101
|
Chiusolo A, Defazio R, Zanetti E, Mongillo M, Mori N, Cristofori P, Trevisan A. Kidney injury molecule-1 expression in rat proximal tubule after treatment with segment-specific nephrotoxicants: a tool for early screening of potential kidney toxicity. Toxicol Pathol 2010; 38:338-45. [PMID: 20305092 DOI: 10.1177/0192623310362244] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dose-response expression of kidney injury molecule-1 (KIM-1) gene in kidney cortex and its correlation with morphology and traditional biomarkers of nephrotoxicity (plasma creatinine and blood urea nitrogen, BUN) or segment-specific marker of proximal tubule injury (kidney glutamine synthetase, GSK) were studied in male rats treated with proximal tubule segment-specific nephrotoxicants. These included hexachloro-1:3-butadiene (HCBD, S(3) segment-specific), potassium dichromate (chromate, S(1)-S(2) segment-specific), and cephaloridine (Cph, S(2) segment-specific). Rats were treated with a single intraperitoneal (ip) injection of HCBD 25, 50, and 100 mg/kg, subcutaneous (sc) injection of chromate 8, 12.5, and 25 mg/kg; or ip injection of Cph 250, 500, and 1,000 mg/kg. KIM-1 gene showed a dose-dependent up-regulation induced by all segment-specific nephrotoxicants. Interestingly, magnitude of the up-regulation reflected the severity of microscopic tubular changes (degeneration, necrosis, and regeneration). Even low-severity microscopic observations were evidenced by significant gene expression changes. Furthermore, KIM-1 showed significant up-regulation even in the absence of morphological changes. In contrast, traditional and specific markers demonstrated low sensitivity or specificity. In conclusion, this study suggested KIM-1 as a sensitive molecular marker of different levels of tubular injury, and it is likely to represent a potential tool for early screening of nephrotoxicants.
Collapse
|
102
|
Novak KB, Le HD, Christison-Lagay ER, Nose V, Doiron RJ, Moses MA, Puder M. Effects of metalloproteinase inhibition in a murine model of renal ischemia-reperfusion injury. Pediatr Res 2010; 67:257-62. [PMID: 19915515 PMCID: PMC3366106 DOI: 10.1203/pdr.0b013e3181ca0aa2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of acute tubular necrosis (ATN) and delayed graft function in transplanted organs. Up-regulation of matrix metalloproteinases (MMPs) propagates the microinflammatory response that drives IRI. This study sought to determine the specific effects of Marimastat (Vernalis, BB-2516), a broad spectrum MMP and TNF-alpha-converting enzyme inhibitor, on IRI-induced ATN. Mice were pretreated with Marimastat or methylcellulose vehicle for 4 d before surgery. Renal pedicles were bilaterally occluded for 30 min and allowed to reperfuse for 24 h. Baseline creatinine levels were consistent between experimental groups; however, post-IRI creatinine levels were 4-fold higher in control mice (p < 0.0001). The mean difference between the post-IRI histology grades of Marimastat-treated and control kidneys was 1.57 (p = 0.003), demonstrating more severe damage to control kidneys. Post-IRI mean (+/-SEM) MMP-2 activity rose from baseline levels in control mice (3.62 +/- 0.99); however, pretreated mice presented only a slight increase in mean MMP-2 activity (1.57 +/- 0.72) (p < 0.001). In conclusion, these data demonstrate that MMP inhibition is associated with a reduction of IRI in a murine model.
Collapse
Affiliation(s)
- Katherine B Novak
- Department of Surgery and the Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
|
104
|
Wang Z, Havasi A, Gall J, Bonegio R, Li Z, Mao H, Schwartz JH, Borkan SC. GSK3beta promotes apoptosis after renal ischemic injury. J Am Soc Nephrol 2010; 21:284-94. [PMID: 20093356 DOI: 10.1681/asn.2009080828] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mechanism by which the serine-threonine kinase glycogen synthase kinase-3beta (GSK3beta) affects survival of renal epithelial cells after acute stress is unknown. Using in vitro and in vivo models, we tested the hypothesis that GSK3beta promotes Bax-mediated apoptosis, contributing to tubular injury and organ dysfunction after acute renal ischemia. Exposure of renal epithelial cells to metabolic stress activated GSK3beta, Bax, and caspase 3 and induced apoptosis. Expression of a constitutively active GSK3beta mutant activated Bax and decreased cell survival after metabolic stress. In contrast, pharmacologic inhibition (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione [TDZD-8]) or RNA interference-mediated knockdown of GSK3beta promoted cell survival. Furthermore, RNA interference-mediated knockdown of Bax abrogated the cell death induced by constitutively active GSK3beta. In a cell-free assay, TDZD-8 inhibited the phosphorylation of a peptide containing the Bax serine(163) site targeted by stress-activated GSK3beta. In rats, TDZD-8 inhibited ischemia-induced activation of GSK3beta, Bax, and caspase 3; ameliorated tubular and epithelial cell damage; and significantly protected renal function. Taken together, GSK3beta-mediated Bax activation induces apoptosis and tubular damage that contribute to acute ischemic kidney injury.
Collapse
Affiliation(s)
- Zhiyong Wang
- Evans Biomedical Research Center, Renal Section, Room 546, 650 Albany Street, Boston, MA 02118-2518, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol 2009; 6:107-15. [PMID: 20027192 DOI: 10.1038/nrneph.2009.213] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intravenous fluids are widely administered to patients who have, or are at risk of, acute kidney injury (AKI). However, deleterious consequences of overzealous fluid therapy are increasingly being recognized. Salt and water overload can predispose to organ dysfunction, impaired wound healing and nosocomial infection, particularly in patients with AKI, in whom fluid challenges are frequent and excretion is impaired. In this Review article, we discuss how interstitial edema can further delay renal recovery and why conservative fluid strategies are now being advocated. Applying these strategies in critical illness is challenging. Although volume resuscitation is needed to restore cardiac output, it often leads to tissue edema, thereby contributing to ongoing organ dysfunction. Conservative strategies of fluid management mandate a switch towards neutral balance and then negative balance once hemodynamic stabilization is achieved. In patients with AKI, this strategy might require renal replacement therapy to be given earlier than when more-liberal fluid management is used. However, hypovolemia and renal hypoperfusion can occur in patients with AKI if excessive fluid removal is pursued with diuretics or extracorporeal therapy. Thus, accurate assessment of fluid status and careful definition of targets are needed at all stages to improve clinical outcomes. A conservative strategy of fluid management was recently tested and found to be effective in a large, randomized, controlled trial in patients with acute lung injury. Similar randomized, controlled studies in patients with AKI now seem justified.
Collapse
Affiliation(s)
- John R Prowle
- Department of Intensive Care, Austin Health, 145 Studley Road Heidelberg, Vic 3084, Australia
| | | | | | | | | |
Collapse
|
106
|
Ischemia’s Proliferative and Morphological Effects: Analyzing the Roles of Hypoxia, Hypercapnia, and Glucose. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
107
|
Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell 2009; 21:219-31. [PMID: 19923323 PMCID: PMC2808235 DOI: 10.1091/mbc.e09-03-0193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the role of galectin-3 on polarization of epithelial renal cells, using three-dimensional cultures of MDCK cells and also galectin-3 null mutant mouse kidneys. Collectively, data show that the absence of galectin-3 influences the stabilization of centrosomes and primary cilia, with effects on epithelial cell organization. Galectin-3 is a β-galactoside–binding protein widely expressed in all epithelia where it is involved in tissue homeostasis and cancer progression. We recently reported unique abnormalities in the identity of membrane domains in galectin-3 null mutant mice, suggesting that galectin-3 may participate in epithelial polarity program. We investigated the potential role of galectin-3 on early events in polarization of epithelial renal cells, using three-dimensional cultures of MDCK cells and also galectin-3 null mutant mouse kidneys. We show that depletion in galectin-3 systematically leads to severe perturbations of microtubular network associated with defects in membrane compartimentation, both in vitro and in vivo. Moreover, the absence of galectin-3 impinges on the morphology of the primary cilium, which is three times longer and unusually shaped. By immunological and biochemical approaches, we could demonstrate that endogenous galectin-3 is normally associated with basal bodies and centrosomes, where it closely interacts with core proteins, such as centrin-2. However, this association transiently occurs during the process of epithelial polarization. Interestingly, galectin-3–depleted cells contain numerous centrosome-like structures, demonstrating an unexpected function of this protein in the formation and/or stability of the centrosomes. Collectively, these data establish galectin-3 as a key determinant in epithelial morphogenesis via its effect on centrosome biology.
