101
|
Huang LJ, Li N, Thurow C, Wirtz M, Hell R, Gatz C. Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:200. [PMID: 27624344 PMCID: PMC5022239 DOI: 10.1186/s12870-016-0886-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/01/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Glutaredoxins (GRXs) are small proteins which bind glutathione to either reduce disulfide bonds or to coordinate iron sulfur clusters. Whereas these well-established functions are associated with ubiquitously occurring GRXs that encode variants of a CPYC or a CGFS motif in the active center, land plants also possess CCxC/S-type GRXs (named ROXYs) for which the biochemical functions are yet unknown. ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. In Arabidopsis, ectopically expressed ROXY19 (originally named GRX480 or GRXC9) negatively regulates expression of jasmonic acid/ethylene-induced defense genes through an unknown mechanism that requires at least one of the redundant transcription factors TGA2, TGA5 or TGA6. RESULTS Ectopically expressed ROXY19 interferes with the activation of TGA-dependent detoxification genes. Similar to the tga2 tga5 tga6 mutant, 35S:ROXY19 plants are more susceptible to the harmful chemical TIBA (2,3,5-triiodobenzoic acid). The repressive function of ROXY19 depends on the integrity of the active site, which can be either CCMC or CPYC but not SSMS. Ectopic expression of the related GRX ROXY18/GRXS13 also led to increased susceptibility to TIBA, indicating potential functional redundancy of members of the ROXY gene family. This redundancy might explain why roxy19 knock-out plants did not show a phenotype with respect to the regulation of the TIBA-induced detoxification program. Complementation of the tga2 tga5 tga6 mutant with either TGA5 or TGA5C186S, in which the single potential target-site of ROXY19 had been eliminated, did not reveal any evidence for a critical redox modification that might be important for controlling the detoxification program. CONCLUSIONS ROXY19 and related proteins of the ROXY gene family can function as negative regulators of TGA-dependent promoters controlling detoxification genes.
Collapse
Affiliation(s)
- Li-Jun Huang
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Ning Li
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Christiane Gatz
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
102
|
Ye J, Zhang Z, You C, Zhang X, Lu J, Ma H. Abundant protein phosphorylation potentially regulates Arabidopsis anther development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4993-5008. [PMID: 27531888 PMCID: PMC5014169 DOI: 10.1093/jxb/erw293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development.
Collapse
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
103
|
Huang J, Zhang T, Linstroth L, Tillman Z, Otegui MS, Owen HA, Zhao D. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genet 2016; 12:e1006147. [PMID: 27537183 PMCID: PMC4990239 DOI: 10.1371/journal.pgen.1006147] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells) and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1) is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat) domain of the EMS1 (EXCESS MICROSPOROCYTES1) receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction. The differentiation of distinct somatic and reproductive cells in flowers is required for the successful sexual reproduction of plants. The anther produces reproductive microsporocytes (pollen mother cells) that give rise to pollen (male gametophytes), as well as surrounding somatic cells (particularly the tapetal cells) that support the normal development of pollen. In animals, signals from somatic cells are known to influence reproductive cell fate determination, and vice versa. However, little is known about the molecular mechanisms underlying somatic and reproductive cell fate determination in plants. In this paper, we demonstrate that TPD1 (TAPETUM DETERMINANT1) is processed into a small secreted cysteine-rich protein ligand for the EMS1 (EXCESS MICROSPOROCYTES1) leucine-rich repeat receptor-like kinase (LRR-RLK). TPD1 is secreted from reproductive cells to the plasma membrane of somatic cells, where activated TPD1-EMS1 signaling first promotes periclinal cell division and then determines tapetal cell fate. Moreover, tapetal cells suppress microsporocyte proliferation. Our findings illuminate a novel mechanism by which reproductive cells determine somatic cell fate, and somatic cells in turn limit reproductive cell proliferation. Plants extensively employ LRR-RLKs to control growth, development, and defense. Our identification of TPD1 as the first small protein ligand for all LRR-RLKs characterized to date will provide a valuable system for studying how small protein ligands activate LRR-RLK signaling complexes.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Tianyu Zhang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Lisa Linstroth
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Zachary Tillman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
104
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
105
|
Sun MY, Fu XL, Tan QP, Liu L, Chen M, Zhu CY, Li L, Chen XD, Gao DS. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:54-70. [PMID: 27107182 DOI: 10.1016/j.plaphy.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants.
