101
|
Sun XG, Bonfante P, Tang M. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:1-10. [PMID: 26397199 DOI: 10.1016/j.plaphy.2015.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L. japonicus mutant Ljcastor (which lacks the symbiotic cation channel CASTOR, which is required for inducing nuclear calcium spiking, which is necessary for symbiotic partner recognition), or Arabidopsis thaliana, separated by cellophane membranes (fungal exudates experiment), or on different media but with a shared head space (fungal volatiles experiment). Root development was monitored over time. Both germinating spore exudates (GSEs) and geminated-spore-emitted volatile organic compounds (GVCs) significantly promoted lateral root formation (LRF) in WT L. japonicus. LRF in Ljcastor was significantly enhanced in the presence of GVCs. GVCs stimulated LRF in A. thaliana, whereas GSEs showed an inhibitory effect. The expression profile of the genes involved in mycorrhizal establishment and root development were investigated using quantitative reverse transcription-PCR analysis. Only the expression of the LjCCD7 gene, an important component of the strigolactone synthesis pathway, was differentially expressed following exposure to GVCs. We conclude that volatile organic compounds released by the germinating AM fungal spores may stimulate LRF in a symbiosis signaling pathway (SYM)- and host-independent way, whereas GSEs stimulate LRF in a SYM- and host-dependent way.
Collapse
Affiliation(s)
- Xue-Guang Sun
- State Key Laboratory of Soil Erosion and Arid-land Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, I-10125, Torino, Italy
| | - Ming Tang
- State Key Laboratory of Soil Erosion and Arid-land Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
102
|
Sweet MJ, Singleton I. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:448. [PMID: 26617464 PMCID: PMC4655001 DOI: 10.1007/s11051-015-3246-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 11/05/2015] [Indexed: 05/25/2023]
Abstract
Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.
Collapse
Affiliation(s)
- M. J. Sweet
- />Environmental Sustainability Research Centre, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby, DE22 1GB UK
| | - I. Singleton
- />School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU UK
- />School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill campus Sighthill Court, Edinburgh, EH11 4BN UK
| |
Collapse
|
103
|
Henke C, Jung EM, Voit A, Kothe E, Krause K. Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: A role for Ald1 in mycorrhizal symbiosis. J Basic Microbiol 2015; 56:162-74. [PMID: 26344933 DOI: 10.1002/jobm.201500381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/19/2015] [Indexed: 11/07/2022]
Abstract
Ectomycorrhizal symbiosis is important for forest ecosystem functioning with tree-fungal cooperation increasing performance and countering stress conditions. Aldehyde dehydrogenases (ALDHs) are key enzymes for detoxification and thus may play a role in stress response of the symbiotic association. With this focus, eight dehydrogenases, Ald1 through Ald7 and TyrA, of the ectomycorrhizal basidiomycete Tricholoma vaccinum were characterized and phylogenetically investigated. Functional analysis was performed through differential expression analysis by feeding different, environmentally important substances. A strong effect of indole-3-acetic acid (IAA) was identified, linking mycorrhiza formation and auxin signaling between the symbiosis partners. We investigated ald1 overexpressing strains for performance in mycorrhiza with the host tree spruce (Picea abies) and observed an increased width of the apoplast, accommodating the Hartig' net hyphae of the T. vaccinum over-expressing transformants. The results support a role for Ald1 in ectomycorrhiza formation and underline functional differentiation within fungal aldehyde dehydrogenases in the family 1 of ALDHs.
Collapse
Affiliation(s)
- Catarina Henke
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Jena, Germany
| | - Elke-Martina Jung
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Jena, Germany
| | - Annekatrin Voit
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Jena, Germany
| |
Collapse
|
104
|
Vayssières A, Pěnčík A, Felten J, Kohler A, Ljung K, Martin F, Legué V. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response. PLANT PHYSIOLOGY 2015; 169:890-902. [PMID: 26084921 PMCID: PMC4577371 DOI: 10.1104/pp.114.255620] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/11/2015] [Indexed: 05/22/2023]
Abstract
Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.
Collapse
Affiliation(s)
- Alice Vayssières
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| | - Ales Pěnčík
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| | - Judith Felten
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| | - Annegret Kohler
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| | - Karin Ljung
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| | - Francis Martin
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| | - Valérie Legué
- Institut National de la Recherche Agronomique and Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes 1136, Institut National de la Recherche Agronomique-Nancy, F-54280 Champenoux, France (A.V., J.F., A.K., F.M., V.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (A.P., K.L.)
