI: 10.1210/en.2013-1878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The blood-testis barrier (BTB) sequesters meiotic spermatocytes and differentiating spermatids away from the vascular environment. We aimed to assess whether meiosis and postmeiotic differentiation could occur when the BTB is permeable. Using a model of meiotic suppression and reinitiation, BTB function was assessed using permeability tracers of small, medium, and large (0.6-, 70-, and 150-kDa) sizes to emulate blood- and lymphatic-borne factors that could cross the BTB. Adult rats (n = 9/group) received the GnRH antagonist acyline (10 wk) to suppress gonadotropins, followed by testosterone (24cm Silastic implant), for 2, 4, 7, 10, 15, and 35 days. In acyline-suppressed testes, all tracers permeated the seminiferous epithelium. As spermatocytes up to diplotene stage XIII reappeared, both the 0.6- and 70-kDa tracers, but not 150 kDa, permeated around these cells. Intriguingly, the 0.6- and 70-kDa tracers were excluded from pachytene spermatocytes at stages VII and VIII but not in subsequent stages. The BTB became progressively impermeable to the 0.6- and 70-kDa tracers as stages IV-VII round spermatids reappeared in the epithelium. This coincided with the appearance of the tight junction protein, claudin-12, in Sertoli cells and at the BTB. We conclude that meiosis can occur when the BTB is permeable to factors up to 70 kDa during the reinitiation of spermatogenesis. Moreover, BTB closure corresponds with the presence of particular pachytene spermatocytes and round spermatids. This research has implications for understanding the effects of BTB dynamics in normal spermatogenesis and also potentially in states where spermatogenesis is suppressed, such as male hormonal contraception or infertility.
Collapse
Affiliation(s)
- Jenna T Haverfield
- Prince Henry's Institute (J.T.H., S.J.M., P.K.N., K.E.R., E.R.S., P.G.S.), Monash Medical Centre, Clayton, VIC 3168, Australia; and Departments of Anatomy and Developmental Biology (J.T.H., S.J.M.) and Biochemistry and Molecular Biology (P.K.N., E.R.S., P.G.S.), Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | |
Collapse
|
124
|
Lucas TF, Nascimento AR, Pisolato R, Pimenta MT, Lazari MFM, Porto CS. Receptors and signaling pathways involved in proliferation and differentiation of Sertoli cells. SPERMATOGENESIS 2014; 4:e28138. [PMID: 25225624 DOI: 10.4161/spmg.28138] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
The identification of the hormones and other factors regulating Sertoli cell survival, proliferation, and maturation in neonatal, peripubertal, and pubertal life remains one of the most critical questions in testicular biology. The regulation of Sertoli cell proliferation and differentiation is thought to be controlled by cell-cell junctions and a set of circulating and local hormones and growth factors. In this review, we will focus on receptors and intracellular signaling pathways activated by androgen, follicle-stimulating hormone, thyroid hormone, activin, retinoids, insulin, insulin-like growth factor, relaxin, and estrogen, with special emphasis on estrogen receptors. Estrogen receptors activate intracellular signaling pathways that converge on cell cycle and transcription factors and play a role in the regulation of Sertoli cell proliferation and differentiation.
Collapse
Affiliation(s)
- Thaís Fg Lucas
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Aline R Nascimento
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Raisa Pisolato
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Maristela T Pimenta
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Maria Fatima M Lazari
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| |
Collapse
|
125
|
Zheng QS, Wang XN, Wen Q, Zhang Y, Chen SR, Zhang J, Li XX, Sha RN, Hu ZY, Gao F, Liu YX. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction 2014; 147:45-52. [DOI: 10.1530/rep-13-0299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process involving the regulation of multiple cell types. As the only somatic cell type in the seminiferous tubules, Sertoli cells are essential for spermatogenesis throughout the spermatogenic cycle. The Wilms tumor gene, Wt1, is specifically expressed in the Sertoli cells of the mouse testes. In this study, we demonstrated that Wt1 is required for germ cell differentiation in the developing mouse testes. At 10 days post partum, Wt1-deficient testes exhibited clear meiotic arrest and undifferentiated spermatogonia accumulation in the seminiferous tubules. In addition, the expression of claudin11, a marker and indispensable component of Sertoli cell integrity, was impaired in Wt1−/flox; Cre-ERTM testes. This observation was confirmed in in vitro testis cultures. However, the basal membrane of the seminiferous tubules in Wt1-deficient testes was not affected. Based on these findings, we propose that Sertoli cells' status is affected in Wt1-deficient mice, resulting in spermatogenesis failure.
