101
|
Bartetzko MP, Pfrengle F. Automated Glycan Assembly of Plant Oligosaccharides and Their Application in Cell-Wall Biology. Chembiochem 2019; 20:877-885. [PMID: 30427113 DOI: 10.1002/cbic.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/12/2022]
Abstract
The plant cell wall provides the richest available resource of fermentable carbohydrates and biobased materials. The main component of plant cell walls is cellulose, which is the most abundant biomolecule on earth. Apart from cellulose, which is constructed from relatively simple β-1,4-glucan chains, plant cell walls also contain structurally more complex heteropolysaccharides (hemicellulose and pectin), as well as lignin and cell-wall proteins. A detailed understanding of the molecular structures, functions, and biosyntheses of cell-wall components is required to further promote their industrial use. Plant cell-wall research is, to a large degree, hampered by a lsack of available well-defined oligosaccharide samples that represent the structural features of cell-wall glycans. One technique to access these oligosaccharides is automated glycan assembly; a technique in which monosaccharide building blocks are, similarly to automated peptide and oligonucleotide chemistry, successively added to a linker-functionalized resin in a fully automated manner. Herein, recent research into the automated glycan assembly of different classes of cell-wall glycans used as molecular tools for cell-wall biology is discussed. More than 60 synthetic oligosaccharides were prepared and printed as microarrays for screening monoclonal antibodies that recognize plant cell-wall polysaccharides. The synthesized oligosaccharides have also been used to investigate glycosyltransferases and glycoside hydrolases, which are involved in synthesis and degradation of plant cell walls, as well as for the analysis of cell-wall-remodeling enzymes.
Collapse
Affiliation(s)
- Max P Bartetzko
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
102
|
Quero G, Gutiérrez L, Monteverde E, Blanco P, Pérez de Vida F, Rosas J, Fernández S, Garaycochea S, McCouch S, Berberian N, Simondi S, Bonnecarrère V. Genome-Wide Association Study Using Historical Breeding Populations Discovers Genomic Regions Involved in High-Quality Rice. THE PLANT GENOME 2018; 11:170076. [PMID: 30512035 DOI: 10.3835/plantgenome2017.08.0076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice ( L.) is one of the most important staple food crops in the world; however, there has recently been a shift in consumer demand for higher grain quality. Therefore, understanding the genetic architecture of grain quality has become a key objective of rice breeding programs. Genome-wide association studies (GWAS) using large diversity panels have successfully identified genomic regions associated with complex traits in diverse crop species. Our main objective was to identify genomic regions associated with grain quality and to identify and characterize favorable haplotypes for selection. We used two locally adapted rice breeding populations and historical phenotypic data for three rice quality traits: yield after milling, percentage of head rice recovery, and percentage of chalky grain. We detected 22 putative quantitative trait loci (QTL) in the same genomic regions as starch synthesis, starch metabolism, and cell wall synthesis-related genes are found. Additionally, we found a genomic region on chromosome 6 in the population that was associated with all quality traits and we identified favorable haplotypes. Furthermore, this region is linked to the gene that codes for a starch branching enzyme I, which is implicated in starch granule formation. In , we also found two putative QTL linked to , , and . Our study provides an insight into the genetic basis of rice grain chalkiness, yield after milling, and head rice, identifying favorable haplotypes and molecular markers for selection in breeding programs.
Collapse
|
103
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
104
|
Tomazini A, Lal S, Munir R, Stott M, Henrissat B, Polikarpov I, Sparling R, Levin DB. Analysis of carbohydrate-active enzymes in Thermogemmatispora sp. strain T81 reveals carbohydrate degradation ability. Can J Microbiol 2018; 64:992-1003. [PMID: 30338698 DOI: 10.1139/cjm-2018-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylum Chloroflexi is phylogenetically diverse and is a deeply branching lineage of bacteria that express a broad spectrum of physiological and metabolic capabilities. Members of the order Ktedonobacteriales, including the families Ktedonobacteriaceae, Thermosporotrichaceae, and Thermogemmatisporaceae, all have flexible aerobic metabolisms capable of utilizing a wide range of carbohydrates. A number of species within these families are considered cellulolytic and are capable of using cellulose as a sole carbon and energy source. In contrast, Ktedonobacter racemifer, the type strain of the order, does not appear to possess this cellulolytic phenotype. In this study, we confirmed the ability of Thermogemmatispora sp. strain T81 to hydrolyze cellulose, determined the whole-genome sequence of Thermogemmatispora sp. T81, and using comparative bioinformatics analyses, identified genes encoding putative carbohydrate-active enzymes (CAZymes) in the Thermogemmatispora sp. T81, Thermogemmatispora onikobensis, and Ktedonobacter racemifer genomes. Analyses of the Thermogemmatispora sp. T81 genome identified 64 CAZyme gene sequences belonging to 57 glycoside hydrolase families. The genome of Thermogemmatispora sp. T81 encodes 19 genes for putative extracellular CAZymes, similar to the number of putative extracellular CAZymes identified in T. onikobensis (17) and K. racemifer (17), despite K. racemifer not possessing a cellulolytic phenotype. These results suggest that these members of the order Ktedonobacteriales may use a broader range of carbohydrate polymers than currently described.
Collapse
Affiliation(s)
- Atilio Tomazini
- a São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil
| | - Sadhana Lal
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Riffat Munir
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Matthew Stott
- c School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Bernard Henrissat
- d Architecture et fonction des macromolécules biologiques (AFMB), CNRS-INRA, Aix-Marseille Université, Marseille, France USC1408
| | - Igor Polikarpov
- a São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil
| | - Richard Sparling
- e Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David B Levin
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
105
|
Jang S, Li HY. Overexpression of OsAP2 and OsWRKY24 in Arabidopsis results in reduction of plant size. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:273-279. [PMID: 31819733 PMCID: PMC6879370 DOI: 10.5511/plantbiotechnology.18.0508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 05/14/2023]
Abstract
Recently, two rice genes, OsAPETALA2 (OsAP2) and OsWRKY24 have been reported to be positive regulators involved in increased lamina inclination and grain size through cell elongation. Here, we found that the two genes have tightly linked expression patterns and functional convergence in rice, and are also likely to play an opposite role in Arabidopsis. Overexpression of the two rice transcription factors in Arabidopsis caused smaller plant size with reduced cell size, and the expression of a series of genes encoding expansins and xyloglucan endotransglucosylase/hydrolases (XTHs) involved in cell elongation was reduced. However, transgenic Arabidopsis expressing OsWRKY24-SRDX as a synthetic chimeric repressor displayed indistinguishable phenotypes from wild-type plants. Moreover, the subcellular localization pattern of OsWRKY24 in Arabidopsis was different from that in rice. Thus, we demonstrate an example of transcription factors from one species playing distinct roles in different plant species.
Collapse
Affiliation(s)
- Seonghoe Jang
- Biotechnology Center in Southern Taiwan, No. 59 Siraya Blvd, Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
- Institute of Tropical Plant Science, National Cheng Kung University, No. 1 University Road, East Dist., Tainan 70101, Taiwan
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan, No. 59 Siraya Blvd, Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
106
|
Behar H, Graham SW, Brumer H. Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1114-1128. [PMID: 29932263 DOI: 10.1111/tpj.14004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) are central to the biosynthesis and modification of the plant cell wall. An ancient clade of bifunctional plant endo-glucanases (EG16 members) was recently revealed and proposed to represent a transitional group uniting plant xyloglucan endo-transglycosylase/hydrolase (XTH) gene products and bacterial mixed-linkage endo-glucanases in the phylogeny of glycoside hydrolase family 16 (GH16). To gain broader insights into the distribution and frequency of EG16 and other GH16 members in plants, the PHYTOZOME, PLAZA, NCBI and 1000 PLANTS databases were mined to build a comprehensive census among 1289 species, spanning the broad phylogenetic diversity of multiple algae through recent plant lineages. EG16, newly identified EG16-2 and XTH members appeared first in the green algae. Extant EG16 members represent the early adoption of the β-jellyroll protein scaffold from a bacterial or early-lineage eukaryotic GH16 gene, which is characterized by loop deletion and extension of the N terminus (in EG16-2 members) or C terminus (in XTH members). Maximum-likelihood phylogenetic analysis of EG16 and EG16-2 sequences are directly concordant with contemporary estimates of plant evolution. The lack of expansion of EG16 members into multi-gene families across green plants may point to a core metabolic role under tight control, in contrast to XTH genes that have undergone the extensive duplications typical of cell-wall CAZymes. The present census will underpin future studies to elucidate the physiological role of EG16 members across plant species, and serve as roadmap for delineating the closely related EG16 and XTH gene products in bioinformatic analyses of emerging genomes and transcriptomes.