Collapse
Affiliation(s)
- Ming-Yue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Xi-Ling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Qiu-Ping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Li Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Cui-Ying Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Xiu-De Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Dong-Sheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
106
|
Yang L, Qian X, Chen M, Fei Q, Meyers BC, Liang W, Zhang D. Regulatory Role of a Receptor-Like Kinase in Specifying Anther Cell Identity. PLANT PHYSIOLOGY 2016; 171:2085-100. [PMID: 27208278 PMCID: PMC4936546 DOI: 10.1104/pp.16.00016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/18/2016] [Indexed: 05/09/2023]
Abstract
In flowering plants, sequential formation of anther cell types is a highly ordered process that is essential for successful meiosis and sexual reproduction. Differentiation of meristematic cells and cell-cell communication are proposed to coordinate anther development. Among the proposed mechanisms of cell fate specification are cell surface-localized Leu-rich repeat receptor-like kinases (LRR-RLKs) and their putative ligands. Here, we present the genetic and biochemical evidence that a rice (Oryza sativa) LRR-RLK, MSP1 (MULTIPLE SPOROCYTE1), interacts with its ligand OsTDL1A (TPD1-like 1A), specifying the cell identity of anther wall layers and microsporocytes. An in vitro assay indicates that the 21-amino acid peptide of OsTDL1A has a physical interaction with the LRR domain of MSP1. The ostdl1a msp1 double mutant showed the defect in lacking middle layers and tapetal cells and having an increased number of microsporocytes similar to the ostdl1a or msp1 single mutant, indicating the same pathway of OsTDL1A-MSP1 in regulating anther development. Genome-wide expression profiles showed the altered expression of genes encoding transcription factors, particularly basic helix-loop-helix and basic leucine zipper domain transcription factors in ostdl1a and msp1 Among these reduced expressed genes, one putatively encodes a TGA (TGACGTCA cis-element-binding protein) factor OsTGA10, and another one encodes a plant-specific CC-type glutaredoxin OsGrx_I1. OsTGA10 was shown to interact with OsGrx_I1, suggesting that OsTDL1A-MSP1 signaling specifies anther cell fate directly or indirectly affecting redox status. Collectively, these data point to a central role of the OsTDL1A-MSP1 signaling pathway in specifying somatic cell identity and suppressing overproliferation of archesporial cells in rice.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Xiaoling Qian
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Qili Fei
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Blake C Meyers
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
107
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
108
|
The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding. PLoS One 2016; 11:e0153810. [PMID: 27128442 PMCID: PMC4851370 DOI: 10.1371/journal.pone.0153810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022] Open
Abstract
The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved regulatory AG cis-element, emphasizing the importance of redox-modifications in the regulation of flower developmental processes.
Collapse
|
109
|
Nowak K, Gaj MD. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:119-26. [PMID: 26973252 DOI: 10.1016/j.jplph.2016.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 05/11/2023]
Abstract
The bHLH109 gene of the bHLH family was identified among the transcription factor encoding genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong activation of bHLH109 expression was found to be associated with somatic embryogenesis (SE) induction. Several pieces of evidence suggested the involvement of bHLH109 in SE, including the high stimulation of the gene expression in SE-induced explants, which contrasts to the drastically lower level of the gene transcripts in the non-embryogenic callus and in tissue that is induced towards shoot regeneration via organogenesis. Moreover, in contrast to the overexpression of bHLH109, which has been indicated to enhance SE induction in a culture, the bhlh109 knock-out mutation was found to impair the embryogenic potential of explants. In order to identify the genes interacting with the bHLH109, the candidate co-expressed genes were identified in a yeast one hybrid assay. The in vitro regulatory interactions that were identified were verified through mutant and expression analysis. The results suggest that in SE bHLH109 acts as an activator of ECP63, a member of the LEA (LATE EMBRYOGENESIS ABUNDANT) family. Among the potential regulators of bHLH109, three candidates (At5g61620, bZIP4 and bZIP43) were indicated to possibly control bHLH109. The functions of all of the genes that are assumed to interact with bHLH109 are annotated to stress responses. Collectively, the results of the study provide new evidence that cell responses to stress that is imposed under in vitro conditions underlies the promotion of SE. bHLH109 may play a central role in the stress-related mechanism of SE induction via an increased accumulation of the LEA protein (ECP63), which results in the enhanced tolerance of the cells to stress.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
110
|
Egger RL, Walbot V. A framework for evaluating developmental defects at the cellular level: An example from ten maize anther mutants using morphological and molecular data. Dev Biol 2016; 419:26-40. [PMID: 26992364 DOI: 10.1016/j.ydbio.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
In seed plants, anthers are critical for sexual reproduction, because they foster both meiosis and subsequent pollen development of male germinal cells. Male-sterile mutants are analyzed to define steps in anther development. Historically the major topics in these studies are meiotic arrest and post-meiotic gametophyte failure, while relatively few studies focus on pre-meiotic defects of anther somatic cells. Utilizing morphometric analysis we demonstrate that pre-meiotic mutants can be impaired in anticlinal or periclinal cell division patterns and that final cell number in the pre-meiotic anther lobe is independent of cell number changes of individual differentiated somatic cell types. Data derived from microarrays and from cell wall NMR analyses allow us to further refine our understanding of the onset of phenotypes. Collectively the data highlight that even minor deviations from the correct spatiotemporal pattern of somatic cell proliferation can result in male sterility in Zea mays.
