101
|
Upregulation of arginase-II contributes to decreased age-related myocardial contractile reserve. Eur J Appl Physiol 2011; 112:2933-41. [PMID: 22160208 DOI: 10.1007/s00421-011-2257-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
Arginase-II (Arg-II) reciprocally regulates nitric oxide synthase (NOS) and offsets basal myocardial contractility. Furthermore, decreased or absent myocardial NOS activity is associated with a depression in myocardial contractile reserve. We therefore hypothesized that upregulation of Arg-II might in part be responsible for depressed myocardial contractility associated with age. We studied arginase activity/expression, NOS expression, NO production in the presence and absence of the arginase inhibitor S-(2-boronoethyl)-L: -cysteine (BEC) in old (22 months) and young (3 months) rat hearts and myocytes. The spatial confinement of Arg-II and NOS was determined with immuno-electron-miocrographic (IEM) and immuno-histochemical studies. We tested the effect of BEC on the force frequency response (FFR) in myocytes, as well as NOS abundance and activity. Arginase activity and Arg-II expression was increased in old hearts (2.27 ± 0.542 vs. 0.439 ± 0.058 nmol urea/mg protein, p = 0.02). This was associated with a decrease in NO production, which was restored with BEC (4.54 ± 0.582 vs. 12.88 ± 0.432 μmol/mg, p < 0.01). IEM illustrates increased mitochondrial density in old myocytes (51.7 ± 1.8 vs. 69 ± 2.2 × 10(6)/cm(2), p < 0.01), potentially contributing to increased Arg-II abundance and activity. Immunohistochemistry revealed an organized pattern of mitochondria and Arg-II that appears disrupted in old myocytes. The FFR was significantly depressed in old myocytes (61.42 ± 16.04 vs. -5.15 ± 5.65%), while inhibition of Arg-II restored the FFR (-5.15 ± 5.65 vs. 70.98 ± 6.10%). NOS-2 is upregulated sixfold in old hearts contributing to increased production of reactive oxygen species which is attenuated with NOS-2 inhibition by 1400 W (4,735 ± 427 vs. 4,014 ± 314 RFU/min/mg protein, p = 0.005). Arg-II upregulation in aging rat hearts contributes to age-related decreased contractile function.
Collapse
|
102
|
Golbidi S, Badran M, Laher I. Diabetes and alpha lipoic Acid. Front Pharmacol 2011; 2:69. [PMID: 22125537 PMCID: PMC3221300 DOI: 10.3389/fphar.2011.00069] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complications. Lipoic acid quenches reactive oxygen species, chelates metal ions, and reduces the oxidized forms of other antioxidants such as vitamin C, vitamin E, and glutathione. It also boosts antioxidant defense system through Nrf-2-mediated antioxidant gene expression and by modulation of peroxisome proliferator activated receptors-regulated genes. ALA inhibits nuclear factor kappa B and activates AMPK in skeletal muscles, which in turn have a plethora of metabolic consequences. These diverse actions suggest that lipoic acid acts by multiple mechanisms, many of which have only been uncovered recently. In this review we briefly summarize the known biochemical properties of lipoic acid and then discussed the oxidative mechanisms implicated in diabetic complications and the mechanisms by which lipoic acid may ameliorate these reactions. The findings of some of the clinical trials in which lipoic acid administration has been tested in diabetic patients during the last 10 years are summarized. It appears that the clearest benefit of lipoic acid supplementation is in patients with diabetic neuropathy.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
103
|
Finlay LA, Michels AJ, Butler JA, Smith EJ, Monette JS, Moreau RF, Petersen SK, Frei B, Hagen TM. R-α-lipoic acid does not reverse hepatic inflammation of aging, but lowers lipid anabolism, while accentuating circadian rhythm transcript profiles. Am J Physiol Regul Integr Comp Physiol 2011; 302:R587-97. [PMID: 22049228 DOI: 10.1152/ajpregu.00393.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To determine the effects of age and lipoic acid supplementation on hepatic gene expression, we fed young (3 mo) and old (24 mo) male Fischer 344 rats a diet with or without 0.2% (wt/wt) R-α-lipoic acid (LA) for 2 wk. Total RNA isolated from liver tissue was analyzed by Affymetrix microarray to examine changes in transcriptional profiles. Results showed elevated proinflammatory gene expression in the aging liver and evidence for increased immune cell activation and tissue remodeling, together representing 45% of the age-related transcriptome changes. In addition, age-related increases in transcripts of genes related to fatty acid, triglyceride, and cholesterol synthesis, including acetyl-CoA carboxylase-β (Acacb) and fatty acid synthase (Fasn), were observed. Supplementation of old animals with LA did not reverse the necroinflammatory phenotype but, intriguingly, altered the expression of genes governing circadian rhythm. Most notably, Arntl, Npas2, and Per changed in a coordinated manner with respect to rhythmic transcription. LA further caused a decrease in transcripts of several bile acid and lipid synthesis genes, including Acacb and Fasn, which are regulated by first-order clock transcription factors. Similar effects of LA supplementation on bile acid and lipid synthesis genes were observed in young animals. Transcript changes of lipid metabolism genes were corroborated by a decrease in FASN and ACC protein levels. We conclude that advanced age is associated with a necroinflammatory phenotype and increased lipid synthesis, while chronic LA supplementation influences hepatic genes associated with lipid and energy metabolism and circadian rhythm, regardless of age.
Collapse
Affiliation(s)
- Liam A Finlay
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State Univ., Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ. The Receptor for Advanced Glycation End-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Signal 2011; 15:2175-84. [PMID: 21126167 PMCID: PMC3166176 DOI: 10.1089/ars.2010.3378] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species, including hydrogen peroxide (H(2)O(2)), can cause toxicity and act as signaling molecules in various pathways regulating both cell survival and cell death. However, the sequence of events between the oxidative insult and cell damage remains unclear. In the current study, we investigated the effect of oxidative stress on activation of the Receptor for Advanced Glycation End-products (RAGE) and subsequent protection against H(2)O(2)-induced pancreatic tumor cell damage. We found that exposure of pancreatic tumor cells to H(2)O(2) provoked a nuclear factor kappa B (NF-κB)-dependent increase in RAGE expression. Further, suppression of RAGE expression by RNA interference increased the sensitivity of pancreatic tumor cells to oxidative injury. Furthermore, targeted knockdown of RAGE led to increased cell death by apoptosis and diminished cell survival by autophagy during H(2)O(2)-induced oxidative injury. Moreover, we demonstrate that RAGE is a positive feedback regulator for NF-κB as knockdown of RAGE decreased H(2)O(2)-induced activity of NF-κB. Taken together, these results suggest that RAGE is an important regulator of oxidative injury.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
105
|
Khabbazi T, Mahdavi R, Safa J, Pour-Abdollahi P. Effects of alpha-lipoic acid supplementation on inflammation, oxidative stress, and serum lipid profile levels in patients with end-stage renal disease on hemodialysis. J Ren Nutr 2011; 22:244-250. [PMID: 21908204 DOI: 10.1053/j.jrn.2011.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/11/2011] [Accepted: 06/12/2011] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE We examined the effects of alpha-lipoic acid (ALA) supplementation on inflammation, oxidative stress, and serum lipid profile levels in hemodialysis (HD) patients. DESIGN This was a double-blinded, randomized, placebo-controlled clinical trial. SETTING The present study involved HD centers in Tabriz, Iran. PATIENTS Participants included 63 patients with end-stage renal disease (43 men and 20 women; age range: 22-79 years) undergoing maintenance HD. INTERVENTION HD patients were randomly assigned into the supplemented group (n = 31), receiving a daily dose of ALA (600 mg), or a control group (n = 32), receiving placebo for 8 weeks. MAIN OUTCOME MEASURES High sensitivity C-reactive protein (hsCRP), malondialdehyde, total antioxidant status, total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured at baseline and after 8 weeks of supplementation. RESULTS At the end of intervention, 11 patients were excluded from the study. HsCRP levels decreased by 18.7% in the supplemented group after 8 weeks of supplementation, and the reduction was significant in comparison with the placebo group (P < .05); this finding was also significant after adjusting for baseline values of hsCRP. The mean malondialdehyde and total antioxidant status levels did not change significantly in the 2 groups during the study. The mean high-density lipoprotein cholesterol concentrations increased significantly in the supplemented group at the end of the study (P < .05); however, this improvement was not statistically significant as compared with the placebo group. No significant alterations were observed in the other lipid profile parameters within each group during the study. CONCLUSION ALA supplementation significantly reduced hsCRP levels, which is a risk factor for cardiovascular disease in HD patients.