Collapse
Affiliation(s)
- Hila Behar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, V6T 1Z4, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, BC, Canada
| | - Sean W Graham
- Department of Botany, University of British Columbia, 3200-6270 University Blvd, Vancouver, V6H 1Z4, BC, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, V6T 1Z4, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, BC, Canada
- Department of Botany, University of British Columbia, 3200-6270 University Blvd, Vancouver, V6H 1Z4, BC, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
107
|
Van de Wouwer D, Boerjan W, Vanholme B. Plant cell wall sugars: sweeteners for a bio-based economy. PHYSIOLOGIA PLANTARUM 2018; 164:27-44. [PMID: 29430656 DOI: 10.1111/ppl.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development.
Collapse
Affiliation(s)
- Dorien Van de Wouwer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| |
Collapse
|
108
|
Shtein I, Bar-On B, Popper ZA. Plant and algal structure: from cell walls to biomechanical function. PHYSIOLOGIA PLANTARUM 2018; 164:56-66. [PMID: 29572853 DOI: 10.1111/ppl.12727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Plant and algal cell walls are complex biomaterials composed of stiff cellulose microfibrils embedded in a soft matrix of polysaccharides, proteins and phenolic compounds. Cell wall composition differs between taxonomic groups and different tissue types (or even at the sub-cellular level) within a plant enabling specific biomechanical properties important for cell/tissue function. Moreover, cell wall composition changes may be induced in response to environmental conditions. Plant structure, habit, morphology and internal anatomy are also dependent on the taxonomic group as well as abiotic and biotic factors. This review aims to examine the complex and incompletely understood interactions of cell wall composition, plant form and biomechanical function.
Collapse
Affiliation(s)
- Ilana Shtein
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Eastern Region Research and Development Center, Ariel, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Zoë A Popper
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
109
|
Langer SE, Oviedo NC, Marina M, Burgos JL, Martínez GA, Civello PM, Villarreal NM. Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:334-344. [PMID: 30053739 DOI: 10.1016/j.plaphy.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Modification of cell wall polymers composition and structure is one of the main factors contributing to textural changes during strawberry (Fragaria x ananassa, Duch.) fruit ripening and storage. The present study aimed to provide new data to understand the molecular basis underlying the postharvest preservation of strawberry cell wall structure by heat treatment. Ripe fruit (cv. Aroma) were heat-treated in air oven (3 h at 45 °C) and then stored 8 days at 4 °C + 2 days at 20 °C, while maintaining a set of non-treated fruit as controls. The effect of heat stress on the expression pattern of key genes controlling strawberry cell wall metabolism, as well as some enzymatic activities was investigated. The expression of genes proved to be relevant for pectin disassembly and fruit softening process (FaPG1, FaPLB, FaPLC, FaAra1, FaβGal4) were down-regulated by heat treatment, while the expression of genes being involved in the reinforcement of cell wall as pectin-methylesterase (FaPME1) and xyloglucan endo-transglycosilase (FaXTH1) was up-regulated. Total cell wall amount as well as cellulose, hemicellulose, neutral sugars and ionically and covalently bounded pectins were higher in heat-stressed fruit compared to controls, which might be related to higher firmness values. Interestingly, heat stress was able to arrest the in vitro cell wall swelling process during postharvest fruit ripening, suggesting a preservation of cell wall structure, which was in agreement with a lower growth rate of Botrytis cinerea on plates containing cell walls from heat-stressed fruit when compared to controls.
Collapse
Affiliation(s)
- Silvia E Langer
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - Natalia C Oviedo
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - María Marina
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - José Luis Burgos
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - Gustavo A Martínez
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 N° 495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| | - Pedro M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 N° 495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| | - Natalia M Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| |
Collapse
|
110
|
Del-Bem LE. Xyloglucan evolution and the terrestrialization of green plants. THE NEW PHYTOLOGIST 2018; 219:1150-1153. [PMID: 29851097 DOI: 10.1111/nph.15191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xyloglucan (XyG) is the major noncellulosic nonpectic matrix polysaccharide in cell walls of most land plants. Initially thought to be restricted to land plants, the last decade has seen the detection of XyG and the discovery of synthesis and modification/degradation genes in charophycean green algae (CGA). Recently, a totally new function of XyG was discovered as a potent soil aggregator released by roots and rhizoids of all major groups of land plants. In this Viewpoint, I show the presence of a complex XyG genetic machinery in most CGA groups. I discuss the context of XyG evolution in light of the terrestrialization of early CGA that gave rise to embryophytes and its possible role in early soil formation.
Collapse
Affiliation(s)
- Luiz-Eduardo Del-Bem
- Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Av. Reitor Miguel Calmon, s/n - Vale do Canela, 40110-100, Salvador-BA, Brazil
| |
Collapse
|
111
|
Mangano S, Martínez Pacheco J, Marino-Buslje C, Estevez JM. How Does pH Fit in with Oscillating Polar Growth? TRENDS IN PLANT SCIENCE 2018; 23:479-489. [PMID: 29605100 DOI: 10.1016/j.tplants.2018.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 05/22/2023]
Abstract
Polar growth in root hairs and pollen tubes is an excellent model for investigating plant cell size regulation. While linear plant growth is historically explained by the acid growth theory, which considers that auxin triggers apoplastic acidification by activating plasma membrane P-type H+-ATPases (AHAs) along with cell wall relaxation over long periods, the apoplastic pH (apopH) regulatory mechanisms are unknown for polar growth. Polar growth is a fast process mediated by rapid oscillations that repeat every ∼20-40s. In this review, we explore a reactive oxygen species (ROS)-dependent mechanism that could generate oscillating apopH gradients in a coordinated manner with growth and Ca2+ oscillations. We propose possible mechanisms by which apopH oscillations are coordinated with polar growth together with ROS and Ca2+ waves.
Collapse
Affiliation(s)
- Silvina Mangano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; These authors contributed equally to this work
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; Department of Genetics and Phytopathology, Biological Research Division, Tobacco Research Institute, Carretera Tumbadero, 8 1/2 km, San Antonio de los Baños, Artemisa, Cuba; These authors contributed equally to this work
| | - Cristina Marino-Buslje
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina.
| |
Collapse
|
112
|
Lee YK, Rhee JY, Lee SH, Chung GC, Park SJ, Segami S, Maeshima M, Choi G. Functionally redundant LNG3 and LNG4 genes regulate turgor-driven polar cell elongation through activation of XTH17 and XTH24. PLANT MOLECULAR BIOLOGY 2018; 97:23-36. [PMID: 29616436 DOI: 10.1007/s11103-018-0722-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/25/2018] [Indexed: 05/03/2023]
Abstract
In this work, we genetically characterized the function of Arabidopsis thaliana, LONGIFOLIA (LNG1), LNG2, LNG3, LNG4, their contribution to regulate vegetative architecture in plant. We used molecular and biophysical approaches to elucidate a gene function that regulates vegetative architecture, as revealed by the leaf phenotype and later effects on flowering patterns in Arabidopsis loss-of-function mutants. As a result, LNG genes play an important role in polar cell elongation by turgor pressure controlling the activation of XTH17 and XTH24. Plant vegetative architecture is related to important traits that later influence the floral architecture involved in seed production. Leaf morphology is the primary key trait to compose plant vegetative architecture. However, molecular mechanism on leaf shape determination is not fully understood even in the model plant A. thaliana. We previously showed that LONGIFOLIA (LNG1) and LONGIFOLIA2 (LNG2) genes regulate leaf morphology by promoting longitudinal cell elongation in Arabidopsis. In this study, we further characterized two homologs of LNG1, LNG3, and LNG4, using genetic, biophysical, and molecular approaches. Single loss-of-function mutants, lng3 and lng4, do not show any phenotypic difference, but mutants of lng quadruple (lngq), and lng1/2/3 and lng1/2/4 triples, display reduced leaf length, compared to wild type. Using the paradermal analysis, we conclude that the reduced leaf size of lngq is due to decreased cell elongation in the direction of longitudinal leaf growth, and not decreased cell proliferation. This data indicate that LNG1/2/3/4 are functionally redundant, and are involved in polar cell elongation in Arabidopsis leaf. Using a biophysical approach, we show that the LNGs contribute to maintain high turgor pressure, thus regulating turgor pressure-dependent polar cell elongation. In addition, gene expression analysis showed that LNGs positively regulate the expression of the cell wall modifying enzyme encoded by a multi-gene family, xyloglucan endotransglucosylase/hydrolase (XTH). Taking all of these together, we propose that LNG related genes play an important role in polar cell elongation by changing turgor pressure and controlling the activation of XTH17 and XTH24.