Collapse
|
126
|
Karagiannis GS, Schaeffer DF, Cho CKJ, Musrap N, Saraon P, Batruch I, Grin A, Mitrovic B, Kirsch R, Riddell RH, Diamandis EP. Collective migration of cancer-associated fibroblasts is enhanced by overexpression of tight junction-associated proteins claudin-11 and occludin. Mol Oncol 2013; 8:178-95. [PMID: 24268521 DOI: 10.1016/j.molonc.2013.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
It has been suggested that cancer-associated fibroblasts (CAFs) positioned at the desmoplastic areas of various types of cancer are capable of executing a migratory program, characterized by accelerated motility and collective configuration. Since CAFs are reprogrammed derivatives of normal progenitors, including quiescent fibroblasts, we hypothesized that such migratory program could be context-dependent, thus being regulated by specific paracrine signals from the adjacent cancer population. Using the traditional scratch assay setup, we showed that only specific colon cancer cell lines (i.e. HT29) were able to induce collective CAF migration. By performing quantitative proteomics (SILAC), we identified a 2.7-fold increase of claudin-11, a member of the tight junction apparatus, in CAFs that exerted such collectivity in their migratory pattern. Further proteomic investigations of cancer cell line secretomes revealed a specific signature, involving TGF-β, as potential mediator of this effect. Normal colonic fibroblasts stimulated with TGF-β exerted myofibroblastic differentiation, occludin (OCLN) and claudin-11 (CLDN11) overexpression and cohort formation. Subsequently, inhibition of TGF-β attenuated all the previous effects. Immunohistochemistry of the universal tight junction marker occludin in a cohort of 30 colorectal adenocarcinoma patients defined a CAF subpopulation expressing tight junctions. Overall, these data suggest that cancer cells may induce CLDN11 overexpression and subsequent collective migration of peritumoral CAFs via TGF-β secretion.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| | - Chan-Kyung J Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Natasha Musrap
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Punit Saraon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Andrea Grin
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bojana Mitrovic
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Richard Kirsch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Robert H Riddell
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
127
|
Nicholls PK, Harrison CA, Rainczuk KE, Wayne Vogl A, Stanton PG. Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation. Mol Cell Endocrinol 2013; 377:33-43. [PMID: 23831638 DOI: 10.1016/j.mce.2013.06.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/25/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022]
Abstract
From puberty and throughout adult spermatogenesis, retinoid signalling is essential for germ cell differentiation and male fertility. The initiation of spermatogonial differentiation and germ cell meiosis occurs under the direction of local retinoid signalling in the testis, and corresponds with the final phase of somatic Sertoli cell differentiation at puberty. Here, we consider the cellular and molecular basis of retinoid actions upon Sertoli cell differentiation. Primary rat Sertoli cells were isolated during the pubertal proliferative and quiescent phases at postnatal days 10- and 20- respectively, and cultured with all-trans-retinoic acid. We show that retinoid signalling can potently suppress activin-induced proliferation by antagonising G1 phase progression and entry into the cell cycle. Retinoid signalling was also found to initiate tight junction formation in primary Sertoli cells, consistent with a pro-differentiative role. This study implicates retinoid signalling in the differentiation of both somatic and germ cells in the testis at puberty.
Collapse
Affiliation(s)
- Peter K Nicholls
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
128
|
Chihara M, Otsuka S, Ichii O, Kon Y. Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood-testis barrier, resulting in irreversible testicular degeneration in mice. J Reprod Dev 2013; 59:525-35. [PMID: 23934320 PMCID: PMC3934156 DOI: 10.1262/jrd.2013-058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood testis-barrier (BTB) is essential for maintaining homeostasis in the
seminiferous epithelium. Although many studies have reported that vitamin A (VA) is
required for the maintenance of spermatogenesis, the relationships between the BTB,
spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB
assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet
from the prepubertal period to adulthood. During the prepubertal period, no changes
were observed in the initiation and progression of the first spermatogenic wave in
mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes
derived from the second spermatogenic wave onwards were decreased, and initial BTB
formation was also delayed, as evidenced by the decreased expression of mRNAs
encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed
the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the
BTB, and dramatically decreased testis size. Furthermore, vacuolization and
calcification were observed in the seminiferous epithelium of adult mice fed the VAD
diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD
diet rescued BTB assembly after when the second spermatogenic wave initiated from the
arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These
results suggested that BTB integrity was regulated by VA metabolism with meiotic
progression and that the impermeable BTB was required for persistent spermatogenesis
rather than meiotic initiation. In conclusion, consumption of the VAD diet led to
critical defects in spermatogenesis progression and altered the dynamics of BTB
assembly.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
129
|
Wang XN, Li ZS, Ren Y, Jiang T, Wang YQ, Chen M, Zhang J, Hao JX, Wang YB, Sha RN, Huang Y, Liu X, Hu JC, Sun GQ, Li HG, Xiong CL, Xie J, Jiang ZM, Cai ZM, Wang J, Wang J, Huff V, Gui YT, Gao F. The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genet 2013; 9:e1003645. [PMID: 23935527 PMCID: PMC3731222 DOI: 10.1371/journal.pgen.1003645] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/01/2013] [Indexed: 11/21/2022] Open
Abstract