| |
Collapse
|
105
|
Ng JLP, Perrine-Walker F, Wasson AP, Mathesius U. The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. PLANTS (BASEL, SWITZERLAND) 2015; 4:606-43. [PMID: 27135343 PMCID: PMC4844411 DOI: 10.3390/plants4030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023]
Abstract
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root-microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root-nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| | | | | | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| |
Collapse
|
106
|
Wang J, Zhang Y, Li Y, Wang X, Nan W, Hu Y, Zhang H, Zhao C, Wang F, Li P, Shi H, Bi Y. Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. PLANT CELL REPORTS 2015; 34:1075-1087. [PMID: 25700982 DOI: 10.1007/s00299-015-1766-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Endophytic microbes Bacillus sp. LZR216 isolated from Arabidopsis root promoted Arabidopsis seedlings growth. It may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. Plant roots are colonized by an immense number of microbes, including epiphytic and endophytic microbes. It was found that they have the ability to promote plant growth and protect roots from biotic and abiotic stresses. But little is known about the mechanism of the endophytic microbes-regulated root development. We isolated and identified a Bacillus sp., named as LZR216, of endophytic bacteria from Arabidopsis root. By employing a sterile experimental system, we found that LZR216 promoted the Arabidopsis seedlings growth, which may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. By testing the cell type-specific developmental markers, we demonstrated that Bacillus sp. LZR216 increases the DR5::GUS and DR5::GFP expression but decreases the CYCB1;1::GUS expression in Arabidopsis root tips. Further studies indicated that LZR216 is able to inhibit the meristematic length and decrease the cell division capability but has little effect on the quiescent center function of the root meristem. Subsequently, it was also shown that LZR216 has no significant effects on the primary root length of the pin2 and aux1-7 mutants. Furthermore, LZR216 down-regulates the levels of PIN1-GFP, PIN2-GFP, PIN3-GFP, and AUX1-YFP. In addition, the wild-type Arabidopsis seedlings in the present of 1 or 5 µM NPA (an auxin transport inhibitor) were insensitive to LZR216-inhibited primary root elongation. Collectively, LZR216 regulates the development of root system architecture depending on polar auxin transport. This study shows a new insight on the ability of beneficial endophytic bacteria in regulating postembryonic root development.
Collapse
Affiliation(s)
- Jianfeng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Plett JM, Kohler A, Khachane A, Keniry K, Plett KL, Martin F, Anderson IC. The effect of elevated carbon dioxide on the interaction between Eucalyptus grandis and diverse isolates of Pisolithus sp. is associated with a complex shift in the root transcriptome. THE NEW PHYTOLOGIST 2015; 206:1423-36. [PMID: 25377589 DOI: 10.1111/nph.13103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 05/15/2023]
Abstract
Using the newly available genome for Eucalyptus grandis, we sought to determine the genome-wide traits that enable this host to form mutualistic interactions with ectomycorrhizal (ECM) Pisolithus sp. and to determine how future predicted concentrations of atmospheric carbon dioxide (CO2 ) will affect this relationship. We analyzed the physiological and transcriptomic responses of E. grandis during colonization by different Pisolithus sp. isolates under conditions of ambient (400 ppm) and elevated (650 ppm) CO2 to tease out the gene expression profiles associated with colonization status. We demonstrate that E. grandis varies in its susceptibility to colonization by different Pisolithus isolates in a manner that is not predictable by geographic origin or the internal transcribed spacer (ITS)-based phylogeny of the fungal partner. Elevated concentrations of CO2 alter the receptivity of E. grandis to Pisolithus, a change that is correlated to a dramatic shift in the transcriptomic profile of the root. These data provide a starting point for understanding how future environmental change may alter the signaling between plants and their ECM partners and is a step towards determining the mechanism behind previously observed shifts in Eucalypt-associated fungal communities exposed to elevated concentrations of atmospheric CO2 .
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Annegret Kohler
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280, Champenoux, France
| | - Amit Khachane
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Kerry Keniry
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Francis Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280, Champenoux, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| |
Collapse
|
108
|
Raudaskoski M, Kothe E. Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. MYCORRHIZA 2015; 25:243-52. [PMID: 25260351 DOI: 10.1007/s00572-014-0607-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/16/2014] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | | |
Collapse
|
109
|
Plett JM, Tisserant E, Brun A, Morin E, Grigoriev IV, Kuo A, Martin F, Kohler A. The Mutualist Laccaria bicolor Expresses a Core Gene Regulon During the Colonization of Diverse Host Plants and a Variable Regulon to Counteract Host-Specific Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:261-73. [PMID: 25338146 DOI: 10.1094/mpmi-05-14-0129-fi] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The coordinated transcriptomic responses of both mutualistic ectomycorrhizal (ECM) fungi and their hosts during the establishment of symbiosis are not well-understood. This study characterizes the transcriptomic alterations of the ECM fungus Laccaria bicolor during different colonization stages on two hosts (Populus trichocarpa and Pseudotsuga menziesii) and compares this to the transcriptomic variations of P. trichocarpa across the same time-points. A large number of L. bicolor genes (≥ 8,000) were significantly regulated at the transcriptional level in at least one stage of colonization. From our data, we identify 1,249 genes that we hypothesize is the 'core' gene regulon necessary for the mutualistic interaction between L. bicolor and its host plants. We further identify a group of 1,210 genes that are regulated in a host-specific manner. This variable regulon encodes a number of genes coding for proteases and xenobiotic efflux transporters that we hypothesize act to counter chemical-based defenses simultaneously activated at the transcriptomic level in P. trichocarpa. The transcriptional response of the host plant P. trichocarpa consisted of differential waves of gene regulation related to signaling perception and transduction, defense response, and the induction of nutrient transfer in P. trichocarpa tissues. This study, therefore, gives fresh insight into the shifting transcriptomic landscape in both the colonizing fungus and its host and the different strategies employed by both partners in orchestrating a mutualistic interaction.
Collapse
|
110
|
Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 2015; 6:6279. [PMID: 25703994 PMCID: PMC4346619 DOI: 10.1038/ncomms7279] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/13/2015] [Indexed: 11/08/2022] Open
Abstract
The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (-)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates.