Collapse
Affiliation(s)
- Young Koung Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea.
- Division of Biological Sciences and Institute for Basic Science/Division of Biological Sciences and Research Institute for Glycoscience, Wonkwang University, Iksan, 54538, South Korea.
| | - Ji Ye Rhee
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Seong Hee Lee
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Gap Chae Chung
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Soon Ju Park
- Division of Biological Sciences and Institute for Basic Science/Division of Biological Sciences and Research Institute for Glycoscience, Wonkwang University, Iksan, 54538, South Korea
| | - Shoji Segami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masayohi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
113
|
Majda M, Robert S. The Role of Auxin in Cell Wall Expansion. Int J Mol Sci 2018; 19:ijms19040951. [PMID: 29565829 PMCID: PMC5979272 DOI: 10.3390/ijms19040951] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.
Collapse
Affiliation(s)
- Mateusz Majda
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
114
|
Ruprecht C, Dallabernardina P, Smith PJ, Urbanowicz BR, Pfrengle F. Analyzing Xyloglucan Endotransglycosylases by Incorporating Synthetic Oligosaccharides into Plant Cell Walls. Chembiochem 2018; 19:793-798. [PMID: 29384258 DOI: 10.1002/cbic.201700638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/29/2022]
Abstract
The plant cell wall is a cellular exoskeleton consisting predominantly of a complex polysaccharide network that defines the shape of cells. During growth, this network can be loosened through the action of xyloglucan endotransglycosylases (XETs), glycoside hydrolases that "cut and paste" xyloglucan polysaccharides through a transglycosylation process. We have analyzed cohorts of XETs in different plant species to evaluate the substrate specificities of xyloglucan acceptors by using a set of synthetic oligosaccharides obtained by automated glycan assembly. The ability of XETs to incorporate the oligosaccharides into polysaccharides printed as microarrays and into stem sections of Arabidopsis thaliana, beans, and peas was assessed. We found that single xylose substitutions are sufficient for transfer, and xylosylation of the terminal glucose residue is not required by XETs, independent of plant species. To obtain information on the potential xylosylation pattern of the natural acceptor of XETs, that is, the nonreducing end of xyloglucan, we further tested the activity of xyloglucan xylosyl transferase (XXT) 2 on the synthetic xyloglucan oligosaccharides. These data shed light on inconsistencies between previous studies towards determining the acceptor substrate specificities of XETs and have important implications for further understanding plant cell wall polysaccharide synthesis and remodeling.
Collapse
Affiliation(s)
- Colin Ruprecht
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195, Berlin, Germany
| | - Pietro Dallabernardina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195, Berlin, Germany
| | - Peter J Smith
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
115
|
Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8:2789. [PMID: 29434336 PMCID: PMC5809607 DOI: 10.1038/s41598-018-21268-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.
Collapse
Affiliation(s)
- Yifeng Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China.,Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Qiaoyu Tang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Meiru Wu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Di Mou
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Hui Liu
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chi Zhang
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Li Ding
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
116
|
Lampugnani ER, Khan GA, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci 2018; 131:131/2/jcs207373. [PMID: 29378834 DOI: 10.1242/jcs.207373] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Marc Somssich
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| |
Collapse
|
117
|
Xu Y, Huang B. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 2018; 19:70. [PMID: 29357827 PMCID: PMC5778672 DOI: 10.1186/s12864-018-4437-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background Heat stress is the primary abiotic stress limiting growth of cool-season grass species. The objective of this study was to determine molecular factors and metabolic pathways associated with superior heat tolerance in thermal bentgrass (Agrostis scabra) by comparative analysis of transcriptomic profiles with its co-generic heat-sensitive species creeping bentgrass (A. stolonifera). Results Transcriptomic profiling by RNA-seq in both heat-sensitive A. stolonifera (cv. ‘Penncross’) and heat-tolerant A. scabra exposed to heat stress found 1393 (675 up- and 718 down-regulated) and 1508 (777 up- and 731 down-regulated) differentially-expressed genes, respectively. The superior heat tolerance in A. scabra was associated with more up-regulation of genes in oxidative protection, proline biosynthesis, lipid hydrolysis, hemicellulose and lignin biosynthesis, compared to heat-sensitive A. stolonifera. Several transcriptional factors (TFs), such as high mobility group B protein 7 (HMGB7), dehydration-responsive element-binding factor 1a (DREB1a), multiprotein-bridging factor 1c (MBF1c), CCCH-domain containing protein 47 (CCCH47), were also found to be up-regulated in A. scabra under heat stress. Conclusions The unique TFs and genes identified in thermal A. scabra could be potential candidate genes for genetic modification of cultivated grass species for improving heat tolerance, and the associated pathways could contribute to the transcriptional regulation for superior heat tolerance in bentgrass species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4437-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
118
|
Jain N, Attia MA, Offen WA, Davies GJ, Brumer H. Synthesis and application of a highly branched, mechanism-based 2-deoxy-2-fluoro-oligosaccharide inhibitor of endo-xyloglucanases. Org Biomol Chem 2018; 16:8732-8741. [DOI: 10.1039/c8ob02250j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xyloglucan (XyG) is a complex polysaccharide that is ubiquitous and often abundant in the cell walls of terrestrial plants.
Collapse
Affiliation(s)
- Namrata Jain
- Michael Smith Laboratories
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Mohamed A. Attia
- Michael Smith Laboratories
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | | | | | - Harry Brumer
- Michael Smith Laboratories
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
119
|
Affiliation(s)
- R. Rashmi
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - K. R. Siddalingamurthy
- Department of Biochemistry, Jnanabharathi Campus, Bangalore University, Bengaluru, India
| |
Collapse
|
120
|
Opazo MC, Lizana R, Stappung Y, Davis TM, Herrera R, Moya-León MA. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. BMC Genomics 2017; 18:852. [PMID: 29115918 PMCID: PMC5678779 DOI: 10.1186/s12864-017-4255-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Fragaria vesca or 'woodland strawberry' has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit. RESULTS The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an increasing expression pattern as the fruit ripens. CONCLUSION A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall degrading enzymes.
Collapse
Affiliation(s)
- María Cecilia Opazo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Present address: Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Lizana
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Yazmina Stappung
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Thomas M Davis
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Alejandra Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
| |
Collapse
|
121
|
Videcoq P, Barbacci A, Assor C, Magnenet V, Arnould O, Le Gall S, Lahaye M. Examining the contribution of cell wall polysaccharides to the mechanical properties of apple parenchyma tissue using exogenous enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5137-5146. [PMID: 29036637 PMCID: PMC5853499 DOI: 10.1093/jxb/erx329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The viscoelastic mechanical properties of water-rich plant tissues are fundamental for many aspects of organ physiology and plant functioning. These properties are determined partly by the water in cellular vacuole and partly by the mechanical properties of the cell wall, the latter varying according to the composition and organization of its polysaccharides. In this study, relationships between the viscoelastic properties of apple cortex parenchyma tissue and cell wall pectin, hemicelluloses, and cellulose structures were studied by infusing the tissue with selected sets of purified enzymes in a controlled osmoticum. The results showed that tissue elasticity and viscosity were related, and controlled to variable extents by all the targeted polysaccharides. Among them, pectic homogalacturonan domains, crystalline cellulose, and fucosylated xyloglucan were revealed as being of prime importance in determining the viscoelastic mechanical properties of apple cortex tissue.