Azoospermia is one of the major reproductive disorders which cause male infertility in humans; however, the etiology of this disease is largely unknown. In the present study, six missense mutations of WT1 gene were detected in 529 human patients with non-obstructive azoospermia (NOA), indicating a strong association between WT1 mutation and NOA. The Wilms tumor gene, Wt1, is specifically expressed in Sertoli cells (SCs) which support spermatogenesis. To examine the functions of this gene in spermatogenesis, Wt1 was deleted in adult testis using Wt1flox and Cre-ERTM mice strains. We found that inactivation of Wt1 resulted in massive germ cell death and only SCs were present in most of the seminiferous tubules which was very similar to NOA in humans. In investigating the potential mechanism for this, histological studies revealed that the blood–testis barrier (BTB) was disrupted in Wt1 deficient testes. In vitro studies demonstrated that Wt1 was essential for cell polarity maintenance in SCs. Further studies found that the expression of cell polarity associated genes (Par6b and E-cadherin) and Wnt signaling genes (Wnt4, Wnt11) were downregulated in Wt1 deficient SCs, and that the expression of Par6b and E-cadherin was regulated by Wnt4. Our findings suggest that Wt1 is important in spermatogenesis by regulating the polarity of SCs via Wnt signaling pathway and that WT1 mutation is one of the genetic causes of NOA in humans. Infertility is one of the most common health problems, affecting about 15% of the couples in the world. In about half of these couples, infertility is related to male reproductive defect. Azoospermia is one of the major causes of male infertility in humans. Previous studies have found that the mutation or deletion of some genes is associated with azoospermia; however, the genetic cause of this remains largely unknown. In the present study, we detected Wt1 missense mutations in men with non-obstructive azoospermia (NOA). An essential function for WT1 in male spermatogenesis was confirmed by the use of a Wt1 conditional knockout mouse strain. Inactivation of Wt1 resulted in germ cell loss in mice, which was similar to NOA in human patients. Our data indicate that WT1 mutation is one genetic cause of male infertility and suggest that WT1 mutational analysis will be useful for diagnosis in a clinical setting.
Collapse
Affiliation(s)
- Xiao Na Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kus-Liśkiewicz M, Polańska J, Korfanty J, Olbryt M, Vydra N, Toma A, Widłak W. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 2013; 14:456. [PMID: 23834426 PMCID: PMC3711851 DOI: 10.1186/1471-2164-14-456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background Elevated temperatures induce activation of the heat shock transcription factor 1 (HSF1) which in somatic cells leads to heat shock proteins synthesis and cytoprotection. However, in the male germ cells (spermatocytes) caspase-3 dependent apoptosis is induced upon HSF1 activation and spermatogenic cells are actively eliminated. Results To elucidate a mechanism of such diverse HSF1 activity we carried out genome-wide transcriptional analysis in control and heat-shocked cells, either spermatocytes or hepatocytes. Additionally, to identify direct molecular targets of active HSF1 we used chromatin immunoprecipitation assay (ChIP) combined with promoter microarrays (ChIP on chip). Genes that are differently regulated after HSF1 binding during hyperthermia in both types of cells have been identified. Despite HSF1 binding to promoter sequences in both types of cells, strong up-regulation of Hsps and other genes typically activated by the heat shock was observed only in hepatocytes. In spermatocytes HSF1 binding correlates with transcriptional repression on a large scale. HSF1-bound and negatively regulated genes encode mainly for proteins required for cell division, involved in RNA processing and piRNA biogenesis. Conclusions Observed suppression of the transcription could lead to genomic instability caused by meiotic recombination disturbances, which in turn might induce apoptosis of spermatogenic cells. We propose that HSF1-dependent induction of cell death is caused by the simultaneous repression of many genes required for spermatogenesis, which guarantees the elimination of cells damaged during heat shock. Such activity of HSF1 prevents transmission of damaged genetic material to the next generation.
Collapse
Affiliation(s)
- Małgorzata Kus-Liśkiewicz
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
131
|
Chihara M, Ikebuchi R, Otsuka S, Ichii O, Hashimoto Y, Suzuki A, Saga Y, Kon Y. Mice stage-specific claudin 3 expression regulates progression of meiosis in early stage spermatocytes. Biol Reprod 2013; 89:3. [PMID: 23677978 DOI: 10.1095/biolreprod.113.107847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Claudin 3 is a protein component of the tight junction strands. Tight junctions between adjacent Sertoli cells form the blood-testis barrier (BTB). During spermatogenesis, seminiferous stage-specific expression of claudin 3 is believed to regulate the migration of preleptotene/leptotene spermatocytes across the BTB. Here, we determined the cell types expressing claudin 3 in adult mouse testis and investigated spermatogenesis after testis-specific in vivo knockdown of claudin 3. The results of in situ hybridization revealed that claudin 3 mRNA was predominantly expressed in germ cells near the basal lamina of seminiferous tubules at stages VI-IX. Furthermore, claudin 3 protein was localized not only to the BTB but also to the cell membrane of STRA8-expressing preleptotene/leptotene spermatocytes in the testis of adult ICR.Cg-Tg(Stra8-EGFP)1Ysa/YsaRbrc mice. Although claudin 3 knockdown did not affect BTB integrity, it did cause a partial delay in spermatocyte migration across the BTB. Moreover, claudin 3 knockdown resulted in a prolonged preleptotene phase during spermatogenesis. These data indicate that the seminiferous stage-specific expression and localization of claudin 3 during spermatogenesis regulate the progression of meiosis by promoting germ cell migration across the BTB.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Haverfield JT, Meachem SJ, O'Bryan MK, McLachlan RI, Stanton PG. Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls. Fertil Steril 2013; 100:658-66. [PMID: 23706332 DOI: 10.1016/j.fertnstert.2013.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To assess the spatial organization of two proteins involved in the Sertoli cell junctional complex in men with primary seminiferous tubule failure. DESIGN Retrospective study. SETTING Medical research institute. PATIENT(S) Sixteen men total, six with meiotic arrest, seven with the Sertoli cell-only phenotype, and three with normal spermatogenesis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Differences in claudin-11 and connexin-43 organization as detected using confocal microscopy. RESULT(S) In men with primary seminiferous tubule failure, four organizational patterns (I-IV) were recognized and quantified for claudin-11. Across these patterns, claudin-11 changed from a basal filamentous staining pattern to a punctate staining pattern with diffuse localization throughout the entire epithelium. Similar changes in staining patterns for connexin-43 were observed. Major differences were seen in the spatial organization of claudin-11 and connexin-43 in tubules from control men compared with tubules with primary seminiferous tubule failure, but we observed no differences in the spatial organization of these proteins in tubules from men with meiotic arrest and Sertoli cell-only phenotypes. CONCLUSION(S) The spatial organization of claudin-11 and connexin-43 is altered in men with primary seminiferous tubule failure. Disorganization of the proteins composing the Sertoli cell junctional complex may be involved in the spermatogenic impairment, possibly via loss of blood-testis barrier function.