Collapse
Affiliation(s)
- Tannaz Khabbazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutritional Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Safa
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Pour-Abdollahi
- Department of Nutrition, School of Public Health and Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
106
|
Wang X, Yu Y, Ji L, Liang X, Zhang T, Hai CX. Alpha-lipoic acid protects against myocardial ischemia/reperfusion injury via multiple target effects. Food Chem Toxicol 2011; 49:2750-7. [PMID: 21843584 DOI: 10.1016/j.fct.2011.07.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 07/30/2011] [Accepted: 07/31/2011] [Indexed: 12/24/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) is a major cause for the events of cardiovascular disease. Oxidative stress plays a critical role in the development of ischemia/reperfusion (IR) injury. As a potent antioxidant, alpha-lipoic acid (LA) has been shown to provide a benefit for the inhibition of IR injury and inhibit reactive oxygen species (ROS) generation during MI/R in rats. However, the mechanism on the protective effect of LA is still to be clarified. The present study was aimed to investigate the protective effect of LA against MI/R injury and its mechanisms. We found that 2h of myocardial ischemia followed by different time periods of reperfusion resulted in significant increase of creatine kinase (CK) activity. MI/R also significantly promoted oxidative stress and decreased the activities of antioxidant enzymes. In addition, apoptosis and inflammatory response were activated and aggravated in a time-dependent manner by MI/R. All these alterations induced by MI/R were attenuated by the administration of LA 30 min before reperfusion. These results suggested that LA played a protective effect against MI/R injury via antioxidant, anti-apoptotic and anti-inflammatory effects. These findings may significantly better the understanding of the pharmacological actions of LA and advance therapeutic approaches to MI/R injury and cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, School of Preventive Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | |
Collapse
|
107
|
Zhang Y, Han P, Wu N, He B, Lu Y, Li S, Liu Y, Zhao S, Liu L, Li Y. Amelioration of lipid abnormalities by α-lipoic acid through antioxidative and anti-inflammatory effects. Obesity (Silver Spring) 2011; 19:1647-53. [PMID: 21593803 DOI: 10.1038/oby.2011.121] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent data have revealed that oxidative products and inflammatory mediators are increased in the insulin-resistant states of obesity and type 2 diabetes mellitus (T2DM). Obese patients with impaired glucose tolerance (IGT) are at high risk for developing T2DM and have high incidence of dyslipidemia. α-Lipoic acid (ALA) is a potent antioxidant with insulin sensitizing activity. However, it is not clear whether ALA is effective on lipid parameters in humans. This study has investigated 22 obese subjects with IGT (obese-IGT), 13 of whom underwent 2-week ALA treatment, 600 mg intravenously once daily. Before and after the treatment, euglycemic-hyperinsulinemic clamps were used to measure insulin sensitivity. Meanwhile, plasma lipids, oxidative products, and chronic inflammatory markers were measured. After treatment of ALA in obese-IGT patients, insulin sensitivity was improved, insulin sensitivity index (ISI) impressively enhanced by 41%. Plasma levels of free fatty acids (FFAs), triglyceride (TG), total cholesterol (T-Chol), low density lipoprotein-cholesterol (LDL-Chol), small dense LDL-Chol (sd-LDL), oxidized LDL-Chol (ox-LDL-Chol), very low density lipoprotein-cholesterol (VLDL-Chol) were all significantly decreased (P < 0.01). At the same time, both plasma oxidative products (malondialdehyde (MDA), 8-iso-prostaglandin) and inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)) were remarkably decreased (P < 0.01), while adiponectin was increased (P < 0.01). There are significant negative correlations between ISI and plasma FFAs, sd-LDL-Chol, ox-LDL-Chol, MDA, 8-iso-prostaglandin, TNF-α, and IL-6, and positive correlations with HDL-Chol and adiponectin in obese-IGT patients. The results indicate that short-term treatment with ALA can improve insulin sensitivity and plasma lipid profile possibly through amelioration of oxidative stress and chronic inflammatory reaction in obese patients with IGT.
Collapse
Affiliation(s)
- Yongyan Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Effects of lipoic acid, caffeic acid and a synthesized lipoyl-caffeic conjugate on human hepatoma cell lines. Molecules 2011; 16:6365-77. [PMID: 21796075 PMCID: PMC6264529 DOI: 10.3390/molecules16086365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and fatal cancers. Its treatment with conventional chemotherapeutic agents is inefficient, due to several side effects linked to impaired organ function typical of liver diseases. Consequently, there exists a decisive requirement to explore possible alternative chemopreventive and therapeutic strategies. The use of dietary antioxidants and micronutrients has been proposed for HCC successful management. The aim of this work was to test in vitro the effects of lipoic acid, caffeic acid and a new synthesized lipoyl-caffeic conjugate on human hepatoma cell lines in order to assess their effect on tumor cell growth. The results of cytotoxicity assays at different times showed that the cell viability was directly proportional to the molecule concentrations and incubation times. Moreover, to evaluate the pro- or anti-inflammatory effects of these molecules, the cytokine concentrations were evaluated in treated and untreated cellular supernatants. The obtained cytokine pattern showed that, at the increasing of three molecules concentrations, three pro-inflammatory cytokines such as IL-1β, IL-8 and TNF-α decreased whereas the anti-inflammatory cytokine such as IL-10 increased.
Collapse
|
109
|
Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid – biological activity and therapeutic potential. Pharmacol Rep 2011; 63:849-58. [DOI: 10.1016/s1734-1140(11)70600-4] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/06/2011] [Indexed: 12/17/2022]
|
110
|
Shin W, Cuong TD, Lee JH, Min B, Jeon BH, Lim HK, Ryoo S. Arginase Inhibition by Ethylacetate Extract of Caesalpinia sappan Lignum Contributes to Activation of Endothelial Nitric Oxide Synthase. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:123-8. [PMID: 21860589 DOI: 10.4196/kjpp.2011.15.3.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/16/2011] [Accepted: 05/30/2011] [Indexed: 01/05/2023]
Abstract
Caesalpinia sappan (C. sappan) is a medicinal plant used for promoting blood circulation and removing stasis. During a screening procedure on medicinal plants, the ethylacetate extract of the lignum of C. sappan (CLE) showed inhibitory activity on arginase which has recently been reported as a novel therapeutic target for the treatment of cardiovascular diseases such as atherosclerosis. CLE inhibited arginase II activity prepared from kidney lysate in a dose-dependent manner. In HUVECs, inhibition of arginase activity by CLE reciprocally increased NOx production through enhancement of eNOS dimer stability without any significant changes in the protein levels of eNOS and arginase II expression. Furthermore, CLE-dependent arginase inhibition resulted in increase of NO generation and decrease of superoxide production on endothelium of isolated mice aorta. These results indicate that CLE augments NO production on endothelium through inhibition of arginase activity, and may imply their usefulness for the treatment of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Woosung Shin
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
111
|
Rowlands DJ, Islam MN, Das SR, Huertas A, Quadri SK, Horiuchi K, Inamdar N, Emin MT, Lindert J, Ten VS, Bhattacharya S, Bhattacharya J. Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determines the severity of inflammation in mouse lung microvessels. J Clin Invest 2011; 121:1986-99. [PMID: 21519143 DOI: 10.1172/jci43839] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 02/09/2011] [Indexed: 12/25/2022] Open
Abstract
Shedding of the extracellular domain of cytokine receptors allows the diffusion of soluble receptors into the extracellular space; these then bind and neutralize their cytokine ligands, thus dampening inflammatory responses. The molecular mechanisms that control this process, and the extent to which shedding regulates cytokine-induced microvascular inflammation, are not well defined. Here, we used real-time confocal microscopy of mouse lung microvascular endothelium to demonstrate that mitochondria are key regulators of this process. The proinflammatory cytokine soluble TNF-α (sTNF-α) increased mitochondrial Ca2+, and the purinergic receptor P2Y2 prolonged the response. Concomitantly, the proinflammatory receptor TNF-α receptor-1 (TNFR1) was shed from the endothelial surface. Inhibiting the mitochondrial Ca2+ increase blocked the shedding and augmented inflammation, as denoted by increases in endothelial expression of the leukocyte adhesion receptor E-selectin and in microvascular leukocyte recruitment. The shedding was also blocked in microvessels after knockdown of a complex III component and after mitochondria-targeted catalase overexpression. Endothelial deletion of the TNF-α converting enzyme (TACE) prevented the TNF-α receptor shedding response, which suggests that exposure of microvascular endothelium to sTNF-α induced a Ca2+-dependent increase of mitochondrial H2O2 that caused TNFR1 shedding through TACE activation. These findings provide what we believe to be the first evidence that endothelial mitochondria regulate TNFR1 shedding and thereby determine the severity of sTNF-α-induced microvascular inflammation.
Collapse
Affiliation(s)
- David J Rowlands
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
General oxidative stress during doxorubicin-induced cardiotoxicity in rats: absence of cardioprotection and low antioxidant efficiency of alpha-lipoic acid. Biochimie 2011; 94:932-9. [PMID: 21396425 DOI: 10.1016/j.biochi.2011.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/25/2011] [Indexed: 11/21/2022]
Abstract
To evaluate the effects of alpha-lipoic acid (AL) in a model of doxorubicin (DOX)-induced cardiotoxicity, male Wistar rats were treated with DOX (1 mg/kg/d; 10 d) in combination or not with AL (50 mg/kg/d; 15 d). Plasma oxidative stress was determined by hydroperoxides (ROOH) and the ascorbyl radical/ascorbate ratio. One and two months later, the functional parameters of the hearts were determined in vivo by catheterization and cardiac oxidative stress was assessed by malonedialdehyde (MDA) and O₂*⁻ (dihydroethidium fluorescence) content in tissue. After two months, body weight was higher in the DOX-AL group than in DOX (+16%), but this was due to ascites. Histological liver alterations were observed in both the DOX and DOX-AL groups. Plasma ROOH concentrations decreased after 10 days of AL treatment, but were greater in both the DOX and DOX-AL groups. After two months, a decrease in the cardiac contractility index (-27% and -29%, respectively) and cardiac hypertrophy were observed in DOX and DOX-AL. These dysfunctions were associated with 1) a reduction in plasma ascorbate levels and an increase in the ascorbyl/ascorbate ratio and 2) an increase MDA and O₂*⁻ content in cardiac tissue. In conclusion, a cumulative dose of 10 mg/kg doxorubicin induced functional alterations in the heart associated with plasma and cardiac oxidative stress. The co-administration of the antioxidant compound AL had no beneficial effects in this situation.