Collapse
|
111
|
Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 2014; 9:e114196. [PMID: 25464336 PMCID: PMC4252105 DOI: 10.1371/journal.pone.0114196] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Wei-Ta Fang
- Graduate Institute of Environmental Education, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Li-Ying Shin
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jyuan-Yu Wei
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
112
|
Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:758-71. [PMID: 25227998 DOI: 10.1111/tpj.12666] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 05/18/2023]
Abstract
Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.
Collapse
Affiliation(s)
- Aurélien Bailly
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland; Institute for Sustainability Sciences, Agroscope, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
113
|
|
114
|
Kuo A, Kohler A, Martin FM, Grigoriev IV. Expanding genomics of mycorrhizal symbiosis. Front Microbiol 2014; 5:582. [PMID: 25408690 PMCID: PMC4219462 DOI: 10.3389/fmicb.2014.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.
Collapse
Affiliation(s)
- Alan Kuo
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| | - Annegret Kohler
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Francis M. Martin
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| |
Collapse
|
115
|
Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. PLANT PHYSIOLOGY 2014; 166:281-92. [PMID: 25096975 PMCID: PMC4149713 DOI: 10.1104/pp.114.246595] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/04/2014] [Indexed: 05/02/2023]
Abstract
Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.
Collapse
Affiliation(s)
- Mohammad Etemadi
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Caroline Gutjahr
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Jean-Malo Couzigou
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Mohamed Zouine
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Dominique Lauressergues
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Antonius Timmers
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Corinne Audran
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Mondher Bouzayen
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Guillaume Bécard
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| | - Jean-Philippe Combier
- Université Paul Sabatier Toulouse, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan cedex, France (M.E., J.-M.C., D.L., G.B., J.-P.C.);Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan, France (M.E., M.Z., C.A., M.B.);Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, F-52627 Auzeville, France (M.E., M.Z., C.A., M.B.);Faculty of Biology, Genetics, University of Munich, 82152 Martinsried, Germany (C.G.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441/2594 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan cedex, France (A.T.)
| |
Collapse
|
116
|
Zuccaro A, Lahrmann U, Langen G. Broad compatibility in fungal root symbioses. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:135-45. [PMID: 24929298 DOI: 10.1016/j.pbi.2014.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 05/13/2023]
Abstract
Plants associate with a wide range of beneficial fungi in their roots which facilitate plant mineral nutrient uptake in exchange for carbohydrates and other organic metabolites. These associations play a key role in shaping terrestrial ecosystems and are widely believed to have promoted the evolution of land plants. To establish compatibility with their host, root-associated fungi have evolved diverse colonization strategies with distinct morphological, functional and genomic specializations as well as different degrees of interdependence. They include obligate biotrophic arbuscular mycorrhizal (AM), and facultative biotrophic ectomycorrhizal (ECM) interactions but are not restricted to these well-characterized symbioses. There is growing evidence that root endophytic associations, which due to their inconspicuous nature have been often overlooked, can be of mutualistic nature and represent important players in natural and managed environments. Recent research into the biology and genomics of root associations revealed fascinating insight into the phenotypic and trophic plasticity of these fungi and underlined genomic traits associated with biotrophy and saprotrophy. In this review we will consider the commonalities and differences of AM and ECM associations and contrast them with root endophytes.
Collapse
Affiliation(s)
- Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; University of Cologne, Botanical Institute, Cluster of Excellence on Plant Science (CEPLAS), Cologne, Germany.
| | - Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregor Langen
- Justus Liebig University, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Giessen, Germany
| |
Collapse
|
117
|
Tschaplinski TJ, Plett JM, Engle NL, Deveau A, Cushman KC, Martin MZ, Doktycz MJ, Tuskan GA, Brun A, Kohler A, Martin F. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:546-56. [PMID: 24548064 DOI: 10.1094/mpmi-09-13-0286-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Within boreal and temperate forest ecosystems, the majority of trees and shrubs form beneficial relationships with mutualistic ectomycorrhizal (ECM) fungi that support plant health through increased access to nutrients as well as aiding in stress and pest tolerance. The intimate interaction between fungal hyphae and plant roots results in a new symbiotic "organ" called the ECM root tip. Little is understood concerning the metabolic reprogramming that favors the formation of this hybrid tissue in compatible interactions and what prevents the formation of ECM root tips in incompatible interactions. We show here that the metabolic changes during favorable colonization between the ECM fungus Laccaria bicolor and its compatible host, Populus trichocarpa, are characterized by shifts in aromatic acid, organic acid, and fatty acid metabolism. We demonstrate that this extensive metabolic reprogramming is repressed in incompatible interactions and that more defensive compounds are produced or retained. We also demonstrate that L. bicolor can metabolize a number of secreted defensive compounds and that the degradation of some of these compounds produces immune response metabolites (e.g., salicylic acid from salicin). Therefore, our results suggest that the metabolic responsiveness of plant roots to L. bicolor is a determinant factor in fungus-host interactions.
Collapse
|
118
|
Legué V, Rigal A, Bhalerao RP. Adventitious root formation in tree species: involvement of transcription factors. PHYSIOLOGIA PLANTARUM 2014; 151:192-8. [PMID: 24666319 DOI: 10.1111/ppl.12197] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 05/23/2023]
Abstract
Adventitious rooting is an essential step in the vegetative propagation of economically important horticultural and woody species. Populus has emerged as an experimental model for studying processes that are important in tree growth and development. It is highly useful for molecular genetic analysis of adventitious roots in trees. In this short review, we will highlight the recent progress made in the identification of transcription factors involved in the control of adventitious rooting in woody species. Their regulation will be discussed.