Collapse
|
133
|
Collins MM, Baumholtz AI, Ryan AK. Claudin family members exhibit unique temporal and spatial expression boundaries in the chick embryo. Tissue Barriers 2013; 1:e24517. [PMID: 24665397 PMCID: PMC3875640 DOI: 10.4161/tisb.24517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
The claudin family of proteins are integral components of tight junctions and are responsible for determining the ion specificity and permeability of paracellular transport within epithelial and endothelial cell layers. Several members of the claudin family have been shown to be important during embryonic development and morphogenesis. However, detailed embryonic expression patterns have been described for only a few claudins. Here, we provide a phylogenetic analysis of the chicken claudins and a comprehensive analysis of their mRNA expression profiles. We found that claudin family members exhibit both overlapping and unique expression patterns throughout development. Especially striking were the distinct expression boundaries observed between neural and non-neural ectoderm, as well as within ectodermal derivatives. Claudins were also expressed in endodermally-derived tissues, including the anterior intestinal portal, pharynx, lung and pancreas and in mesodermally derived tissues such as the kidney, gonad and heart. The overlapping zones of claudin expression observed in the chick embryo may confer distinct domains of ion permeability within the early epiblast and in epithelial, mesodermal and endothelial derivatives that may ultimately influence embryonic patterning and morphogenesis during development.
Collapse
Affiliation(s)
- Michelle M Collins
- Department of Human Genetics; McGill University; Montréal, QC Canada ; Research Institute of the McGill University Health Centre; Montréal, QC Canada
| | - Amanda I Baumholtz
- Department of Human Genetics; McGill University; Montréal, QC Canada ; Research Institute of the McGill University Health Centre; Montréal, QC Canada
| | - Aimee K Ryan
- Department of Human Genetics; McGill University; Montréal, QC Canada ; Research Institute of the McGill University Health Centre; Montréal, QC Canada ; Department of Pediatrics; McGill University; Montréal, QC Canada
| |
Collapse
|
134
|
Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 2013; 268:27-36. [DOI: 10.1016/j.taap.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
|
135
|
Gautam M, Mathur A, Khan MA, Majumdar SS, Rai U. Transcriptome analysis of spermatogenically regressed, recrudescent and active phase testis of seasonally breeding wall lizards Hemidactylus flaviviridis. PLoS One 2013; 8:e58276. [PMID: 23536792 PMCID: PMC3594293 DOI: 10.1371/journal.pone.0058276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/01/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. METHODOLOGY/PRINCIPAL FINDINGS Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165. CONCLUSION/SIGNIFICANCE This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance with the testis morphology during these phases. This study will pave the way for deeper insight into regulation and evolution of gene regulatory mechanisms in spermatogenesis.
Collapse
Affiliation(s)
- Mukesh Gautam
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Amitabh Mathur
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Meraj Alam Khan
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Rai
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
136
|
Guo QY, Gao ZZ, Zhao L, He JP, Dong CS. Expression of growth differentiation factor 9 (GDF9), ALK5, and claudin-11 in adult alpaca testis. Acta Histochem 2013; 115:16-21. [PMID: 22459938 DOI: 10.1016/j.acthis.2012.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
Abstract
Growth differentiation factor 9 (GDF9) is an oocyte-derived factor critical for folliculogenesis. Recently, in vitro data showed that GDF9 inhibited the localization of tight junction (TJ) proteins, suggesting that GDF9 could potentially regulate spermatogenesis in vivo, via inhibition of Sertoli cell TJ function. The purpose of the present study was to determine the expression and localization of GDF9, its receptor, ALK5, and its latent target protein, claudin-11 (one of TJ proteins) in adult alpaca testis using Western blot and immunohistochemistry. Western blotting results demonstrated that GDF9, ALK5 and claudin-11 were expressed in the adult alpaca testis. Immunohistochemistry revealed that GDF9 was expressed stage-specifically in the cytoplasm of pachytene spermatocytes and round spermatids of the adult alpaca seminiferous epithelium. Type I receptor, ALK5 was mainly localized in the cytoplasm of round spermatids and Leydig cells, and to a lesser extent in the cytoplasm of pachytene spermatocytes and Sertoli cells. Its latent target protein, claudin-11, was perpendicular or parallel to the basal lamina in the basal part of Sertoli cells. These results indicated that GDF9, as a paracrine and autocrine growth factor derived from round spermatids and pachytene spermatocytes, is involved in regulating spermatogenesis via action on germ cells or somatic cells (i.e. Leydig cells, Sertoli cells).