Collapse
Affiliation(s)
- Pauline Videcoq
- INRA, UR1268 Biopolymères Interactions et Assemblages, Nantes, France
| | - Adelin Barbacci
- INRA, UR1268 Biopolymères Interactions et Assemblages, Nantes, France
- Correspondence: or
| | - Carole Assor
- INRA, UR1268 Biopolymères Interactions et Assemblages, Nantes, France
- Université de Montpellier, LMGC, CNRS, Montpellier, France
| | - Vincent Magnenet
- Université de Strasbourg, UMR 7357 Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), CNRS, Illkirch, France
| | | | - Sophie Le Gall
- INRA, UR1268 Biopolymères Interactions et Assemblages, Nantes, France
| | - Marc Lahaye
- INRA, UR1268 Biopolymères Interactions et Assemblages, Nantes, France
- Correspondence: or
| |
Collapse
|
122
|
Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bonomo G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML. Changes in Gene Expression in Space and Time Orchestrate Environmentally Mediated Shaping of Root Architecture. THE PLANT CELL 2017; 29:2393-2412. [PMID: 28893852 PMCID: PMC5774560 DOI: 10.1105/tpc.16.00961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different cell types, is highly dynamic, and underpins root plasticity. To determine to what extent the environmental regulation of lateral root development is a product of cell-type preferential activities, we tracked transcriptomic responses to two different treatments that both change root development in Arabidopsis thaliana at an unprecedented level of temporal detail. We found that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction, we found that common transcriptional modules often regulate the same gene families but control different individual members of these families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular function; rather, it is a consequence of spatial location, expression timing, and environmental responsiveness.
Collapse
Affiliation(s)
- Liam Walker
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Clare Boddington
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Dafyd Jenkins
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Ying Wang
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Jesper T Grønlund
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jo Hulsmans
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Sanjeev Kumar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dhaval Patel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan D Moore
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Anthony Carter
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Giovanni Bonomo
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - David S Hersh
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Nigel J Burroughs
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
- Warwick Mathematics Institute, University of Warwick, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
123
|
Méndez-Yañez Á, Beltrán D, Campano-Romero C, Molinett S, Herrera R, Moya-León MA, Morales-Quintana L. Glycosylation is important for FcXTH1 activity as judged by its structural and biochemical characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:200-210. [PMID: 28898745 DOI: 10.1016/j.plaphy.2017.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Xyloglucan endotransglycosylase/hydrolases (XTH) may have endotransglycosylase (XET) and/or hydrolase (XEH) activities. Previous studies suggest that XTHs might play a key role in ripening of Fragaria chiloensis fruit as FcXTH1 transcripts increase as fruit softens. FcXTH1 protein sequence contains a conserved N-glycosylation site adjacent to catalytic residues. The FcXTH1 structure was built through comparative modeling methodology, the structure displays a β-jellyroll-type folding with a curvature generated by eight antiparallel β-sheets that holds the catalytic motif that is oriented towards the central cavity of the protein. Through Molecular Dynamic Simulations (MDS) analyses the protein-ligand interactions of FcXTH1 were explored, finding a better interaction with xyloglucans than cellulose. Nevertheless, the stability of the protein-ligand complex depends on the glycosylation state of FcXTH1: better energy interactions were determined for the glycosylated protein. As a complement, the molecular cloning and heterologous expression of FcXTH1 in Pichia pastoris was performed, and the recombinant protein was active and displayed strict XET activity. A KM value of 17.0 μM was determined for xyloglucan oligomer. The deglycosylation of FcXTH1 by PNGase-F treatment affects its biochemical properties (increase KM and reduce kcat/KM ratio) and reduces its stability. As a conclusion, glycosylation of FcXTH1 is important for its biological function.
Collapse
Affiliation(s)
- Ángela Méndez-Yañez
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dina Beltrán
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Constanza Campano-Romero
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Sebastián Molinett
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Raúl Herrera
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - María Alejandra Moya-León
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Luis Morales-Quintana
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
124
|
Chabi M, Goulas E, Leclercq CC, de Waele I, Rihouey C, Cenci U, Day A, Blervacq AS, Neutelings G, Duponchel L, Lerouge P, Hausman JF, Renaut J, Hawkins S. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax. Mol Cell Proteomics 2017; 16:1634-1651. [PMID: 28706005 PMCID: PMC5587863 DOI: 10.1074/mcp.m116.063727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes.
Collapse
Affiliation(s)
- Malika Chabi
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Estelle Goulas
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Celine C Leclercq
- §Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Isabelle de Waele
- **Université Lille, CNRS, UMR 8516, Laboratoire de Spectrochimie Infrarouge et Raman, F 59655 Villeneuve d'Ascq, France
| | - Christophe Rihouey
- ‖Laboratoire Polymère Biopolymère Surface, UMR6270 CNRS, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont-Saint-Aignan, France
| | - Ugo Cenci
- ‡‡Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics Dalhousie University, Halifax, Canada
| | - Arnaud Day
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Anne-Sophie Blervacq
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Godfrey Neutelings
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Ludovic Duponchel
- **Université Lille, CNRS, UMR 8516, Laboratoire de Spectrochimie Infrarouge et Raman, F 59655 Villeneuve d'Ascq, France
| | - Patrice Lerouge
- ¶Laboratoire Glyco-MEV EA 4358, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont-Saint-Aignan, France
| | - Jean-François Hausman
- §Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Jenny Renaut
- §Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Simon Hawkins
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France;
| |
Collapse
|
125
|
Goulao LF, Fernandes JC, Amâncio S. How the Depletion in Mineral Major Elements Affects Grapevine ( Vitis vinifera L.) Primary Cell Wall. FRONTIERS IN PLANT SCIENCE 2017; 8:1439. [PMID: 28871267 PMCID: PMC5566972 DOI: 10.3389/fpls.2017.01439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/29/2023]
Abstract
The noteworthy fine remodeling that plant cell walls (CWs) undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species' CWs allows researching its responses to imposed conditions that affect the plant's development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus) and organized (shoots) tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG), arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion leads to more noticeable responses, supporting this nutrient's primary role in plant development and metabolism. The consequential compensatory mechanisms highlight the pivotal role of CW in rearranging under environmental stresses.
Collapse
|
126
|
Xiong B, Gu X, Qiu X, Dong Z, Ye S, Sun G, Huang S, Liu X, Xi L, Wang Z. Variability in CitXET expression and XET activity in Citrus cultivar Huangguogan seedlings with differed degrees of etiolation. PLoS One 2017; 12:e0178973. [PMID: 28617857 PMCID: PMC5472283 DOI: 10.1371/journal.pone.0178973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Considering the known effects of xyloglucan endotransglycosylase (XET) on plant growth and development, we aimed to determine whether XETs help to regulate the growth and elongation of Huangguogan shoots and roots. We confirmed a possible role for XET during seedling etiolation. Our results revealed that the roots of etiolated seedlings (H-E) were longer than those of green seedlings (H-G). However, shoot length exhibited the opposite pattern. We also observed positive and negative effects on the xyloglucan-degrading activity of XET in the root sub-apical region and shoots of etiolated Huangguogan seedling, respectively. There was a significant down-regulation in CitXET expression in the etiolated shoots at 15 days after seed germination. On the contrary, it was significantly increased in the root sub-apical region of etiolated and multicolored seedlings at 15 days after seed germination. The XET coding sequence (i.e., CitXET) was cloned from Huangguogan seedlings using gene-specific primers. The encoded amino acid sequence was predicted by using bioinformatics-based methods. The 990-bp CitXET gene was highly homologous to other XET genes. The CitXET protein was predicted to contain 319 amino acids, with a molecular mass of 37.45 kDa and an isoelectric point of 9.05. The predicted molecular formula was C1724H2548N448O466S14, and the resulting protein included only one transmembrane structure. The CitXET secondary structure consisted of four main structures (i.e., 21% α-helix, 30.72% extended strand, 9.09% β-turn, and 39.18% random coil). Analyses involving the NCBI Conserved Domains Database (NCBI-CDD), InterPro, and ScanProsite revealed that CitXET was a member of the glycosyl hydrolase family 16 (GH16), and included the DEIDFEFLG motif. Our results indicate that the differed degrees of etiolation influenced the CitXET expression pattern and XET activity in Huangguogan seedlings. The differential changes in XET activity and CitXET expression levels in Huangguogan seedlings may influence the regulation of root and shoot development, and may be important for seedling etiolation.