Collapse
Affiliation(s)
- Rachel L Egger
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States.
| | - Virginia Walbot
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States
| |
Collapse
|
111
|
Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP. Nuclear thiol redox systems in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:84-95. [PMID: 26795153 DOI: 10.1016/j.plantsci.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| | - Sajid A K Bangash
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| |
Collapse
|
112
|
Schippers JH, Foyer CH, van Dongen JT. Redox regulation in shoot growth, SAM maintenance and flowering. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:121-8. [PMID: 26799134 DOI: 10.1016/j.pbi.2015.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and associated reduction/oxidation (redox) controls involving glutathione, glutaredoxins and thioredoxins play key roles in the regulation of plant growth and development. While many questions remain concerning redox functions in the shoot apical meristem (SAM), accumulating evidence suggests that redox master switches integrate major hormone signals and transcriptional networks in the SAM, and so regulate organ growth, polarity and floral development. Auxin-induced activation of plasma-membrane located NADPH-oxidases and mitochondrial respiratory bioenergetics are likely regulators of the ROS bursts that drive the cell cycle in proliferating regions, with other hormones such as jasmonic acid playing propagating or antagonistic roles in gene regulation. Moreover, the activation of oxygen production by photosynthesis and oxygen-dependent N-end rule controls are linked to the transition from cell proliferation to cell expansion and differentiation. While much remains to be understood, the nexus of available redox controls provides a key underpinning mechanism linking hormonal controls, energy metabolism and bioenergetics to plant growth and development.
Collapse
Affiliation(s)
- Jos Hm Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
113
|
Zinta G, Khan A, AbdElgawad H, Verma V, Srivastava AK. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:700. [PMID: 27379102 PMCID: PMC4909749 DOI: 10.3389/fpls.2016.00700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 05/19/2023]
Abstract
Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars.
Collapse
Affiliation(s)
- Gaurav Zinta
- Centre of Excellence Plant and Vegetation Ecology, Department of Biology, University of AntwerpAntwerp, Belgium
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- *Correspondence: Gaurav Zinta
| | - Asif Khan
- Research Group Germline Biology, Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- Asif Khan
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, University of Beni-SuefBeni-Suef, Egypt
| | - Vipasha Verma
- Department of Biotechnology, Dr Y S Parmar University of Horticulture and ForestrySolan, India
| | | |
Collapse
|
114
|
Li X, Gao S, Tang Y, Li L, Zhang F, Feng B, Fang Z, Ma L, Zhao C. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics 2015; 16:976. [PMID: 26581444 PMCID: PMC4652339 DOI: 10.1186/s12864-015-2196-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among the largest and most diverse transcription factor families in plants, basic leucine zipper (bZIP) family participate in regulating various processes, including floral induction and development, stress and hormone signaling, photomorphogenesis, seed maturation and germination, and pathogen defense. Although common wheat (Triticum aestivum L.) is one of the most widely cultivated and consumed food crops in the world, there is no comprehensive analysis of bZIPs in wheat, especially those involved in anther development. Previous studies have demonstrated wheat, T. urartu, Ae. tauschii, barley and Brachypodium are evolutionarily close in Gramineae family, however, the real evolutionary relationship still remains mysterious. RESULTS In this study, 187 bZIP family genes were comprehensively identified from current wheat genome. 98, 96 and 107 members of bZIP family were also identified from the genomes of T.urartu, Ae.tauschii and barley, respectively. Orthology analyses suggested 69.4 % of TubZIPs were orthologous to 68.8 % of AetbZIPs and wheat had many more in-paralogs in the bZIP family than its relatives. It was deduced wheat had a closer phylogenetic relationship with barley and Brachypodium than T.urartu and Ae.tauschii. bZIP proteins in wheat, T.urartu and Ae.tauschii were divided into 14 subgroups based on phylogenetic analyses. Using Affymetrix microarray data, 48 differentially expressed TabZIP genes were identified to be related to anther development from comparison between the male sterility line and the restorer line. Genes with close evolutionary relationship tended to share similar gene structures. 15 of 23 selected TabZIP genes contained LTR elements in their promoter regions. Expression of 21 among these 23 TabZIP genes were obviously responsive to low temperature. These 23 TabZIP genes all exhibited distinct tissue-specific expression pattern. Among them, 11 TabZIP genes were predominantly expressed in anther and most of them showed over-dominance expression mode in the cross combination TY806 × BS366. CONCLUSIONS The genome-wide identification provided an overall insight of bZIP gene family in wheat and its relatives. The evolutionary relationship of wheat and its relatives was proposed based on orthology analyses. Microarray and expression analyses suggested the potential involvement of bZIP genes in anther development and facilitated selection of anther development related gene for further functional characterization.