Collapse
Affiliation(s)
- Annett Koch
- Department of Cell Biology and Cell Pathology, Philipps University, D-35033 Marburg, Germany
| | | | | | | |
Collapse
|
108
|
Kim J, Jang HS, Park KM. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am J Physiol Renal Physiol 2009; 298:F158-66. [PMID: 19864300 DOI: 10.1152/ajprenal.00474.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning by a single event of ischemia and reperfusion (SIRPC) dramatically protects renal function against ischemia and reperfusion (I/R) induced several weeks later. We recently reported that reactive oxygen species (ROS) and oxidative stress were sustained in a kidney that had functionally recovered from I/R injury, thus suggesting an association between SIRPC and ROS and oxidative stress. However, the role of ROS in SIRPC remains to be clearly elucidated. To assess the involvement of ROS in SIRPC, mice were subjected to SIRPC (30 min of bilateral renal ischemia and 8 days of reperfusion) and then exposed to I/R injury. Thirty minutes of bilateral renal ischemia in the non-SIRPC mice resulted in a marked increase in plasma creatinine levels 4 and 24 h after reperfusion, which was not observed in the I/R in the SIRPC mice. SIRPC resulted in increases in the levels of kidney superoxide. Administrations of manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin [MnTMPyP; a cell-permeable superoxide dismutase (SOD) mimetic] and N-acetylcysteine (NAc; a ROS scavenger) to SIRPC mice blocked the SIRPC-induced increase in superoxide levels and removed approximately 48-64% of the functional protection of the SIRPC kidney. Additionally, these administrations significantly inhibited I/R-induced increases in superoxide formation, hydrogen peroxide production, and lipid peroxidation, along with the inhibition of I/R-induced reductions in the expression and activity of manganese SOD, copper-zinc SOD, and catalase. Furthermore, administrations of MnTMPyP or NAc inhibited the SIRPC-induced increase in inducible nitric oxide synthase expression but did not inhibit the SIRPC-induced increases in heat shock protein-25 expression. In conclusion, the renoprotection afforded by SIRPC was triggered by ROS generated by SIRPC.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | |
Collapse
|
109
|
Ponnusamy M, Pang M, Annamaraju PK, Zhang Z, Gong R, Chin YE, Zhuang S. Transglutaminase-1 protects renal epithelial cells from hydrogen peroxide-induced apoptosis through activation of STAT3 and AKT signaling pathways. Am J Physiol Renal Physiol 2009; 297:F1361-70. [PMID: 19710241 DOI: 10.1152/ajprenal.00251.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our recent studies showed that transglutaminase-1 (TGase-1) is uniquely expressed in mouse renal proximal tubular cells (RPTC) and mediates cell proliferation. In this study, we investigated the role of TGase-1 in cell survival and the survival signaling pathways regulated by TGase-1 in RPTC following oxidant injury. Exposure of RPTC to hydrogen peroxide (H2O2) resulted in apoptosis and an increase in TGase activity. Inhibition of TGase activity with monodansylcadervine (MDC), a TGase inhibitor, or knockdown of TGase-1 with small interference (si)RNA enhanced apoptosis and decreased cell survival in H2O2-treated RPTC. Conversely, overexpression of TGase-1 rendered RPTC more resistant to H2O2 toxicity and MDC treatment blocked this response. Concurrent with RPTC apoptosis, phosphorylation of AKT, signal transducer and activator of transcription-3 (STAT3), and glucogen synthase kinase-3beta (GSK-3beta) were observed. Pretreatment of cells with MDC or TGase-1 siRNA inhibited phosphorylation of all these molecules. Inhibition of either the AKT or STAT3 pathway potentiated H2O2-induced cell death and increased GSK-3beta activity by dephosphorylation at serine 9. Furthermore, treatment with GSK-3beta inhibitors reduced H2O2-induced apoptosis and abolished the death-promoting effect of AKT and STAT3 inhibition. Therefore, we have identified TGase-1 as a novel survival factor in renal epithelial cells and it contributes to cell survival through activation of the AKT and STAT3 signaling pathways following oxidant injury.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Benedetto U, Luciani R, Goracci M, Capuano F, Refice S, Angeloni E, Roscitano A, Sinatra R. Miniaturized Cardiopulmonary Bypass and Acute Kidney Injury in Coronary Artery Bypass Graft Surgery. Ann Thorac Surg 2009; 88:529-35. [DOI: 10.1016/j.athoracsur.2009.03.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
|
111
|
Chen HH, Chen TW, Lin H. Prostacyclin-induced peroxisome proliferator-activated receptor-alpha translocation attenuates NF-kappaB and TNF-alpha activation after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297:F1109-18. [PMID: 19640904 DOI: 10.1152/ajprenal.00057.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARalpha in I/R-induced kidney injury. PPAR-alpha reduced the NF-kappaB-induced overexpression of TNF-alpha and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-alpha activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-kappaB activation. By comparison, I/R-induced injury was exacerbated in PPAR-alpha knockout mice. This indicated that PPAR-alpha attenuated renal I/R injury via NF-kappaB-induced TNF-alpha overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-alpha translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-alpha pathway attenuated TNF-alpha promoter activity by binding to NF-kappaB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-alpha production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-alpha from the cytosol into the nucleus and attenuates NF-kappaB-induced TNF-alpha activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-alpha, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.
Collapse
Affiliation(s)
- Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipai Medical University, Taiwan
| | | | | |
Collapse
|
112
|
Becker F, Van Poppel H, Hakenberg OW, Stief C, Gill I, Guazzoni G, Montorsi F, Russo P, Stöckle M. Assessing the impact of ischaemia time during partial nephrectomy. Eur Urol 2009; 56:625-34. [PMID: 19656615 DOI: 10.1016/j.eururo.2009.07.016] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/15/2009] [Indexed: 01/10/2023]
Abstract
CONTEXT The impact of applying renal ischaemia during nephron-sparing surgery to avoid renal damage in the treated kidney has gained importance in different surgical techniques. OBJECTIVE The main objective of the present study is to point out the limit of renal ischaemia times for warm and cold ischaemia approaches. Important results of research on renal ischaemia and different surgical techniques as well as results of clinical studies concerning renal function after renal ischaemia in partial nephrectomy are highlighted. EVIDENCE ACQUISITION A Medline literature research was performed, combining queries on the keywords nephron-sparing surgery, partial nephrectomy, and ischemia. Links to related articles and cross-reading of citations in related articles were surveyed, as were reviews, letters to editors, and information collected from urologic textbooks. The references formed the basis of this review article, with selection and deletion based on the relevance and importance of the content. In a final step, interactive peer review by the expert panel of coauthors completed the review. EVIDENCE SYNTHESIS Renal ischaemia research showed an increasing renal damage proportional to ischemic time. Current clinical data support safe ischaemia times, within 20 min of warm ischaemia and up to 2 h of cold ischaemia, to minimise renal ischemic damage. To date, no ischaemia dose-response curve or algorithm is available to predict the risk of acute kidney injury and chronic kidney disease in patients undergoing intraoperative ischaemia. In general, there seems to be a higher risk for comorbidity caused by renal damage in patients suffering from kidney tumour. CONCLUSIONS If ischaemia is required, the tumour should be removed within 20 min of warm ischaemia, regardless of surgical approach. Efforts should be made to start immediately with cold ischaemia, if the feasibility within this span of time seems to be jeopardised. Thus, cold ischaemia times up to 2 h can be tolerated by the kidney, depending on the individual method. Nevertheless, cold ischaemia with ice slush should be kept as short as possible--at best within 35 min. In ischemic nephron-sparing surgery, one of the surgeon's main aims should be to avoid loss of renal function. Only after optimal preoperative appraisal and planning can the best postoperative outcomes for renal function be achieved.