Collapse
Affiliation(s)
- Valérie Legué
- INRA and Université de Lorraine, UMR Interactions Arbres/Micro-organismes 1136, F-54280, Champenoux, France; Clermont Université, Université Blaise-Pascal, UMR 547 PIAF, BP 10448, F-63000, Clermont-Ferrand, France; INRA, UMR 547 PIAF, F-63100, Clermont-Ferrand, France
| | | | | |
Collapse
|
119
|
Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 2014; 9:e98376. [PMID: 24859293 PMCID: PMC4032270 DOI: 10.1371/journal.pone.0098376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruno Vieira
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Teresa Lino-Neto
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Filipa Monteiro
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Center of Statistics and Applications from Lisbon University, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Maria Salomé Pais
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rui Tavares
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Octávio S. Paulo
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
120
|
Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci U S A 2014; 111:8299-304. [PMID: 24847068 DOI: 10.1073/pnas.1322671111] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ectomycorrhizal fungi, such as Laccaria bicolor, support forest growth and sustainability by providing growth-limiting nutrients to their plant host through a mutualistic symbiotic relationship with host roots. We have previously shown that the effector protein MiSSP7 (Mycorrhiza-induced Small Secreted Protein 7) encoded by L. bicolor is necessary for the establishment of symbiosis with host trees, although the mechanistic reasoning behind this role was unknown. We demonstrate here that MiSSP7 interacts with the host protein PtJAZ6, a negative regulator of jasmonic acid (JA)-induced gene regulation in Populus. As with other characterized JASMONATE ZIM-DOMAIN (JAZ) proteins, PtJAZ6 interacts with PtCOI1 in the presence of the JA mimic coronatine, and PtJAZ6 is degraded in plant tissues after JA treatment. The association between MiSSP7 and PtJAZ6 is able to protect PtJAZ6 from this JA-induced degradation. Furthermore, MiSSP7 is able to block--or mitigate--the impact of JA on L. bicolor colonization of host roots. We show that the loss of MiSSP7 production by L. bicolor can be complemented by transgenically varying the transcription of PtJAZ6 or through inhibition of JA-induced gene regulation. We conclude that L. bicolor, in contrast to arbuscular mycorrhizal fungi and biotrophic pathogens, promotes mutualism by blocking JA action through the interaction of MiSSP7 with PtJAZ6.
Collapse
|
121
|
Mauriat M, Petterle A, Bellini C, Moritz T. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:372-84. [PMID: 24547703 DOI: 10.1111/tpj.12478] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 05/18/2023]
Abstract
Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.
Collapse
Affiliation(s)
- Mélanie Mauriat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden; Institut National de la Recherche Agronomique, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612, Cestas Cedex, France
| | | | | | | |
Collapse
|
122
|
Plett JM, Khachane A, Ouassou M, Sundberg B, Kohler A, Martin F. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. THE NEW PHYTOLOGIST 2014; 202:270-286. [PMID: 24383411 DOI: 10.1111/nph.12655] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/18/2013] [Indexed: 05/05/2023]
Abstract
The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus.
Collapse
Affiliation(s)
- Jonathan M Plett
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Amit Khachane
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Malika Ouassou
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
| | - Björn Sundberg
- Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umea, Sweden
| | - Annegret Kohler
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
| | - Francis Martin
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
| |
Collapse
|
123
|
Jaber E, Xiao C, Asiegbu FO. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. PLANTA 2014; 239:717-733. [PMID: 24366684 DOI: 10.1007/s00425-013-2012-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum-Arabidopsis pathosystem as a model for studying forest tree diseases is discussed.
Collapse
Affiliation(s)
- Emad Jaber
- Department of Forest Sciences, University of Helsinki, Box 27, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
124
|
Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 2014; 10:e1003972. [PMID: 24586171 PMCID: PMC3937315 DOI: 10.1371/journal.ppat.1003972] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. Many crop and ornamental plants suffer losses due to bacterial pathogens in the genus Xanthomonas. Pathogen manipulation of host gene expression by injected proteins called TAL effectors is important in many of these diseases. A TAL effector finds its gene target(s) by virtue of structural repeats in the protein that differ one from another at two amino acids that together identify one DNA base. The number of repeats and those amino acids thereby code for the DNA sequence the protein binds. This code allows target prediction and engineering TAL effectors for custom gene activation. By combining genome-wide analysis of gene expression with TAL effector binding site prediction and verification using designer TAL effectors, we identified 19 targets of TAL effectors in bacterial leaf streak of rice, a disease of growing importance worldwide caused by X. oryzae pv. oryzicola. Among these was a sulfate transport gene that plays a major role. Comparison of true vs. false predictions using machine learning yielded a classifier that will streamline TAL effector target identification in the future. Probing the diversity and functions of such plant genes is critical to expand our knowledge of disease and defense mechanisms, and open new avenues for effective disease control.
Collapse
Affiliation(s)
- Raul A. Cernadas
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Erin L. Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - David O. Niño-Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Katherine E. Wilkins
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Timothy Bancroft
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Li Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Clarice L. Schmidt
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Rico Caldo
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Bing Yang
- Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Roger P. Wise
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
125
|
Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 2014. [PMID: 24586171 DOI: 10.1371/journal.ppat.1003972ppathogens-d-13-02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.