Collapse
|
113
|
Kumar D, Schatz F, Moore RM, Mercer BM, Rangaswamy N, Mansour JM, Lockwood CJ, Moore JJ. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta 2011; 32:206-13. [PMID: 21300402 PMCID: PMC3049450 DOI: 10.1016/j.placenta.2011.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/28/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Abruption-induced thrombin generation and inflammation/infection induced cytokine production have both been associated with fetal membrane (FM) weakening and preterm premature rupture of the fetal membranes (PPROM). Using our in vitro model system we have demonstrated that thrombin, and separately the cytokines, tumor necrosis factor-alpha (TNFα) and interleukin-1-beta (IL-1β), remodel and weaken full thickness FM. Additionally, we have reported that the anti-oxidant and NFκB inhibitor, alpha-lipoic acid (LA), blocks these thrombin and cytokine induced effects. The purpose of these studies was to determine whether thrombin and cytokines directly weaken the amnion membrane (AM), the major load-bearing component of FM. Isolated AM or full thickness FM fragments from unlabored Cesarean deliveries were incubated with thrombin, TNFα, or IL-1β, for 48 h. Rupture strength (breaking force) of each fragment was thereafter determined using our published methodology. Biochemical evidence of remodeling and apoptosis; immunoreactive Matrix Metalloproteinase 9 (MMP9), Tissue Inhibitor of Matrix Metalloproteinase 3 (TIMP3) and cleaved poly (ADP-ribose) polymerase (C-PARP) levels in tissue extracts, were determined by western blot and densitometry. Thrombin induced a dose-dependent weakening of isolated AM (P < 0.001) coupled with dose dependent increases in PARP cleavage, and reciprocal increases and decreases, respectively, in MMP9 and TIMP3 protein (all P < 0.01). Thrombin receptor activating peptide-6 (TRAP) also weakened isolated AM. Neither TNFα nor IL-1β weakened isolated AM. However, both cytokines weakened AM when it was incubated together with the choriodecidua as part of full thickness FM (P < 0.001). Cytokine-conditioned choriodecidua medium also weakened isolated AM (P < 0.001). Under conditions in which cytokines weakened the AM, the changes in MMP9, TIMP3 and PARP cleavage were consistent with those seen after thrombin incubation. LA blocked the FM weakening and remodeling effects. In summary, thrombin weakens AM directly whereas cytokines weaken AM indirectly by causing the release of soluble intermediates from the choriodecidua.
Collapse
Affiliation(s)
- D Kumar
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 2011; 41:205-15. [PMID: 21308383 DOI: 10.1007/s00726-011-0834-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/11/2011] [Indexed: 01/28/2023]
Abstract
The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.
Collapse
|
115
|
Chaudhary P, Marracci G, Yu X, Galipeau D, Morris B, Bourdette D. Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J Neuroimmunol 2011; 233:90-6. [PMID: 21215462 DOI: 10.1016/j.jneuroim.2010.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/24/2010] [Accepted: 12/07/2010] [Indexed: 12/20/2022]
Abstract
Lipoic acid (LA) is an antioxidant that is effective in treating experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS). C57BL/6 mice with EAE develop experimental autoimmune optic neuritis (EAON), which models acute optic neuritis in humans. Here we determined whether LA is therapeutically effective in EAON. We immunized C57BL/6 mice with MOG 35-55 peptide. Mice received either daily subcutaneous injections of LA (100mg/kg) or saline in early or late suppression paradigms. In the early suppression paradigm, optic nerve cross-sections showed 14.9±3.8% (mean±SEM) damage in mice receiving saline (n=7) and 2.0±0.4% damage in mice given LA (n=7, p=0.001). In the late suppression paradigm, optic nerve sections showed 24.6±3.5% damage in mice treated with saline (n=7) and 8.4±2.5% in mice treated with LA (n=7, p=0.004). Thus a dramatic reduction in axonal injury was seen after LA administration in both experimental paradigms. Compared with saline treated mice with EAON, optic nerves from mice receiving LA had significantly fewer CD4+ and CD11b+ cells in both paradigms. This study provides a rationale for investigating the therapeutic efficacy of LA in acute optic neuritis in humans.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
116
|
Cheng LC, Su KH, Kou YR, Shyue SK, Ching LC, Yu YB, Wu YL, Pan CC, Lee TS. α-Lipoic acid ameliorates foam cell formation via liver X receptor α-dependent upregulation of ATP-binding cassette transporters A1 and G1. Free Radic Biol Med 2011; 50:47-54. [PMID: 21034810 DOI: 10.1016/j.freeradbiomed.2010.10.706] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 09/26/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022]
Abstract
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.
Collapse
Affiliation(s)
- Li-Ching Cheng
- Institute of Physiology, National Yang-Ming University, Taipei 11211, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
α-Lipoic acid has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. Br J Nutr 2010; 105:31-43. [PMID: 21073761 DOI: 10.1017/s0007114510003107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Lipoic acid (ALA) has been termed the 'ideal' antioxidant, a readily absorbed and bioavailable compound capable of scavenging a number of free radicals, and it has been used for treating diseases in which oxidative stress plays a major role. The present study was designed to gain a better understanding for the positive effects of ALA on the models of acute and chronic inflammation in rats, and also determine its anti-oxidative potency. In an acute model, three doses of ALA (50, 100 and 200 mg/kg) and one dose of indomethacin (25 mg/kg) or diclofenac (25 mg/kg) were administered to rats by oral administration. The paw volumes of the animals were calculated plethysmometrically, and 0·1 ml of 1 % carrageenan (CAR) was injected into the hind paw of each animal 1 h after oral drug administration. The change in paw volume was detected as five replicates every 60 min by plethysmometry. In particular, we investigated the activities of catalase, superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), inducible NO synthase (iNOS) and myeloperoxidase (MPx), and the amounts of lipid peroxidation (LPO) or total GSH in the paw tissues of CAR-injected rats. We showed that ALA exhibited anti-inflammatory effects on both acute and chronic inflammations, and a strongly anti-oxidative potency on linoleic acid oxidation. Moreover, the administration of CAR induced oedema in the paws. ALA significantly inhibited the ability of CAR to induce: (1) the degree of acute inflammation, (2) the rise in MPx activity, (3) the increases of GST and iNOS activities and the amount of LPO and (4) the decreases of GPx, GR and SOD activities and the amount of GSH. In conclusion, these results suggest that the anti-inflammatory properties of ALA, which has a strong anti-oxidative potency, could be related to its positive effects on the antioxidant system in a variety of tissues in rats.
Collapse
|
118
|
Ying Z, Kampfrath T, Sun Q, Parthasarathy S, Rajagopalan S. Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant function. Inflamm Res 2010; 60:219-25. [PMID: 20927568 DOI: 10.1007/s00011-010-0256-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/26/2010] [Accepted: 09/19/2010] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE α-Lipoic acid (LA) exerts beneficial effects in cardiovascular diseases though its antioxidant and/or anti-inflammatory functions. It is postulated that the anti-inflammatory function of LA results from its antioxidant function. In this study we tested whether inhibition of NF-κB by LA is dependent on its antioxidant function. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with tumor necrosis factor-α (TNFα) in the presence of various antioxidants, including LA, tiron, apocynin, and tempol. The activation of the nuclear factor-κB (NF-κB) signaling pathway was then analyzed. RESULTS LA, but not other tested antioxidants, inhibited TNFα-induced inhibitor-kappaB-α (IκBα) degradation and VCAM-1 and COX2 expression in HUVECs. Although LA activated the phosphatidylinositol-3-kinase (PI3-kinase)/Akt pathway in HUVECs, inhibition of Akt by LY294002 did not affect inhibition of TNFα-induced IκBα degradation by LA. In transient co-transfection assays of a constitutively active mutant of IκB kinase-2 (IKK2), IKK2(EE), and a NF-κB luciferase reporter construct, LA dose-dependently inhibited IKK2(EE)-induced NF-κB activation in addition to inhibiting IKK activity in in vitro assays. Consistent with the effect on luciferase expression, LA inhibited IKK2(EE)-induced cyclo-oxygenase-2 (COX2) expression, suggesting that IKK2 inhibition by LA may be a relevant mechanism that explains its anti-inflammatory effects. CONCLUSIONS LA inhibits NF-κB activation through antioxidant-independent and probably IKK-dependent mechanisms.