Collapse
Affiliation(s)
- Frank Becker
- Department of Urology, University of Saarland, Kirrbergerstrasse, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Goor Y, Goor O, Wollman Y, Chernichovski T, Schwartz D, Cabili S, Iaina A. Fucoidin, an inhibitor of leukocyte adhesion, exacerbates acute ischemic renal failure and stimulates nitric oxide synthesis. ACTA ACUST UNITED AC 2009; 40:57-62. [PMID: 16452058 DOI: 10.1080/00365590500407597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To lessen renal ischemic injury caused by fucoidin, a substance capable of reducing tissue infiltration by neutrophils, and to seek a possible interrelationship with the nitric oxide system which may also modulate leukocyte infiltration. MATERIAL AND METHODS Acute ischemic renal failure was induced in rats by uninephrectomy followed by 60 min of clamping of the renal artery. The rats were injected with fucoidin (25 mg/kg) or fucoidin+nitroprusside (2.5 mg/kg) before reperfusion, and urine was collected for 24 h afterwards. Serum and urine were examined for creatinine sodium and protein; creatinine clearance and fractional excretion of sodium (FENa) were calculated. The renal tissue of the sacrificed animals was examined histologically for tissue damage and histochemically for myeloperoxidase, a marker of neutrophil infiltration. The nitric oxide system was evaluated by measuring urinary nitrates and inducible nitric oxide synthase messenger RNA (iNOs mRNA). RESULTS Renal failure was more severe in the fucoidin group than the nitroprusside group (creatinine clearance 0.11+/-0.08 ml/min for ischemia+fucoidin versus 0.26+/-0.11 ml/min for ischemia only; p<0.002). Adding nitroprusside to fucoidin lessened the decline in creatinine clearance (0.13+/-0.13 ml/min; p=NS). Fucoidin was associated with greater tubular damage, as evidenced by increased FENa (7.2%+/-2.8% vs 1.51%+/-1.96% for ischemia only; p<0.001). Nitroprusside weakened this trend. Fucoidin caused an increase in the fractional excretion of nitrates, a response accompanied by increased iNOS mRNA. CONCLUSIONS Fucoidin failed to protect the kidney from ischemic damage and was even nephrotoxic. It also stimulated the formation of iNOS RNA.
Collapse
Affiliation(s)
- Yoav Goor
- Department of Internal Medicine 6, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
114
|
Larman BW, Karolak MJ, Adams DC, Oxburgh L. Chordin-like 1 and twisted gastrulation 1 regulate BMP signaling following kidney injury. J Am Soc Nephrol 2009; 20:1020-31. [PMID: 19357253 DOI: 10.1681/asn.2008070768] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stimulation of the bone morphogenetic protein (BMP) pathway protects the kidney from acute and chronic injury. Numerous regulators in the kidney control BMP signaling, offering many targets for therapeutic manipulation. Here, we screened for modulators of BMP signaling in the ischemia-sensitive S3 segment and found that Chordin-like 1 is expressed in this segment of both the mouse and human nephron. Chordin-like 1 specifically antagonizes BMP7, which is expressed in the neighboring distal nephron, and this depends on the presence of the protein Twisted gastrulation. Upon ischemia-induced degeneration of the S3 segment, we observed a reduction in Chordin-like 1 expression coincident with intense BMP signaling in tubules of the recovering kidney. Restored expression accompanied proximal tubule epithelia redifferentiation, again coincident with decreased BMP signaling. We propose that Chordin-like 1 reduces BMP7 signaling in healthy proximal tubules, and the loss of this activity upon sloughing of injured epithelia promotes BMP7 signaling in repopulating, dedifferentiated epithelia. As regenerating epithelia differentiate, Chordin-like 1 is again expressed, antagonizing BMP7. These data suggest a mechanism for dynamic regulation of renoprotective BMP7 signaling in the S3 segment of the proximal tubule.
Collapse
Affiliation(s)
- Barry W Larman
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
115
|
Huang Y, Shan J, Wang C, Ma J, Li D, Li L, Li S, Li Y. Can ischemic preconditioning alone really protect organs from ischemia reperfusion injury in transplantation. Transpl Immunol 2009; 20:127-31. [DOI: 10.1016/j.trim.2008.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 01/04/2023]
|
116
|
Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD. The syndrome of rhabdomyolysis: complications and treatment. Eur J Intern Med 2008; 19:568-74. [PMID: 19046720 DOI: 10.1016/j.ejim.2007.06.037] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 06/21/2007] [Indexed: 12/18/2022]
Abstract
Rhabdomyolysis is a syndrome of skeletal muscle cell damage that leads to the release of toxic intracellular material into the systemic circulation. The pathogenesis of rhabdomyolysis is based on an increase in free ionized calcium in the cytoplasm. Its main complications include (a) acute renal failure, which is triggered by renal vasoconstriction and ischemia, (b) myoglobin cast formation in the distal convoluted tubules, and (c) direct renal toxic effect of myoglobin on the epithelial cells of proximal convoluted tubules. Other major complications include electrolyte disorders, such as hyperkalemia, which may cause cardiac arrhythmias, metabolic acidosis, hyperphosphatemia, early hypocalcemia, and late hypercalcemia. Compartmental syndrome and disseminated intravascular coagulopathy may also emerge. The management of myoglobinuric acute renal failure includes aggressive fluid administration to restore the hypovolemia and urine alkalization. The concomitant electrolyte and metabolic disorders should also be treated appropriately; hemodialysis should be considered when life-threatening hyperkalemia and metabolic acidosis exist. In the case of compartmental syndrome, it is important to monitor the intra-compartmental pressure and to perform fasciotomy, if required. When diagnosed early and if the appropriate treatment is initiated promptly, the complications of rhabdomyolysis are preventable and the syndrome has a good prognosis.
Collapse
Affiliation(s)
- Yiannis S Chatzizisis
- AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | | | | | | |
Collapse
|
117
|
Vinuesa E, Sola A, Jung M, Alfaro V, Hotter G. Lipocalin-2-induced renal regeneration depends on cytokines. Am J Physiol Renal Physiol 2008; 295:F1554-62. [DOI: 10.1152/ajprenal.90250.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated whether the renal regeneration occurring in the recovery phase of kidney ischemia-reperfusion (I/R) is mediated by endogenously generated lipocalin-2 (Lcn2). A second objective was to examine whether Lcn2-mediated cell effects could be regulated by the inflammatory cytokines in the environment through their action on Lcn2 receptors (Lcn2R and megalin). Male Swiss mice were subjected to 30 min of renal ischemia with a reperfusion period of 24 h (early reperfusion, expected time for maximum inflammation) and 96 h (late reperfusion, expected time for maximum regeneration). Different experimental groups underwent I/R, I/R with iv anti-mouse Lcn2 monoclonal antibody injected during the early/inflammatory or late/recovery phase, and I/R with proinflammatory cytokine cocktail administration (recombinant mouse IL-1β, TNF-α, and IFN-γ). Compared with control nonischemic mice, the expression of three proliferation markers (stathmin, PCNA, and Ki-67, analyzed by quantitative RT-PCR) increased significantly in the I/R-treated animals. Blockade of Lcn2 by addition of anti-Lcn2 antibody significantly decreased the expression of these three proliferation markers when administered in the late/reparative phase, but had the opposite effect when administered in the early/inflammatory phase. Proinflammatory cytokine cocktail administration reduced the proliferative effects of Lcn2, and repressed Lcn2R and megalin expression. In conclusion, endogenously generated Lcn2 induces renal cell regeneration depending on the inflammatory cytokines in kidney I/R.