Collapse
Affiliation(s)
- Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianjie Gu
- Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhixiang Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuang Ye
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinya Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Xi
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
127
|
Ling J, Mao Z, Zhai M, Zeng F, Yang Y, Xie B. Transcriptome profiling of Cucumis metuliferus infected by Meloidogyne incognita provides new insights into putative defense regulatory network in Cucurbitaceae. Sci Rep 2017; 7:3544. [PMID: 28615634 PMCID: PMC5471208 DOI: 10.1038/s41598-017-03563-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/02/2017] [Indexed: 12/27/2022] Open
Abstract
Root-knot nematodes (RKN) represent extensive challenges to Cucurbitaceae crops. However, Cucumis metuliferus (Cm) is known to be resistant to Meloidogyne incognita (Mi) infections. Thus, analysis of differentially expressed genes may lead to a comprehensive gene expression profiling of the incompatible Cm-Mi interaction. In this study, the time-course transcriptome of Cm against Mi infection was monitored using RNA-Seq. More than 170000 transcripts were examined in Cm roots, and 2430 genes were subsequently identified as differentially expressed in response to Mi infection. Based on function annotation and orthologs finding, the potential mechanism of transcriptional factor, cytoskeleton, pathogen-related genes and plant hormone were assessed at the transcription level. A comparison of gene expression levels between Mi-infected Cm and cucumber plants revealed that cytoskeleton-related genes are key regulators of Cm resistance to Mi. We herein discuss the dual nature of cytoskeleton-related genes in the susceptibility and resistance of plant hosts to Mi. Our observations provide novel insights into the responses of Cm to Mi at the transcriptome level. The data generated in this study may be useful for elucidating the mechanism underlying resistance to RKNs in cucurbitaceous crops.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Mingjuan Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Feng Zeng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
128
|
Olsen S, Krause K. Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa. PLoS One 2017; 12:e0176754. [PMID: 28448560 PMCID: PMC5407826 DOI: 10.1371/journal.pone.0176754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/17/2017] [Indexed: 01/12/2023] Open
Abstract
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
129
|
Shinohara N, Sunagawa N, Tamura S, Yokoyama R, Ueda M, Igarashi K, Nishitani K. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide. Sci Rep 2017; 7:46099. [PMID: 28443615 PMCID: PMC5405413 DOI: 10.1038/srep46099] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
Cellulose is an economically important material, but routes of its industrial processing have not been fully explored. The plant cell wall - the major source of cellulose - harbours enzymes of the xyloglucan endotransglucosylase/hydrolase (XTH) family. This class of enzymes is unique in that it is capable of elongating polysaccharide chains without the requirement for activated nucleotide sugars (e.g., UDP-glucose) and in seamlessly splitting and reconnecting chains of xyloglucan, a naturally occurring soluble analogue of cellulose. Here, we show that a recombinant version of AtXTH3, a thus far uncharacterized member of the Arabidopsis XTH family, catalysed the transglycosylation between cellulose and cello-oligosaccharide, between cellulose and xyloglucan-oligosaccharide, and between xyloglucan and xyloglucan-oligosaccharide, with the highest reaction rate observed for the latter reaction. In addition, this enzyme formed cellulose-like insoluble material from a soluble cello-oligosaccharide in the absence of additional substrates. This newly found activity (designated "cellulose endotransglucosylase," or CET) can potentially be involved in the formation of covalent linkages between cellulose microfibrils in the plant cell wall. It can also comprise a new route of industrial cellulose functionalization.
Collapse
Affiliation(s)
- Naoki Shinohara
- Plant Cell Wall Biology Laboratory, Graduate School of Life Sciences, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Satoru Tamura
- Laboratory of Organic Chemistry, Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai 980-8578, Japan
| | - Ryusuke Yokoyama
- Plant Cell Wall Biology Laboratory, Graduate School of Life Sciences, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| | - Minoru Ueda
- Laboratory of Organic Chemistry, Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai 980-8578, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan.,VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 2, Espoo FI-02044, Finland
| | - Kazuhiko Nishitani
- Plant Cell Wall Biology Laboratory, Graduate School of Life Sciences, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| |
Collapse
|
130
|
David B, Irague R, Jouanneau D, Daligault F, Czjzek M, Sanejouand YH, Tellier C. Internal Water Dynamics Control the Transglycosylation/Hydrolysis Balance in the Agarase (AgaD) of Zobellia galactanivorans. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benoit David
- UFIP,
CNRS, Université de Nantes, 44322 Nantes, France
| | - Romain Irague
- UFIP,
CNRS, Université de Nantes, 44322 Nantes, France
| | - Diane Jouanneau
- Integrative
Biology of Marine Models, CNRS, UPMC Univ Paris 06, Sorbonne Université, 29680 Roscoff, France
| | | | - Mirjam Czjzek
- Integrative
Biology of Marine Models, CNRS, UPMC Univ Paris 06, Sorbonne Université, 29680 Roscoff, France
| | | | | |
Collapse
|
131
|
Han Y, Han S, Ban Q, He Y, Jin M, Rao J. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants. PLANT CELL REPORTS 2017; 36:583-596. [PMID: 28155115 DOI: 10.1007/s00299-017-2105-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/06/2017] [Indexed: 05/04/2023]
Abstract
DkXTH1 promoted cell elongation and more strength to maintain structural integrity by involving in cell wall assembly, thus enhanced tolerance to abiotic stress with broader phenotype in transgenic plants. Xyloglucan endotransglucosylase/hydrolase (XTH) is thought to play a key role in cell wall modifications by cleaving and re-joining xyloglucan, and participates in the diverse physiological processes. DkXTH1 was found to peak in immature expanding persimmon fruit, and its higher expression level exhibited along with firmer fruit during storage. In the present study, transgenic Arabidopsis and tomato plants were generated with DkXTH1 constitutively expressed. Overexpression of DkXTH1 enhanced tolerance to salt, ABA and drought stresses in transgenic Arabidopsis plants with respect to root and leaf growth, and survival. Transgenic tomatoes collected at the mature green stage, presented delayed fruit softening coupled with postponed color change, a later and lower ethylene peak, and higher firmness in comparison with the wild-type tomatoes during storage. Furthermore, broader leaves and tomato fruit with larger diameter were gained in transgenic Arabidopsis and tomato, respectively. Most importantly, transgenic plants exhibited more large and irregular cells with higher density of cell wall and intercellular spaces, resulting from the overactivity of XET enzymes involving in cell wall assembly. We suggest that DkXTH1 expression resulted in cells with more strength and thickness to maintain structural integrity, and thus enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.
Collapse
Affiliation(s)
- Ye Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shoukun Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiuyan Ban
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiheng He
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mijing Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingping Rao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
132
|
Guillon F, Moïse A, Quemener B, Bouchet B, Devaux MF, Alvarado C, Lahaye M. Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:48-62. [PMID: 28224918 DOI: 10.1016/j.plantsci.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 05/06/2023]
Abstract
Tomato fruit texture depends on histology and cell wall architecture, both under genetic and developmental controls. If ripening related cell wall modifications have been well documented with regard to softening, little is known about cell wall construction during early fruit development. Identification of key events and their kinetics with regard to tissue architecture and cell wall development can provide new insights on early phases of texture elaboration. In this study, changes in pectin and hemicellulose chemical characteristics and location were investigated in the pericarp tissue of tomato (Solanum lycopersicon var Levovil) at four stages of development (7, 14 and 21day after anthesis (DPA) and mature green stages). Analysis of cell wall composition and polysaccharide structure revealed that both are continuously modified during fruit development. At early stages, the relative high rhamnose content in cell walls indicates a high synthesis of rhamnogalacturonan I next to homogalacturonan. Fine tuning of rhamnogalacturonan I side chains appears to occur from the cell expansion phase until prior to the mature green stage. Cell wall polysaccharide remodelling also concerns xyloglucans and (galacto)glucomannans, the major hemicelluloses in tomato cell walls. In situ localization of cell wall polysaccharides in pericarp tissue revealed non-ramified RG-I rich pectin and XyG at cellular junctions and in the middle lamella of young fruit. Blocks of non-methyl esterified homogalacturonan are detected as soon as 14 DPA in the mesocarp and remained restricted to cell corner and middle lamella whatever the stages. These results point to new questions about the role of pectin RGI and XyG in cell adhesion and its maintenance during cell expansion.