Collapse
Affiliation(s)
- Zhekang Ying
- Davis Heart and Lung Research Institute, Colleges of Medicine and Public Health, The Ohio State University, Room 110, 473W 12th Avenue, Columbus, OH 43210-1252, USA
| | | | | | | | | |
Collapse
|
119
|
Alpha-lipoic acid as a potential target for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Shock 2010; 33:479-84. [PMID: 19823117 DOI: 10.1097/shk.0b013e3181c3cf0e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One of the common lethal complications of septic shock, a major cause of morbidity and mortality in patients with severe trauma and so on, is acute lung injury. alpha-Lipoic acid (ALA), with antioxidant properties, is a popular agent. Thus, we investigated the potential protective effects of ALA (200 mg/kg) on sepsis-induced acute lung injury. Rats were exposed to cecal ligation and puncture (CLP) to induce sepsis. Rat groups were designed as (a) sham operated, (b) sham operated + ALA treated, (c) CLP applied, (d) CLP + ALA treated. Sixteen hours after CLP induction, serum samples and lung tissues were obtained for biochemical and histopathological examination. alpha-Lipoic acid decreased the serum levels of inflammatory cytokines such as TNF-alpha and IL-6, which increased after CLP. Increased activity of nuclear factor kappaB in septic lung tissues was decreased by ALA. alpha-Lipoic acid improved the decreased antioxidant activity and alleviated the increased oxidant activity, which occurred after CLP application. We can suggest that ALA showed beneficial effects by decreasing nuclear factor kappaB activation in lung tissues, resulting in decreased serum levels of TNF-alpha and IL-6, and also increasing the antioxidant capacity of the lungs.
Collapse
|
120
|
Is endothelial dysfunction of cerebral small vessel responsible for white matter lesions after chronic cerebral hypoperfusion in rats? J Neurol Sci 2010; 299:72-80. [PMID: 20850139 DOI: 10.1016/j.jns.2010.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/20/2010] [Accepted: 08/22/2010] [Indexed: 11/22/2022]
Abstract
Cerebral white matter (WM) lesions contribute to cognitive impairment and motor dysfunction in the elderly. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important adhesion molecules that are upregulated during endothelial activation. Data from recent studies have suggested that ICAM-1 levels are related to progression of white matter hyperintensities (WMH) on MRI. In the present study, we hypothesized that ICAM-1 and VCAM-1 are involved in the endothelial dysfunction and the subsequent WM lesions after chronic cerebral hypoperfusion. Rats underwent bilateral common carotid artery ligation. They were divided into the lipoic acid group and the saline (vehicle) group. RT-PCR and double immunofluorescence for ICAM-1, VCAM-1, endothelial cells (staining positive for von Willebrand factor, vWF), reactive astrocytes (GFAP staining) and activated microglia/macrophages/(CD11b/c staining) were analyzed at baseline and at 1, 3, 7, 14 and 28 days after hypoperfusion. The severity of the WM lesions in the corpus callosum, internal capsule, and external capsule of both hemispheres was graded by luxol fast blue staining. RT-PCR and double immunofluorescence analysis of white matter from rats that had received lipoic acid (100mg/kg/day) for 28 days exhibited markedly reduced expression of ICAM-1 and VCAM-1 over endothelial cells compared with that of rats receiving saline. In the rats treated with lipoic acid, the WM lesions after chronic cerebral hypoperfusion were significantly less severe, and the number of reactive astrocytes and activated microglia/macrophages (CD11b/c staining) were also significantly lower as compared with the saline-treated rats. These findings indicate that endothelial dysfunction plays a critical role in overexpression of ICAM-1 and VCAM-1, glial cell activation and WM lesions after chronic cerebral hypoperfusion and suggest the potential value of lipoic acid as a therapeutic tool in cerebrovascular WM lesions. Our results also provide support for endothelial activation being involved in early pathogenesis of WM lesions and suggest that therapies that stabilize the endothelium may have a role in preventing WM lesions progression.
Collapse
|
121
|
The redox state of the glutathione/glutathione disulfide couple mediates intracellular arginase activation in HCT-116 colon cancer cells. Dig Dis Sci 2010; 55:2520-8. [PMID: 19997976 DOI: 10.1007/s10620-009-1064-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 11/20/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Emerging studies have implicated arginase hyperactivity in the dysregulation of nitric oxide synthesis, which can lead to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of molecular iron, promotes arginase activity by driving the Fenton reaction. However, the exact mechanism of arginase activation in the cell induced by oxidative stress is unknown. AIM The aim of the present study is to examine whether intracellular arginase is regulated by the cellular redox status of glutathione. METHOD To test this hypothesis, the glutathione/glutathione disulfide redox couple was altered in colon cancer cells with the thiol-specific oxidant, diamide, or the glutathione inhibitor, buthionine-(S,R)-sulfoximine, and the activity of the arginase in the cells was assessed. RESULTS Treatment of cells with diamide, a thiol-specific oxidant, resulted in a dose-dependent decrease in the glutathione/glutathione disulfide ratio that was associated with the loss of glutathione and a coincident increase in arginase activity and arginase-1 levels in drug-treated cells compared with untreated cells. These results show that oxidation-induced redox changes of glutathione are of sufficient magnitude to control the activity of arginase in the cells. Thus, the physiologic modulation of the glutathione/glutathione disulfide ratio could prove to be a fundamental parameter for the control of arginase activity in pathological conditions of increased oxidative stress. CONCLUSION This is the first evidence supporting the ex vivo regulation of arginase activity through the redox modulation of intracellular glutathione. The potential adaptive and pathological consequences of glutathione redox regulation of arginase activity are discussed.
Collapse
|
122
|
Lee YJ, Moon MK, Hwang SM, Yoon JJ, Lee SM, Seo KS, Kim JS, Kang DG, Lee HS. Anti-Inflammatory effect of Buddleja officinalis on vascular inflammation in human umbilical vein endothelial cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 38:585-98. [PMID: 20503474 DOI: 10.1142/s0192415x1000807x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1-10 microg/ml) for 18 hours dose-dependently inhibited TNF-alpha-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-alpha-induced ROS formation. Nuclear factor-kappa B (NF-kappaB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-kappaB to the nucleus. ABO inhibited the TNF-alpha-induced degradation of IkappaB-alpha, an inhibitor of NF-kappaB, by inhibiting the phosphorylation of IkappaB-alpha in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-kappaB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.
Collapse
Affiliation(s)
- Yun Jung Lee
- Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Solanki YB, Jain SM. Antihyperlipidemic activity of Clitoria ternatea and Vigna mungo in rats. PHARMACEUTICAL BIOLOGY 2010; 48:915-923. [PMID: 20673179 DOI: 10.3109/13880200903406147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
CONTEXT Hyperlipidemia is one of the major risk factors for atherosclerosis and cardiovascular diseases. Some plants are effective in controlling hyperlipidemia. OBJECTIVE To investigate the anti-hyperlipidemic effect of Clitoria ternatea L. and Vigna mungo L. (Fabaceae) on experimentally induced hyperlipidemia in rats. MATERIALS AND METHODS The poloxamer 407-induced acute hyperlipidemia and diet-induced hyperlipidemia models were used for this investigation. RESULTS Oral administration of the hydroalcoholic extract of the roots and seeds of C. ternatea and the hydroalcoholic extract of the seeds of V. mungo resulted in a significant (p < 0.05) reduction of serum total cholesterol, triglycerides, very low-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels. The atherogenic index and the HDL/LDL ratio were also normalized after treatment in diet-induced hyperlipidemic rats. The effects were compared with atorvastatin (50 mg/kg, p.o.) and gemfibrozil (50 mg/kg, p.o.), reference standards. DISCUSSION The cholesterol-lowering effect of C. ternatea might be attributed to increased biliary excretion and decreased absorption of dietary cholesterol. The cholesterol-lowering effects of V. mungo seeds might be because of decreased HMG-CoA reductase activity, increased biliary excretion, and decreased absorption of dietary cholesterol. Additionally, they improved natural antioxidant defense mechanisms. CONCLUSION The findings of the investigation suggest that C. ternatea and V. mungo have significant antihyperlipidemic action against experimentally-induced hyperlipidemia.
Collapse
Affiliation(s)
- Yogendrasinh B Solanki
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India.
| | | |
Collapse
|
124
|
Abstract
Hypertension reigns as a leading cause of cardiovascular morbidity and mortality worldwide. Excessive reactive oxygen species (ROS) have emerged as a central common pathway by which disparate influences may induce and exacerbate hypertension. Potential sources of excessive ROS in hypertension include nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, xanthine oxidase, endothelium-derived NO synthase, cyclooxygenase 1 and 2, cytochrome P450 epoxygenase, and transition metals. While a significant body of epidemiological and clinical data suggests that antioxidant-rich diets reduce blood pressure and cardiovascular risk, randomized trials and population studies using natural antioxidants have yielded disappointing results. The reasons behind this lack of efficacy are not completely clear, but likely include a combination of (1) ineffective dosing regimens, (2) the potential pro-oxidant capacity of some of these agents, (3) selection of subjects less likely to benefit from antioxidant therapy (too healthy or too sick), and (4) inefficiency of nonspecific quenching of prevalent ROS versus prevention of excessive ROS production. Commonly used antioxidants include Vitamins A, C and E, L-arginine, flavanoids, and mitochondria-targeted agents (Coenzyme Q10, acetyl-L-carnitine, and alpha-lipoic acid). Various reasons, including incomplete knowledge of the mechanisms of action of these agents, lack of target specificity, and potential interindividual differences in therapeutic efficacy preclude us from recommending any specific natural antioxidant for antihypertensive therapy at this time. This review focuses on recent literature evaluating naturally occurring antioxidants with respect to their impact on hypertension.
