101
|
Liendl L, Grillari J, Schosserer M. Raman fingerprints as promising markers of cellular senescence and aging. GeroScience 2020; 42:377-387. [PMID: 30715693 PMCID: PMC7205846 DOI: 10.1007/s11357-019-00053-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
Due to our aging population, understanding of the underlying molecular mechanisms constantly gains more and more importance. Senescent cells, defined by being irreversibly growth arrested and associated with a specific gene expression and secretory pattern, accumulate with age and thus contribute to several age-related diseases. However, their specific detection, especially in vivo, is still a major challenge. Raman microspectroscopy is able to record biochemical fingerprints of cells and tissues, allowing a distinction between different cellular states, or between healthy and cancer tissue. Similarly, Raman microspectroscopy was already successfully used to distinguish senescent from non-senescent cells, as well as to investigate other molecular changes that occur at cell and tissue level during aging. This review is intended to give an overview about various applications of Raman microspectroscopy to study aging, especially in the context of detecting senescent cells.
Collapse
Affiliation(s)
- Lisa Liendl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Vienna, Austria
- Evercyte GmbH, 1190, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, 1190, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Vienna, Austria.
| |
Collapse
|
102
|
Jannone G, Rozzi M, Najimi M, Decottignies A, Sokal EM. An Optimized Protocol for Histochemical Detection of Senescence-associated Beta-galactosidase Activity in Cryopreserved Liver Tissue. J Histochem Cytochem 2020; 68:269-278. [PMID: 32154749 DOI: 10.1369/0022155420913534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Senescence-associated beta-galactosidase (SA-β-gal) activity assay is commonly used to evaluate the increased beta-galactosidase (β-gal) activity in senescent cells related to enhanced lysosomal activity. Although the optimal pH for β-gal is 4.0, this enzymatic activity has been most commonly investigated at a suboptimal pH by using histochemical reaction on fresh tissue material. In the current study, we optimized a SA-β-gal activity histochemistry protocol that can also be applied on cryopreserved hepatic tissue. This protocol was developed on livers obtained from control rats and after bile duct resection (BDR). A significant increase in β-gal liver activity was observed in BDR rats vs controls after 2 hr of staining at physiological pH 4.0 (6.98 ± 1.19% of stained/total area vs 0.38 ± 0.22; p<0.01) and after overnight staining at pH 5.8 (24.09 ± 6.88 vs 0.12 ± 0.08; p<0.01). Although we noticed that β-gal activity staining decreased with cryopreservation time (from 4 to 12 months of storage at -80C; p<0.05), the enhanced staining observed in BDR compared with controls remained detectable up to 12 months after cryopreservation (p<0.01). In conclusion, we provide an optimized protocol for SA-β-gal activity histochemical detection at physiological pH 4.0 on long-term cryopreserved liver tissue.
Collapse
Affiliation(s)
- Giulia Jannone
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Milena Rozzi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
103
|
Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci U S A 2020; 117:6717-6725. [PMID: 32139604 DOI: 10.1073/pnas.1918028117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most hepatocellular carcinomas (HCCs) develop in patients with chronic hepatitis, which creates a microenvironment for the growth of hepatic progenitor cells (HPCs) at the periportal area and subsequent development of HCCs. We investigated the signal from the inflammatory liver for this pathogenic process in the hepatic conditional β-catenin knockout mouse model. Senescent β-catenin-depleted hepatocytes in aged mice create an inflammatory microenvironment that stimulates periportal HPC expansion but arrests differentiation, which predisposes mice to the development of liver tumors. The release of complement C1q from macrophages in the inflammatory niche was identified as the unorthodox signal that activated the β-catenin pathway in periportal HPCs and was responsible for their expansion and de-differentiation. C1q inhibitors blocked the β-catenin pathway in both the expanding HPCs and the liver tumors but spared its orthodox pathway in pericentral normal hepatocytes. This mechanism has been validated in human liver specimens from patients with chronic hepatitis. Taken together, these results demonstrate that C1q- mediated activation of β-catenin pathway in periportal HPCs is a previously unrecognized mechanism for replenishing hepatocytes in the inflammatory liver and, if unchecked, for promoting hepatocarcinogenesis. C1q may become a new target for blocking carcinogenesis in patients with chronic hepatitis.
Collapse
|
104
|
Dong K, Zhang Y, Huang JJ, Xia SS, Yang Y. Shorter leucocyte telomere length as a potential biomarker for nonalcoholic fatty liver disease-related advanced fibrosis in T2DM patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:308. [PMID: 32355752 PMCID: PMC7186748 DOI: 10.21037/atm.2020.03.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Telomere length has been linked to hepatic fibrosis. Type 2 diabetes mellitus (T2DM) is considered as a particular risk for the development of hepatic fibrosis. This study is to explore the association of leucocyte telomere length (LTL) and nonalcoholic fatty liver disease (NAFLD)-related advanced fibrosis in T2DM patients. Methods A total of 442 patients with T2DM were enrolled from Tongji Hospital, Wuhan, China. Clinical features were collected and LTL was measured by Southern blot-based terminal restriction fragment length. Hepatic advanced fibrosis was determined by both the NAFLD fibrosis score (NFS) and fibrosis-4 score (FIB-4). Explanatory factors for advanced fibrosis in T2DM patients were identified using multiple logistic regressions. Results T2DM patients with advanced fibrosis had significant shorter LTL than the no-advanced group. Additionally, LTL, age, male and aminotransferase (ALT) were significantly associated with advanced fibrosis status in T2DM patients. Longer diabetes duration was found to have a strong association with advanced fibrosis in elder T2DM patients. Conclusions Shorter LTL was significantly associated with advanced fibrosis in T2DM patients. Longer diabetes duration was an independent risk factor for advanced fibrosis in old T2DM patients. Shorter LTL may be used as a biomarker for advanced fibrosis in T2DM patients.
Collapse
Affiliation(s)
- Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao-Jiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - San-Shan Xia
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
105
|
Brandi G, Tavolari S. Asbestos and Intrahepatic Cholangiocarcinoma. Cells 2020; 9:E421. [PMID: 32059499 PMCID: PMC7072580 DOI: 10.3390/cells9020421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
The link between asbestos exposure and the onset of thoracic malignancies is well established. However epidemiological studies have provided evidences that asbestos may be also involved in the development of gastrointestinal tumors, including intrahepatic cholangiocarcinoma (ICC). In line with this observation, asbestos fibers have been detected in the liver of patients with ICC. Although the exact mechanism still remains unknown, the presence of asbestos fibers in the liver could be explained in the light of their translocation pathway following ingestion/inhalation. In the liver, thin and long asbestos fibers could remain trapped in the smaller bile ducts, particularly in the stem cell niche of the canals of Hering, and exerting their carcinogenic effect for a long time, thus inducing hepatic stem/progenitor cells (HpSCs) malignant transformation. In this scenario, chronic liver damage induced by asbestos fibers over the years could be seen as a classic model of stem cell-derived carcinogenesis, where HpSC malignant transformation represents the first step of this process. This phenomenon could explain the recent epidemiological findings, where asbestos exposure seems mainly involved in ICC, rather than extrahepatic cholangiocarcinoma, development.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Simona Tavolari
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| |
Collapse
|
106
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
107
|
Abstract
The aging of the population, the increased prevalence of chronic liver diseases in elderly and the need to broaden the list of potential liver donors enjoin us to better understand what is an aged liver. In this review, we provide a brief introduction to cellular senescence, revisit the main morphological and functional modifications of the liver induced by aging, particularly concerning metabolism, immune response and regeneration, and try to elude some of the signalling pathways responsible for these modifications. Finally, we discuss the clinical consequences of aging on chronic liver diseases and the implications of older age for donors and recipients in liver transplantation.