Collapse
Affiliation(s)
- Xueyin Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yimiao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fengjie Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Biane Feng
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Zhaofeng Fang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Changping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
115
|
Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 2015; 16:878. [PMID: 26511108 PMCID: PMC4625851 DOI: 10.1186/s12864-015-2077-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7B-1 tomato line (Solanum lycopersicum cv. Rutgers) is a photoperiod-sensitive male-sterile mutant, with potential application in hybrid seed production. Small RNAs (sRNAs) in tomato have been mainly characterized in fruit development and ripening, but none have been studied with respect to flower development and regulation of male-sterility. Using sRNA sequencing, we identified miRNAs that are potentially involved in anther development and regulation of male-sterility in 7B-1 mutant. RESULTS Two sRNA libraries from 7B-1 and wild type (WT) anthers were sequenced and thirty two families of known miRNAs and 23 new miRNAs were identified in both libraries. MiR390, miR166, miR159 were up-regulated and miR530, miR167, miR164, miR396, miR168, miR393, miR8006 and two new miRNAs, miR#W and miR#M were down-regulated in 7B-1 anthers. Ta-siRNAs were not differentially expressed and likely not associated with 7B-1 male-sterility. miRNA targets with potential roles in anther development were validated using 5'-RACE. QPCR analysis showed differential expression of miRNA/target pairs of interest in anthers and stem of 7B-1, suggesting that they may regulate different biological processes in these tissues. Expression level of most miRNA/target pairs showed negative correlation, except for few. In situ hybridization showed predominant expression of miR159, GAMYBL1, PMEI and cystatin in tapetum, tetrads and microspores. CONCLUSION Overall, we identified miRNAs with potential roles in anther development and regulation of male-sterility in 7B-1. A number of new miRNAs were also identified from tomato for the first time. Our data could be used as a benchmark for future studies of the molecular mechanisms of male-sterility in other crops.
Collapse
Affiliation(s)
- Vahid Omidvar
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. .,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Martin Fellner
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
116
|
Knuesting J, Riondet C, Maria C, Kruse I, Bécuwe N, König N, Berndt C, Tourrette S, Guilleminot-Montoya J, Herrero E, Gaymard F, Balk J, Belli G, Scheibe R, Reichheld JP, Rouhier N, Rey P. Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α, contribute to maintenance of the shoot apical meristem under long-day photoperiod. PLANT PHYSIOLOGY 2015; 167:1643-58. [PMID: 25699589 PMCID: PMC4378178 DOI: 10.1104/pp.15.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 05/18/2023]
Abstract
Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker's yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function.
Collapse
Affiliation(s)
- Johannes Knuesting
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Christophe Riondet
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Carlos Maria
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Inga Kruse
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Noëlle Bécuwe
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Nicolas König
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Carsten Berndt
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Sébastien Tourrette
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Jocelyne Guilleminot-Montoya
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Enrique Herrero
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Frédéric Gaymard
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Janneke Balk
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Gemma Belli
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Renate Scheibe
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Jean-Philippe Reichheld
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Nicolas Rouhier
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| | - Pascal Rey
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany (J.K., N.K., R.S.);Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France (C.R., J.G.-M., J.-P.R.);Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, 25008 Lleida, Spain (C.M., E.H., G.B.);Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom (I.K., J.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (N.B., S.T., P.R.);Aix-Marseille Université, Service de Biologie Végétale et de Microbiologie Environnementales Unité Mixte de Recherche 7265, F-13284 Marseille, France (N.B., S.T., P.R.);Division for Biochemistry, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden (C.B.);Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany (C.B.);Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier cedex 1, France (F.G.);Université de Lorraine, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54500 Vandoeuvre-lès-Nancy, France (N.R.); andInstitut National de la Recherche Agronomique, Interactions Arbres-Microorganismes, Unité Mixte de Recherche 1136, F-54280 Champenoux, France (N.R.)