Collapse
Affiliation(s)
- Qing Yun Guo
- Institute of Animal Biotechnology, College of Animal Science and Technology, Shanxi Agricultural University, Taigu, PR China
| | | | | | | | | |
Collapse
|
137
|
Nicholls PK, Stanton PG, Chen JL, Olcorn JS, Haverfield JT, Qian H, Walton KL, Gregorevic P, Harrison CA. Activin signaling regulates Sertoli cell differentiation and function. Endocrinology 2012; 153:6065-77. [PMID: 23117933 DOI: 10.1210/en.2012-1821] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Throughout development, activin A signaling stimulates proliferation and inhibits differentiation of testicular Sertoli cells. A decline in activin levels at puberty corresponds with the differentiation of Sertoli cells that is required to sustain spermatogenesis. In this study, we consider whether terminally differentiated Sertoli cells can revert to a functionally immature phenotype in response to activin A. To increase systemic activin levels, the right tibialis anterior muscle of 7-wk-old C57BL/6J mice was transduced with an adeno-associated virus (rAAV6) expressing activin A. We show that chronic activin signaling reduces testis mass by 23.5% compared with control animals and induces a hypospermatogenic phenotype, consistent with a failure of Sertoli cells to support spermatogenesis. We use permeability tracers and transepithelial electrical resistance measurements to demonstrate that activin potently disrupts blood-testis-barrier function in adult mice and ablates tight junction formation in differentiated primary Sertoli cells, respectively. Furthermore, increased activin signaling reinitiates a program of cellular proliferation in primary Sertoli cells as determined by 5-ethynyl-2'-deoxyuridine incorporation. Proliferative cells reexpress juvenile markers, including cytokeratin-18, and suppress mature markers, including claudin-11. Thus, activin A is the first identified factor capable of reprogramming Sertoli cells to an immature, dedifferentiated phenotype. This study indicates that activin signaling must be strictly controlled in the adult in order to maintain Sertoli cell function in spermatogenesis.
Collapse
Affiliation(s)
- Peter K Nicholls
- Prince Henry's Institute of Medical Research, Clayton 3168, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Hazra R, Corcoran L, Robson M, McTavish KJ, Upton D, Handelsman DJ, Allan CM. Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol Endocrinol 2012; 27:12-24. [PMID: 23160479 DOI: 10.1210/me.2012-1219] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.
Collapse
Affiliation(s)
- Rasmani Hazra
- ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | |
Collapse
|
139
|
Southwood CM, Lipovich L, Gow A. Tissue-restricted transcription from a conserved intragenic CpG island in the Klf1 gene in mice. Biol Reprod 2012; 87:108. [PMID: 22933519 DOI: 10.1095/biolreprod.112.099879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Beyond Mendelian inheritance, an understanding of the complexities and consequences of the transfer of nonhereditary information to successive generations is at an early stage. Such epigenetic functionality is exemplified by DNA methylation and, as genome-wide high-throughput methodologies emerge, is increasingly being considered in the context of conserved intragenic and intergenic CpG islands that function as alternate sites of transcription initiation. Here we characterize an intragenic CpG island in exon 2 of the protein-coding mouse Klf1 gene, from which clustered transcription initiation sites yield positive-strand, severely truncated, capped and spliced RNAs. Expression from this CpG island in the testis begins between Postnatal Days 14-20, increases during development, and is temporally correlated with the maturation of secondary spermatocytes as they become the dominant cell population in the seminiferous epithelium. Only full-length KLF1-encoding mRNAs are detected in the hematopoietic tissue, spleen; thus, expression from the exon 2 CpG island is both developmentally regulated and tissue restricted. DNA methylation analysis indicates that spatiotemporal expression from the Klf1 CpG island is not associated with hypermethylation. Finally, our computational analysis from multiple species confirms intragenic transcription initiation and indicates that the KLF1 CpG island is evolutionarily conserved. Currently we have no evidence that these truncated RNAs can be translated via nonconventional mechanisms such as in-frame, conserved non-AUG-dependent Kozak consensus sequences; however, high-quality carboxyl-terminal antibodies will more effectively address this issue.