Collapse
Affiliation(s)
- Raul A Cernadas
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Erin L Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - David O Niño-Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Katherine E Wilkins
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Timothy Bancroft
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Li Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Clarice L Schmidt
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Rico Caldo
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Bing Yang
- Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Roger P Wise
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa, United States of America
| | - Adam J Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
126
|
Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:639-66. [PMID: 24555710 DOI: 10.1146/annurev-arplant-050213-035645] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.
Collapse
Affiliation(s)
- Catherine Bellini
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE90187 Umeå, Sweden; , ,
| | | | | |
Collapse
|
127
|
Kazan K. Auxin and the integration of environmental signals into plant root development. ANNALS OF BOTANY 2013; 112:1655-65. [PMID: 24136877 PMCID: PMC3838554 DOI: 10.1093/aob/mct229] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. SCOPE This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. CONCLUSIONS The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct (QBP), Brisbane, Queensland 4067, Australia
| |
Collapse
|
128
|
Müller A, Volmer K, Mishra-Knyrim M, Polle A. Growing poplars for research with and without mycorrhizas. FRONTIERS IN PLANT SCIENCE 2013; 4:332. [PMID: 23986772 PMCID: PMC3753594 DOI: 10.3389/fpls.2013.00332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/06/2013] [Indexed: 05/03/2023]
Abstract
During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research have become available. Poplar species occur in different habitats and harbor large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula, and P. euphratica) and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus) as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.
Collapse
Affiliation(s)
| | | | | | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, Georg-August Universität GöttingenGöttingen, Germany
| |
Collapse
|
129
|
Baluška F, Mancuso S. Microorganism and filamentous fungi drive evolution of plant synapses. Front Cell Infect Microbiol 2013; 3:44. [PMID: 23967407 PMCID: PMC3744040 DOI: 10.3389/fcimb.2013.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022] Open
Abstract
In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell–cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.
Collapse
Affiliation(s)
- František Baluška
- IZMB, Department of Plant Cell Biology, University of Bonn Bonn, Germany.
| | | |
Collapse
|
130
|
Arthikala MK, Montiel J, Nava N, Santana O, Sánchez-López R, Cárdenas L, Quinto C. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. PLANT AND CELL PHYSIOLOGY 2013; 54:1391-402. [PMID: 23788647 DOI: 10.1093/pcp/pct089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
131
|
Tarkka MT, Herrmann S, Wubet T, Feldhahn L, Recht S, Kurth F, Mailänder S, Bönn M, Neef M, Angay O, Bacht M, Graf M, Maboreke H, Fleischmann F, Grams TEE, Ruess L, Schädler M, Brandl R, Scheu S, Schrey SD, Grosse I, Buscot F. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2013; 199:529-540. [PMID: 23672230 DOI: 10.1111/nph.12317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/02/2013] [Indexed: 05/09/2023]
Abstract
Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.
Collapse
Affiliation(s)
- Mika T Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany
| | - Sabine Recht
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Florence Kurth
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Sarah Mailänder
- IMIT-Physiological Ecology of Plants, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Markus Bönn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany
| | - Maren Neef
- IMIT-Physiological Ecology of Plants, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Oguzhan Angay
- Section Pathology of Woody Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- TEEG: Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Michael Bacht
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Marcel Graf
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Str. 28, 37073, Göttingen, Germany
| | - Hazel Maboreke
- Ecology Group, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Frank Fleischmann
- Section Pathology of Woody Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Thorsten E E Grams
- TEEG: Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Liliane Ruess
- Ecology Group, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Martin Schädler
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Roland Brandl
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Str. 28, 37073, Göttingen, Germany
| | - Silvia D Schrey
- IMIT-Physiological Ecology of Plants, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| |
Collapse
|
132
|
Gutjahr C, Paszkowski U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:204. [PMID: 23785383 PMCID: PMC3684781 DOI: 10.3389/fpls.2013.00204] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/31/2013] [Indexed: 05/18/2023]
Abstract
In nature, the root systems of most plants develop intimate symbioses with glomeromycotan fungi that assist in the acquisition of mineral nutrients and water through uptake from the soil and direct delivery into the root cortex. Root systems are endowed with a strong, environment-responsive architectural plasticity that also manifests itself during the establishment of arbuscular mycorrhizal (AM) symbioses, predominantly in lateral root proliferation. In this review, we collect evidence for the idea that AM-induced root system remodeling is regulated at several levels: by AM fungal signaling molecules and by changes in plant nutrient status and distribution within the root system.
Collapse
Affiliation(s)
| | - Uta Paszkowski
- Department of Plant Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
133
|
Flores-Monterroso A, Canales J, de la Torre F, Ávila C, Cánovas FM. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction. PLANTA 2013; 237:1637-1650. [PMID: 23543110 DOI: 10.1007/s00425-013-1874-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.
Collapse
Affiliation(s)
- Aranzazu Flores-Monterroso
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | | | | | | | | |
Collapse
|
134
|
Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. PLANT, CELL & ENVIRONMENT 2013; 36:909-19. [PMID: 23145472 DOI: 10.1111/pce.12036] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 05/07/2023]
Abstract
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin-signalling pathways in modulating plant-microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter-species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant-microbe interactions.