| |
Collapse
|
117
|
Involvement of thiol-based mechanisms in plant development. Biochim Biophys Acta Gen Subj 2015; 1850:1479-96. [PMID: 25676896 DOI: 10.1016/j.bbagen.2015.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. SCOPE OF VIEW The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. MAJOR CONCLUSIONS The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GENERAL SIGNIFICANCE GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
|
118
|
Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP. A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:299-314. [PMID: 24428628 DOI: 10.1111/pce.12276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 05/08/2023]
Abstract
Thiol reduction proteins are key regulators of the redox state of the cell, managing development and stress response programs. In plants, thiol reduction proteins, namely thioredoxin (TRX), glutaredoxin (GRX), and their respective reducers glutathione reductase (GR) and thioredoxin reductase (TR), are organized in complex multigene families. In order to decipher the function of the different proteins, it is necessary to have a clear picture of their respective expression profiles. By collecting information from gene expression databases, we have performed a comprehensive in silico study of the expression of all members of different classes of thiol reduction genes (TRX, GRX) in Arabidopsis thaliana. Tissue expression profiles and response to many biotic and abiotic stress conditions have been studied systematically. Altogether, the significance of our data is discussed with respect to published biochemical and genetic studies.
Collapse
Affiliation(s)
- C Belin
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860, Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | | | | | | | | | | |
Collapse
|
119
|
Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:19-27. [PMID: 25462074 DOI: 10.1016/j.jplph.2014.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/31/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Phytoalexins are antimicrobial specialised metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are major diterpenoid phytoalexins in rice that are synthesised from geranylgeranyl diphosphate that is derived from the methylerythritol phosphate (MEP) pathway. We have previously reported that rice cells overexpressing the basic leucine zipper (bZIP) transcription factor OsTGAP1 exhibit a hyperaccumulation of momilactones and phytocassanes, with hyperinductive expression of momilactone and phytocassane biosynthetic genes and MEP pathway genes, upon response to a chitin oligosaccharide elicitor. For a better understanding of OsTGAP1-mediated regulation of diterpenoid phytoalexin production, we identified OsTGAP1-interacting proteins using yeast two-hybrid screening. Among the OsTGAP1-interacting protein candidates, a TGA factor OsbZIP79 was investigated to verify its physical interaction with OsTGAP1 and involvement in the regulation of phytoalexin production. An in vitro pull-down assay demonstrated that OsTGAP1 and OsbZIP79 exhibited a heterodimeric as well as a homodimeric interaction. A bimolecular fluorescence complementation analysis also showed the interaction between OsTGAP1 and OsbZIP79 in vivo. Intriguingly, whereas OsbZIP79 transactivation activity was observed in a transient reporter assay, the overexpression of OsbZIP79 resulted in suppression of the elicitor-inducible expression of diterpenoid phytoalexin biosynthetic genes, and thus caused a decrease in the accumulation of phytoalexin in rice cells. These results suggest that OsbZIP79 functions as a negative regulator of phytoalexin production triggered by a chitin oligosaccharide elicitor in rice cells, although it remains open under which conditions OsbZIP79 can work with OsTGAP1.
Collapse
Affiliation(s)
- Koji Miyamoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yoko Nishizawa
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | - Eiichi Minami
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
120
|
Yang F, Bui HT, Pautler M, Llaca V, Johnston R, Lee BH, Kolbe A, Sakai H, Jackson D. A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy. THE PLANT CELL 2015; 27:121-31. [PMID: 25616873 PMCID: PMC4330572 DOI: 10.1105/tpc.114.130393] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/15/2014] [Accepted: 12/07/2014] [Indexed: 05/19/2023]
Abstract
Phyllotaxy describes the geometric arrangement of leaves and is important for plant productivity. Auxin is well known to regulate phyllotactic patterns via PIN1-dependent auxin polar transport, and studies of maize (Zea mays) aberrant phyllotaxy1 (abph1) mutants suggest the importance of auxin and cytokinin signaling for control of phyllotaxy. However, whether additional regulators control these patterns is poorly understood. Here, we report a new dominant maize mutant, Aberrant phyllotaxy2 (Abph2), in which the shoot meristems are enlarged and the phyllotactic pattern switches from alternate to decussate. Map-based cloning revealed that the Abph2 mutation was caused by transposition of a glutaredoxin gene, MALE STERILE CONVERTED ANTHER1 (MSCA1), which gained an altered expression pattern in Abph2 mutant embryos. msca1 loss-of-function mutants have reduced meristem size and revealed a novel function of glutaredoxins in meristem growth. In addition, MSCA1 interacts with a TGA transcription factor, FASCIATED EAR4, suggesting a novel regulatory module for regulating shoot meristem size.