Collapse
Affiliation(s)
- Cherie M Southwood
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
140
|
Bhattacharya I, Pradhan BS, Sarda K, Gautam M, Basu S, Majumdar SS. A switch in Sertoli cell responsiveness to FSH may be responsible for robust onset of germ cell differentiation during prepubartal testicular maturation in rats. Am J Physiol Endocrinol Metab 2012; 303:E886-98. [PMID: 22850685 DOI: 10.1152/ajpendo.00293.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FSH and Testosterone (T) regulate spermatogenesis via testicular Sertoli cells (Sc), which bear receptors for these hormones. Despite sufficient circulating levels of FSH and T postnatally, predominant appearance of spermatogonia B and spermatocytes is not discernible until 11 and 18 days of postnatal age, respectively, in rat testes. In an attempt to explore the underlying causes, we cultured Sc from neonatal (5- and 9-day-old) and prepubertal (12- and 19-day-old) rat testes and compared the status of FSH receptor (FSH-R) and androgen receptor (AR) signaling. Protein and mRNA levels of FSH-R and AR remained uniform in cultured Sc from all age groups. Androgen binding ability of AR was similar, and T-induced nuclear localization of AR was discernible in Sc from all age groups. Binding of FSH to FSH-R, subsequent production of cAMP, and mRNA of stem cell factor (SCF) and glial cell line-derived neurotrophic factor (GDNF), known to be essential for the robust differentiation of repopulating spermatogonia, were significantly augmented in prepubertal Sc compared with those in neonatal Sc. However, treatment of neonatal Sc with cholera toxin or forskolin, which stimulate cAMP production bypassing FSH-R, demonstrated a concomitant rise in SCF and GDNF mRNA expression, which was similar to the FSH-mediated rise observed in prepubertal Sc. These observations suggested that, during prepubertal Sc maturation, the ability of FSH-R to respond to FSH is significantly augmented and is associated with the robust differentiation of repopulating spermatogonia, and such a switch in Sc from FSH-resistant to FSH-responsive mode during prepubertal development may underlie the initiation of robust spermatogenesis.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
141
|
Fumel B, Guerquin MJ, Livera G, Staub C, Magistrini M, Gauthier C, Flamant F, Guillou F, Fouchécourt S. Thyroid hormone limits postnatal Sertoli cell proliferation in vivo by activation of its alpha1 isoform receptor (TRalpha1) present in these cells and by regulation of Cdk4/JunD/c-myc mRNA levels in mice. Biol Reprod 2012; 87:16, 1-9. [PMID: 22539677 DOI: 10.1095/biolreprod.111.098418] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hypo- and hyperthyroidism alter testicular functions in the young. Among T3 receptors, TRalpha1 is ubiquitous, and its previously described knockout leads to an increase in testis weight and sperm production. We tested, for the first time, the hypothesis that TRalpha1-dependent regulation of Sertoli cell (SC) proliferation was directly regulated by TRalpha1 present in these cells. Thus, after crossing with the AMH-Cre line, we generated and analyzed a new line that expressed a dominant-negative TRalpha1 isoform (TRalpha(AMI)) in SCs only. So-called TRalpha(AMI)-SC (TRalpha(AMI/+) Cre(+)) mice exhibited similar phenotypic features to the knockout line: heavier testicular weight and higher sperm reserve, in comparison with their adequate controls (TRalpha(AMI/+) Cre(-)). SC density increased significantly as a result of a higher proliferative index at ages Postnatal Day (P) 0 and P3. When explants of control testes were cultured (at age P3), a significant decrease in the proliferation of SCs was observed in response to an excess of T3. This response was not observed in the TRalpha(AMI)-SC and knockout lines. Finally, when TRalpha(AMI) is present in SCs, the phenotype observed is similar to that of the knockout line. This study demonstrates that T3 limits postnatal SC proliferation by activation of TRalpha1 present in these cells. Moreover, quantitative RT-PCR provided evidence that regulation of the Cdk4/JunD/c-myc pathway was involved in this negative control.