Collapse
Affiliation(s)
- Poornima Sukumar
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
135
|
Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CM. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. PLANT PHYSIOLOGY 2013; 162:304-18. [PMID: 23542149 PMCID: PMC3641211 DOI: 10.1104/pp.112.212597] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/29/2013] [Indexed: 05/19/2023]
Abstract
Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of the most abundant genera of the root microbiome. Here, by employing a germ-free experimental system, we demonstrate the ability of selected Pseudomonas spp. strains to promote plant growth and drive developmental plasticity in the roots of Arabidopsis (Arabidopsis thaliana) by inhibiting primary root elongation and promoting lateral root and root hair formation. By studying cell type-specific developmental markers and employing genetic and pharmacological approaches, we demonstrate the crucial role of auxin signaling and transport in rhizobacteria-stimulated changes in the root system architecture of Arabidopsis. We further show that Pseudomonas spp.-elicited alterations in root morphology and rhizobacteria-mediated systemic immunity are mediated by distinct signaling pathways. This study sheds new light on the ability of soil-borne beneficial bacteria to interfere with postembryonic root developmental programs.
Collapse
|
136
|
Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. PLANT PHYSIOLOGY 2013. [PMID: 23542149 DOI: 10.1104/pp.112.0356212597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of the most abundant genera of the root microbiome. Here, by employing a germ-free experimental system, we demonstrate the ability of selected Pseudomonas spp. strains to promote plant growth and drive developmental plasticity in the roots of Arabidopsis (Arabidopsis thaliana) by inhibiting primary root elongation and promoting lateral root and root hair formation. By studying cell type-specific developmental markers and employing genetic and pharmacological approaches, we demonstrate the crucial role of auxin signaling and transport in rhizobacteria-stimulated changes in the root system architecture of Arabidopsis. We further show that Pseudomonas spp.-elicited alterations in root morphology and rhizobacteria-mediated systemic immunity are mediated by distinct signaling pathways. This study sheds new light on the ability of soil-borne beneficial bacteria to interfere with postembryonic root developmental programs.
Collapse
Affiliation(s)
- Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
137
|
Chen Y, Yordanov YS, Ma C, Strauss S, Busov VB. DR5 as a reporter system to study auxin response in Populus. PLANT CELL REPORTS 2013; 32:453-63. [PMID: 23283559 DOI: 10.1007/s00299-012-1378-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Collapse
Affiliation(s)
- Yiru Chen
- Michigan Technological University, School of Forest Research and Environmental Science, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
138
|
Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. Symbiosis and the social network of higher plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:118-27. [PMID: 23246268 DOI: 10.1016/j.pbi.2012.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/22/2023]
Abstract
In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.
Collapse
|
139
|
Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, Bellini C, Busov VB, Martin F, Kohler A, Bhalerao R, Legué V. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. PLANT PHYSIOLOGY 2012; 160:1996-2006. [PMID: 23077242 PMCID: PMC3510126 DOI: 10.1104/pp.112.204453] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/15/2012] [Indexed: 05/18/2023]
Abstract
Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots.
Collapse
Affiliation(s)
- Adeline Rigal
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | - Yordan S. Yordanov
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | - Irene Perrone
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | - Anna Karlberg
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | - Emilie Tisserant
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | - Catherine Bellini
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | - Victor B. Busov
- Institut National de la Recherche Agronomique and Lorraine University, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Lorraine University 1136 Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique-Nancy, 54280 Champenoux, France (A.R., E.T., F.M., A.Ko., V.L.); School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931–1295 (Y.S.Y., V.B.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (A.Ka., R.B.); Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden (I.P., C.B.); and Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech Centre de Versailles-Grignon, 78026 Versailles cedex, France (C.B.)
| | | | | | | | | |
Collapse
|
140
|
Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C, Poulain J, Delaruelle C, Martin F, Rouhier N, Kohler A, Duplessis S. RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter. PLoS One 2012; 7:e44408. [PMID: 22952974 PMCID: PMC3431362 DOI: 10.1371/journal.pone.0044408] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biotroph pathogens establish intimate interactions with their hosts that are conditioned by the successful secretion of effectors in infected tissues and subsequent manipulation of host physiology. The identification of early-expressed pathogen effectors and early-modulated host functions is currently a major goal to understand the molecular basis of biotrophy. Here, we report the 454-pyrosequencing transcriptome analysis of early stages of poplar leaf colonization by the rust fungus Melampsora larici-populina. Among the 841,301 reads considered for analysis, 616,879 and 649 were successfully mapped to Populus trichocarpa and M. larici-populina genome sequences, respectively. From a methodological aspect, these results indicate that this single approach is not appropriate to saturate poplar transcriptome and to follow transcript accumulation of the pathogen. We identified 19 pathogen transcripts encoding early-expressed small-secreted proteins representing candidate effectors of interest for forthcoming studies. Poplar RNA-Seq data were validated by oligoarrays and quantitatively analysed, which revealed a highly stable transcriptome with a single transcript encoding a sulfate transporter (herein named PtSultr3;5, POPTR_0006s16150) showing a dramatic increase upon colonization by either virulent or avirulent M. larici-populina strains. Perspectives connecting host sulfate transport and biotrophic lifestyle are discussed.