Collapse
Affiliation(s)
- Fang Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Huyen Thanh Bui
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Michael Pautler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Victor Llaca
- DuPont Pioneer, Agricultural Biotechnology, Experimental Station, Wilmington, Delaware 19803
| | - Robyn Johnston
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Byeong-ha Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Allison Kolbe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Hajime Sakai
- DuPont Pioneer, Agricultural Biotechnology, Experimental Station, Wilmington, Delaware 19803
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| |
Collapse
|
121
|
Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. FRONTIERS IN PLANT SCIENCE 2015; 6:171. [PMID: 25852720 PMCID: PMC4365548 DOI: 10.3389/fpls.2015.00171] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/03/2015] [Indexed: 05/18/2023]
Abstract
It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress.
Collapse
Affiliation(s)
| | | | - Loreto Holuigue
- *Correspondence: Loreto Holuigue, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8320000, Chile
| |
Collapse
|
122
|
Herrera-Vásquez A, Carvallo L, Blanco F, Tobar M, Villarroel-Candia E, Vicente-Carbajosa J, Salinas P, Holuigue L. Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:624-637. [PMID: 26696694 PMCID: PMC4677692 DOI: 10.1007/s11105-014-0782-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.
Collapse
Affiliation(s)
- Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Loreto Carvallo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Francisca Blanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Mariola Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Eva Villarroel-Candia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Paula Salinas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
123
|
Li S. Redox Modulation Matters: Emerging Functions for Glutaredoxins in Plant Development and Stress Responses. PLANTS 2014; 3:559-82. [PMID: 27135520 PMCID: PMC4844277 DOI: 10.3390/plants3040559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/07/2014] [Accepted: 11/13/2014] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (GRXs) are small ubiquitous glutathione (GSH)-dependent oxidoreductases that catalyze the reversible reduction of protein disulfide bridges or protein-GSH mixed disulfide bonds via a dithiol or monothiol mechanism, respectively. Three major classes of GRXs, with the CPYC-type, the CGFS-type or the CC-type active site, have been identified in many plant species. In spite of the well-characterized roles for GRXs in Escherichia coli, yeast and humans, the biological functions of plant GRXs have been largely enigmatic. The CPYC-type and CGFS-type GRXs exist in all organisms, from prokaryotes to eukaryotes, whereas the CC-type class has thus far been solely identified in land plants. Only the number of the CC-type GRXs has enlarged dramatically during the evolution of land plants, suggesting their participation in the formation of more complex plants adapted to life on land. A growing body of evidence indicates that plant GRXs are involved in numerous cellular pathways. In this review, emphasis is placed on the recently emerging functions for GRXs in floral organ development and disease resistance. Notably, CC-type GRXs have been recruited to participate in these two seemingly unrelated processes. Besides, the current knowledge of plant GRXs in the assembly and delivery of iron-sulfur clusters, oxidative stress responses and arsenic resistance is also presented. As GRXs require GSH as an electron donor to reduce their target proteins, GSH-related developmental processes, including the control of flowering time and the development of postembryonic roots and shoots, are further discussed. Profiling the thiol redox proteome using high-throughput proteomic approaches and measuring cellular redox changes with fluorescent redox biosensors will help to further unravel the redox-regulated physiological processes in plants.
Collapse
Affiliation(s)
- Shutian Li
- Department of Botany, Osnabrück University, 49076 Osnabrück, Germany.
| |
Collapse
|
124
|
Anisimova IN, Alpatieva NV, Rozhkova VT, Kuznetsova EB, Pinaev AG, Gavrilova VA. Polymorphism among RFL-PPR homologs in sunflower (Helianthus annuus L.) lines with varying ability for the suppression of the cytoplasmic male sterility phenotype. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414070023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
125
|
Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development. THE PLANT CELL 2014; 26:1512-1524. [PMID: 24755456 PMCID: PMC4036568 DOI: 10.1105/tpc.114.123745] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 05/18/2023]
Abstract
In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell-like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell-type determination.
Collapse
Affiliation(s)
- Zhenzhen Fu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowei Cheng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xu Zong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jie Xu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
126
|
Pajoro A, Madrigal P, Muiño JM, Matus JT, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, Ó'Maoiléidigh DS, Wellmer F, Krajewski P, Riechmann JL, Angenent GC, Kaufmann K. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 2014; 15:R41. [PMID: 24581456 PMCID: PMC4054849 DOI: 10.1186/gb-2014-15-3-r41] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/03/2014] [Indexed: 11/30/2022] Open
Abstract
Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility.