Collapse
|
118
|
Legrand M, Mik EG, Johannes T, Payen D, Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2008. [PMID: 18488066 DOI: 10.2119/2008-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium-leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways' alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
119
|
Legrand M, Mik EG, Johannes T, Payen D, Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 2008; 14:502-16. [PMID: 18488066 DOI: 10.2119/2008-00006.legrand] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/17/2008] [Indexed: 12/18/2022] Open
Abstract
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium-leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways' alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
120
|
Khoury W, Jakowlev K, Fein A, Orenstein H, Nakache R, Weinbroum AA. Renal apoptosis following carbon dioxide pneumoperitoneum in a rat model. J Urol 2008; 180:1554-8. [PMID: 18710725 DOI: 10.1016/j.juro.2008.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 11/18/2022]
Abstract
PURPOSE Laparoscopically recruited kidneys regain normal function more slowly than laparotomy harvested organs for several possible reasons. We investigated the effects of CO(2) induced pneumoperitoneum on kidney function, as reflected by blood and urine creatinine levels, and its relation with renal cell apoptosis. MATERIALS AND METHODS CO(2) pneumoperitoneum was established in anesthetized Wistar male rats that were randomly allocated at 6 per group into 1 of 6 groups with an intraperitoneal pressure of 0 (control), 5, 8, 12, 15 or 18 mm Hg. Pressure was maintained for 60 minutes in all groups. Three additional groups were subjected to 30-minute pneumoperitoneum at 0, 12 and 18 mm Hg, respectively. The rats were kept alive for the ensuing 24 hours, after which blood and urine creatinine were analyzed and the abdominal organs were harvested. Various areas of the organs were analyzed for apoptotic cells using the TUNEL method. Cells were randomly counted in 10 eyeshots in 3 sections each using an ocular micrometer. RESULTS Creatinine levels in blood and urine changed as pressure and pneumoperitoneum duration progressed. Isolated TUNEL positive nuclei were detected in the outer medulla and the cortex of control kidneys. There was a significantly higher number of TUNEL positive nuclei in the cortex and the medulla of all pressurized kidneys (p <0.05), which increased in parallel with increasing intraperitoneal pressure and pneumoperitoneum exposure time. CONCLUSIONS The CO(2) pneumoperitoneum gradient and its duration affect renal function and induce apoptosis. This could be a mechanism involved in renal delayed graft dysfunction in recipients of laparoscopically harvested kidneys.
Collapse
Affiliation(s)
- Wisam Khoury
- Department of Surgery B and Transplantation Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
121
|
Dong X, Bachman LA, Miller MN, Nath KA, Griffin MD. Dendritic cells facilitate accumulation of IL-17 T cells in the kidney following acute renal obstruction. Kidney Int 2008; 74:1294-309. [PMID: 18974760 DOI: 10.1038/ki.2008.394] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute urinary obstruction causes interstitial inflammation with leukocyte accumulation and the secretion of soluble mediators. Here we show that unilateral ureteral ligation caused a progressive increase in renal F4/80(+) and F4/80(-) dendritic cells, monocytes, neutrophils and T-cells 24-72 h following obstruction. Depletion of dendritic cells by clodronate pretreatment showed these cells to be the most potent source of tumor necrosis factor and other pro-inflammatory mediators in the obstructed kidney. F4/80(+) dendritic cells and T-cells co-localized in the cortico-medullary junction and cortex of the obstructed kidney. Cytokine secretion patterns and surface phenotypes of T-cells from obstructed kidneys were found to include interferon-gamma-secreting CD4(+) and CD8(+) memory T-cells as well as interleukin 17 (IL-17)-secreting CD4(+) memory T-cells. Depletion of the intra-renal dendritic cells prior to ligation did not numerically reduce T-cells in obstructed kidneys but attenuated interferon-gamma and IL-17-competent T-cells. Our study shows that intra-renal dendritic cells are a previously unidentified early source of proinflammatory mediators after acute urinary obstruction and play a specific role in recruitment and activation of effector-memory T-cells including IL-17-secreting CD4(+) T-cells.
Collapse
Affiliation(s)
- Xiangyang Dong
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
122
|
Cantaluppi V, Biancone L, Romanazzi GM, Figliolini F, Beltramo S, Galimi F, Camboni MG, Deriu E, Conaldi P, Bottelli A, Orlandi V, Herrera MB, Pacitti A, Segoloni GP, Camussi G. Macrophage stimulating protein may promote tubular regeneration after acute injury. J Am Soc Nephrol 2008; 19:1904-18. [PMID: 18614774 DOI: 10.1681/asn.2007111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macrophage-stimulating protein (MSP) exerts proliferative and antiapoptotic effects, suggesting that it may play a role in tubular regeneration after acute kidney injury. In this study, elevated plasma levels of MSP were found both in critically ill patients with acute renal failure and in recipients of renal allografts during the first week after transplantation. In addition, MSP and its receptor, RON, were markedly upregulated in the regenerative phase after glycerol-induced tubular injury in mice. In vitro, MSP stimulated tubular epithelial cell proliferation and conferred resistance to cisplatin-induced apoptosis by inhibiting caspase activation and modulating Fas, mitochondrial proteins, Akt, and extracellular signal-regulated kinase. MSP also enhanced migration, scattering, branching morphogenesis, tubulogenesis, and mesenchymal de-differentiation of surviving tubular cells. In addition, MSP induced an embryonic phenotype characterized by Pax-2 expression. In conclusion, MSP is upregulated during the regeneration of injured tubular cells, and it exerts multiple biologic effects that may aid recovery from acute kidney injury.
Collapse
Affiliation(s)
- Vincenzo Cantaluppi
- Research Center for Experimental Medicine, Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
|
124
|
Rosner MH, Portilla D, Okusa MD. Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med 2008; 23:3-18. [PMID: 18230632 DOI: 10.1177/0885066607309998] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiopulmonary bypass surgery occurs in nearly 1 million patients per year. Acute kidney injury requiring dialysis can occur in up to 1% of these patients. The development of acute kidney injury is associated with substantial morbidity and mortality independent of all other factors, and many patients are left dependent on dialysis therapies. The pathogenesis of acute kidney injury involves multiple pathways. Hemodynamic, inflammatory, and nephrotoxic factors are involved and overlap each other in leading to kidney injury. Clinical studies have identified risk factors for acute kidney injury that can be used to effectively determine the risk of acute kidney injury in patients undergoing bypass surgery. These high-risk patients can then be targeted for renal protective strategies. Thus far, no single strategy has conclusively demonstrated its ability to prevent renal injury post-bypass surgery. Novel anti-inflammatory agents are in development and offer hope as potential therapies.
Collapse
Affiliation(s)
- Mitchell H Rosner
- Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
125
|
Abstract
OBJECTIVE To review the cellular and molecular mechanisms of renal repair and recovery after acute kidney injury (AKI). DATA SOURCE The data were summarized from published research articles. RESULTS In AKI, there is an acute inflammatory response, epithelial cell necrosis and apoptosis, and shedding of epithelial cells into the tubular lumen. Recent work demonstrates that repopulation of damaged renal tubules occurs primarily from proliferation of tubular epithelial cells and resident renal-specific stem cells, with some contribution of paracrine factors from bone marrow-derived mesenchymal stem cells. In addition, growth factors seem to play a critical role in the repair process in animal models of renal injury. However, attempts to use growth factors in the clinical setting to attenuate human AKI or accelerate renal repair have not yet been successful. The endothelium also plays a critical role in the pathogenesis of AKI. Lastly, in human studies, the effect of dialysis on renal recovery remains poorly understood. CONCLUSIONS Experimental animal models of AKI demonstrate that renal recovery and repair involves proliferation of tubular epithelial cells and stem cell populations and the coordinated contribution of multiple growth factors. Future efforts to improve recovery from AKI and improve patient outcomes may include novel therapies based on manipulation of populations of stem cells and augmenting repopulation of renal tubules.