Collapse
Affiliation(s)
- Tinoy J Kizhakekuttu
- Department of Medicine, Cardiovascular Medicine Division and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
125
|
Mercer BM, Abdelrahim A, Moore RM, Novak J, Kumar D, Mansour JM, Perez-Fournier M, Milluzzi CJ, Moore JJ. The impact of vitamin C supplementation in pregnancy and in vitro upon fetal membrane strength and remodeling. Reprod Sci 2010; 17:685-95. [PMID: 20581351 PMCID: PMC2930608 DOI: 10.1177/1933719110368870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Generation of reactive oxygen species (ROS) has been suggested as a mechanism of fetal membrane (FM) weakening leading to rupture, particularly with preterm premature rupture of the fetal membranes (PROM). In vitro, FM incubation with tumor necrosis factor (TNF) mimics physiological FM weakening, concomitant with generation of ROS and collagen remodeling. Proinflammatory cytokines are also postulated to have a role in the development of the FM physiological weak zone where rupture normally initiates in-term gestations. We hypothesized that antioxidant treatment may block ROS development and resultant FM weakening. Two studies examining antioxidant effects upon FM strength were conducted, one in vivo and the other in vitro. Fetal membrane of patients enrolled in a multicenter placebo-controlled trial to determine the effect of vitamin C (1 g/day) and vitamin E (400 IU/day) upon complications of pre-eclampsia were examined for FM biomechanical properties and biochemical remodeling at birth. Separately, biomechanics and biochemical markers of remodeling were determined in FM fragments incubated with TNF with or without vitamin C preincubation. Supplemental dietary vitamin C in combination with vitamin E did not modify rupture strength, work to rupture, or matrix metalloproteinase-9 (MMP9; protein or activity) either within or outside the term FM physiological weak zone. In vitro, TNF decreased FM rupture strength by 50% while increasing MMP9 protein. Vitamin C did not inhibit these TNF-induced effects. Vitamin C alone had a weakening effect on FM in vitro. We speculate that vitamin C supplementation during pregnancy will not be useful in the prevention of preterm PROM.
Collapse
Affiliation(s)
- Brian M Mercer
- From the Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH 44109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abdin AA, El-Hamid MAA, El-Seoud SHA, Balaha MFH. Effect of pentoxifylline and/or alpha lipoic acid on experimentally induced acute pancreatitis. Eur J Pharmacol 2010; 643:289-96. [PMID: 20599924 DOI: 10.1016/j.ejphar.2010.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 06/01/2010] [Accepted: 06/11/2010] [Indexed: 12/17/2022]
Abstract
Acute pancreatitis is a sudden inflammation of the pancreas that may be life threatening disease with high mortality rates; particularly in presence of systemic inflammatory response and multiple organ failure despite of the conventional antibiotic and symptomatic treatment. Oxidative stress has been shown to be involved in the pathophysiology of acute pancreatitis. This study was designed to investigate the possible effect of pentoxifylline and alpha lipoic acid respectively and in combination on rats with L-arginine induced acute pancreatitis. Rats were divided as follow; Group 1: served as control, Group 2 and Group 3: sacrificed after 24h and 7 days; respectively, from induction of acute pancreatitis by L-arginine 250 mg/100g, Group 4 and Group 5: rats treated by pentoxifylline (12 mg/kg) and sacrificed after 24h and 7 days; respectively, from induction of acute pancreatitis, Group 6 and Group 7: treated by alpha lipoic acid (1mg/kg) and sacrificed after 24h and 7 days; respectively, from induction of acute pancreatitis, Group 8 and Group 9: treated by pentoxifylline and alpha lipoic acid and sacrificed after 24h and 7 days; respectively, from induction of acute pancreatitis. Serum samples were collected to assay levels of amylase enzyme, C-reactive protein, IL-6, catalase enzyme activity, malondialdehyde and pancreases were excised for histopathological examination and assay of pancreatic myeloperoxidase. L-arginine induced-acute pancreatitis was evident by increased in serum marker enzymes and by histopathological findings compared to control group. Pentoxifylline and alpha lipoic acid respectively provided protection against L-arginine induced acute pancreatitis possibly by their antioxidant and anti-inflammatory effect. Treatment with alpha lipoic acid exhibited pronounced improvement in the course of pancreatitis when compared to treatment with pentoxifylline. Moreover, the combination of pentoxifylline and alpha lipoic acid offered the most evident protection when compared to groups that received monotherapy; pointing to the effectiveness of such combination therapy.
Collapse
Affiliation(s)
- Amany A Abdin
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt.
| | | | | | | |
Collapse
|
127
|
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010; 459:923-39. [PMID: 20306272 DOI: 10.1007/s00424-010-0808-2] [Citation(s) in RCA: 527] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 02/07/2023]
Abstract
Endothelium-derived nitric oxide (NO) is a paracrine factor that controls vascular tone, inhibits platelet function, prevents adhesion of leukocytes, and reduces proliferation of the intima. An enhanced inactivation and/or reduced synthesis of NO is seen in conjunction with risk factors for cardiovascular disease. This condition, referred to as endothelial dysfunction, can promote vasospasm, thrombosis, vascular inflammation, and proliferation of vascular smooth muscle cells. Vascular oxidative stress with an increased production of reactive oxygen species (ROS) contributes to mechanisms of vascular dysfunction. Oxidative stress is mainly caused by an imbalance between the activity of endogenous pro-oxidative enzymes (such as NADPH oxidase, xanthine oxidase, or the mitochondrial respiratory chain) and anti-oxidative enzymes (such as superoxide dismutase, glutathione peroxidase, heme oxygenase, thioredoxin peroxidase/peroxiredoxin, catalase, and paraoxonase) in favor of the former. Also, small molecular weight antioxidants may play a role in the defense against oxidative stress. Increased ROS concentrations reduce the amount of bioactive NO by chemical inactivation to form toxic peroxynitrite. Peroxynitrite-in turn-can "uncouple" endothelial NO synthase to become a dysfunctional superoxide-generating enzyme that contributes to vascular oxidative stress. Oxidative stress and endothelial dysfunction can promote atherogenesis. Therapeutically, drugs in clinical use such as ACE inhibitors, AT(1) receptor blockers, and statins have pleiotropic actions that can improve endothelial function. Also, dietary polyphenolic antioxidants can reduce oxidative stress, whereas clinical trials with antioxidant vitamins C and E failed to show an improved cardiovascular outcome.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Obere Zahlbacher Strasse 67, 55101, Mainz, Germany.
| |
Collapse
|
128
|
Zhang C, Wu J, Xu X, Potter BJ, Gao X. Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 2010; 105:453-64. [PMID: 20091314 DOI: 10.1007/s00395-010-0083-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 12/12/2022]
Abstract
We previously found that myocardial ischemia/reperfusion (I/R) initiates expression of tumor necrosis factor-alpha (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF(++/++)) with TNF knockout (TNF(-/-)) mice; thus we have a heterozygote population of mice with the expression of TNF "in between" the TNF(-/-) and TNF(++/++) mice. Mouse hearts were subjected to 30 min of global ischemia followed by 90 min of reperfusion and their vasoactivity before and after I/R was examined in wild type (WT), TNF(-/-), TNF(++/++) and TNF heterozygote (TNF(-/++), cross between TNF(-/-) and TNF(++/++)) mice. In heterozygote TNF(-/++) mice with intermediate cardiac-specific expression of TNF, acetylcholine-induced or flow-induced endothelial-dependent vasodilation following I/R was between TNF(++/++) and TNF(-/-) following I/R. Neutralizing antibodies to TNF administered immediately before the onset of reperfusion-preserved endothelial-dependent dilation following I/R in WT, TNF(-/++) and TNF(++/++) mice. In WT, TNF(-/++) and TNF(++/++) mice, I/R-induced endothelial dysfunction was progressively lessened by administration of free-radical scavenger TEMPOL immediately before initiating reperfusion. During I/R, production of superoxide (O(2) (.-)) was greatest in TNF(++/++) mice as compared to WT, TNF(-/++) and TNF(-/-) mice. Following I/R, arginase mRNA expression was elevated in the WT, substantially elevated in the TNF(-/++) and TNF(++/++) mice and not affected in the TNF(-/-) mice. These results suggest that the level of TNF expression determines arginase expression in endothelial cells during myocardial I/R, which is one of the mechanisms by which TNF compromises coronary endothelial function in reperfusion injury.