Collapse
|
108
|
Viswanathan P, Sharma Y, Maisuradze L, Tchaikovskaya T, Gupta S. Ataxia telangiectasia mutated pathway disruption affects hepatic DNA and tissue damage in nonalcoholic fatty liver disease. Exp Mol Pathol 2020; 113:104369. [PMID: 31917286 DOI: 10.1016/j.yexmp.2020.104369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/27/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
To overcome the rising burdens of nonalcoholic fatty liver disease, mechanistic linkages in mitochondrial dysfunction, inflammation and hepatic injury are critical. As ataxia telangiectasia mutated (ATM) gene oversees DNA integrity and mitochondrial homeostasis, we analyzed mRNAs and total proteins or phosphoproteins related to ATM gene by arrays in subjects with healthy liver, fatty liver or nonalcoholic steatohepatitis. Functional genomics approaches were used to query DNA damage or cell growth events. The effects of fatty acid-induced toxicity in mitochondrial health, DNA integrity and cell proliferation were validated in HuH-7 cells, including by inhibiting ATM kinase activity or knckdown of its mRNA. In fatty livers, DNA damage and ATM pathway activation was observed. During induced steatosis in HuH-7 cells, lowering of ATM activity produced mitochondrial dysregulation, DNA damage and cell growth inhibition. In livers undergoing steatohepatitis, ATM was depleted with increased hepatic DNA damage and growth-arrest due to cell cycle checkpoint activations. Moreover, molecular signatures of oncogenesis were associated with upstream mechanistic networks directing cell metabolism, inflammation or growth that were either activated (in fatty liver) or inactivated (in steatohepatitis). To compensate for hepatic growth arrest, preoncogenic oval cell populations expressing connexin-43 and/or albumin emerged. These oval cells avoided DNA damage and proliferated actively. We concluded that ATM is a major contributor to the onset and progression of nonalcoholic fatty liver disease. Therefore, specific markers for ATM pathway dysregulation will allow prospective segregation of cohorts for disease susceptibility and progression from steatosis to steatohepatitis. This will offer superior design and evaluation parameters for clinical trials. Restoration of ATM activity with targeted therapies should be appropriate for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Preeti Viswanathan
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, United States
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luka Maisuradze
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, United States; Irwin S. and Sylvia Chanin Institute for Cancer Research, and Albert Einstein College of Medicine, Bronx, NY, United States; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
109
|
Choi J, Kim HJ, Lee J, Cho S, Ko MJ, Lim YS. Risk of Hepatocellular Carcinoma in Patients Treated With Entecavir vs Tenofovir for Chronic Hepatitis B: A Korean Nationwide Cohort Study. JAMA Oncol 2019; 5:30-36. [PMID: 30267080 DOI: 10.1001/jamaoncol.2018.4070] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Entecavir and tenofovir disoproxil fumarate have comparable efficacy in achieving surrogate end points, including virologic response, and are equally recommended as first-line treatments for patients with chronic hepatitis B (CHB). However, it is unclear whether treatment with these drugs is associated with equivalent clinical outcomes, especially development of hepatocellular carcinoma (HCC). Objective To compare entecavir and tenofovir in terms of the risk of HCC and death or liver transplant in patients with CHB infection. Design, Setting, and Participants A nationwide historical population cohort study involving treatment-naive adult patients with CHB who started treatment with entecavir (n = 11 464) or tenofovir disoproxil fumarate (n = 12 692) between January 1, 2012, and December 31, 2014, using data from the Korean National Health Insurance Service database. As validation, a hospital cohort of patients with CHB treated with entecavir (n = 1560) or tenofovir (n = 1141) in a tertiary referral center between January 1, 2010, and December 31, 2016, were analyzed. Nationwide cohort data were retrieved from January 1, 2010, to December 31, 2016, and hospital cohort data from January 1, 2010, to October 31, 2017. Main Outcomes and Measures Cumulative incidence rates of HCC and death and transplant rates. Results Among the population cohort of 24 156, the mean (SD) age was 48.9 (9.8) years, and 15 120 patients (62.6%) were male. Among the hospital cohort of 2701, the mean (SD) age was 48.8 (10.5) years and 1657 patients (61.3%) were male. In the population cohort, the annual incidence rate of HCC was significantly lower in the tenofovir group (0.64 per 100 person-years [PY]) than in the entecavir group (1.06 per 100 PY). By multivariable-adjusted analysis, tenofovir therapy was associated with a significantly lower risk of HCC (hazard ratio [HR], 0.61; 95% CI, 0.54-0.70) and all-cause mortality or transplant (HR, 0.77; 95% CI, 0.65-0.92) compared with entecavir. The tenofovir group also showed a significantly lower risk of HCC in the 10 923-pair propensity score-matched population cohort (HR, 0.62; 95% CI, 0.54-0.70) and 869-pair propensity score-matched hospital cohort (HR, 0.68; 95% CI, 0.46-0.99) compared with the entecavir group. Conclusions and Relevance This study suggests that tenofovir treatment was associated with a significantly lower risk of HCC compared with entecavir treatment in a population-based cohort of adults with CHB; these findings were validated in a hospital cohort. Given the poor prognosis of patients with HCC, these findings may have considerable clinical implications in prevention of this cancer in patients with CHB infection.
Collapse
Affiliation(s)
- Jonggi Choi
- Liver Center, Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Division for Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Jayoun Lee
- Division for Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Songhee Cho
- Division for Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Min Jung Ko
- Division for Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Young-Suk Lim
- Liver Center, Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Division for Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
| |
Collapse
|
110
|
Nevi L, Costantini D, Safarikia S, Di Matteo S, Melandro F, Berloco PB, Cardinale V. Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells 2019; 8:cells8111443. [PMID: 31731674 PMCID: PMC6912632 DOI: 10.3390/cells8111443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| | - Daniele Costantini
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Samira Safarikia
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Sabina Di Matteo
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Pasquale Bartolomeo Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, “Sapienza” University of Rome, 04100 Latina, Italy
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| |
Collapse
|
111
|
Dewidar B, Meyer C, Dooley S, Meindl-Beinker N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019; 8:cells8111419. [PMID: 31718044 PMCID: PMC6912224 DOI: 10.3390/cells8111419] [Citation(s) in RCA: 520] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.
Collapse
Affiliation(s)
- Bedair Dewidar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527 Tanta, Egypt
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Correspondence: ; Tel.: +49-621-383-4983; Fax: +49-621-383-1467
| |
Collapse
|
112
|
Huda N, Liu G, Hong H, Yan S, Khambu B, Yin XM. Hepatic senescence, the good and the bad. World J Gastroenterol 2019; 25:5069-5081. [PMID: 31558857 PMCID: PMC6747293 DOI: 10.3748/wjg.v25.i34.5069] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Gradual alterations of cell’s physiology and functions due to age or exposure to various stresses lead to the conversion of normal cells to senescent cells. Once becoming senescent, the cell stops dividing permanently but remains metabolically active. Cellular senescence does not have a single marker but is characterized mainly by a combination of multiple markers, such as, morphological changes, expression of cell cycle inhibitors, senescence associated β-galactosidase activity, and changes in nuclear membrane. When cells in an organ become senescent, the entire organism can be affected. This may occur through the senescence-associated secretory phenotype (SASP). SASP may exert beneficial or harmful effects on the microenvironment of tissues. Research on senescence has become a very exciting field in cell biology since the link between age-related diseases, including cancer, and senescence has been established. The loss of regenerative and homeostatic capacity of the liver over the age is somehow connected to cellular senescence. The major contributors of senescence properties in the liver are hepatocytes and cholangiocytes. Senescent cells in the liver have been implicated in the etiology of chronic liver diseases including cirrhosis and hepatocellular carcinoma and in the interference of liver regeneration. This review summarizes recently reported findings in the understanding of the molecular mechanisms of senescence and its relationship with liver diseases.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
113
|
The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol 2019; 16:544-558. [PMID: 31253940 DOI: 10.1038/s41575-019-0165-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Telomerase is a key enzyme for cell survival that prevents telomere shortening and the subsequent cellular senescence that is observed after many rounds of cell division. In contrast, inactivation of telomerase is observed in most cells of the adult liver. Absence of telomerase activity and shortening of telomeres has been implicated in hepatocyte senescence and the development of cirrhosis, a chronic liver disease that can lead to hepatocellular carcinoma (HCC) development. During hepatocarcinogenesis, telomerase reactivation is required to enable the uncontrolled cell proliferation that leads to malignant transformation and HCC development. Part of the telomerase complex, telomerase reverse transcriptase, is encoded by TERT, and several mechanisms of telomerase reactivation have been described in HCC that include somatic TERT promoter mutations, TERT amplification, TERT translocation and viral insertion into the TERT gene. An understanding of the role of telomeres and telomerase in HCC development is important to develop future targeted therapies and improve survival of this disease. In this Review, the roles of telomeres and telomerase in liver carcinogenesis are discussed, in addition to their potential translation to clinical practice as biomarkers and therapeutic targets.