Collapse
Affiliation(s)
- Betty Fumel
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Tarulli GA, Stanton PG, Meachem SJ. Is the adult Sertoli cell terminally differentiated? Biol Reprod 2012; 87:13, 1-11. [PMID: 22492971 DOI: 10.1095/biolreprod.111.095091] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
New data have challenged the convention that the adult Sertoli cell population is fixed and unmodifiable. The Sertoli cell has two distinct functions: 1) formation of the seminiferous cords and 2) provision of nutritional and structural support to developing germ cells. For these to occur successfully, Sertoli cells must undergo many maturational changes between fetal and adult life, the main switches occurring around puberty, including the loss of proliferative activity and the formation of the blood-testis barrier. Follicle-stimulating hormone plays a key role in promoting Sertoli cell proliferation, while thyroid hormone inhibits proliferative activity in early postnatal life. Together these regulate the Sertoli-germ cell complement and sperm output in adulthood. By puberty, the Sertoli cell population is considered to be stable and unmodifiable by hormones. But there is mounting evidence that the size of the adult Sertoli cell population and its maturational status is modifiable by hormones and that Sertoli cells can gain proliferative ability in the spermatogenically disrupted hamster and human model. This new information demonstrates that the adult Sertoli cell population, at least in the settings of testicular regression in the hamster and impaired fertility in humans in vivo and from mice and men in vitro, is not a terminally differentiated population. Data from the hamster now show that the adult Sertoli cell population size is regulated by hormones. This creates exciting prospects for basic and clinical research in testis biology. The potential to replenish an adult Sertoli-germ cell complement to normal in a setting of infertility may now be realized.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
143
|
Wu X, Peppi M, Vengalil MJ, Maheras KJ, Southwood CM, Bradley M, Gow A. Transgene-mediated rescue of spermatogenesis in Cldn11-null mice. Biol Reprod 2012; 86:139, 1-11. [PMID: 22378758 DOI: 10.1095/biolreprod.111.096230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Claudins comprise a large family of tight junction (TJ) proteins that are often expressed broadly during development and in adult tissues and constitute the physical barriers that occlude the paracellular space in polarized epithelia. In mouse testis, the integrity of TJs is critical to normal spermatogenesis and is dependent on CLDN11 expression. In the current study, we have generated multiple transgenic mouse lines in which steady-state levels of transgene-derived Cldn11 mRNA are up to fourfold greater than endogenous gene expression. Spermatogenesis in all founder mice harboring two copies of the endogenous Cldn11 gene is normal. These animals breed well, indicating that transgene overexpression, at least at the level of mRNA, is well tolerated by Sertoli cells. In addition, we demonstrate that the promoter/enhancer of the transgene, comprising 5 kb of genomic sequence upstream of exon 1 of the mouse Cldn11 gene, is sufficient to rescue azoospermia in Cldn11-null mice. Finally, using transient transgenic mice, we narrow the location of Sertoli cell-specific cis regulatory elements to a 2-kb region upstream of the Cldn11 transcription start site. Together, these data provide essential information for further investigation of the biological regulation of CLDN11 TJs in the testis.
Collapse
Affiliation(s)
- Xin Wu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Male factor infertility is increasing in developed countries, and several factors linked to lifestyle have been shown to negatively affect spermatogenesis. Sertoli cells are pivotal to spermatogenesis, providing nutritional support to germ cells throughout their development. Sertoli cells display atypical features in their cellular metabolism; they can metabolize various substrates, preferentially glucose, the majority of which is converted to lactate and not oxidized via the tricarboxylic acid cycle. Why Sertoli cells preferentially export lactate for germ cells is not entirely understood. However, lactate is utilized as the main energy substrate by developing germ cells and has an antiapoptotic effect on these cells. Several biochemical mechanisms contribute to the modulation of lactate secretion by Sertoli cells. These include the transport of glucose through the plasma membrane, mediated by glucose transporters; the interconversion of pyruvate to lactate by lactate dehydrogenase; and the release of lactate mediated by monocarboxylate transporters. Several factors that modulate Sertoli cell metabolism have been identified, including sex steroid hormones, which are crucial for maintenance of energy homeostasis, influencing the metabolic balance of the whole body. In fact, energy status is essential for normal reproductive function, since the reproductive axis has the capacity to respond to metabolic cues.
Collapse
|
145
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
146
|
Carré GA, Couty I, Hennequet-Antier C, Govoroun MS. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo. PLoS One 2011; 6:e23959. [PMID: 21931629 PMCID: PMC3170287 DOI: 10.1371/journal.pone.0023959] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/02/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad differentiation and provides evidence of the preferential expression of BMPs in the developing ovary and Inhibin/Activin subunits in the developing testis.
Collapse
Affiliation(s)
- Gwenn-Aël Carré
- Physiologie de la Reproduction et des Comportements UMR 6175, INRA- CNRS-Université F. Rabelais de Tours-Haras Nationaux, Nouzilly, France
| | - Isabelle Couty
- Physiologie de la Reproduction et des Comportements UMR 6175, INRA- CNRS-Université F. Rabelais de Tours-Haras Nationaux, Nouzilly, France
| | | | - Marina S. Govoroun
- Physiologie de la Reproduction et des Comportements UMR 6175, INRA- CNRS-Université F. Rabelais de Tours-Haras Nationaux, Nouzilly, France
- * E-mail:
| |
Collapse
|
147
|
Hejmej A, Kopera I, Kotula-Balak M, Lydka M, Lenartowicz M, Bilinska B. Are expression and localization of tight and adherens junction proteins in testes of adult boar affected by foetal and neonatal exposure to flutamide? ACTA ACUST UNITED AC 2011; 35:340-52. [DOI: 10.1111/j.1365-2605.2011.01206.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
148
|