Collapse
|
127
|
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:157-71. [PMID: 24388527 DOI: 10.1016/j.plantsci.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes encode an ancient and conserved subclade of BTB-ankryin transcriptional co-activators, divergent in the NPR1 family of plant defense regulators. Arabidopsis BOP1/2 were originally characterized as regulators of leaf and floral patterning. Recent investigation of BOP activity in a variety of land plants provides a more complete picture of their conserved functions at lateral organ boundaries in the determination of leaf, flower, inflorescence, and root nodule architecture. BOPs exert their function in part through promotion of lateral organ boundary genes including ASYMMETRIC LEAVES2, KNOTTED1-LIKE FROM ARABIDOPSIS6, and ARABIDOPSIS THALIANA HOMEOBOX GENE1 whose products restrict growth, promote differentiation, and antagonize meristem activity in various developmental contexts. Mutually antagonistic interactions between BOP and meristem factors are important in maintaining a border between meristem-organ compartments and in controlling irreversible transitions in cell fate associated with differentiation. We also examine intriguing new evidence for BOP function in plant defense. Comparisons to NPR1 highlight previously unexplored mechanisms for co-ordination of development and defense in land plants.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Huasong Xu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
128
|
Cardarelli M, Cecchetti V. Auxin polar transport in stamen formation and development: how many actors? FRONTIERS IN PLANT SCIENCE 2014; 5:333. [PMID: 25076953 PMCID: PMC4100440 DOI: 10.3389/fpls.2014.00333] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 05/20/2023]
Abstract
In flowering plants, proper development of stamens, the male reproductive organs, is required for successful sexual reproduction. In Arabidopsis thaliana normally six stamen primordia arise in the third whorl of floral organs and subsequently differentiate into stamen filaments and anthers, where male meiosis occurs, thus ending the early developmental phase. This early phase is followed by a late developmental phase, which consists of a rapid elongation of stamen filaments coordinated with anther dehiscence and pollen maturation, and terminates with mature pollen grain release at anthesis. Increasing evidence suggests that auxin transport is necessary for both early and late phases of stamen development. It has been shown that different members of PIN (PIN-FORMED) family are involved in the early phase, whereas members of both PIN and P-glycoproteins of the ABCB (PGP) transporter families are required during the late developmental phase. In this review we provide an overview of the increasing knowledge on auxin transporters involved in Arabidopsis stamen formation and development and we discuss their role and functional conservation across plant species.
Collapse
Affiliation(s)
- Maura Cardarelli
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- *Correspondence: Maura Cardarelli, Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy e-mail:
| | - Valentina Cecchetti
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di RomaRome, Italy
| |
Collapse
|
129
|
Hsu WH, Yeh TJ, Huang KY, Li JY, Chen HY, Yang CH. AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:1-15. [PMID: 24164574 DOI: 10.1111/tpj.12363] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 05/19/2023]
Abstract
Arabidopsis AGL13 is a member of the AGL6 clade of the MADS box gene family. GUS activity was specifically detected from the initiation to maturation of both pollen and ovules in AGL13:GUS Arabidopsis. The sterility of the flower with defective pollen and ovules was found in AGL13 RNAi knockdown and AGL13 + SRDX dominant-negative mutants. These results indicate that AGL13 acts as an activator in regulation of early initiation and further development of pollen and ovules. The production of similar floral organ defects in the severe AGL13 + SRDX and SEP2 + SRDX plants and the similar enhancement of AG nuclear localization efficiency by AGL13 and SEP3 proteins suggest a similar function for AGL13 and E functional SEP proteins. Additional fluorescence resonance energy transfer (FRET) analysis indicated that, similar to SEP proteins, AGL13 is able to interact with AG to form quartet-like complexes (AGL13-AG)2 and interact with AG-AP3-PI to form a higher-order heterotetrameric complex (AGL13-AG-AP3-PI). Through these complexes, AGL13 and AG could regulate the expression of similar downstream genes involved in pollen morphogenesis, anther cell layer formation and the ovule development. AGL13 also regulates AG/AP3/PI expression by positive regulatory feedback loops and suppresses its own expression through negative regulatory feedback loops by activating AGL6, which acts as a repressor of AGL13. Our data suggest that AGL13 is likely a putative ancestor for the E functional genes which specifies male and female gametophyte morphogenesis in plants during evolution.
Collapse
Affiliation(s)
- Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
130
|
Stotz HU, Findling S, Nukarinen E, Weckwerth W, Mueller MJ, Berger S. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e972794. [PMID: 25482810 PMCID: PMC4622720 DOI: 10.4161/15592316.2014.972794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes.