Collapse
|
114
|
Fernandez RJ, Johnson FB. A regulatory loop connecting WNT signaling and telomere capping: possible therapeutic implications for dyskeratosis congenita. Ann N Y Acad Sci 2019; 1418:56-68. [PMID: 29722029 DOI: 10.1111/nyas.13692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/15/2022]
Abstract
The consequences of telomere dysfunction are most apparent in rare inherited syndromes caused by genetic deficiencies in factors that normally maintain telomeres. The principal disease is known as dyskeratosis congenita (DC), but other syndromes with similar underlying genetic defects share some clinical aspects with this disease. Currently, there are no curative therapies for these diseases of telomere dysfunction. Here, we review recent findings demonstrating that dysfunctional (i.e., uncapped) telomeres can downregulate the WNT pathway, and that restoration of WNT signaling helps to recap telomeres by increasing expression of shelterins, proteins that naturally bind and protect telomeres. We discuss how these findings are different from previous observations connecting WNT and telomere biology, and discuss potential links between WNT and clinical manifestations of the DC spectrum of diseases. Finally, we argue for exploring the use of WNT agonists, specifically lithium, as a possible therapeutic approach for patients with DC.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Cell and Molecular Biology Program, Biomedical Graduate Studies, Medical Scientist Training Program, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
115
|
Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. Hallmarks of Aging in the Liver. Comput Struct Biotechnol J 2019; 17:1151-1161. [PMID: 31462971 PMCID: PMC6709368 DOI: 10.1016/j.csbj.2019.07.021] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
While the liver demonstrates remarkable resilience during aging, there is growing evidence that it undergoes all the cellular hallmarks of aging, which increases the risk of liver and systemic disease. The aging process in the liver is driven by alterations of the genome and epigenome that contribute to dysregulation of mitochondrial function and nutrient sensing pathways, leading to cellular senescence and low-grade inflammation. These changes promote multiple phenotypic changes in all liver cells (hepatocytes, liver sinusoidal endothelial, hepatic stellate and Küpffer cells) and impairment of hepatic function. In particular, age-related changes in the liver sinusoidal endothelial cells are a significant but under-recognized risk factor for the development of age-related cardiometabolic disease. Liver aging is driven by transcription and metabolic epigenome alterations. This leads to cellular senescence and low-grade inflammation. Hepatocyte, sinusoidal endothelial, stellate and Küpffer cells undergoes the hallmarks of aging. Each cell type demonstrates phenotypical cellular changes with age.
Collapse
Key Words
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- CR, caloric restriction
- Endothelial
- FOXO, forkhead box O
- Genetic
- HSC, hepatic stellate cell
- Hepatocyte
- IGF-1, insulin like growth factor 1
- IL-6, interleukin 6
- IL-8, interleukin 8
- KC, Küpffer cell
- LSEC, liver sinusoidal endothelial cell
- Mitochondrial dysfunction
- NAD, nicotinamide adenine dinucleotide
- NAFLD, non-alcoholic fatty liver disease
- NO, nitric oxide
- Nutrient sensing pathways
- PDGF, platelet derived growth factor
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-α
- ROS, reactive oxygen species
- SIRT1, sirtuin 1
- Senescence
- TNFα, tumor necrosis factor alpha
- VEGF, vascular endothelial growth factor
- mTOR, mammalian target of rapamycin
- miR, microRNA
- αSMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Nicholas J Hunt
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Concord Clinical School, Sydney Medical School, Sydney, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - Sun Woo Sophie Kang
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - Glen P Lockwood
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - David G Le Couteur
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Concord Clinical School, Sydney Medical School, Sydney, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - Victoria C Cogger
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Concord Clinical School, Sydney Medical School, Sydney, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| |
Collapse
|
116
|
Subedi P, Nembrini S, An Q, Zhu Y, Peng H, Yeh F, Cole SA, Rhoades DA, Lee ET, Zhao J. Telomere length and cancer mortality in American Indians: the Strong Heart Study. GeroScience 2019; 41:351-361. [PMID: 31230193 DOI: 10.1007/s11357-019-00080-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022] Open
Abstract
The objective of this study was to investigate whether leukocyte telomere length (LTL) predicts the risk for cancer mortality among American Indians participating in the Strong Heart Study (1989-1991). Participants (aged 45-74 years) were followed annually until December 2015 to collect information on morbidity/mortality. LTL was measured by qPCR using genomic DNA isolated from peripheral blood. The association between LTL and risk for cancer mortality was examined using a multivariable Cox proportional hazard model, adjusting for age, gender, education, study site, smoking, alcohol use, physical activity, systolic blood pressure, fasting blood glucose, obesity, and low- and high-density lipoprotein. Of 1945 participants (mean age 56.10 ± 8.17 at baseline, 57% women) followed for an average 20.5 years, 220 died of cancer. Results showed that longer LTL at baseline significantly predicts an increased risk of cancer death among females (HR 1.57, 95% CI 1.08-2.30), but not males (HR 0.74, 95% CI 0.49-1.12) (p for interaction 0.009). Specifically, compared with the women with the longest LTL (fourth quartile), those in the third, second, and first quartiles showed 53%, 41%, and 44% reduced risk for cancer death, respectively. The findings highlight the importance of sex-specific analysis in future telomere research.
Collapse
Affiliation(s)
- Pooja Subedi
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Stefano Nembrini
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Qiang An
- Department of Orthopaedics and Rehabilitation, University of Iowa Health Care, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, 01066 JPP, Iowa City, IA, 52242, USA
| | - Yun Zhu
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Hao Peng
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fawn Yeh
- College of Public Health, University of Oklahoma Health Sciences Center, 801 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Dorothy A Rhoades
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 655 Research Parkway, Oklahoma City, OK, 73104, USA
| | - Elisa T Lee
- College of Public Health, University of Oklahoma Health Sciences Center, 801 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
117
|
Aleksieva N, Forbes SJ. Biliary-derived hepatocytes in chronic liver injury: Bringing new troops to the battlefield? J Hepatol 2019; 70:1051-1053. [PMID: 30979534 DOI: 10.1016/j.jhep.2019.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Niya Aleksieva
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, UK
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, UK.
| |
Collapse
|
118
|
Postmus AC, Sturmlechner I, Jonker JW, van Deursen JM, van de Sluis B, Kruit JK. Senescent cells in the development of cardiometabolic disease. Curr Opin Lipidol 2019; 30:177-185. [PMID: 30913069 PMCID: PMC6530963 DOI: 10.1097/mol.0000000000000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Senescent cells have recently been identified as key players in the development of metabolic dysfunction. In this review, we will highlight recent developments in this field and discuss the concept of targeting these cells to prevent or treat cardiometabolic diseases. RECENT FINDINGS Evidence is accumulating that cellular senescence contributes to adipose tissue dysfunction, presumably through induction of low-grade inflammation and inhibition of adipogenic differentiation leading to insulin resistance and dyslipidaemia. Senescent cells modulate their surroundings through their bioactive secretome and only a relatively small number of senescent cells is sufficient to cause persistent physical dysfunction even in young mice. Proof-of-principle studies showed that selective elimination of senescent cells can prevent or delay the development of cardiometabolic diseases in mice. SUMMARY The metabolic consequences of senescent cell accumulation in various tissues are now unravelling and point to new therapeutic opportunities for the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Andrea C. Postmus
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ines Sturmlechner
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Johan W. Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M. van Deursen
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine K. Kruit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
119
|
Abstract
Previous studies have established a correlation between increasing chronological age and risk of cirrhosis. This pattern raised interest in the role of telomeres and the telomerase complex in the pathogenesis of liver fibrosis and cirrhosis. This review aims to summarize and analyze the current understanding of telomere regulation in hepatocytes and lymphocytes and how this ultimately relates to the development of liver fibrosis. Notably, in chronic viral hepatitis, telomere shortening in hepatocytes and lymphocytes occurs in such a way that may promote further viral replication while also leading to liver damage. However, while telomere shortening occurs in both hepatocytes and lymphocytes and ultimately results in cellular death, the mechanisms of telomere loss appear to be initiated by independent processes. The understanding of telomere maintenance on a hepatic and immune system level in both viral and non-viral etiologies of cirrhosis may open doors to novel therapeutic strategies.