Collapse
Affiliation(s)
- Fabienne Guillon
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Adeline Moïse
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Bernard Quemener
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Marie-Françoise Devaux
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Marc Lahaye
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France.
| |
Collapse
|
133
|
Fu C, Wang F, Liu W, Liu D, Li J, Zhu M, Liao Y, Liu Z, Huang H, Zeng X, Ma X. Transcriptomic Analysis Reveals New Insights into High-Temperature-Dependent Glume-Unclosing in an Elite Rice Male Sterile Line. FRONTIERS IN PLANT SCIENCE 2017; 8:112. [PMID: 28261226 PMCID: PMC5306291 DOI: 10.3389/fpls.2017.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/19/2017] [Indexed: 05/23/2023]
Abstract
Glume-unclosing after anthesis is a widespread phenomenon in hybrid rice and also a maternal hereditary trait. The character of Glume-unclosing in rice male sterile lines also seriously influences germination rate and the commercial quality of hybrid rice seeds. We validated that the type of glume-unclosing after anthesis in the elite rice thermo-sensitive genic male sterile (TGMS) line RGD-7S was caused by high temperature. Transcriptomic sequencing of rice panicles was performed to explore the change of transcript profiles under four conditions: pre- and post-anthesis under high temperature (HRGD0 and HRGD1), and pre- and post-anthesis under low temperature (LRGD0 and LRGD1). We identified a total of 14,540 differentially expressed genes (DEGs) including some heat shock factors (HSFs) across the four samples. We found that more genes were up-regulated than down-regulated in the sample pair HRGD1vsHRGD0. These up-regulated genes were significantly enriched in the three biological processes of carbohydrate metabolism, response to water and cell wall macromolecular metabolism. Simultaneously, we also found that the HSF gene OsHsfB1 was specially up-regulated in HRGD1vsHRGD0. However, the down-regulated DEGs in LRGD1vsLRGD0 were remarkably clustered in the biological process of carbohydrate metabolism. This suggests that carbohydrate metabolism may play a key role in regulation of glume-unclosing under high temperature in RGD-7S. We also analyzed the expression pattern of genes enriched in carbohydrate metabolism and several HSF genes under different conditions and provide new insights into the cause of rice glume-unclosing.
Collapse
Affiliation(s)
- Chongyun Fu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Jinhua Li
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Manshan Zhu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Yilong Liao
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Zhenrong Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Huijun Huang
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Xueqin Zeng
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Xiaozhi Ma
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| |
Collapse
|
134
|
Kuluev B, Mikhaylova E, Berezhneva Z, Nikonorov Y, Postrigan B, Kudoyarova G, Chemeris A. Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:203-215. [PMID: 27940271 DOI: 10.1016/j.plaphy.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 05/21/2023]
Abstract
Despite the intensive study of xyloglucan endotransglucosylases/hydrolases, their multifaceted role in plant growth regulation in changing environmental conditions is not yet clarified. The functional role of the large number of genes encoding this group of enzymes is also still unclear. NtEXGT gene encodes one of xyloglucan endotransglucosylases/hydrolases (XTHs) of Nicotiana tabacum L. The highest level of NtEXGT gene expression was detected in young flowers and leaves near the shoot apex. Expression of the NtEXGT gene in leaves was induced by cytokinins, auxins, brassinosteroids and gibberellins. NtEXGT gene was also up-regulated by salinity, drought, cold, cadmium and 10 μM abscisic acid treatments and down-regulated in response to 0 °C and 100 μM abscisic acid. Pretreatment of leaves with fluridone contributed to smaller increase in the level of NtEXGT transcripts in response to drought stress. These data suggest that NtEXGT gene is ABA-regulated and probably implicated in ABA-dependent signaling in response to stress factors. 35S::NtEXGT plants of tobacco showed higher rate of root growth under salt-stress conditions, greater frost and heat tolerance as compared with the wild type tobacco plants.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia; Bashkir State University (BSU), Z. Validi str. 32, 450074, Ufa, Russia.
| | - Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia; Bashkir State University (BSU), Z. Validi str. 32, 450074, Ufa, Russia
| | - Zoya Berezhneva
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Yuri Nikonorov
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Bogdan Postrigan
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Russian Academy of Sciences (UIB RAS), pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Aleksey Chemeris
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| |
Collapse
|
135
|
Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone. PLANT PHYSIOLOGY 2017; 173:1017-1030. [PMID: 27956490 PMCID: PMC5291047 DOI: 10.1104/pp.16.01713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/09/2016] [Indexed: 05/23/2023]
Abstract
In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer.
Collapse
Affiliation(s)
- Javier Sampedro
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Elene R Valdivia
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Patricia Fraga
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Natalia Iglesias
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Gloria Revilla
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Ignacio Zarra
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| |
Collapse
|
136
|
McGregor N, Yin V, Tung CC, Van Petegem F, Brumer H. Crystallographic insight into the evolutionary origins of xyloglucan endotransglycosylases and endohydrolases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:651-670. [PMID: 27859885 PMCID: PMC5315667 DOI: 10.1111/tpj.13421] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 05/22/2023]
Abstract
The xyloglucan endotransglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodeling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endoglycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endoglucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and β(1,3)/β(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endotranglycosylase (XET), and a xyloglucan endohydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species.
Collapse
Affiliation(s)
- Nicholas McGregor
- Michael Smith Laboratories, University of British Columbia,
2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Victor Yin
- Michael Smith Laboratories, University of British Columbia,
2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology,
University of British Columbia, 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology,
University of British Columbia, 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia,
2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Biochemistry and Molecular Biology,
University of British Columbia, 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada
- Department of Botany, University of British Columbia, 6270
University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
137
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
138
|
Rao X, Dixon RA. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:806. [PMID: 28567047 PMCID: PMC5434148 DOI: 10.3389/fpls.2017.00806] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/28/2017] [Indexed: 05/19/2023]
Abstract
Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs) play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae) and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, DentonTX, United States
- BioEnergy Science Center, US Department of Energy, Oak RidgeTN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, DentonTX, United States
- BioEnergy Science Center, US Department of Energy, Oak RidgeTN, United States
| |
Collapse
|
139
|
Adlercreutz P. Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions. Appl Microbiol Biotechnol 2016; 101:513-519. [PMID: 27995311 PMCID: PMC5219020 DOI: 10.1007/s00253-016-8055-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022]
Abstract
Lipases and glycoside hydrolases have large similarities concerning reaction mechanisms. Acyl-enzyme intermediates are formed during lipase-catalyzed reactions and in an analogous way, retaining glycoside hydrolases form glycosyl-enzyme intermediates during catalysis. In both cases, the covalent enzyme intermediates can react with water or other nucleophiles containing hydroxyl groups. Simple alcohols are accepted as nucleophiles by both types of enzymes. Lipases are used very successfully in synthesis applications due to their efficiency in catalyzing reversed hydrolysis and transesterification reactions. On the other hand, synthesis applications of glycoside hydrolases are much less developed. Here, important similarities and differences between the enzyme groups are reviewed and approaches to reach high synthesis yields are discussed. Useful strategies include the use of low-water media, high nucleophile concentrations, as well as protein engineering to modify the selectivity of the enzymes. The transglycosylases, hydrolases which naturally catalyze mainly transfer reactions, are of special interest and might be useful guides for engineering of other hydrolases.