Collapse
|
126
|
Abstract
Acute kidney injury (AKI) has recently become the preferred term to describe the syndrome of acute renal failure (ARF) with 'failure' or 'ARF' restricted to patients who have AKI and need renal replacement therapy.(1) This allows capture of the broader clinical spectrum of modest reductions in creatinine, which are themselves known to be associated with major increases in both short- and long-term mortality risk.(2-5) It is hoped that this change in nomenclature will facilitate an expansion of our understanding of the underlying pathophysiology and also facilitate definitions of AKI, which allow comparisons among clinical trials of patients with similar duration and severity of illness. This review will cover the need for early detection of AKI and the role of urinary and plasma biomarkers, including enzymuria. The primary message is that use of existing criteria to diagnose AKI, namely elevation of the serum creatinine with or without oliguria, results in identification that is too late to allow successful intervention. New biomarkers are essential to change the dire prognosis of this common condition.
Collapse
Affiliation(s)
- Zoltan H Endre
- Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand.
| | | |
Collapse
|
127
|
Phull H, Lien YHH, Salkini MW, Escobar C, Lai LW, Ramakumar S. Delivery of intercellular adhesion molecule-1 antisense oligonucleotides using a topical hydrogel tissue sealant in a murine partial nephrectomy/ischemia model. Urology 2008; 72:690-5. [PMID: 18336877 DOI: 10.1016/j.urology.2007.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Ischemia/reperfusion injury is a leading cause of renal damage which can be improved with antisense oligonucleotide gene therapy. We have shown that polyethylene glycol (PEG) hydrogel, which also functions as a tissue sealant, is an effective topical delivery vehicle for oligonucleotides in a murine partial nephrectomy model. The objective of this study was to use and evaluate this method against intercellular adhesion molecule-1 (ICAM-1) to prevent tissue damage. METHODS Sixty mice underwent left upper pole partial nephrectomy with 45 minutes of warm ischemia, randomized to treatment with 50 microg ICAM-1 antisense oligonucleotides embedded in PEG hydrogel, no therapy, or sham surgery. Kidneys were harvested at 24 hours and 3, 4, and 5 days. The specimens were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) for ICAM-1 messenger ribonucleic acid (mRNA), immunohistochemical staining for ICAM-1 protein, and standard histology. RESULTS At 24 hours, qRT-PCR and immunohistochemistry data showed a significant reduction in ICAM-1 mRNA and protein expression in the antisense group versus the ischemia group, but no difference at 3 to 5 days. Histologically there was reduced inflammation and necrosis in the cortex at 24 hours. The outer and inner medulla also showed improvement at 3 to 5 days in the antisense group as opposed to the ischemia group. CONCLUSIONS Topical PEG hydrogel delivery of antisense ICAM-1 oligonucleotides demonstrated decreased ICAM-1 mRNA expression, reduced ICAM-1 protein staining, and decreased cellular damage. The application of gene therapy through this novel topical delivery system holds potential for a highly specific, localized method of preventing tissue damage after ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hardeep Phull
- Department of Surgery, Section of Urology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
128
|
|
129
|
Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol 2008; 19:547-58. [PMID: 18235097 DOI: 10.1681/asn.2007040469] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies in humans and animal models have demonstrated that acute kidney injury (AKI) has a significant effect on the function of extrarenal organs. The combination of AKI and lung dysfunction is associated with 80% mortality; the lung, because of its extensive capillary network, is a prime target for AKI-induced effects. The study presented here tested the hypothesis that AKI leads to a vigorous inflammatory response and produces distinct genomic signatures in the kidney and lung. In a murine model of ischemic AKI, prominent global transcriptomic changes and histologic injury in both kidney and lung tissues were identified. These changes were evident at both early (6 h) and late (36 h) timepoints after 60-min bilateral kidney ischemia and were more prominent than similar timepoints after sham surgery or 30 min of ischemia. The inflammatory transcriptome (109 genes) of both organs changed with marked similarity, including the innate immunity genes Cd14, Socs3, Saa3, Lcn2, and Il1r2. Functional genomic analysis of these genes suggested that IL-10 and IL-6 signaling was involved in the distant effects of local inflammation, and this was supported by increased serum levels of IL-10 and IL-6 after ischemia-reperfusion. In summary, this is the first comprehensive analysis of concomitant inflammation-associated transcriptional changes in the kidney and a remote organ during AKI. Functional genomic analysis identified potential mediators that connect local and systemic inflammation, suggesting that this type of analysis may be a useful discovery tool for novel biomarkers and therapeutic drug development.
Collapse
Affiliation(s)
- Dmitry N Grigoryev
- Division of Allergy and Clinical Immunology, 5501 Hopkins Bayview Circle, JHAAC 3A.62, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | |
Collapse
|
130
|
Maathuis MHJ, Ottens PJ, van Goor H, Zwaagstra JJ, Wiersema-Buist J, Schuurs TA, Ploeg RJ, Leuvenink HGD. Static cold storage preservation of ischemically damaged kidneys. a comparison between IGL-1 and UW solution. Transpl Int 2008; 21:473-82. [PMID: 18225993 DOI: 10.1111/j.1432-2277.2007.00634.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Especially in damaged organs, adequate organ preservation is critically important to maintain viability. Institut Georges Lopez-1 (IGL-1) is a new preservation solution, with an extracellular sodium/potassium ratio and polyethylene glycol as a colloid. The influence of warm and cold ischemia was evaluated in a rat Lewis-Lewis transplant model with a follow up of 14 days. Eight groups of donation after cardiac death donor kidneys were studied with warm ischemia of 0 and 15 min followed by 0- or 24-h cold storage (CS) preservation in IGL-1 or UW-CSS. Blood was collected daily during the first week and at day 14. Recipients were placed in metabolic cages at day 4 and 14 after transplantation allowing urine collection and adequate measurement of glomerular filtration rate. Focussing on inflammation, reactive oxygen species production, proximal tubule damage, proteinuria, histology, and renal function after transplantation we could not show any relevant difference between IGL-1 and UW-CSS. Furthermore, the combination of 15-min warm ischemia and by 24-h cold ischemia did not result in life sustaining kidney function after transplantation, irrespective of the used solution. In the present experiment, static CS preservation of ischemically damaged rat kidneys in either IGL-1 or UW-CSS rendered equal results after transplantation.
Collapse
Affiliation(s)
- Mark-Hugo J Maathuis
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Bylander J, Li Q, Ramesh G, Zhang B, Reeves WB, Bond JS. Targeted disruption of the meprin metalloproteinase beta gene protects against renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 2008; 294:F480-90. [PMID: 18172000 DOI: 10.1152/ajprenal.00214.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Meprins are membrane-bound and secreted metalloproteinases consisting of alpha- and/or beta-subunits that are highly expressed in mouse kidney proximal tubules. Previous studies have implied that the meprin alpha/beta-isoform is deleterious when renal tissue is subjected to ischemia-reperfusion (I/R). To delineate the roles of the meprin isoforms in renal disease, we subjected mice deficient in meprin-beta (KO) and their wild-type (WT) counterparts to I/R. WT mice were markedly more susceptible to renal injury after I/R than the meprin-beta KO mice as determined by blood urea nitrogen levels. Urinary levels of inflammatory cytokines IL-6 and KC (CXCL1) were significantly higher in WT compared with meprin-beta KO mice by 6 h post-I/R. At 96 h postischemia, kidney mRNA expression levels for tumor necrosis factor-alpha, transforming growth factor-beta, inducible nitric oxide synthase, and heat shock protein-27 were significantly higher in the WT than meprin-beta KO mice. For WT mice subjected to I/R, there was a rapid (3 h) redistribution of meprin beta-subunits in cells in S3 segments of proximal tubules, followed by shedding of apical cell membrane and detachment of cells. These studies indicate that meprin-beta is important in the pathogenesis of renal injury following I/R and that the redistribution of active meprin-alpha/beta is a major contributor to renal injury and subsequent inflammation.