Collapse
Affiliation(s)
- Cuihua Zhang
- Department of Internal Medicine, Medical Pharmacology and Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
129
|
An Evaluation of the Stability and Pharmacokinetics of R-Lipoic Acid and R-Dihydrolipoic Acid Dosage Forms in Human Plasma from Healthy Subjects. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420045390.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
130
|
Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1149-60. [PMID: 19664690 PMCID: PMC2756298 DOI: 10.1016/j.bbagen.2009.07.026] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 12/15/2022]
Abstract
Alpha-lipoic acid (LA) has become a common ingredient in multivitamin formulas, anti-aging supplements, and even pet food. It is well-defined as a therapy for preventing diabetic polyneuropathies, and scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age. How do the biochemical properties of LA relate to its biological effects? Herein, we review the molecular mechanisms of LA discovered using cell and animal models, and the effects of LA on human subjects. Though LA has long been touted as an antioxidant, it has also been shown to improve glucose and ascorbate handling, increase eNOS activity, activate Phase II detoxification via the transcription factor Nrf2, and lower expression of MMP-9 and VCAM-1 through repression of NF-kappa B. LA and its reduced form, dihydrolipoic acid, may use their chemical properties as a redox couple to alter protein conformations by forming mixed disulfides. Beneficial effects are achieved with low micromolar levels of LA, suggesting that some of its therapeutic potential extends beyond the strict definition of an antioxidant. Current trials are investigating whether these beneficial properties of LA make it an appropriate treatment not just for diabetes, but also for the prevention of vascular disease, hypertension, and inflammation.
Collapse
Affiliation(s)
| | - Régis F. Moreau
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Eric J. Smith
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Anthony R. Smith
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Tory M. Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
131
|
Zhang Z, Jiang J, Yu P, Zeng X, Larrick JW, Wang Y. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J Transl Med 2009; 7:62. [PMID: 19607676 PMCID: PMC3224956 DOI: 10.1186/1479-5876-7-62] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/16/2009] [Indexed: 01/06/2023] Open
Abstract
Background While all anti-diabetic agents can decrease blood glucose level directly or indirectly, few are able to protect and preserve both pancreatic beta cell mass and their insulin-secreting functions. Thus, there is an urgent need to find an agent or combination of agents that can lower blood glucose and preserve pancreatic beta cells at the same time. Herein, we report a dual-functional andrographolide-lipoic acid conjugate (AL-1). The anti-diabetic and beta cell protective activities of this novel andrographolide-lipoic acid conjugate were investigated. Methods In alloxan-treated mice (a model of type 1 diabetes), drugs were administered orally once daily for 6 days post-alloxan treatment. Fasting blood glucose and serum insulin were determined. Pathologic and immunohistochemical analysis of pancreatic islets were performed. Translocation of glucose transporter subtype 4 in soleus muscle was detected by western blot. In RIN-m cells in vitro, the effect of AL-1 on H2O2-induced damage and reactive oxidative species production stimulated by high glucose and glibenclamide were measured. Inhibition of nuclear factor kappa B (NF-κB) activation induced by IL-1β and IFN-γ was investigated. Results In alloxan-induced diabetic mouse model, AL-1 lowered blood glucose, increased insulin and prevented loss of beta cells and their dysfunction, stimulated glucose transport protein subtype 4 (GLUT4) membrane translocation in soleus muscles. Pretreatment of RIN-m cells with AL-1 prevented H2O2-induced cellular damage, quenched glucose and glibenclamide-stimulated reactive oxidative species production, and inhibited cytokine-stimulated NF-κB activation. Conclusion We have demonstrated that AL-1 had both hypoglycemic and beta cell protective effects which translated into antioxidant and NF-κB inhibitory activity. AL-1 is a potential new anti-diabetic agent.
Collapse
Affiliation(s)
- Zaijun Zhang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, PR China.
| | | | | | | | | | | |
Collapse
|
132
|
Demarco VG, Scumpia PO, Bosanquet JP, Skimming JW. α-Lipoic Acid Inhibits Endotoxin-stimulated Expression of iNOS and Nitric Oxide Independent of the Heat Shock Response in RAW 264.7 Cells. Free Radic Res 2009; 38:675-82. [PMID: 15453632 DOI: 10.1080/10715760410001702503] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-kappaB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-kappaB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-kappaB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.
Collapse
Affiliation(s)
- Vincent G Demarco
- Department of Child Health, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
133
|
Aydogdu N, Erbas H, Atmaca G, Erten O, Kaymak K. Melatonin Reduces Nitric Oxide via Increasing Arginase in Rhabdomyolysis-Induced Acute Renal Failure in Rats. Ren Fail 2009; 28:435-40. [PMID: 16825094 DOI: 10.1080/08860220600683631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Melatonin, the chief secretory product of the pineal gland, is a direct free radical scavenger. In addition to a direct scavenging effect on nitric oxide (NO), its inhibitory effect on nitric oxide synthase (NOS) activity has been also reported. L-arginine is the substrate for both NOS and arginase. It has been suggested that there is a competition between arginase and NOS and that they control each other's level. NO plays a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). In this study, the authors aimed to investigate the effect of melatonin on arginase activity, ornithine, and NO levels on the myoglobinuric ARF formed by intramuscular (i.m.) injection of hypertonic glycerol. Forty rats were randomly divided into four groups. Rats in SHAM were given saline, and those in groups ARF, ARF-M5, and ARF-M10 were injected with glycerol (10 mL/kg) i.m. Concomitant and 24 hours after glycerol injection for the ARF-M5 and ARF-M10 groups, melatonin--5 mg/kg and 10 mg/kg, respectively--was administrated intraperitoneally. Forty-eight hours after the glycerol injection, kidneys of the rats were taken under anesthesia. Arginase activity, ornithine, and NO levels in the kidney tissue were determined. Melatonin had an increasing effect on kidney tissue arginase activities and ornithine levels while decreasing NO concentration. It is possible that besides the direct scavenging effect, the stimulatory effect of melatonin on arginase activity may result in an inhibition of NOS activity and, finally, a decrease in the kidney NO level.
Collapse
Affiliation(s)
- Nurettin Aydogdu
- Trakya University, Faculty of Medicine, Department of Physiology, Edirne, Turkey.
| | | | | | | | | |
Collapse
|
134
|
Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W. Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 2009; 24:3012-20. [PMID: 19474282 DOI: 10.1093/ndt/gfp242] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cisplatin is a chemotherapeutic agent used in treatment of malignant tumours. However, cisplatin produces various side effects, such as nephrotoxicity, neurotoxicity, emetogenesis and ototoxicity. Inflammation is an important mechanism of cisplatin nephrotoxicity. Alpha-lipoic acid (alpha-LA) has anti-inflammatory effects that inhibit both adhesion molecule expression in human endothelial cells and monocyte adhesion by suppressing the nuclear factor-kappaB (NF-kappaB) signalling pathway. The goals of this study were to investigate the anti-inflammatory effects of alpha-LA during cisplatin-induced renal injury and to examine the mechanisms of protection. METHODS C57BL/6 mice were given cisplatin (20 mg/kg) with or without alpha-LA treatment (100 mg/kg for 3 days). Renal function, histological changes, adhesion molecule expression and inflammatory cell infiltration were examined. The effect of alpha-LA on NF-kappaB activity was evaluated by examining nuclear translocation and phosphorylation of NF-kappaB p65 subunits in kidney tissue. RESULTS Cisplatin-induced decreases in renal function, measured by blood urea nitrogen, serum creatinine level and renal tubular injury scores, were attenuated by alpha-LA treatment. alpha-LA decreased the tissue levels of tumour necrosis factor-alpha, the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1), and suppressed the infiltration of CD11b-positive macrophages. alpha-LA also attenuated the cisplatin-induced increases in the phosphorylation and nuclear translocation of NF- kappaB p65 subunits in kidney tissue. CONCLUSIONS These results suggest that alpha-LA treatment ameliorates cisplatin-induced acute kidney injury by reducing inflammatory adhesion molecule expression and NF-kappaB activity.
Collapse
Affiliation(s)
- Kyung Pyo Kang
- Department of Internal Medicine and Renal Regeneration Laboratory, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Thaakur S, Himabindhu G. Effect of alpha lipoic acid on the tardive dyskinesia and oxidative stress induced by haloperidol in rats. J Neural Transm (Vienna) 2009; 116:807-14. [DOI: 10.1007/s00702-009-0232-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 04/21/2009] [Indexed: 11/30/2022]
|
136
|
Bagnost T, André C, Thomassin M, Berthelot A, Demougeot C, Guillaume YC. A molecular chromatographic approach to analyze the cell diffusion of arginase inhibitors. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1599-602. [PMID: 19375985 DOI: 10.1016/j.jchromb.2009.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 11/15/2022]
Abstract
Our group demonstrated that arginase inhibition reduces endothelial dysfunction in spontaneously hypertensive rats [C. Demougeot, A. Prigent-Tessier, C. Marie, A. Berthelot, J. Hypertens. 23 (2005) 971; C. Demougeot, A. Prigent-Tessier, T. Bagnost, C. Andre, Y. Guillaume, M. Bouhaddi, C. Marie, A. Berthelot, Life Sci. 80 (2007) 1128] which opens perspectives in the development of drugs against hypertension. In previous papers [T. Bagnost, Y.C. Guillaume, M. Thomassin, J.F. Robert, A. Berthelot, A. Xicluna, C. Andre, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 856 (2007) 113; T. Bagnost, Y.C. Guillaume, M. Thomassin, A. Berthelot, C. Demougeot, C. Andre, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 873 (2008) 37], we developed a biochromatographic column for studying the binding of an arginase inhibitor with this enzyme and the effect of magnesium on this binding. In this paper, the interaction of arginase inhibitors with an immobilized artificial membrane (IAM) has been studied using a biochromatographic approach. This IAM provided a biophysical model system to study the inhibitor passive transport across cells. It was demonstrated that more the inhibitor cross the cell membrane by passive diffusion more it is potent. As well, an analysis of the thermodynamics of the interaction of the arginase inhibitors with the IAM showed that van der Waals, hydrogen and ionic bonds were the main forces between the arginase inhibitors and the polar head groups of the IAM surface.