Collapse
Affiliation(s)
- Patrick Adlercreutz
- Department of Chemistry, Division of Biotechnology, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
140
|
Han Y, Ban Q, Li H, Hou Y, Jin M, Han S, Rao J. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Sci Rep 2016; 6:39155. [PMID: 27966647 PMCID: PMC5155436 DOI: 10.1038/srep39155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
Fruit softening is mainly associated with cell wall structural modifications, and members of the xyloglucan endotransglucosylase/hydrolase (XTH) family are key enzymes involved in cleaving and re-joining xyloglucan in the cell wall. In this work, we isolated a new XTH gene, DkXTH8, from persimmon fruit. Transcriptional profiling revealed that DkXTH8 peaked during dramatic fruit softening, and expression of DkXTH8 was stimulated by propylene and abscisic acid but suppressed by gibberellic acid and 1-MCP. Transient expression assays in onion epidermal cells indicated direct localization of DkXTH8 to the cell wall via its signal peptide. When expressed in vitro, the recombinant DkXTH8 protein exhibited strict xyloglucan endotransglycosylase activity, whereas no xyloglucan endohydrolase activity was observed. Furthermore, overexpression of DkXTH8 resulted in increased leaf senescence coupled with higher electrolyte leakage in Arabidopsis and faster fruit ripening and softening rates in tomato. Most importantly, transgenic plants overexpressing DkXTH8 displayed more irregular and twisted cells due to cell wall restructuring, resulting in wider interstitial spaces with less compact cells. We suggest that DkXTH8 expression causes cells to be easily destroyed, increases membrane permeability and cell peroxidation, and accelerates leaf senescence and fruit softening in transgenic plants.
Collapse
Affiliation(s)
- Ye Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiuyan Ban
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yali Hou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mijing Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shoukun Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingping Rao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
141
|
Behr M, Legay S, Žižková E, Motyka V, Dobrev PI, Hausman JF, Lutts S, Guerriero G. Studying Secondary Growth and Bast Fiber Development: The Hemp Hypocotyl Peeks behind the Wall. FRONTIERS IN PLANT SCIENCE 2016; 7:1733. [PMID: 27917184 PMCID: PMC5114303 DOI: 10.3389/fpls.2016.01733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/24/2023]
Abstract
Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e., elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. Transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e., 6-9-15-20 days after sowing) to provide a comprehensive overview of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, β-galactosidases, and transcription factors involved in light-related processes) and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors).
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Eva Žižková
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| |
Collapse
|
142
|
Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics. Proteomes 2016; 4:proteomes4040034. [PMID: 28248244 PMCID: PMC5260967 DOI: 10.3390/proteomes4040034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics.
Collapse
|
143
|
Iurlaro A, De Caroli M, Sabella E, De Pascali M, Rampino P, De Bellis L, Perrotta C, Dalessandro G, Piro G, Fry SC, Lenucci MS. Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility. FRONTIERS IN PLANT SCIENCE 2016; 7:1686. [PMID: 27891140 PMCID: PMC5102909 DOI: 10.3389/fpls.2016.01686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios.
Collapse
Affiliation(s)
- Andrea Iurlaro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Erika Sabella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Mariarosaria De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Patrizia Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Carla Perrotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Giuseppe Dalessandro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| |
Collapse
|
144
|
Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics 2016; 17:885. [PMID: 27821044 PMCID: PMC5100228 DOI: 10.1186/s12864-016-3200-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromium (Cr) being multifarious industrial used element, is considered a potential environmental threat. Cr found to be a prospective water and soil pollutant, and thus it is a current area of concern. Oilseed rape (Brassica napus L.) is well known as a major source of edible oil around the globe. Due to its higher growth, larger biomass and capability to uptake toxic materials B. napus is considered a potential candidate plant against unfavorable conditions. To date, no study has been done that described the Cr and GSH mechanism at RNA-Seq level. RESULTS Both digital gene expression (DGE) and transcriptome profile analysis (TPA) approaches had opened new insights to uncover the several number of genes related to Cr stress and GSH alleviating mechanism in two leading cultivars (ZS 758 and Zheda 622) of B. napus plants. Data showed that Cr inhibited KEGG pathways i.e. stilbenoid, diarlyheptanoid and gingerol biosynthesis; limonene and pentose degradation and glutathione metabolism in ZS 758; and ribosome and glucosinolate biosynthesis in Zheda-622. On the other hand, vitamin B6, tryptophan, sulfur, nitrogen and fructose and manose metabolisms were induced in ZS 758, and zeatin biosynthesis, linoleic acid metabolism, arginine and proline metabolism, and alanine, asparate and glutamate metabolism pathways in Zheda 622. Cr increased the TFs that were related to hydralase activity, antioxidant activity, catalytic activity phosphatase and pyrophosphatase activity in ZS 758, and vitamin binding and oxidoreductase activity in Zheda 622. Cr also up-regulated the promising proteins related to intracellular membrane bounded organelles, nitrile hyrdatase activity, cytoskeleton protein binding and stress response. It also uncovered, a novel Cr-responsive protein (CL2535.Contig1_All) that was statistically increased as compared to control and GSH treated plants. Exogenously applied GSH successfully not only recovered the changes in metabolic pathways but also induced cysteine and methionine metabolism in ZS 758 and ubiquinone and other terpenoid-quinone biosynthesis pathways in Zheda 622. Furthermore, GSH increased the level of TFs i.e. the gene expression of antioxidant and catalytic activities, iron ion binding and hydrolase activity as compared with Cr. Moreover, results pointed out a novel GSH responsive protein (CL827.Contig3_All) whose expression was found to be significantly increased when compared than Cr stress. Results further delineated that GSH induced TFs such as glutathione disulphide oxidoreducatse and aminoacyl-tRNA ligase activity, and beta glucosidase activity in ZS 758. Similarly in Zheda 622, GSH induced the TFs for instance DNA binding and protein dimerization activity. GSH also highlighted the proteins that were involved in transportation, photosynthesis process, RNA polymerase activity, and against the metal toxicity. These results indicated that cultivar ZS 758 had better metabolism and showed higher tolerance against Cr toxicity. CONCLUSION The responses of ZS 758 and Zheda 622 differed considerably at both physiological and transcriptional level. Moreover, RNA-Seq method explored the hazardous behavior of Cr as well as GSH up-regulating mechanism by activating plant metabolism, stress responsive genes, TFs and protein encyclopedia.
Collapse
Affiliation(s)
- Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany
| | - Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
145
|
Ghahremani M, Stigter KA, Plaxton W. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review. Proteomes 2016; 4:E25. [PMID: 28248235 PMCID: PMC5217358 DOI: 10.3390/proteomes4030025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023] Open
Abstract
Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs) of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Kyla A Stigter
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
146
|
Paolinelli-Alfonso M, Villalobos-Escobedo JM, Rolshausen P, Herrera-Estrella A, Galindo-Sánchez C, López-Hernández JF, Hernandez-Martinez R. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics 2016; 17:615. [PMID: 27514986 PMCID: PMC4981995 DOI: 10.1186/s12864-016-2952-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lasiodiplodia theobromae is a fungus of the Botryosphaeriaceae that causes grapevine vascular disease, especially in regions with hot climates. Fungi in this group often remain latent within their host and become virulent under abiotic stress. Transcriptional regulation analysis of L. theobromae exposed to heat stress (HS) was first carried out in vitro in the presence of grapevine wood (GW) to identify potential pathogenicity genes that were later evaluated for in planta expression. RESULTS A total of 19,860 de novo assembled transcripts were obtained, forty-nine per cent of which showed homology to the Botryosphaeriaceae fungi, Neofusicoccum parvum or Macrophomina phaseolina. Three hundred ninety-nine have homology with genes involved in pathogenic processes and several belonged to expanded gene families in others fungal grapevine vascular pathogens. Gene expression analysis showed changes in fungal metabolism of phenolic compounds; where genes encoding for enzymes, with the ability to degrade salicylic acid (SA) and plant phenylpropanoid precursors, were up-regulated during in vitro HS response, in the presence of GW. These results suggest that the fungal L-tyrosine catabolism pathway could help the fungus to remove phenylpropanoid precursors thereby evading the host defense response. The in planta up-regulation of salicylate hydroxylase, intradiol ring cleavage dioxygenase and fumarylacetoacetase encoding genes, further supported this hypothesis. Those genes were even more up-regulated in HS-stressed plants, suggesting that fungus takes advantage of the increased phenylpropanoid precursors produced under stress. Pectate lyase was up-regulated while a putative amylase was down-regulated in planta, this could be associated with an intercellular growth strategy during the first stages of colonization. CONCLUSIONS L. theobromae transcriptome was established and validated. Its usefulness was demonstrated through the identification of genes expressed during the infection process. Our results support the hypothesis that heat stress facilitates fungal colonization, because of the fungus ability to use the phenylpropanoid precursors and SA, both compounds known to control host defense.