Collapse
Affiliation(s)
- John Bylander
- Deparment of Biochemistry and Molecular Biology, Penn State University College of Medicine, 500 Univ. Drive, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
132
|
Vascular integrin immunoreactivity is selectively lost on capillaries during rat focal cerebral ischemia and reperfusion. Brain Res 2008; 1189:189-97. [DOI: 10.1016/j.brainres.2007.10.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 11/22/2022]
|
133
|
Bonventre JV. Molecular and Genetic Aspects of Ischemic Acute Kidney Injury. MOLECULAR AND GENETIC BASIS OF RENAL DISEASE 2008:531-555. [DOI: 10.1016/b978-1-4160-0252-9.50034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
134
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
135
|
Lee HT, Kim M, Kim M, Kim N, Billings FT, D'Agati VD, Emala CW. Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am J Physiol Renal Physiol 2007; 293:F713-22. [PMID: 17596528 DOI: 10.1152/ajprenal.00161.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation after renal ischemia-reperfusion (IR) injury is a major contributor to renal cell death. We previously demonstrated that several volatile anesthetics protect against renal IR injury and necrosis in rats in vivo. We subsequently showed that volatile anesthetics produced direct anti-inflammatory and anti-necrotic effects in cultured proximal tubule cells in vitro. In this study, we wanted to determine whether the volatile anesthetic isoflurane protects against renal IR injury by producing anti-inflammatory effects in mice. C57BL/6 mice subjected to renal IR under isoflurane anesthesia demonstrated improved renal function and reduced necrosis compared with mice subjected to renal IR under pentobarbital anesthesia. Mice subjected to renal IR under isoflurane anesthesia also showed a reduction in inflammation evidenced by a reduced renal influx of neutrophils and macrophages, reduced ICAM-1 expression, less upregulation of proinflammatory mRNAs (TNF-alpha, ICAM-1, KC, and IL-1beta) as well as reduced nuclear translocation of NF-kappaB 24 h after renal IR injury. Analysis of specific lymphocyte subset trafficking to the kidney using flow cytometry demonstrated that isoflurane anesthesia reduced intrarenal influx of CD3+, CD4+, CD8+, and NK1.1+ lymphocytes at 3 h after renal ischemia compared with pentobarbital anesthesia. However, only the differential reduction of NK1.1+ lymphocytes persisted 24 h after renal ischemia. Therefore, we conclude that isoflurane anesthesia significantly attenuated renal IR injury in mice by reducing inflammation and modulating leukocyte influx. In particular, neutrophil, macrophage, and NK1.1+ lymphocyte cell modulation may play a significant role in renal protection by isoflurane anesthesia.
Collapse
Affiliation(s)
- H Thomas Lee
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY 10032-3784, USA.
| | | | | | | | | | | | | |
Collapse
|
136
|
Kaudel CP, Frink M, Schmiddem U, Probst C, Bergmann S, Krettek C, Klempnauer J, van Griensven M, Winkler M. FTY720 for treatment of ischemia-reperfusion injury following complete renal ischemia; impact on long-term survival and T-lymphocyte tissue infiltration. Transplant Proc 2007; 39:499-502. [PMID: 17362767 DOI: 10.1016/j.transproceed.2006.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Organ dysfunction due to ischemia-reperfusion (I/R) injury is a common problem in transplant, liver, trauma, and heart surgery. I/R injury is mediated by upregulated expression of endothelial cell surface adhesion molecules and subsequent adhesion and activation of circulating leukocytes. The purpose of this study was to evaluate the effect of an intraoperative administration of FTY720 in an animal model with controlled bilateral warm kidney ischemia compared to steroids or placebo application. METHODS Male C57BL6/J mice (n = 72, weight 25 to 30 g) were exposed to 30 minutes of bilateral kidney ischemia and followed by a 48 hour observation period. FTY720 (1 mg/kg body weight [BW]), steroids (5 mg/kg BW), or saline solution were administered. In addition, a sham-operated control group was included. At the termination of the experiments, all surviving animals were humanely killed. The impact of the various drugs on overall animal survival, timing of death, peripheral T-cell count, and T-lymphocyte infiltration in the kidneys was determined. RESULTS Following bilateral kidney I/R injury, FTY720 was associated with a significant improved animal survival (85.7%) compared with steroids (50%) or controls (42.4%). FACS analysis showed significant T-lymphocyte depletion in peripheral blood in the FTY720 but not in the other groups. T-lymphocyte tissue concentration in liver and kidney tissue did not show statistically significant differences following FTY720, steroid, or saline treatment. CONCLUSION FTY720, when administered intraoperatively, improved survival significantly in mice submitted to bilateral kidney ischemia but did not have any significant impact on the parenchymal T-lymphocyte infiltration in the ischemic organ.
Collapse
Affiliation(s)
- C P Kaudel
- Department of General-, Visceral- and Transplant Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Schneider R, Sauvant C, Betz B, Otremba M, Fischer D, Holzinger H, Wanner C, Galle J, Gekle M. Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion ofpara-aminohippurate after ischemic acute renal failure in rats. Am J Physiol Renal Physiol 2007; 292:F1599-605. [PMID: 17244891 DOI: 10.1152/ajprenal.00473.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute renal failure (iARF) was described to reduce renal extraction of the organic anion para-aminohippurate (PAH) in humans. The rate-limiting step of renal organic anion secretion is its basolateral uptake into proximal tubular cells. This process is mediated by the organic anion transporters OAT1 and OAT3, which both have a broad spectrum of substrates including a variety of pharmaceutics and toxins. Using a rat model of iARF, we investigated whether impairing the secretion of the organic anion PAH might be associated with downregulation of OAT1 or OAT3. Inulin and PAH clearance was determined starting from 6 up to 336 h after ischemia-reperfusion (I/R) injury. Net secretion of PAH was calculated and OAT1 as well as OAT3 expression was analyzed by RT-PCR and Western blotting. Inulin and PAH clearance along with PAH net secretion were initially diminished after I/R injury with a gradual recovery during follow-up. This initial impairment after iARF was accompanied by decreased mRNA and protein levels of OAT1 and OAT3 in clamped animals compared with sham-operated controls. In correlation to the improvement of kidney function, both mRNA and protein levels of OAT1 and OAT3 were upregulated during the follow-up. Thus decreased expression of OAT1 and OAT3 is sufficient to explain the decline of PAH secretion after iARF. As a result, this may have substantial impact on excretion kinetics and half-life of organic anions. As a consequence, the biological effects of a variety of organic anions may be affected after iARF.
Collapse
Affiliation(s)
- R Schneider
- Institute of Physiology, Division of Nephrology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
PURPOSE OF REVIEW Acute alterations in renal function are commonly encountered in various settings with varied clinical manifestations ranging from a minimal elevation in serum creatinine to anuric renal failure. Our knowledge of human acute kidney injury has been fairly stagnant, until recently largely limited by a lack of concerted efforts in the field. This review summarizes the recent advances and provides an overview of emerging trends in this field. RECENT FINDINGS One of the limitations in our knowledge of human acute kidney injury has been the lack of a standardized definition and staging criteria for this disorder. New information on the epidemiology and outcomes of acute kidney injury has emerged providing an opportunity to reappraise our approach to this disease. Also, there has been new work on the relationship of alterations of renal function to short and long-term outcomes, particularly mortality. SUMMARY To translate advances from basic research to clinical application a multidisciplinary approach is required. New research in the field of biomarkers combined with clinical markers will lead to therapies that can be introduced earlier in the course of the disease and, hopefully, lead to a decrease in mortality from this potentially reversible condition.