Collapse
Affiliation(s)
- Abbey Barnard
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ashley Moch
- Department of Surgery, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sammy Saab
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
120
|
Xiang XH, Yang L, Zhang X, Ma XH, Miao RC, Gu JX, Fu YN, Yao Q, Zhang JY, Liu C, Lin T, Qu K. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma. World J Gastroenterol 2019; 25:1715-1728. [PMID: 31011256 PMCID: PMC6465944 DOI: 10.3748/wjg.v25.i14.1715] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/06/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cellular senescence is a recognized barrier for progression of chronic liver diseases to hepatocellular carcinoma (HCC). The expression of a cluster of genes is altered in response to environmental factors during senescence. However, it is questionable whether these genes could serve as biomarkers for HCC patients.
AIM To develop a signature of senescence-associated genes (SAGs) that predicts patients’ overall survival (OS) to improve prognosis prediction of HCC.
METHODS SAGs were identified using two senescent cell models. Univariate COX regression analysis was performed to screen the candidate genes significantly associated with OS of HCC in a discovery cohort (GSE14520) for the least absolute shrinkage and selection operator modelling. Prognostic value of this seven-gene signature was evaluated using two independent cohorts retrieved from the GEO (GSE14520) and the Cancer Genome Atlas datasets, respectively. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to compare the predictive accuracy of the seven-SAG signature and serum α-fetoprotein (AFP).
RESULTS A total of 42 SAGs were screened and seven of them, including KIF18B, CEP55, CIT, MCM7, CDC45, EZH2, and MCM5, were used to construct a prognostic formula. All seven genes were significantly downregulated in senescent cells and upregulated in HCC tissues. Survival analysis indicated that our seven-SAG signature was strongly associated with OS, especially in Asian populations, both in discovery and validation cohorts. Moreover, time-dependent ROC curve analysis suggested the seven-gene signature had a better predictive accuracy than serum AFP in predicting HCC patients’ 1-, 3-, and 5-year OS.
CONCLUSION We developed a seven-SAG signature, which could predict OS of Asian HCC patients. This risk model provides new clinical evidence for the accurate diagnosis and targeted treatment of HCC.
Collapse
Affiliation(s)
- Xiao-Hong Xiang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Li Yang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Hua Ma
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Run-Chen Miao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jing-Xian Gu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yu-Nong Fu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Qing Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jing-Yao Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
121
|
Abstract
The average age of liver transplant donors and recipients has increased over the years. Independent of the cause of liver disease, older candidates have more comorbidities, higher waitlist mortality and higher post-transplant mortality than younger patients. However, transplant benefit may be similar in older and younger recipients, provided older recipients are carefully selected. The cohort of elderly patients transplanted decades ago is also increasingly raising issues concerning long-term exposure to immunosuppression and aging of the transplanted liver. Excellent results can be achieved with elderly donors and there is virtually no upper age limit for donors after brain death liver transplantation. The issue is how to optimise selection, procurement and matching to ensure good results with elderly donors. The impact of old donor age is more pronounced in younger recipients and patients with a high model for end-stage liver disease score. Age matching between the donor and the recipient should be incorporated into allocation policies with a multistep approach. However, age matching may vary depending on the objectives of different allocation policies. In addition, age matching must be revisited in the era of direct-acting antivirals. More restrictive limits have been adopted in donation after circulatory death. Perfusion machines which are currently under investigation may help expand these limits. In living donor liver transplantation, donor age limit is essentially guided by morbidity related to procurement. In this review we summarise changing trends in recipient and donor age. We discuss the implications of older age donors and recipients. We also consider different options for age matching in liver transplantation that could improve outcomes.
Collapse
|
122
|
Demerdash HM, Elyamany AS, Arida E. Impact of direct-acting antivirals on leukocytic DNA telomere length in hepatitis C virus-related hepatic cirrhosis. Eur J Gastroenterol Hepatol 2019; 31:494-498. [PMID: 30444746 DOI: 10.1097/meg.0000000000001306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Direct-acting antiviral (DAAs) represent advancement in the management of hepatitis C virus (HCV)-related hepatic cirrhosis. A high proportion of patients achieve a sustained virologic response; eradication of HCV is coupled with a decreased risk of hepatocellular carcinoma. Recent evidence suggests that shortening of the DNA telomere may be linked to cellular senescence as well as predisposition to malignant transformation. OBJECTIVE This study aimed to assess pretreatment leukocytic DNA telomere length in HCV-related cirrhosis and post viral eradication using DAAs. PATIENTS AND METHODS This study included 24 patients with HCV-related cirrhosis, Child-Pugh A. Whole-blood samples were obtained from patients before treatment and 12 weeks after the end of treatment, as well as from 24 healthy controls. Terminal restriction fragment, corresponding to telomere length, was measured using a nonradioactive Southern blot technique, detected by chemiluminescence. RESULTS DNA telomere length was significantly shorter before treatment compared with 12 weeks after end of treatment in HCV-related cirrhotic patients. Also, it was significantly shorter in patients before treatment compared with healthy individuals. CONCLUSION Telomere elongation in blood leukocytes can be considered a marker of recovery of inflammation after DAAs-induced HCV eradication. Still, the possibility of activation by cancer initiation cannot be excluded.
Collapse
Affiliation(s)
- Hala M Demerdash
- Departments of Clinical Pathology, Alexandria University Hospitals
| | | | - Emad Arida
- Anaesthesia and Intensive Care, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
123
|
Hu SJ, Jiang SS, Zhang J, Luo D, Yu B, Yang LY, Zhong HH, Yang MW, Liu LY, Hong FF, Yang SL. Effects of apoptosis on liver aging. World J Clin Cases 2019; 7:691-704. [PMID: 30968034 PMCID: PMC6448073 DOI: 10.12998/wjcc.v7.i6.691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 02/05/2023] Open
Abstract
As an irreversible and perennial process, aging is accompanied by functional and morphological declines in organs. Generally, aging liver exhibits a decline in volume and hepatic blood flow. Even with a preeminent regenerative capacity to restore its functions after liver cell loss, its biosynthesis and metabolism abilities decline, and these are difficult to restore to previous standards. Apoptosis is a programmed death process via intrinsic and extrinsic pathways, in which Bcl-2 family proteins and apoptosis-related genes, such as p21 and p53, are involved. Apoptosis inflicts both favorable and adverse influences on liver aging. Apoptosis eliminates transformed abnormal cells but promotes age-related liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and liver cancer. We summarize the roles of apoptosis in liver aging and age-related liver diseases.
Collapse
Affiliation(s)
- Shao-Jie Hu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sha-Sha Jiang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dan Luo
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bo Yu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Yan Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Hua Zhong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Li-Yu Liu
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Fen-Fang Hong
- Experimental Teaching Center, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
124
|
Liu B, Anno K, Kobayashi T, Piao J, Tahara H, Ohdan H. Influence of donor liver telomere and G-tail on clinical outcome after living donor liver transplantation. PLoS One 2019; 14:e0213462. [PMID: 30845248 PMCID: PMC6405121 DOI: 10.1371/journal.pone.0213462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/19/2019] [Indexed: 11/26/2022] Open
Abstract
It has been reported that donor age affects patient outcomes after liver transplantation, and that telomere length is associated with age. However, to our knowledge, the impact of donor age and donor liver telomere length in liver transplantation has not been well investigated. This study aimed to clarify the influence of the length of telomere and G-tail from donor livers on the outcomes of living donors and recipients after living donor liver transplantation. The length of telomere and G-tail derived from blood samples and liver tissues of 55 living donors, measured using the hybridization protection assay. The length of telomeres from blood samples was inversely correlated with ages, whereas G-tail length from blood samples and telomere and G-tail lengths from liver tissues were not correlated with ages. Age, telomere, and G-tail length from blood did not affect postoperative liver failure and early liver regeneration of donors. On the other hand, the longer the liver telomere, the poorer the liver regeneration tended to be, especially with significant difference in donor who underwent right hemihepatectomy. We found that the survival rate of recipients who received liver graft with longer telomeres was inferior to that of those who received liver graft with shorter ones. An elderly donor, longer liver telomere, and higher Model for End-Stage Liver Disease score were identified as independent risk factors for recipient survival after transplantation. In conclusion, telomere shortening in healthy liver does not correlate with age, whereas longer liver telomeres negatively influence donor liver regeneration and recipient survival after living donor liver transplantation. These results can direct future studies and investigations on telomere shortening in the clinical and experimental transplant setting.