Collapse
Affiliation(s)
- Marcos Paolinelli-Alfonso
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences,University of California Riverside, Riverside, 92521 CA USA
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Clara Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| | - José Fabricio López-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Rufina Hernandez-Martinez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| |
Collapse
|
147
|
Recent structural insights into the enzymology of the ubiquitous plant cell wall glycan xyloglucan. Curr Opin Struct Biol 2016; 40:43-53. [PMID: 27475238 DOI: 10.1016/j.sbi.2016.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
Abstract
The xyloglucans (XyGs) constitute a family of highly decorated β(1→4)-glucans whose members are widespread and abundant across the plant kingdom. As such, XyGs constitute a significant reserve of metabolically accessible monosaccharides for diverse phytopathogenic, saprophytic, and gut symbiotic micro-organisms. To overcome the intrinsic stability of the diverse glycosidic bonds in XyGs, bacteria and fungi have evolved extensive repertoires of xyloglucan-active enzymes from manifold families, whose exquisitely adapted tertiary structures are recently coming to light.
Collapse
|
148
|
Xu Q, Krishnan S, Merewitz E, Xu J, Huang B. Gibberellin-Regulation and Genetic Variations in Leaf Elongation for Tall Fescue in Association with Differential Gene Expression Controlling Cell Expansion. Sci Rep 2016; 6:30258. [PMID: 27457585 PMCID: PMC4960529 DOI: 10.1038/srep30258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Leaf elongation rate (LER) is an important factor controlling plant growth and productivity. The objective of this study was to determine whether genetic variation in LER for a fast-growing ('K-31'), and a dwarf cultivar ('Bonsai') of tall fescue (Festuca arundinacea) and gibberellic acid (GA) regulation of LER were associated with differential expression of cell-expansion genes. Plants were treated with GA3, trinexapac-ethyl (TE) (GA inhibitor), or water (untreated control) in a hydroponic system. LER of 'K-31' was 63% greater than that of 'Bonsai', which corresponded with 32% higher endogenous GA4 content in leaf and greater cell elongation and production rates under the untreated control condition. Exogenous application of GA3 significantly enhanced LER while TE treatment inhibited leaf elongation due to GA3-stimulation or TE-inhibition of cell elongation and production rate in leaves for both cultivars. Real-time quantitative polymerase chain reaction analysis revealed that three α-expansins, one β-expansin, and three xyloglucan endotransglycosylase (XET) genes were associated with GA-stimulation of leaf elongation, of which, the differential expression of EXPA4 and EXPA7 was related to the genotypic variation in LER of two cultivars. Those differentially-expressed expansin and XET genes could play major roles in genetic variation and GA-regulated leaf elongation in tall fescue.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
| | - Sanalkumar Krishnan
- Department of Crop Science, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Emily Merewitz
- Department of Crop Science, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
| |
Collapse
|
149
|
Martins MTB, de Souza WR, da Cunha BADB, Basso MF, de Oliveira NG, Vinecky F, Martins PK, de Oliveira PA, Arenque-Musa BC, de Souza AP, Buckeridge MS, Kobayashi AK, Quirino BF, Molinari HBC. Characterization of sugarcane (Saccharum spp.) leaf senescence: implications for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:153. [PMID: 27453728 PMCID: PMC4957918 DOI: 10.1186/s13068-016-0568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/12/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Second-generation ethanol (2G-bioethanol) uses lignocellulosic feedstocks for ethanol production. Sugarcane is one among the most suitable crops for biofuel production. Its juice is extracted for sugar production, while sugarcane bagasse, straw, and senescing leaves are considered industrial waste. Senescence is the age-dependent deterioration of plant cells, ultimately leading to cell death and completion of the plant life cycle. Because senescing leaves may also be used for biofuel production, understanding the process of natural senescence, including remobilization of nutrients and its effect on cell walls can provide useful information for 2G-bioethanol production from sugarcane leaves. RESULTS The natural senescence process in leaves of the commercial sugarcane cultivar RB867515 was investigated. Senescence was characterized by strong reduction in photosynthetic pigments content, remobilization of the nutrients N, P, K, B, Cu, Fe, and Zn, and accumulation of Ca, S, Mg, B, Mn, and Al. No significant changes in the cell-wall composition occurred, and only small changes in the expression of cell wall-related genes were observed, suggesting that cell walls are preserved during senescence. Senescence-marker genes, such as SAG12-like and XET-like genes, were also identified in sugarcane and found to be highly expressed. CONCLUSIONS Our study on nutrient remobilization under senescence in a vigorous sugarcane cultivar can contribute to the understanding on how nutrient balance in a high-yielding crop is achieved. In general, neutral monosaccharide profile did not change significantly with leaf senescence, suggesting that senescing leaves of sugarcane can be as a feedstock for biofuel production using pretreatments established for non-senescing leaves without additional efforts. Based on our findings, the potential biotechnological applications for the improvement of sugarcane cultivars are discussed.
Collapse
Affiliation(s)
- Maria Thereza Bazzo Martins
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
- />Genomic Sciences and Biotechnology Program, Universidade Catolica de Brasilia, Brasília, DF 70790‑160 Brazil
| | - Wagner Rodrigo de Souza
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Marcos Fernando Basso
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Felipe Vinecky
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Polyana Kelly Martins
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Bruna Cersózimo Arenque-Musa
- />Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany-Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090 Brazil
| | - Amanda Pereira de Souza
- />Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany-Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090 Brazil
| | - Marcos Silveira Buckeridge
- />Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany-Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090 Brazil
| | - Adilson Kenji Kobayashi
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Betania Ferraz Quirino
- />Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
- />Genomic Sciences and Biotechnology Program, Universidade Catolica de Brasilia, Brasília, DF 70790‑160 Brazil
| | | |
Collapse
|
150
|
Zhang M, Ma Y, Horst WJ, Yang ZB. Spatial-temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris). ANNALS OF BOTANY 2016; 118:1-9. [PMID: 27106549 PMCID: PMC4934392 DOI: 10.1093/aob/mcw062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/28/2015] [Accepted: 02/24/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Aluminium (Al) toxicity and drought are two major limiting factors for common bean (Phaseolus vulgaris) production on tropical acid soils. Polyethylene glycol (PEG 6000)-induced osmotic stress (OS) simulating drought stress reduces Al accumulation in the entire root tips of common bean by alteration of cell-wall (CW) porosity, which might be regulated by two genes encoding xyloglucan endotransglucosylase/hydrolase, PvXTH9 and PvXTHb The aim of this research was to understand the spatial and temporal regulation of both XTH genes in PEG-mediated Al accumulation in the root tips. METHODS In this study the spatial and temporal expression patterns of Al-inhibited root elongation, Al accumulation, XTH gene expression and xyloglucan endotransglucosylase (XET) enzyme action in the root tips were analysed under PEG-induced OS by a combination of physiological and molecular approaches such as quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ fluorescence detection of XET in root tips. KEY RESULTS The results showed that Al accumulation, expression of XTH genes and XET action were distinctly reduced in the apical 0-2, 2-7 and 7-12 mm zones under OS, implying a potential regulatory role of XTH genes and XET enzyme in CW Al accumulation in these zones. CONCLUSIONS The results provide novel insights into the physiological and molecular mechanisms of CW structure modification as a response of plant roots to OS, which will contribute to mitigate Al and drought stresses, severely limiting crop yields on acid soils.
Collapse
Affiliation(s)
- Maolin Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Yanqi Ma
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, 30419 Hannover, Germany
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|