Collapse
Affiliation(s)
- Shamik H Shah
- Department of Medicine, University of California San Diego, San Diego, California, USA.
| | | |
Collapse
|
139
|
Kaudel CP, Frink M, van Griensven M, Schmiddem U, Probst C, Bergmann S, Krettek C, Klempnauer J, Winkler M. FTY720 Application Following Isolated Warm Liver Ischemia Improves Long-Term Survival and Organ Protection in a Mouse Model. Transplant Proc 2007; 39:493-8. [PMID: 17362766 DOI: 10.1016/j.transproceed.2007.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ischemia-reperfusion-Injury (I/RI) is a common complication in transplant-, liver-, and heart surgery. The I/RI is mediated and aggravated by different types of leukocytes such as lymphocytes, monocytes, and neutrophil granulocytes, with consecutive enlargement of the expression of adhesion molecules. This study shows an organ-protective effect of an intraoperative FTY720 administration following warm liver ischemia (Pringle's maneuver). METHODS Male c57BL6/J mice (n = 46, body weight [BW] 25 to 30 g) were used. Either FTY720 (1 mg/kg BW), steroids (5 mg/kg BW), or physiological saline solution was administered intraperitoneally. Liver-ischemia was applied for 30 minutes with subsequent follow-up for 48 hours. At termination, all surviving animals were sacrificed. The impact of the drugs administered on long-term survival, time of death, and development of blood T-lymphocyte concentration was determined. Follow-up of T-lymphocyte concentration in peripheral blood was examined throughout FACS-analysis. RESULTS Following 30 minutes of ischemia, FTY720, but not steroid or vehicle treatment, showed a significant protective effect on long-term survival. FACS-analysis showed significant T-lymphocyte depletion in peripheral blood following FTY720 but not steroids or vehicle treatment. CONCLUSION The improved long-term survival following FTY720 application shown in this study might be due to a protective effect of FTY720 in prevention of I/RI. This might be mediated by the T-lymphocyte depletion shown in the FACS-analysis.
Collapse
Affiliation(s)
- C P Kaudel
- Department of Transplant Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Plantinga LC, Jaar BG, Astor B, Fink NE, Eustace JA, Klag MJ, Powe NR. Association of clinic vascular access monitoring practices with clinical outcomes in hemodialysis patients. Nephron Clin Pract 2006; 104:c151-9. [PMID: 16902311 DOI: 10.1159/000094961] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 05/14/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Early identification of access dysfunctions may be associated with improved patient outcomes. We examined whether patient outcomes were associated with vascular access monitoring practices in an incident dialysis cohort. METHODS We conducted a national prospective cohort study and analyzed 363 hemodialysis patients who had a first permanent vascular access (arteriovenous fistula or graft) by 6 months after the start of dialysis. Multivariate methods were used to examine associations between monitoring practices and 6-month Kt/V (reaching Kt/V >/=1.2), access intervention, access failure, and 2-year septicemia and all-cause hospitalization and mortality. RESULTS Patients who received monitoring weekly or more often (49%) were more likely to have an access intervention (adjusted RH = 1.40, 95% CI, 1.07-1.84) than those who received monitoring less frequently. Additionally, patients treated at clinics that reported performing regular access monitoring (80% of patients) were less likely to be hospitalized for septicemia (IRR = 0.35, 95% CI, 0.21-0.61) or for any cause (IRR = 0.77, 95% CI, 0.60-0.99). There were no statistically significant differences between patients exposed to different vascular access monitoring practices in access failure, achievement of Kt/V, or survival. CONCLUSION Frequent monitoring of dialysis access may initially increase the number of interventions but is beneficial to longer-term outcomes, including septicemia-related and all-cause hospitalization.
Collapse
Affiliation(s)
- Laura C Plantinga
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Frangié C, Zhang W, Perez J, Dubois YCX, Haymann JP, Baud L. Extracellular calpains increase tubular epithelial cell mobility. Implications for kidney repair after ischemia. J Biol Chem 2006; 281:26624-32. [PMID: 16822870 DOI: 10.1074/jbc.m603007200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are intracellular Ca2+-dependent cysteine proteases that are released in the extracellular milieu by tubular epithelial cells following renal ischemia. Here we show that externalized calpains increase epithelial cell mobility and thus are critical for tubule repair. In vitro, exposure of human tubular epithelial cells (HK-2 cells) to mu-calpain limited their adhesion to extracellular matrix and increased their mobility. Calpains acted primarily by promoting the cleavage of fibronectin, thus preventing fibronectin binding to the integrin alphavbeta3. Analyzing downstream integrin effects, we found that the cyclic AMP-dependent protein kinase A pathway was activated in response to alphavbeta3 disengagement and was essential for calpain-mediated increase in HK-2 cell mobility. In a murine model of ischemic acute renal failure, injection of a fragment of calpastatin, which specifically blocked calpain activity in extracellular milieu, markedly delayed tubule repair, increasing functional and histological lesions after 24 and 48 h of reperfusion. These findings suggest that externalized calpains are critical for tubule repair process in acute renal failure.
Collapse
Affiliation(s)
- Carlos Frangié
- INSERM U702; Université Pierre et Marie Curie, 75020 Paris, France
| | | | | | | | | | | |
Collapse
|
142
|
|
143
|
Viñas JL, Sola A, Genescà M, Alfaro V, Pí F, Hotter G. NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Free Radic Biol Med 2006; 40:992-1003. [PMID: 16540395 DOI: 10.1016/j.freeradbiomed.2005.10.046] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 09/14/2005] [Accepted: 10/19/2005] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.
Collapse
Affiliation(s)
- Jose Luis Viñas
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS, Barcelona 08036, Spain
| | | | | | | | | | | |
Collapse
|
144
|
Thurman JM, Ljubanović D, Royer PA, Kraus DM, Molina H, Barry NP, Proctor G, Levi M, Holers VM. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J Clin Invest 2006; 116:357-68. [PMID: 16444293 PMCID: PMC1352158 DOI: 10.1172/jci24521] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 11/29/2005] [Indexed: 12/31/2022] Open
Abstract
Ischemia/reperfusion (I/R) of several organs results in complement activation, but the kidney is unique in that activation after I/R occurs only via the alternative pathway. We hypothesized that selective activation of this pathway after renal I/R could occur either because of a loss of complement inhibition or from increased local synthesis of complement factors. We examined the relationship between renal complement activation after I/R and the levels and localization of intrinsic membrane complement inhibitors. We found that loss of polarity of complement receptor 1-related protein y (Crry) in the tubular epithelium preceded activation of the alternative pathway along the basolateral aspect of the tubular cells. Heterozygous gene-targeted mice that expressed lower amounts of Crry were more sensitive to ischemic injury. Furthermore, inhibition of Crry expressed by proximal tubular epithelial cells in vitro resulted in alternative pathway-mediated injury to the cells. Thus, altered expression of a complement inhibitor within the tubular epithelium appears to be a critical factor permitting activation of the alternative pathway of complement after I/R. Increased C3 mRNA and decreased factor H mRNA were also detected in the outer medulla after I/R, suggesting that altered synthesis of these factors might further contribute to complement activation in this location.
Collapse
MESH Headings
- Animals
- Antigens, Surface
- Complement Activation/physiology
- Complement System Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Complement 3b
- Reperfusion Injury/immunology
- Reperfusion Injury/pathology
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
The epithelial tight junction (TJ) has three major functions. As a "gate," it serves as a regulatory barrier separating and maintaining biological fluid compartments of different composition. As a "fence," it generates and maintains the apicobasal polarity of cells that form the confluent epithelium. Finally, the TJ proteins form a trafficking and signaling platform that regulates cell growth, proliferation, differentiation, and dedifferentiation. Six examples are selected that illustrate the emerging link between TJ dysfunction and kidney disease. First, the glomerular slit diaphragm (GSD) is evolved, in part, from the TJ and, on maturation, exhibits all three functions of the TJ. GSD dysfunction leads to proteinuria and, in some instances, podocyte dedifferentiation and proliferation. Second, accumulating evidence supports epithelial-mesenchymal transformation (EMT) as a major player in renal fibrosis, the final common pathway that leads to end-stage renal failure. EMT is characterized by a loss of cell-cell contact and apicobasal polarity, which are hallmarks of TJ dysfunction. Third, in autosomal dominant polycystic kidney disease, mutations of the polycystins may disrupt their known interactions with the apical junction complex, of which the TJ is a major component. This can lead to disturbances in epithelial polarity regulation with consequent abnormal tubulogenesis and cyst formation. Fourth, evidence for epithelial barrier and polarity dysregulation in the pathogenesis of ischemic acute renal failure will be summarized. Fifth, the association between mutations of paracellin-1, the first TJ channel identified, and clinical disorders of magnesium and calcium wasting and bovine renal fibrosis will be used to highlight an integral TJ protein that can serve multiple TJ functions. Finally, the role of WNK4 protein kinase in shunting chloride across the TJ of the distal nephron will be addressed.