Collapse
Affiliation(s)
- Biou Liu
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kumiko Anno
- Department of Cellular and Molecular Biology, Graduate School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Jinlian Piao
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
125
|
Cayuela ML, Claes KBM, Ferreira MG, Henriques CM, van Eeden F, Varga M, Vierstraete J, Mione MC. The Zebrafish as an Emerging Model to Study DNA Damage in Aging, Cancer and Other Diseases. Front Cell Dev Biol 2019; 6:178. [PMID: 30687705 PMCID: PMC6335974 DOI: 10.3389/fcell.2018.00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease of the elderly, and old age is its largest risk factor. With age, DNA damage accumulates continuously, increasing the chance of malignant transformation. The zebrafish has emerged as an important vertebrate model to study these processes. Key mechanisms such as DNA damage responses and cellular senescence can be studied in zebrafish throughout its life course. In addition, the zebrafish is becoming an important resource to study telomere biology in aging, regeneration and cancer. Here we review some of the tools and resources that zebrafish researchers have developed and discuss their potential use in the study of DNA damage, cancer and aging related diseases.
Collapse
Affiliation(s)
- Maria Luisa Cayuela
- Telomerase, Cancer and Aging Group, Surgery Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | | | | | - Catarina Martins Henriques
- Department of Oncology and Metabolism, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | | | - Máté Varga
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary
| | | | | |
Collapse
|
126
|
Møller P, Wils RS, Jensen DM, Andersen MHG, Roursgaard M. Telomere dynamics and cellular senescence: an emerging field in environmental and occupational toxicology. Crit Rev Toxicol 2018; 48:761-788. [DOI: 10.1080/10408444.2018.1538201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
127
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
128
|
Raven A, Forbes SJ. Hepatic progenitors in liver regeneration. J Hepatol 2018; 69:1394-1395. [PMID: 30391027 DOI: 10.1016/j.jhep.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Raven
- Scottish Centre for Regenerative Medicine, Edinburgh University, Edinburgh, United Kingdom
| | - Stuart J Forbes
- Scottish Centre for Regenerative Medicine, Edinburgh University, Edinburgh, United Kingdom.
| |
Collapse
|
129
|
Yin H, Akawi O, Fox SA, Li F, O'Neil C, Balint B, Arpino JM, Watson A, Wong J, Guo L, Quantz MA, Nagpal AD, Kiaii B, Chu MWA, Pickering JG. Cardiac-Referenced Leukocyte Telomere Length and Outcomes After Cardiovascular Surgery. ACTA ACUST UNITED AC 2018; 3:591-600. [PMID: 30456331 PMCID: PMC6234502 DOI: 10.1016/j.jacbts.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/22/2023]
Abstract
Short leukocyte telomeres have been associated with adverse cardiovascular outcomes in population studies, but this relationship has not translated to patient care. The authors report a telomere length autologous referencing strategy that has the potential to mark biological aging and to identify high-risk individuals. Among 163 patients who underwent cardiovascular surgery, telomeres in leukocytes and skeletal muscle displayed age-related shortening, whereas the telomere length in the cardiac right atrium was stable during 6 decades of life. The magnitude of the telomere length gap between cardiac atrial tissue and leukocytes was associated with post-operative complications and length of stay in the intensive care unit. This study provided proof of concept that a single-time, internally referenced assessment of leukocyte telomere shortening behavior could inform acute risks in patients with cardiovascular disease.
Leukocyte telomere shortening reflects stress burdens and has been associated with cardiac events. However, the patient-specific clinical value of telomere assessment remains unknown. Moreover, telomere shortening cannot be inferred from a single telomere length assessment. The authors investigated and developed a novel strategy for gauging leukocyte telomere shortening using autologous cardiac atrial referencing. Using multitissue assessments from 163 patients who underwent cardiovascular surgery, we determined that the cardiac atrium-leukocyte telomere length difference predicted post-operative complexity. This constituted the first evidence that a single-time assessment of telomere dynamics might be salient to acute cardiac care.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, London, Ontario, Canada
| | - Oula Akawi
- Robarts Research Institute, London, Ontario, Canada
| | - Stephanie A Fox
- London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | - Fuyan Li
- Robarts Research Institute, London, Ontario, Canada
| | | | - Brittany Balint
- Robarts Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - John-Michael Arpino
- Robarts Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Alanna Watson
- Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Jorge Wong
- London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine (Cardiology), University of Western Ontario, London, Ontario, Canada
| | - Linrui Guo
- London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | - MacKenzie A Quantz
- London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | - A Dave Nagpal
- London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | - Bob Kiaii
- London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | - Michael W A Chu
- London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, London, Ontario, Canada.,London Health Sciences Centre, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,Department of Medicine (Cardiology), University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
130
|
Kim D, Li AA, Ahmed A. Leucocyte telomere shortening is associated with nonalcoholic fatty liver disease-related advanced fibrosis. Liver Int 2018; 38:1839-1848. [PMID: 29797393 DOI: 10.1111/liv.13886] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Telomere length and telomerase have been linked with cirrhosis and hepatocellular carcinoma. However, the impact of telomere length on nonalcoholic fatty liver disease and advanced fibrosis in a large national population sample is not well understood. METHODS Cross-sectional data from the National Health and Nutrition Examination Survey 1999-2002 were utilized. Suspected nonalcoholic fatty liver disease was diagnosed if serum alanine aminotransferase was >30 IU/L for men and >19 IU/L for women in the absence of other causes of chronic liver disease. Presence of advanced fibrosis was determined by the nonalcoholic fatty liver disease fibrosis score, aspartate aminotransferase to platelet ratio index and FIB-4 score. RESULTS Of the 6738 participants (mean age 46.3 years, 48.4% male), suspected nonalcoholic fatty liver disease prevalence was inversely associated with leucocyte telomere length in young adults aged 20-39 years, though this was not seen in the overall population. Percentage of participants with advanced fibrosis increased corresponding with leucocyte telomere length (longest to shortest). The shortest quartile of leucocyte telomere length was associated with a significantly higher odds ratio (95% confidence interval) of advanced fibrosis of 2.36 (1.32-4.24) in a univariate model compared to the longest quartile, and 2.01 (1.13-3.58) in a multivariate model adjusted for age, gender, ethnicity, waist circumference, smoking, diabetes, hypertension, total cholesterol and high-density lipoprotein cholesterol (P for trend <.05 respectively). CONCLUSIONS In this large nationally representative sample of American adults, leucocyte telomere shortening was associated with increased risk of advanced fibrosis in the setting of suspected nonalcoholic fatty liver disease independent of other known risk factors.