Mok KW, Mruk DD, Lee WM, Cheng CY. A study to assess the assembly of a functional blood-testis barrier in developing rat testes. SPERMATOGENESIS 2011; 1:270-280. [PMID: 22319674 PMCID: PMC3271668 DOI: 10.4161/spmg.1.3.17998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/08/2023]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the seminiferous tubule of the mammalian testis that segregates the events of spermatogenesis, in particular post-meiotic germ cell development, from the harmful substances in the environment including toxicants and drugs, as well as from the unwanted hormones and biomolecules in the systemic circulation. It is known that the BTB is assembled by ∼15-21 days postpartum (dpp) in rats coinciding with the onset of late cell cycle progression, namely the formation of zygotene and pachytene spermatocytes by day 15-18 dpp. This is to prepare for: (1) the differentiation/transformation of pachytene spermatocytes to diplotene and dictyate spermatocytes and (2) meiosis I and II, which take place by 23-26 and 26 dpp, respectively. Recent findings have shown spermatogonia/spermatogonial stem cells (SSC) in the tubules failed to re-initiate spermatogenesis by differentiating spermatogonia beyond type A spermatogonia in the absence of a functional BTB, leading to meiotic arrest. These studies thus illustrate that a functional BTB is crucial to the initiation and/or re-initiation of spermatogenesis. Herein, we sought to examine the precise time window when a functional and intact BTB is established in the developing rat testis during the final stage of cell cycle progression and meiosis. Using the techniques of: (1) dual-labeled immunofluorescence analysis to assess the distribution of integrated proteins at the tight junction (TJ), basal ectoplasmic specialization [basal ES, a testis-specific atypical adherens junction (AJ) type] and gap junction (GJ) at the BTB, (2) functional assay to assess the BTB integrity in vivo, (3) immunoblot analysis to monitor changes in steady-state levels of adhesion proteins at the BTB, and (4) co-immunoprecipitation to assess changes in protein-protein interactions at the BTB, it was shown that a BTB was being assembled by day 15-20 dpp, but a functional BTB was not fully established until day 25 dpp in Sprague-Dawley rats, tightly associated with the onset of meiosis I and II. These findings thus illustrate the significance of the BTB on cell cycle progression and the preparation for meiosis, such as germ cell differentiation beyond type A spermatogonia.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | | | | | |
Collapse
|
149
|
Abstract
The elucidation of how individual components of the Sertoli cell junctional complexes form and are dismantled to allow not only individual cells but whole syncytia of germinal cells to migrate from the basal to the lumenal compartment of the seminiferous epithelium without causing a permeability leak in the blood-testis barrier is amongst the most enigmatic yet, challenging and timely questions in testicular physiology. The intriguing key event in this process is how the barrier modulates its permeability during the periods of formation and dismantling of individual Sertoli cell junctions. The purpose of this review is therefore to first provide a reliable account on the normal formation, maintenance and dismantling process of the Sertoli cells junctions, then to assess the influence of the expression of their individual proteins, of the cytoskeleton associated with the junctions, and of the lipid content in the seminiferous tubules on the regulation of the their permeability barrier function. To help focus on the formation and dismantling of the Sertoli cell junctions, several considerations are based on data gleaned not only from rodents but from seasonal breeders as well because these animal models are characterized by exhaustive periods of junction assembly during development and the onset of the seasonal re-initiation of spermatogenesis as well as by an extensive junction dismantling period at the beginning of testicular regression, something unavailable in normal physiological conditions in continual breeders. Thus, the modulation of the permeability barrier function of the Sertoli cell junctions is analyzed in the physiological context of the blood-epidydimis barrier and in particular of the blood-testis barrier rather than in the context of a detailed account of the molecular composition and signalisation pathways of cell junctions. Moreover, the considerations discussed in this review are based on measurements performed on seminiferous tubule-enriched fractions gleaned at regular time intervals during development and the annual reproductive cycle.
Collapse
|
150
|
Mok KW, Mruk DD, Lee WM, Cheng CY. Spermatogonial stem cells alone are not sufficient to re-initiate spermatogenesis in the rat testis following adjudin-induced infertility. ACTA ACUST UNITED AC 2011; 35:86-101. [PMID: 21696392 DOI: 10.1111/j.1365-2605.2011.01183.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The blood-testis barrier (BTB) is a unique ultrastructure in the testis, which creates a specialized microenvironment in the seminiferous epithelium known as the apical (or adluminal) compartment for post-meiotic germ-cell development and for maintenance of an immunological barrier. In this study, we have demonstrated unequivocally that a functional and intact BTB is crucial for the initiation of spermatogenesis, in particular, the differentiation of spermatogonial stem cells (SSCs). It was shown that adult rats (∼300 g body weight, b.w.) treated with adjudin at 50 (low-dose) or 250 (high-dose) mg/kg b.w. by gavage led to germ-cell depletion from the seminiferous tubules and that >98% of the tubules were devoid of germ cells by ∼2 week and rats became infertile in both groups after the sperm reserve in the epididymis was exhausted. While the population of SSC/spermatogonia in the seminiferous tubules from both groups was similar to that of normal rats, only rats from the low-dose group were capable of re-initiating spermatogenesis; and by 20 weeks, greater than 75% of the tubules displayed normal spermatogenesis and the fertility of these rats rebounded. Detailed analysis by dual-labelled immunofluorescence analysis and a functional BTB integrity assay revealed that in both treatment groups, the BTB was disrupted from week 6 to week 12. However, the disrupted BTB 'resealed' in the low-dose group, but not in the high-dose group. Our findings illustrate that SSC/spermatogonia failed to differentiate into spermatocytes beyond A(aligned) spermatogonia in the high-dose group with a disrupted BTB. In short, these findings illustrate the critical significance of the BTB for re-initiation of spermatogenesis besides SSC and spermatogonia.
Collapse
Affiliation(s)
- K-W Mok
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | | | |
Collapse
|