Collapse
Affiliation(s)
- David B N Lee
- Division of Nephrology, Veterans Affairs Greater Los Angeles Healthcare System, California, USA.
| | | | | |
Collapse
|
146
|
Tarabishi R, Zahedi K, Mishra J, Ma Q, Kelly C, Tehrani K, Devarajan P. Induction of Zf9 in the kidney following early ischemia/reperfusion. Kidney Int 2005; 68:1511-9. [PMID: 16164628 DOI: 10.1111/j.1523-1755.2005.00563.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND An improved understanding of the early cell injury mechanisms is critical for effective therapy of acute renal failure (ARF). METHODS We utilized cDNA microarrays to identify renal genes that are induced very early after renal ischemia in a mouse model, whose protein products might provide novel information regarding the pathogenesis of ARF. The findings were confirmed by downstream mRNA and protein expression studies, as well as knockdown analysis with antisense primers. RESULTS The maximally induced gene (21-fold at 3 hours of reflow) was Zf9, a Kruppel-like transcription factor involved in the regulation of transforming growth factor-beta1 (TGF-beta1). The rapid induction of Zf9 mRNA was confirmed by Northern analysis (14.5-fold at 3 hours of reflow) and that of Zf9 protein by Western analysis (10.5-fold at 3 hours of reflow). Zf9 protein was induced in both proximal and distal tubule cells in a cytoplasmic as well as nuclear distribution. TGF-beta1 protein was also up-regulated in a pattern parallel to that of Zf9. In cultured human proximal tubule cells, induction of ischemia by partial adenosine triphosphate (ATP) depletion resulted in a rapid up-regulation of both Zf9 and of TGF-beta1 proteins. Antisense oligonucleotides to Zf9 markedly blunted the induction of Zf9 and TGF-beta1, and significantly inhibited the apoptotic response to ATP depletion. CONCLUSION Induction of Zf9 and its transactivating factor TGF-beta1 may play a critical and hitherto unrecognized role in the early apoptotic response to ischemic renal injury.
Collapse
Affiliation(s)
- Ridwan Tarabishi
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Thakar CV, Zahedi K, Revelo MP, Wang Z, Burnham CE, Barone S, Bevans S, Lentsch AB, Rabb H, Soleimani M. Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest 2005; 115:3451-9. [PMID: 16294224 PMCID: PMC1283940 DOI: 10.1172/jci25461] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 09/13/2005] [Indexed: 12/31/2022] Open
Abstract
Thrombospondin 1 (TSP-1) is a matricellular protein that inhibits angiogenesis and causes apoptosis in vivo and in vitro in several cancerous cells and tissues. Here we identify TSP-1 as the molecule with the highest induction level at 3 hours of IR injury in rat and mouse kidneys subjected to ischemia/reperfusion (IR) injury using the DNA microarray approach. Northern hybridizations demonstrated that TSP-1 expression was undetectable at baseline, induced at 3 and 12 hours, and returned to baseline levels at 48 hours of reperfusion. Immunocytochemical staining identified the injured proximal tubules as the predominant sites of expression of TSP-1 in IR injury and showed colocalization of TSP-1 with activated caspase-3. Addition of purified TSP-1 to normal kidney proximal tubule cells or cells subjected to ATP depletion in vitro induced injury as demonstrated by cytochrome c immunocytochemical staining and caspase-3 activity. The deleterious role of TSP-1 in ischemic kidney injury was demonstrated directly in TSP-1 null mice, which showed significant protection against IR injury-induced renal failure and tubular damage. We propose that TSP-1 is a novel regulator of ischemic damage in the kidney and may play an important role in the pathophysiology of ischemic kidney failure.
Collapse
Affiliation(s)
- Charuhas V Thakar
- Department of Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Acute renal failure (ARF) occurs in up to 30% of patients who undergo cardiac surgery, with dialysis being required in approximately 1% of all patients. The development of ARF is associated with substantial morbidity and mortality independent of all other factors. The pathogenesis of ARF involves multiple pathways. Hemodynamic, inflammatory, and nephrotoxic factors are involved and overlap each other in leading to kidney injury. Clinical studies have identified risk factors for ARF that can be used to determine effectively the risk for ARF in patients who undergo bypass surgery. These high-risk patients then can be targeted for renal protective strategies. Thus far, no single strategy has demonstrated conclusively its ability to prevent renal injury after bypass surgery. Several compounds such as atrial natriuretic peptide and N-acetylcysteine have shown promise, but large-scale trials are needed.
Collapse
Affiliation(s)
- Mitchell H Rosner
- Division of Nephrology, Department of Internal Medicine, University of Virginia Health System, Box 800133, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
149
|
Letavernier E, Perez J, Joye E, Bellocq A, Fouqueray B, Haymann JP, Heudes D, Wahli W, Desvergne B, Baud L. Peroxisome Proliferator-Activated Receptor β/δ Exerts a Strong Protection from Ischemic Acute Renal Failure. J Am Soc Nephrol 2005; 16:2395-402. [PMID: 15944338 DOI: 10.1681/asn.2004090802] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ischemic acute renal failure is characterized by damages to the proximal straight tubule in the outer medulla. Lesions include loss of polarity, shedding into the tubule lumen, and eventually necrotic or apoptotic death of epithelial cells. It was recently shown that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases keratinocyte survival after an inflammatory reaction. Therefore, whether PPARbeta/delta could contribute also to the control of tubular epithelium death after renal ischemia/reperfusion was tested. It was found that PPARbeta/delta+/- and PPARbeta/delta-/- mutant mice exhibited much greater kidney dysfunction and injury than wild-type counterparts after a 30-min renal ischemia followed by a 36-h reperfusion. Conversely, wild-type mice that were given the specific PPARbeta/delta ligand L-165041 before renal ischemia were completely protected against renal dysfunction, as indicated by the lack of rise in serum creatinine and fractional excretion of Na+. This protective effect was accompanied by a significant reduction in medullary necrosis, apoptosis, and inflammation. On the basis of in vitro studies, PPARbeta/delta ligands seem to exert their role by activating the antiapoptotic Akt signaling pathway and, unexpectedly, by increasing the spreading of tubular epithelial cells, thus limiting potentially their shedding and anoikis. These results point to PPARbeta/delta as a remarkable new target for preconditioning strategies.
Collapse
|
150
|
Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005; 115:1743-55. [PMID: 16007251 PMCID: PMC1159124 DOI: 10.1172/jci22593] [Citation(s) in RCA: 481] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 05/03/2005] [Indexed: 12/15/2022] Open
Abstract
Ischemia causes kidney tubular cell damage and abnormal renal function. The kidney is capable of morphological restoration of tubules and recovery of function. Recently, it has been suggested that cells repopulating the ischemically injured tubule derive from bone marrow stem cells. We studied kidney repair in chimeric mice expressing GFP or bacterial beta-gal or harboring the male Y chromosome exclusively in bone marrow-derived cells. In GFP chimeras, some interstitial cells but not tubular cells expressed GFP after ischemic injury. More than 99% of those GFP interstitial cells were leukocytes. In female mice with male bone marrow, occasional tubular cells (0.06%) appeared to be positive for the Y chromosome, but deconvolution microscopy revealed these to be artifactual. In beta-gal chimeras, some tubular cells also appeared to express beta-gal as assessed by X-gal staining, but following suppression of endogenous (mammalian) beta-gal, no tubular cells could be found that stained with X-gal after ischemic injury. Whereas there was an absence of bone marrow-derived tubular cells, many tubular cells expressed proliferating cell nuclear antigen, which is reflective of a high proliferative rate of endogenous surviving tubular cells. Upon i.v. injection of bone marrow mesenchymal stromal cells, postischemic functional renal impairment was reduced, but there was no evidence of differentiation of these cells into tubular cells of the kidney. Thus, our data indicate that bone marrow-derived cells do not make a significant contribution to the restoration of epithelial integrity after an ischemic insult. It is likely that intrinsic tubular cell proliferation accounts for functionally significant replenishment of the tubular epithelium after ischemia.
Collapse
Affiliation(s)
- Jeremy S Duffield
- Renal Division and Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|