Collapse
Affiliation(s)
- Teddy Bagnost
- Faculté de Médecine et de Pharmacie, Equipe Sciences Séparatives Biologiques et Pharmaceutiques, CHU Jean Minjoz, Université de Franche-Comté, Place Saint-Jacques, Besançon Cedex, France
| | | | | | | | | | | |
Collapse
|
137
|
Aladag MA, Turkoz Y, Parlakpinar H, Ozen H, Egri M, Unal SC. Melatonin Ameliorates Cerebral Vasospasm After Experimental Subarachnoidal Haemorrhage Correcting Imbalance of Nitric Oxide Levels in Rats. Neurochem Res 2009; 34:1935-44. [DOI: 10.1007/s11064-009-9979-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
138
|
Li L, Frei B. Prolonged exposure to LPS increases iron, heme, and p22phox levels and NADPH oxidase activity in human aortic endothelial cells: inhibition by desferrioxamine. Arterioscler Thromb Vasc Biol 2009; 29:732-8. [PMID: 19251588 PMCID: PMC2724965 DOI: 10.1161/atvbaha.108.183210] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular oxidative stress and inflammation are contributing factors in atherosclerosis. We recently found that the iron chelator, desferrioxamine (DFO), suppresses NADPH oxidase-mediated oxidative stress and expression of cellular adhesion molecules in mice treated with lipopolysaccharide (LPS). The objective of the present study was to investigate whether and how LPS and iron enhance, and DFO inhibits, NADPH oxidase activity in human aortic endothelial cells (HAECs). METHODS AND RESULTS Incubation of HAECs for 24 hours with 5 microg/mL LPS led to a 4-fold increase in NADPH oxidase activity, which was strongly suppressed by pretreatment of the cells for 24 hours with 100 micromol/L DFO. Incubating HAECs with LPS also significantly increased cellular iron and heme levels and mRNA and protein levels of p22phox, a heme-containing, catalytic subunit of NADPH oxidase. All of these effects of LPS on HAECs were strongly inhibited by DFO. Exposing HAECs to 100 micromol/L iron (ferric citrate) for 48 hours exerted similar effects as LPS, and these effects were strongly inhibited by coincubation with DFO. Furthermore, neither LPS nor DFO affected mRNA and protein levels of p47phox a nonheme-containing, regulatory subunit of NADPH oxidase, or the mRNA level of NOX4, an isoform of the principal catalytic subunit of NADPH oxidase in endothelial cells. In contrast, heme oxygenase-1 was strongly suppressed by DFO, both in the absence and presence of LPS or iron. CONCLUSIONS Our data indicate that prolonged exposure to LPS or iron increases endothelial NADPH oxidase activity by increasing p22phox gene transcription and cellular levels of iron, heme, and p22phox protein. Iron chelation by DFO effectively suppresses endothelial NADPH oxidase activity, which may be helpful as an adjunct in reducing vascular oxidative stress and inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Lixin Li
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | |
Collapse
|
139
|
Tafur J, Mills PJ. Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 2009; 26:323-8. [PMID: 18665762 DOI: 10.1089/pho.2007.2184] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Low-intensity light therapy (LILT) appears to be working through newly recognized photoacceptor systems. The mitochondrial electron transport chain has been shown to be photosensitive to red and near-infrared (NIR) light. Although the underlying mechanisms have not yet been clearly elucidated, mitochondrial photostimulation has been shown to increase ATP production and cause transient increases in reactive oxygen species (ROS). In some cells, this process appears to participate in reduction/oxidation (redox) signaling. Redox mechanisms are known to be involved in cellular homeostasis and proliferative control. In plants, photostimulation of the analogous photosynthetic electron transport chain leads to redox signaling known to be integral to cellular function. In gene therapy research, ultraviolet lasers are being used to photostimulate cells through a process that also appears to involve redox signaling. It seems that visible and near visible low-intensity light can be used to modulate cellular physiology in some nonphotosynthetic cells, acting through existing redox mechanisms of cellular physiology. In this manner, LILT may act to promote proliferation and/or cellular homeostasis. Understanding the role of redox state and signaling in LILT may be useful in guiding future therapies, particularly in conditions associated with pro-oxidant conditions.
Collapse
Affiliation(s)
- Joseph Tafur
- Department of Psychiatry, Behavioral Medicine Laboratory, University of California at San Diego, La Jolla, California 92093-0804, USA.
| | | |
Collapse
|
140
|
Lee HJ, Choi SH, Nah MH, Lim JO, Lee IK. Fabrication of an alpha-lipoic acid-eluting poly-(D,L-lactide-co-caprolactone) cuff for the inhibition of neointimal formation. Exp Mol Med 2009; 41:25-32. [PMID: 19287197 DOI: 10.3858/emm.2009.41.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The purpose of this study was to develop a novel polymer cuff for the local delivery of alpha-lipoic acid (ALA) to inhibit neointimal formation in vivo. The polymer cuff was fabricated by incorporating the ALA into poly- (D,L-lactide-co-caprolactone) 40:60 (PLC), with or without methoxy polyethylene glycol (MethoxyPEG). The release kinetics of ALA and in vitro degradation by hydrolysis were analyzed by HPLC and field emission scanning electron microscopy (FE-SEM), respectively. In vivo evaluation of the effect of the ALA-containing polymer cuff was carried out using a rat femoral artery cuff injury model. At 24 h, 48% or 87% of the ALA was released from PCL cuffs with or without MethoxyPEG. FE-SEM results indicated that ALA was blended homogenously in the PLC with MethoxyPEG, whereas ALA was distributed on the surface of the PLC cuff without MethoxyPEG. The PLC cuff with MethoxyPEG showed prolonged and controlled release of ALA in PBS, in contrast to the PLC cuff without MethoxyPEG. Both ALA-containing polymer cuffs had a significant effect on the inhibition of neointimal formation in rat femoral artery. Novel ALA-containing polymer cuffs made of PLC were found to be biocompatible and effective in inhibiting neointimal formation in vivo. Polymer cuffs containing MethoxyPEG allowed the release of ALA for one additional week, and the rate of drug release from the PLC could be controlled by changing the composition of the polymer. These findings demonstrate that polymer cuffs may be an easy tool for the evaluation of anti-restenotic agents in animal models.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- Department of Internal Medicine and Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-721, Korea
| | | | | | | | | |
Collapse
|
141
|
Chng H, New L, Neo A, Goh C, Browne E, Chan E. Distribution study of orally administered lipoic acid in rat brain tissues. Brain Res 2009; 1251:80-6. [DOI: 10.1016/j.brainres.2008.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
|
142
|
|
143
|
Bikman BT, Zheng D, Pories WJ, Chapman W, Pender JR, Bowden RC, Reed MA, Cortright RN, Tapscott EB, Houmard JA, Tanner CJ, Lee J, Dohm GL. Mechanism for improved insulin sensitivity after gastric bypass surgery. J Clin Endocrinol Metab 2008; 93:4656-63. [PMID: 18765510 PMCID: PMC2729236 DOI: 10.1210/jc.2008-1030] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Surgical treatments of obesity have been shown to induce rapid and prolonged improvements in insulin sensitivity. OBJECTIVE The aim of the study was to investigate the effects of gastric bypass surgery and the mechanisms that explain the improvement in insulin sensitivity. DESIGN We performed a cross-sectional, nonrandomized, controlled study. SETTING This study was conducted jointly between the Departments of Exercise Science and Physiology at East Carolina University in Greenville, North Carolina. SUBJECTS Subjects were recruited into four groups: 1) lean [body mass index (BMI) < 25 kg/m(2); n = 93]; 2) weight-matched (BMI = 25 to 35 kg/m(2); n = 310); 3) morbidly obese (BMI > 35 kg/m(2); n = 43); and 4) postsurgery patients (BMI approximately 30 kg/m(2); n = 40). Postsurgery patients were weight stable 1 yr after surgery. MAIN OUTCOME MEASURES Whole-body insulin sensitivity, muscle glucose transport, and muscle insulin signaling were assessed. RESULTS Postsurgery subjects had insulin sensitivity index values that were similar to the lean and higher than morbidly obese and weight-matched control subjects. Glucose transport was higher in the postsurgery vs. morbidly obese and weight-matched groups. IRS1-pSer(312) in the postsurgery group was lower than morbidly obese and weight-matched groups. Inhibitor kappaBalpha was higher in the postsurgery vs. the morbidly obese and weight-matched controls, indicating reduced inhibitor of kappaB kinase beta activity. CONCLUSIONS Insulin sensitivity and glucose transport are greater in the postsurgery patients than predicted from the weight-matched group, suggesting that improved insulin sensitivity after bypass is due to something other than, or in addition to, weight loss. Improved insulin sensitivity is related to reduced inhibitor of kappaB kinase beta activity and enhanced insulin signaling in muscle.