Collapse
Affiliation(s)
- Benjamin Petre
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Emmanuelle Morin
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Emilie Tisserant
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Stéphane Hacquard
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | | | - Julie Poulain
- CEA-Genoscope, Centre National de Séquençage, Evry, France
| | - Christine Delaruelle
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Francis Martin
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Nicolas Rouhier
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Annegret Kohler
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Sébastien Duplessis
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
- * E-mail:
| |
Collapse
|
141
|
Heller G, Lundén K, Finlay RD, Asiegbu FO, Elfstrand M. Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation. MYCORRHIZA 2012; 22:271-7. [PMID: 21751039 PMCID: PMC3328683 DOI: 10.1007/s00572-011-0402-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/28/2011] [Indexed: 05/17/2023]
Abstract
The ecology and physiology of ectomycorrhizal (EcM) symbiosis with conifer trees are well documented. In comparison, however, very little is known about the molecular regulation of these associations. In an earlier study, we identified three EcM-regulated Pinus expressed sequence tags (EST), two of which were identified as homologous to the Medicago truncatula nodulin MtN21. The third EST was a homologue to the receptor-like kinase Clavata1. We have characterized the expression patterns of these genes and of auxin- and mycorrhiza-regulated genes after induction with indole-3-butyric acid in Pinus sylvestris and in a time course experiment during ectomycorrhizal initiation with the co-inoculation of 2,3,5-triiodobenzoic acid, an auxin transport inhibitor. Our results suggest that different P. sylvestris nodulin homologues are associated with diverse processes in the root. The results also suggest a potential role of the Clv1-like gene in lateral root initiation by the ectomycorrhizal fungus.
Collapse
Affiliation(s)
- Gregory Heller
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Karl Lundén
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Roger D. Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Frederick O. Asiegbu
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - Malin Elfstrand
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| |
Collapse
|
142
|
Kumar R, Agarwal P, Tyagi AK, Sharma AK. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 2012. [PMID: 22228229 DOI: 10.1007/s00438‐011‐0672‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
In plants, auxin-mediated responses are regulated by diverse proteins. One such class of proteins, i.e. GH3, is involved in the conjugation of IAA to amino acids and provides a negative feedback loop to control auxin homoeostasis. In order to have a better understanding of the mechanism of the auxin action, 15 genes encoding GH3 members were identified using existing EST databases of tomato. Their orthologs were identified from tobacco, potato, N. benthemiana, pepper, and petunia. Phylogenetic analysis of AtGH3, SlGH3, and their Solanaceae orthologs provided insights into various orthologous relationships among these proteins. These genes were found to be responsive to a variety of signals including, phytohormones and environmental stresses. Analysis of AuxRE elements in their promoters showed variability in the sequence as well as number of this element. Up-regulation of only 11 SlGH3 genes, in response to exogenous auxin, suggested possible relationship between the diversity in the sequence and number of AuxRE element with the auxin inducibility. Expression analysis of SlGH3 genes in different vegetative and reproductive tissues/stages suggested limited or no role for most of the SlGH3 genes at the initiation of fruit ripening. However, up-regulation of SlGH3-1 and -2 at the onset of fruit ripening indicates that these genes could have a role in fruit ripening. The present study characterizes GH3 gene family of tomato and its evolutionary relationship with members of this family from other Solanaceae species and Arabidopsis. It could help in the identification of GH3 genes and revelation of their function during vegetative/reproductive development stages from other Solanaceae members.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | | | | | | |
Collapse
|
143
|
Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 2012; 287:221-35. [DOI: 10.1007/s00438-011-0672-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/22/2011] [Indexed: 12/29/2022]
|
144
|
Sasan RK, Bidochka MJ. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. AMERICAN JOURNAL OF BOTANY 2012; 99:101-7. [PMID: 22174335 DOI: 10.3732/ajb.1100136] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY The soil-inhabiting insect-pathogenic fungus Metarhizium robertsii also colonizes plant roots endophytically, thus showing potential as a plant symbiont. Metarhizium robertsii is not randomly distributed in soils but preferentially associates with the plant rhizosphere when applied in agricultural settings. Root surface and endophytic colonization of switchgrass (Panicum virgatum) and haricot beans (Phaseolus vulgaris) by M. robertsii were examined after inoculation with fungal conidia. METHODS We used light and confocal microscopy to ascertain the plant endophytic association with GFP-expressing M. robertsii. Root lengths, root hair density, and lateral roots emerged were also observed. KEY RESULTS Initially, M. robertsii conidia adhered to, germinated on, and colonized roots. Furthermore, plant roots treated with Metarhizium grew faster and the density of plant root hairs increased when compared with control plants. The onset of plant root hair proliferation was initiated before germination of M. robertsii on the root (within 1-2 d). Plants inoculated with M. robertsii ΔMAD2 (plant adhesin gene) took significantly longer to show root hair proliferation than the wild type. Cell free extracts of M. robertsii did not stimulate root hair proliferation. Longer-term (60 d) associations showed that M. robertsii endophytically colonized cortical cells within bean roots. Metarhizium appeared as a mycelial aggregate within root cortical cells as well as between the intercellular spaces with no apparent damage to the plant. CONCLUSIONS These results suggest that M. robertsii is not only rhizosphere competent but also displays a beneficial endophytic association with plant roots that results in the proliferation of root hairs.