Collapse
Affiliation(s)
- Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
131
|
Patnaik MM, Kamath PS, Simonetto DA. Hepatic manifestations of telomere biology disorders. J Hepatol 2018; 69:736-743. [PMID: 29758336 DOI: 10.1016/j.jhep.2018.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
A 51-year-old Caucasian male was referred for evaluation of variceal bleeding. Laboratory tests were remarkable for mild thrombocytopenia and moderate alkaline phosphatase elevation. Synthetic liver function was well preserved. Abdominal computed tomography scan revealed moderate splenomegaly, gastric varices, and normal hepatic contour. A transjugular liver biopsy was performed revealing findings of nodular regenerative hyperplasia with no significant fibrosis or necroinflammatory activity. Hepatic venous pressure gradient was elevated at 31 mmHg, consistent with clinically significant portal hypertension. The clinical course was complicated by refractory gastric variceal bleeding requiring a surgical portosystemic shunt. Approximately seven years after the initial presentation, the patient developed progressive dyspnoea and a diagnosis of idiopathic pulmonary fibrosis was made. Contrast-enhanced echocardiogram was not suggestive of hepatopulmonary syndrome or portopulmonary hypertension. Given this new diagnosis a telomere biology disorder was suspected. A flow-fluorescence in situ hybridisation analysis for telomere length assessment revealed telomere lengths below the first percentile in both lymphocytes and granulocytes. Next generation sequencing analysis identified a heterozygous mutation involving the hTERT gene (Histidine983Threonine). The lung disease unfortunately progressed in the subsequent two years, leading to the patient's death nine years after his initial presentation with portal hypertension. During those nine years two brothers also developed idiopathic pulmonary fibrosis. The questions that arise from this case include.
Collapse
Affiliation(s)
| | - Patrick S Kamath
- Mayo Clinic Division of Gastroenterology and Hepatology, Rochester, MN, USA
| | - Douglas A Simonetto
- Mayo Clinic Division of Gastroenterology and Hepatology, Rochester, MN, USA.
| |
Collapse
|
132
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
133
|
Wandrer F, Han B, Liebig S, Schlue J, Manns MP, Schulze-Osthoff K, Bantel H. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment Pharmacol Ther 2018; 48:270-280. [PMID: 29863282 DOI: 10.1111/apt.14802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic viral hepatitis is linked to fibrotic liver injury that can progress to liver cirrhosis with its associated complications. Recent evidence suggests a role of senescence in liver fibrosis, although the senescence regulators contributing to fibrosis progression remain unclear. AIM To investigate the role of senescence and different senescence markers for fibrosis progression in patients with chronic hepatitis C virus (HCV) infection. METHODS The expression of the cell cycle inhibitors p21, p27 and p16 as well as the senescence markers p-HP1γ and γ-H2AX was analysed in liver tissue with different fibrosis stages. Senescence-associated chitotriosidase activity was measured in sera of HCV patients (n = 61) and age-matched healthy individuals (n = 22). RESULTS We found a remarkable up-regulation of the cell cycle inhibitors and senescence markers in chronic HCV infection compared to healthy liver tissue. Liver tissue with relevant fibrosis stages (F2-3) or cirrhosis (F4) revealed a significant increase in senescent cells compared to livers with no or minimal fibrosis (F0-1). In cirrhotic livers, a significantly higher number of p-HP1γ, p21 and p27 positive cells was detected compared to liver tissue with F2-3 fibrosis. Importantly, we identified T-cells as the dominant cell type contributing to increased senescence during fibrosis progression. Compared to healthy individuals, serum chitotriosidase was significantly elevated and correlated with histological fibrosis stages and liver stiffness as assessed by transient elastography. CONCLUSIONS Senescence of hepatic T-cells is enhanced in chronic viral hepatitis and increases with fibrosis progression. Serological detection of senescence-associated chitotriosidase might allow for the non-invasive detection of relevant fibrosis stages.
Collapse
Affiliation(s)
- F Wandrer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - B Han
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - S Liebig
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - J Schlue
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - M P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | - K Schulze-Osthoff
- German Cancer Consortium (DKTK) and German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - H Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| |
Collapse
|
134
|
The fate of hepatocyte cell line derived from a liver injury model with long-term in vitro passage. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
135
|
Different core-specific T cell subsets are expanded in chronic hepatitis C with advanced liver disease. Cytokine 2018; 124:154456. [PMID: 31631862 DOI: 10.1016/j.cyto.2018.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis C (CHC) is frequently related to liver fibrosis, and several studies have suggested that the immunological activity of HCV antigens contributes to hepatic damage. In the present study, among structural and non-structural HCV antigens, elevatedIL-1β, IL-6, IL-17 levels were secreted by PBMC cultures obtained from CHC patients following stimulation with core antigen. Moreover, the percentage of core-specific IL-6+IL-17+(CD4+ and CD8+) T cells was significantly higher in patients with worsehepatic lesions, determined on the Metavir scale. When compared with healthy subjects, the percentage of circulating Treg cells was elevated in CHC patients, mainly among those with advanced liver fibrosis. Nevertheless, in this last group of patients, the proportion of CD39+ Treg subsets was very low. Finally, the percentage of senescent (CD57+ CD28-) and exhausted (PD-1+CD28+) core-specific T cells in CHC patients was also found to be a result of fibrotic hepatic status. In summary, imbalances between different core-specific T cell subsets are associated with liver fibrosis severity.
Collapse
|
136
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of liver disorders encompassing simple hepatic steatosis and its more aggressive forms of nonalcoholic steatohepatitis and cirrhosis. It is a rapidly growing health concern and the major cause for the increasing incidence of primary liver tumors. Unequivocal evidence shows that sphingolipid metabolism is altered in the course of the disease and these changes might contribute to NAFLD progression. Recent data provide solid support to the notion that deregulated ceramide and sphingosine-1-phosphate metabolism are present at all stages of NAFLD, i.e., steatosis, nonalcoholic steatohepatitis, advanced fibrosis, and hepatocellular carcinoma (HCC). Insulin sensitivity, de novo lipogenesis, and the resulting lipotoxicity, fibrosis, and angiogenesis are all seemingly regulated in a manner that involves either ceramide and/or sphingosine-1-phosphate. Sphingolipids might also participate in the onset of hepatocellular senescence. The latter has been shown to contribute to the advancement of cirrhosis to HCC in the classical cases of end-stage liver disease, i.e., viral- or alcohol-induced; however, emerging evidence suggests that senescence is also involved in the pathogenicity of NAFLD possibly via changes in ceramide metabolism.
Collapse
|
137
|
Chong M, Yin T, Chen R, Xiang H, Yuan L, Ding Y, Pan CC, Tang Z, Alexander PB, Li QJ, Wang XF. CD36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep 2018; 19:e45274. [PMID: 29777051 PMCID: PMC5989758 DOI: 10.15252/embr.201745274] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is a unique cell fate characterized by stable proliferative arrest and the extensive production and secretion of various inflammatory proteins, a phenomenon known as the senescence-associated secretory phenotype (SASP). The molecular mechanisms responsible for generating a SASP in response to senescent stimuli remain largely obscure. Here, using unbiased gene expression profiling, we discover that the scavenger receptor CD36 is rapidly upregulated in multiple cell types in response to replicative, oncogenic, and chemical senescent stimuli. Moreover, ectopic CD36 expression in dividing mammalian cells is sufficient to initiate the production of a large subset of the known SASP components via activation of canonical Src-p38-NF-κB signaling, resulting in the onset of a full senescent state. The secretome is further shown to be ligand-dependent, as amyloid-beta (Aβ) is sufficient to drive CD36-dependent NF-κB and SASP activation. Finally, loss-of-function experiments revealed a strict requirement for CD36 in secretory molecule production during conventional senescence reprogramming. Taken together, these results uncover the Aβ-CD36-NF-κB signaling axis as an important regulator of the senescent cell fate via induction of the SASP.