Collapse
Affiliation(s)
- Benjamin T Bikman
- The Metabolic Institute for the Study of Diabetes and Obesity, East Carolina University, 6N98 600 Moye Boulevard, Greenville, North Carolina 27834, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Plant-derived micronutrients suppress monocyte adhesion to cultured human aortic endothelial cell layer by modulating its extracellular matrix composition. J Cardiovasc Pharmacol 2008; 52:55-65. [PMID: 18594473 DOI: 10.1097/fjc.0b013e31817e692f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monocyte adhesion to endothelium plays an important role in atherosclerosis. We investigated the effects of micronutrients on monocyte-binding properties of extracellular matrix (ECM) produced by human aortic endothelial cells (AoEC). Confluent cultures of AoEC were exposed to ascorbic acid, quercetin, gotu kola extract (10% asiatic acid), green tea extract (40% epigallocatechin gallate), or a mixture of these micronutrients for 48 hours. AoEC-produced ECM was exposed by differential treatment. U937 monocyte adhesion was assayed by fluorescence. ECM composition was assayed immunochemically and with radiolabeled metabolic precursors. AoEC exposure to micronutrients reduced ECM capacity to bind monocytes in a dose-dependent manner. This effect was accompanied by profound changes in the ECM composition. Correlation analysis revealed that changes in monocyte adhesion to ECM had the strongest positive correlation with ECM content for laminin (CC = 0.9681, P < 0.01), followed by fibronectin, collagens type III, I, and IV, biglycan, heparan sulfate, and elastin. The strongest negative correlation was with chondroitin sulfate (CC = -0.9623, P < 0.01), followed by perlecan and versican. Individual micronutrients had diverse effects on ECM composition and binding properties, and their mixture was the most effective treatment. In conclusion, micronutrient-dependent reduction of monocyte adhesion to endothelium is partly mediated through specific modulation of ECM composition and properties.
Collapse
|
145
|
Yi X, Kim K, Yuan W, Xu L, Kim HS, Homeister JW, Key NS, Maeda N. Mice with heterozygous deficiency of lipoic acid synthase have an increased sensitivity to lipopolysaccharide-induced tissue injury. J Leukoc Biol 2008; 85:146-53. [PMID: 18845616 DOI: 10.1189/jlb.0308161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Alpha-lipoic acid (1, 2-dithiolane-3-pentanoic acid; LA), synthesized in mitochondria by LA synthase (Lias), is a potent antioxidant and a cofactor for metabolic enzyme complexes. In this study, we examined the effect of genetic reduction of LA synthesis on its antioxidant and anti-inflammatory properties using a model of LPS-induced inflammation in Lias+/- mice. The increase of plasma proinflammatory cytokine, TNF-alpha, and NF-kappaB at an early phase following LPS injection was greater in Lias+/- mice compared with Lias+/+ mice. The circulating blood white blood cell (WBC) and platelet counts dropped continuously during the initial 4 h. The counts subsequently recovered partially in Lias+/+ mice, but the recovery was impaired totally in Lias+/- mice. Administration of exogenous LA normalized the recovery of WBC counts in Lias+/- mice but not platelets. Enhanced neutrophil sequestration in the livers of Lias+/- mice was associated with increased hepatocyte injury and increased gene expression of growth-related oncogene, E-selectin, and VCAM-1 in the liver and/or lung. Lias gene expression in tissues was 50% of normal expression in Lias+/- mice and reduced further by LPS treatment. Decreased Lias expression was associated with diminished hepatic LA and tissue oxidative stress. Finally, Lias+/- mice displayed enhanced mortality when exposed to LPS-induced sepsis. These data demonstrate the importance of endogenously produced LA for preventing leukocyte accumulation and tissue injury that result from LPS-induced inflammation.
Collapse
Affiliation(s)
- Xianwen Yi
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 701 Brinkhous-Bullitt Bldg., Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Ki SH, Kim SG. Phase II enzyme induction by α-lipoic acid through phosphatidylinositol 3-kinase-dependent C/EBPs activation. Xenobiotica 2008; 38:587-604. [DOI: 10.1080/00498250802126920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- S. H. Ki
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul, Korea
| | - S. G. Kim
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul, Korea
| |
Collapse
|
147
|
Tan HW, Xing SS, Bi XP, Li L, Gong HP, Zhong M, Zhang Y, Zhang W. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-kappaB activation. Acta Pharmacol Sin 2008; 29:1051-9. [PMID: 18718174 DOI: 10.1111/j.1745-7254.2008.00843.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Metabolic syndrome is associated with an increased incidence of atherosclerosis. Clinical studies have shown that calcium channel blockers (CCB) inhibit the progression of atherosclerosis. However, the underlying mechanism is unclear. We investigated the inhibitory effect of felodipine on adhesion molecular expression and macrophage infiltration in the aorta of high fructose-fed rats (FFR). METHODS Male Wistar rats were given 10% fructose in drinking water. After 32 weeks of high fructose feeding, they were treated with felodipine (5 mg x kg(-1) x d(-1)) for 6 weeks. The control rats were given a normal diet and water. The aortic expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the infiltration of macrophages were measured by real-time RT-PCR and/or immunohistochemistry. NF-kappaB activity was measured by electrophoretic mobility shift assay (EMSA). RESULTS After 32 weeks of high fructose feeding, FFR displayed increased body weight, systolic blood pressure (SBP), serum insulin, and triglycerides when compared with the control rats. The aortic expressions of ICAM-1 and VCAM-1 were significantly increased in FFR than in the control rats and accompanied by the increased activity of NF-kappaB. FFR also showed significantly increased CD68- positive macrophages in the aortic wall. After treatment with felodipine, SBP, serum insulin, and the homeostasis model assessment decreased significantly. In addition to reducing ICAM-1 and VCAM-1, felodipine decreased macrophages in the aortic wall. EMSA revealed that felodipine inhibited NF-kappaB activation in FFR. CONCLUSION Felodipine inhibited vessel wall inflammation. The inhibition of NF-kappaB may be involved in the modulation of vascular inflammatory response by CCB in metabolic syndrome.
Collapse
Affiliation(s)
- Hong-wei Tan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Ji-nan 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Petersen Shay K, Moreau RF, Smith EJ, Hagen TM. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life 2008; 60:362-7. [PMID: 18409172 DOI: 10.1002/iub.40] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemical reduction and oxidation (redox) properties of alpha-lipoic acid (LA) suggest that it may have potent antioxidant potential. A significant number of studies now show that LA and its reduced form, dihydrolipoic acid (DHLA), directly scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) species and protect cells against a host of insults where oxidative stress is part of the underlying etiology. However, owing to its limited and transient accumulation in tissues following oral intake, the efficacy of nonprotein-bound LA to function as a physiological antioxidant has been questioned. Herein, we review the evidence that the micronutrient functions of LA may be more as an effector of important cellular stress response pathways that ultimately influence endogenous cellular antioxidant levels and reduce proinflammatory mechanisms. This would promote a sustained improvement in cellular resistance to pathologies where oxidative stress is involved, which would not be forthcoming if LA solely acted as a transient ROS scavenger.
Collapse
Affiliation(s)
- Kate Petersen Shay
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
149
|
Radioprotective effect of dl-α-lipoic acid on mice skin fibroblasts. Cell Biol Toxicol 2008; 25:331-40. [DOI: 10.1007/s10565-008-9087-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 05/13/2008] [Indexed: 11/27/2022]
|
150
|
Ghibu S, Richard C, Delemasure S, Vergely C, Mogosan C, Muresan A. [An endogenous dithiol with antioxidant properties: alpha-lipoic acid, potential uses in cardiovascular diseases]. Ann Cardiol Angeiol (Paris) 2008; 57:161-165. [PMID: 18571145 DOI: 10.1016/j.ancard.2008.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
Alpha-Lipoic acid (ALA) is a natural compound, chemically named 1,2-dithiolane-3-pentanoic acid, also referred to as thioctic acid. In humans, ALA is synthetized by the liver and other tissues with high metabolic activity: heart, kidney. ALA is both water and fat soluble and therefore, is widely distributed in both cellular membranes and cytosol. Recently, a greater deal of attention has been given to antioxidant function for ALA and its reduced formed: dihydrolipoic acid (DHLA). ALA scavenges hydroxyl radicals, hypochlorous acid and singlet oxygen. It may also exert antioxidant effects in biological systems through transitional metal chelation. Dihydrolipoic acid has been shown to have antioxidant but also pro-oxidant properties in systems in which hydroxyl radical was generated. ALA/DHLA ratio has the capacity to recycle endogenous antioxidants such as vitamin E. A number of experimental as well as clinical studies point to the usefulness of ALA as a therapeutic agent for such diverse conditions as diabetes, atherosclerosis, insulin resistance, neuropathy, neurodegenerative diseases and ischemia-reperfusion injury. ALA represents a potential agent on the vascular endothelium, recording to ALA/DHLA redox couple is one of the most powerful biological antioxidant systems.
Collapse
Affiliation(s)
- S Ghibu
- Département de pharmacologie, physiologie et physiopathologie, faculté de pharmacie, université de médecine et pharmacie Iuliu Hatieganu, 41, Victor-Babes, Cluj-Napoca, Roumanie.
| | | | | | | | | | | |
Collapse
|