Collapse
Affiliation(s)
- Ramanpreet K Sasan
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
145
|
Felten J, Martin F, Legué V. Signalling in Ectomycorrhizal Symbiosis. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
146
|
Vincent D, Kohler A, Claverol S, Solier E, Joets J, Gibon J, Lebrun MH, Plomion C, Martin F. Secretome of the Free-living Mycelium from the Ectomycorrhizal Basidiomycete Laccaria bicolor. J Proteome Res 2011; 11:157-71. [DOI: 10.1021/pr200895f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Annegret Kohler
- INRA, UMR1136 Interactions Arbres/Micro-Organismes, Nancy, France
| | | | - Emilie Solier
- Plate-forme Protéomique, Université Bordeaux 2, Bordeaux, France
| | - Johann Joets
- UMR Génétique Végétale du Moulon, Gif-sur-Yvette, France
| | - Julien Gibon
- INRA, UMR1136 Interactions Arbres/Micro-Organismes, Nancy, France
| | | | | | - Francis Martin
- INRA, UMR1136 Interactions Arbres/Micro-Organismes, Nancy, France
| |
Collapse
|
147
|
Okrent RA, Wildermuth MC. Evolutionary history of the GH3 family of acyl adenylases in rosids. PLANT MOLECULAR BIOLOGY 2011; 76:489-505. [PMID: 21594748 DOI: 10.1007/s11103-011-9776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/10/2011] [Indexed: 05/30/2023]
Abstract
GH3 amino acid conjugases have been identified in many plant and bacterial species. The evolution of GH3 genes in plant species is explored using the sequenced rosids Arabidopsis, papaya, poplar, and grape. Analysis of the sequenced non-rosid eudicots monkey flower and columbine, the monocots maize and rice, as well as spikemoss and moss is included to provide further insight into the origin of GH3 clades. Comparison of co-linear genes in regions surrounding GH3 genes between species helps reconstruct the evolutionary history of the family. Combining analysis of synteny with phylogenetics, gene expression and functional data redefines the Group III GH3 genes, of which AtGH3.12/PBS3, a regulator of stress-induced salicylic acid metabolism and plant defense, is a member. Contrary to previous reports that restrict PBS3 to Arabidopsis and its close relatives, PBS3 syntelogs are identified in poplar, grape, columbine, maize and rice suggesting descent from a common ancestral chromosome dating to before the eudicot/monocot split. In addition, the clade containing PBS3 has undergone a unique expansion in Arabidopsis, with expression patterns for these genes consistent with specialized and evolving stress-responsive functions.
Collapse
Affiliation(s)
- Rachel A Okrent
- Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720, USA
| | | |
Collapse
|
148
|
Wyrebek M, Huber C, Sasan RK, Bidochka MJ. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. MICROBIOLOGY-SGM 2011; 157:2904-2911. [PMID: 21778205 DOI: 10.1099/mic.0.051102-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here we tested the hypothesis that species of the soil-inhabiting insect-pathogenic fungus Metarhizium are not randomly distributed in soils but show plant-rhizosphere-specific associations. We isolated Metarhizium from plant roots at two sites in Ontario, Canada, sequenced the 5' EF-1α gene to discern Metarhizium species, and developed an RFLP test for rapid species identification. Results indicated a non-random association of three Metarhizium species (Metarhizium robertsii, Metarhizium brunneum and Metarhizium guizhouense) with the rhizosphere of certain types of plant species (identified to species and categorized as grasses, wildflowers, shrubs and trees). M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense. Supporting this, in vitro experiments showed that M. robertsii conidia germinated significantly better in Panicum virgatum (switchgrass) root exudate than did M. brunneum or M. guizhouense. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, predominantly Acer saccharum (sugar maple), while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types.
Collapse
Affiliation(s)
- Michael Wyrebek
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON L2S 3A1, Canada
| | - Cristina Huber
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON L2S 3A1, Canada
| | - Ramanpreet Kaur Sasan
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON L2S 3A1, Canada
| |
Collapse
|
149
|
Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V, Brun A, Tyler BM, Pardo AG, Martin F. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 2011; 21:1197-203. [PMID: 21757352 DOI: 10.1016/j.cub.2011.05.033] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/05/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Soil-borne mutualistic fungi, such as the ectomycorrhizal fungi, have helped shape forest communities worldwide over the last 180 million years through a mutualistic relationship with tree roots in which the fungal partner provides a large array of nutrients to the plant host in return for photosynthetically derived sugars. This exchange is essential for continued growth and productivity of forest trees, especially in nutrient-poor soils. To date, the signals from the two partners that mediate this symbiosis have remained uncharacterized. Here we demonstrate that MYCORRHIZAL iNDUCED SMALL SECRETED PROTEIN 7 (MiSSP7), the most highly symbiosis-upregulated gene from the ectomycorrhizal fungus Laccaria bicolor, encodes an effector protein indispensible for the establishment of mutualism. MiSSP7 is secreted by the fungus upon receipt of diffusible signals from plant roots, imported into the plant cell via phosphatidylinositol 3-phosphate-mediated endocytosis, and targeted to the plant nucleus where it alters the transcriptome of the plant cell. L. bicolor transformants with reduced expression of MiSSP7 do not enter into symbiosis with poplar roots. MiSSP7 resembles effectors of pathogenic fungi, nematodes, and bacteria that are similarly targeted to the plant nucleus to promote colonization of the plant tissues and thus can be considered a mutualism effector.
Collapse
Affiliation(s)
- Jonathan M Plett
- UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, Centre INRA de Nancy, 54280 Champenoux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, Aitken EAB, Schenk PM, Manners JM, Kazan K. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:733-48. [PMID: 21281113 DOI: 10.1094/mpmi-08-10-0194] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.
Collapse
Affiliation(s)
- Brendan N Kidd
- Commonwealth Scientific and Industrial Research Organization Plant Industy, Queensland Bioscience Precint, St Lucia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|