Collapse
Affiliation(s)
- Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Rui Chen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lifeng Yuan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Zhen Tang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
138
|
Pavanello S, Varesco L, Gismondi V, Bruzzi P, Bolognesi C. Leucocytes telomere length and breast cancer risk/ susceptibility: A case-control study. PLoS One 2018; 13:e0197522. [PMID: 29782524 PMCID: PMC5962062 DOI: 10.1371/journal.pone.0197522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Telomere length in peripheral blood leukocytes (PBL-TL) was proposed as a biomarker of cancer risk. Recent scientific evidence suggested PBL-TL plays a diverse role in different cancers. Inconsistent results were obtained on PBL-TL in relation to breast cancer risk and specifically to the presence of BRCA1 and BRCA2 mutations. The aim of the present case-control study was to analyse the correlation between family history of breast cancer or presence of a BRCA mutation and PBL-TL in the hypothesis that TL is a modifier of cancer risk. METHODS PBL-TL was measured using the real-time quantitative PCR method in DNA for 142 cases and 239 controls. All the women enrolled were characterized for cancer family history. A subgroup of 48 women were classified for the presence of a BRCA mutation. PBL-TL were summarized as means and standard deviations, and compared by standard analysis of variance. A multivariable Generalised Linear Model was fitted to the data with PBL-TL as the dependent variable, case/control status and presence of a BRCA/VUS mutation as factors, and age in 4 strata as a covariate. RESULTS Age was significantly associated with decreasing PBL-TL in controls (p = 0.01), but not in BC cases. The telomere length is shorter in cases than in controls after adjusting for age. No effect on PBL-TL of BMI, smoke nor of the most common risk factors for breast cancer was observed. No association between PBL-TL and family history was detected both in BC cases and controls. In the multivariate model, no association was observed between BRCA mutation and decreased PBL-TL. A statistically significant interaction (p = 0.031) between case-control status and a BRCA-mutation/VUS was observed, but no effect was detected for the interaction of cancer status and BRCA or VUS. CONCLUSION Our study fails to provide support to the hypothesis that PBL-TL is associated with the risk of hereditary BC, or that is a marker of inherited mutations in BRCA genes.
Collapse
Affiliation(s)
- Sofia Pavanello
- Unit of Occupational Medicine, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Liliana Varesco
- Unit of Hereditary Cancer Ospedale Policlinico San Martino, Genova, Italy
| | - Viviana Gismondi
- Unit of Hereditary Cancer Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Bruzzi
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Unit of Environmental Carcinogenesis Ospedale Policlinico San Martino, Genova, Italy
- * E-mail:
| |
Collapse
|
139
|
Zhao RH, Shi Y, Zhao H, Wu W, Sheng JF. Acute-on-chronic liver failure in chronic hepatitis B: an update. Expert Rev Gastroenterol Hepatol 2018; 12:341-350. [PMID: 29334786 DOI: 10.1080/17474124.2018.1426459] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute-on-chronic liver failure is a common pattern of end-stage liver disease in clinical practice and occurs frequently in patients with chronic hepatitis B or HBV-related cirrhosis. New progress in recent years leads to a better understanding of this disease. Areas covered: This review updates the current comprehensive knowledge about HBV-ACLF from epidemiological studies, experimental studies, and clinical studies and provide new insights into the definition, diagnostic criteria, epidemiology, nature history, pathogenesis, treatment and prognostication of HBV-ACLF. Expert commentary: Patients with chronic hepatitis B or HBV-related cirrhosis are at risk of developing acute-on-chronic liver failure, with multi-organ failure and high short-term mortality. The precipitating events can be intra-hepatic or extra-hepatic and the underlying chronic liver injury can be cirrhotic or non-cirrhotic. Host and viral factors contribute to the susceptibility of developing HBV-ACLF. Systemic inflammation is the driver of HBV-ACLF, which can be attributed to non-sterile and sterile factors. Liver transplantation is the definitive treatment for HBV-ACLF. Cell therapy is a promising alternative to LT, but requires validation and still has concern of long-term safety. Other medical therapies, such as nucleoside analogue, artificial liver supporting and glucocorticoid may improve survival in a specific subgroup. New scoring systems improve the accuracy of prognostication in HBV-ACLF, which is critical for early identification of candidates for LT.
Collapse
Affiliation(s)
- Rui-Hong Zhao
- a Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Yu Shi
- a Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Hong Zhao
- a Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Wei Wu
- a Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ji-Fang Sheng
- a Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
140
|
Ferreira-Gonzalez S, Lu WY, Raven A, Dwyer B, Man TY, O'Duibhir E, Lewis PJS, Campana L, Kendall TJ, Bird TG, Tarrats N, Acosta JC, Boulter L, Forbes SJ. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat Commun 2018; 9:1020. [PMID: 29523787 PMCID: PMC5844882 DOI: 10.1038/s41467-018-03299-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFβ production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFβ-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFβ as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.
Collapse
Affiliation(s)
- Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Wei-Yu Lu
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alexander Raven
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Benjamin Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Eoghan O'Duibhir
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Philip J Starkey Lewis
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lara Campana
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Tim J Kendall
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Thomas G Bird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Nuria Tarrats
- Edinburgh Cancer Research UK Centre, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Juan-Carlos Acosta
- Edinburgh Cancer Research UK Centre, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
141
|
Abstract
Senescence is a durable cell cycle arrest that can be induced in response to various stress factors, such as telomere erosion, DNA damage or the aberrant activation of oncogenes. In addition to its well-established role as a stress response programme, research has revealed important physiological roles of senescence in nondisease settings, such as embryonic development, wound healing, tissue repair and ageing. Senescent cells secrete various cytokines, chemokines, matrix remodelling proteases and growth factors, a phenotype collectively referred to as the senescence-associated secretory phenotype. These factors evoke immune responses that, depending on the pathophysiological context, can either prevent or even fuel disease and tumorigenesis. Remarkably, even the gut microbiota can influence senescence in various organs. In this Review, we provide an introduction to cellular senescence, addressed particularly to gastroenterologists and hepatologists, and discuss the implications of senescence for the pathogenesis of malignant and nonmalignant gastrointestinal and hepatobiliary diseases. We conclude with an outlook on how modulation of cellular senescence might be used for therapeutic purposes.
Collapse
|
142
|
Abstract
PURPOSE OF THE REVIEW Senescent cells have the capacity to both effect and limit fibrosis. Senotherapeutics target senescent cells to improve aging conditions. Here, we review the contexts in which senescent cells mediate wound healing and fibrotic pathology and the potential utility of senotherapeutic drugs for treatment of fibrotic disease. RECENT FINDINGS Multi-action and temporal considerations influence deleterious versus beneficial actions of senescent cells. Acutely generated senescent cells can limit proliferation, and the senescence-associated secretory phenotype (SASP) contains factors that can facilitate tissue repair. Long-lived senescent cells that evade clearance or are generated outside of programmed remodeling can deplete the progenitor pool to exhaust regenerative capacity and through the SASP, stimulate continual activation, leading to disorganized tissue architecture, fibrotic damage, sterile inflammation, and induction of bystander senescence. Senescent cells contribute to fibrotic pathogenesis in multiple tissues, including the liver, kidney, and lung. Senotherapeutics may be a viable strategy for treatment of a range of fibrotic conditions.
Collapse
|
143
|
Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest 2018; 128:85-96. [PMID: 29293095 PMCID: PMC5749503 DOI: 10.1172/jci93562] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell loss alters a tissue's optimal function and awakens evolutionarily adapted healing mechanisms to reestablish homeostasis. Although adult mammalian organs have a limited regeneration potential, the liver stands out as one remarkable exception. Following injury, the liver mounts a dynamic multicellular response wherein stromal cells are activated in situ and/or recruited from the bloodstream, the extracellular matrix (ECM) is remodeled, and epithelial cells expand to replenish their lost numbers. Chronic damage makes this response persistent instead of transient, tipping the system into an abnormal steady state known as fibrosis, in which ECM accumulates excessively and tissue function degenerates. Here we explore the cellular and molecular switches that balance hepatic regeneration and fibrosis, with a focus on uncovering avenues of disease modeling and therapeutic intervention.
Collapse
|
144
|
Alfego D, Rodeck U, Kriete A. Global mapping of transcription factor motifs in human aging. PLoS One 2018; 13:e0190457. [PMID: 29293662 PMCID: PMC5749797 DOI: 10.1371/journal.pone.0190457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Biological aging is a complex process dependent on the interplay of cell autonomous and tissue contextual changes which occur in response to cumulative molecular stress and manifest through adaptive transcriptional reprogramming. Here we describe a transcription factor (TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms included replicative senescence and an energy restriction model in quiescence (ERiQ), in which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target genes were scanned using JASPAR and TRANSFAC. TF signatures established a global mapping of agglomerating motifs with distinct clusters when ranked hierarchically. Remarkably, the ERiQ profile was shared with the majority of in-vivo aged tissues. Fitting motifs in a minimalistic protein-protein network allowed to probe for connectivity to distinct stress sensors. The DNA damage sensors ATM and ATR linked to the subnetwork associated with senescence. By contrast, the energy sensors PTEN and AMPK connected to the nodes in the ERiQ subnetwork. These data suggest that metabolic dysfunction may be linked to transcriptional patterns characteristic of many aged tissues and distinct from cumulative DNA damage associated with senescence.
Collapse
Affiliation(s)
- David Alfego
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
145
|
Alves-Paiva RM, Kajigaya S, Feng X, Chen J, Desierto M, Wong S, Townsley DM, Donaires FS, Bertola A, Gao B, Young NS, Calado RT. Telomerase enzyme deficiency promotes metabolic dysfunction in murine hepatocytes upon dietary stress. Liver Int 2018; 38:144-154. [PMID: 28741793 PMCID: PMC5741503 DOI: 10.1111/liv.13529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Short telomeres and genetic telomerase defects are risk factors for some human liver diseases, ranging from non-alcoholic fatty liver disease and non-alcoholic steatohepatitis to cirrhosis. In murine models, telomere dysfunction has been shown to metabolically compromise hematopoietic cells, liver and heart via the activation of the p53-PGC axis. METHODS Tert- and Terc-deficient mice were challenged with liquid high-fat diet. Liver metabolic contents were analysed by CE-TOFMS and liver fat content was confirmed by confocal and electronic microscopy. RESULTS Tert-deficient but not Terc-deficient mice develop hepatocyte injury and frank steatosis when challenged with liquid high-fat diet. Upon high-fat diet, Tert-/- hepatocytes fail to engage the citric acid cycle (TCA), with an imbalance of NADPH/NADP+ and NADH/NAD+ ratios and depletion of intermediates of TCA cycle, such as cis-aconitic acid. Telomerase deficiency caused an intrinsic metabolic defect unresponsive to environmental challenge. Chemical inhibition of telomerase by zidovudine recapitulated the abnormal Tert-/- metabolic phenotype in Terc-/- hepatocytes. CONCLUSIONS Our findings indicate that in telomeropathies short telomeres are not the only molecular trigger and telomerase enzyme deficiency provokes hepatocyte metabolic dysfunction, abrogates response to environmental challenge, and causes cellular injury and steatosis, providing a mechanism for liver damage in telomere diseases.
Collapse
Affiliation(s)
- Raquel M. Alves-Paiva
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil,Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Marie Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M. Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Flávia S. Donaires
- Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| | - Adeline Bertola
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo T. Calado
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
146
|
Yanai H, Fraifeld VE. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res Rev 2018; 41:18-33. [PMID: 29106993 DOI: 10.1016/j.arr.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
Since Hayflick's discovery of cellular senescence (CS), a great volume of knowledge in the field has been accumulated and intensively discussed. Here, we attempted to organize the evidence "for" and "against" the hypothesized causal role of CS in aging. For that purpose, we utilized robust Koch-like logical criteria, based on the assumption that some quantitative relationships between the accumulation of senescent cells and aging rate should exist. If so, it could be expected that (i) the "CS load" would be greater in the premature aging phenotype and lesser in longevity phenotype; (ii) CS would promote age-related diseases, and (iii) the interventions that modulate the levels of senescent cells should also modulate health/lifespan. The analysis shows that CS can be considered a causal factor of aging and an important player in various age-related diseases, though its contribution may greatly vary across species. While the relative impact of senescent cells to aging could overall be rather limited and their elimination is hardly expected to be the "fountain of youth", the potential benefits of the senolytic strategy seems a promising option in combating age-related diseases and extending healthspan.
Collapse
|
147
|
Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget 2017; 9:8772-8784. [PMID: 29492237 PMCID: PMC5823588 DOI: 10.18632/oncotarget.23622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic liver injury (CLI) is a complex pathological process typically characterized by progressive destruction and regeneration of liver parenchymal cells due to diverse risk factors such as alcohol abuse, drug toxicity, viral infection, and genetic metabolic disorders. When the damage to hepatocytes is mild, the liver can regenerate itself and restore to the normal state; when the damage is irreparable, hepatocytes would undergo senescence or various forms of death including apoptosis, necrosis and necroptosis. These pathological changes not only promote the progression of the existing hepatopathies via various underlying mechanisms but are closely associated with hepatocarcinogenesis. In this review, we discuss the pathological changes that hepatocytes undergo during CLI, and their roles and mechanisms in the progression of hepatopathies and hepatocarcinogenesis. We also give a brief introduction about some animal models currently used for the research of CLI and progress in the research of CLI.
Collapse
|
148
|
Gunes C, Avila AI, Rudolph KL. Telomeres in cancer. Differentiation 2017; 99:41-50. [PMID: 29291448 DOI: 10.1016/j.diff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Telomere shortening as a consequence of cell divisions during aging and chronic diseases associates with an increased cancer risk. Experimental data revealed that telomere shortening results in telomere dysfunction, which in turn affects tumorigenesis in two ways. First, telomere dysfunction suppresses tumor progression by the activation of DNA damage checkpoints, which induce cell cycle arrest (senescence) or apoptosis, as well as by inducing metabolic compromise and activation of immune responses directed against senescent cells. Second, telomere dysfunction promotes tumorigenesis by inducing chromosomal instability in tumor initiating cells, by inhibiting proliferative competition of non-transformed cells, and possibly, also by influencing tumor cell plasticity. The tumor promoting effects of telomere dysfunction are context dependent and require the loss of p53-dependent DNA damage checkpoints or other genetic modifiers that attenuate DNA damage responses possibly involving complex interactions of different genes. The activation of telomere stabilizing mechanisms appears as a subsequent step, which is required to enable immortal grotwh of emerging cancer cells. Here, we conceptually discuss our current knowledge and new, unpublished experimental data on telomere dependent influences on tumor initiation and progression.
Collapse
Affiliation(s)
| | - Alush Irene Avila
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - K Lenhard Rudolph
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
149
|
Guo M. Cellular senescence and liver disease: Mechanisms and therapeutic strategies. Biomed Pharmacother 2017; 96:1527-1537. [PMID: 29174037 DOI: 10.1016/j.biopha.2017.11.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a fundamental cell fate caused by several cellular injuries which results in irreversible cell cycle arrest yet remaining metabolically active across all species. Cellular senescence not only can prevent tumor occurrence by inhibiting the proliferation of injured cells, but also can affect the surrounding cells through the senescence-associated secretory phenotype (SASP). Attractively, accumulating evidence shows that cellular senescence is closely related to various liver diseases. Therapeutic opportunities based on targeting senescent cells and the SASP are considered to be potential strategy for liver diseases. However, although research on cell senescence has attracted widespread attention, the overview on detailed mechanism and biological function of cell senescence in liver disease is still largely unknown. The present review summarizes the specific role of cell senescence in various liver diseases, and updates the molecular mechanisms underlying cell senescence. Moreover, the review also explores new strategies for prevention and treatment of liver disease through promoting senescence or counteracting excessive pathological senescence.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
150
|
Lai TP, Zhang N, Noh J, Mender I, Tedone E, Huang E, Wright WE, Danuser G, Shay JW. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat Commun 2017; 8:1356. [PMID: 29116081 PMCID: PMC5676791 DOI: 10.1038/s41467-017-01291-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
Improved methods to measure the shortest (not just average) telomere lengths (TLs) are needed. We developed Telomere Shortest Length Assay (TeSLA), a technique that detects telomeres from all chromosome ends from <1 kb to 18 kb using small amounts of input DNA. TeSLA improves the specificity and efficiency of TL measurements that is facilitated by user friendly image-processing software to automatically detect and annotate band sizes, calculate average TL, as well as the percent of the shortest telomeres. Compared with other TL measurement methods, TeSLA provides more information about the shortest telomeres. The length of telomeres was measured longitudinally in peripheral blood mononuclear cells during human aging, in tissues during colon cancer progression, in telomere-related diseases such as idiopathic pulmonary fibrosis, as well as in mice and other organisms. The results indicate that TeSLA is a robust method that provides a better understanding of the shortest length of telomeres. Short telomeres are a hallmark of senescence and can result in genomic instability as well as cancer progression. Here, the authors present TeSLA, a technique to accurately detect telomeres under 1 kb in length.
Collapse
Affiliation(s)
- Tsung-Po Lai
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jungsik Noh
- Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Enzo Tedone
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ejun Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|