Collapse
Key Words
- 12-oxo-phytodienoic acid
- CBB, calmodulin binding buffer
- CBP, calmodulin-binding peptide
- CaMV, cauliflower mosaic virus
- FDR, false discovery rate
- MS, mass spectrometry
- OPDA, 12-oxo-phytodienoic acid
- PGA1, prostaglandin A1
- PPA1, phytoprostane A1
- RubisCo, ribulose-1,5-bisphosphate carboxylase
- SA, salicylic acid
- SAR, systemic acquired resistance
- TAP, tandem affinity purification
- TEV, tobacco etch virus
- Y2H, yeast 2-hybrid
- bZIP, basic region/leucine zipper motif
- glutathione-S-transferase
- lipid stress
- protein complex
- thale cress
Collapse
Affiliation(s)
- Henrik U Stotz
- Julius-von-Sachs-Institute für Biowissenschaften; Pharmazeutische Biologie; Universität Würzburg; Würzburg, Germany
- School of Life and Medical Sciences; University of Hertfordshire; Hatfield, U.K
- Correspondence to: Henrik U Stotz;
| | - Simone Findling
- Julius-von-Sachs-Institute für Biowissenschaften; Pharmazeutische Biologie; Universität Würzburg; Würzburg, Germany
| | - Ella Nukarinen
- Molecular Systems Biology; Faculty of Life Sciences; University of Vienna; Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology; Faculty of Life Sciences; University of Vienna; Vienna, Austria
| | - Martin J Mueller
- Julius-von-Sachs-Institute für Biowissenschaften; Pharmazeutische Biologie; Universität Würzburg; Würzburg, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute für Biowissenschaften; Pharmazeutische Biologie; Universität Würzburg; Würzburg, Germany
| |
Collapse
|
131
|
Kelliher T, Egger RL, Zhang H, Walbot V. Unresolved issues in pre-meiotic anther development. FRONTIERS IN PLANT SCIENCE 2014; 5:347. [PMID: 25101101 PMCID: PMC4104404 DOI: 10.3389/fpls.2014.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/28/2014] [Indexed: 05/04/2023]
Abstract
Compared to the diversity of other floral organs, the steps in anther ontogeny, final cell types, and overall organ shape are remarkably conserved among Angiosperms. Defects in pre-meiotic anthers that alter cellular composition or function typically result in male-sterility. Given the ease of identifying male-sterile mutants, dozens of genes with key roles in early anther development have been identified and cloned in model species, ordered by time of action and spatiotemporal expression, and used to propose explanatory models for critical steps in cell fate specification. Despite rapid progress, fundamental issues in anther development remain unresolved, and it is unclear if insights from one species can be applied to others. Here we construct a comparison of Arabidopsis, rice, and maize immature anthers to pinpoint distinctions in developmental pace. We analyze the mechanisms by which archesporial (pre-meiotic) cells are specified distinct from the soma, discuss what constitutes meiotic preparation, and review what is known about the secondary parietal layer and its terminal periclinal division that generates the tapetal and middle layers. Finally, roles for small RNAs are examined, focusing on the grass-specific phasiRNAs.
Collapse
Affiliation(s)
- Timothy Kelliher
- Syngenta Biotechnology Inc., Research Triangle ParkNC, USA
- *Correspondence: Timothy Kelliher, Syngenta Biotechnology Inc., 3054 East Cornwallis Road, Research Triangle Park, NC 27709, USA e-mail:
| | | | - Han Zhang
- Department of Biology, Stanford UniversityStanford, CA, USA
| | | |
Collapse
|
132
|
Wrzaczek M, Brosché M, Kangasjärvi J. ROS signaling loops - production, perception, regulation. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:575-82. [PMID: 23876676 DOI: 10.1016/j.pbi.2013.07.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species are recognized as important signaling components in a wide range of processes in plants and most other organisms. Reactive oxygen species are produced in different subcellular compartments in response to specific stimuli and the production is under tight control in order to avoid detrimental side-effects. Calcium signaling, protein phosphorylation and other signaling pathways are intimately involved in the control and coordination of reactive oxygen production. Any signal that should result in a specific response must eventually be perceived. Direct redox modification of transcription factors and other proteins are critical for the perception of intracellular reactive oxygen species; however, sensing of their extracellular counterparts awaits elucidation.
Collapse
Affiliation(s)
- Michael Wrzaczek
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
133
|
Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 209:32-45. [PMID: 23759101 DOI: 10.1016/j.plantsci.2013.03.016] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.
Collapse
|
134
|
Hauser F, Chen W, Deinlein U, Chang K, Ossowski S, Fitz J, Hannon GJ, Schroeder JI. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. THE PLANT CELL 2013; 25:2848-63. [PMID: 23956262 PMCID: PMC3784584 DOI: 10.1105/tpc.113.112805] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Traditional forward genetic screens are limited in the identification of homologous genes with overlapping functions. Here, we report the analyses and assembly of genome-wide protein family definitions that comprise the largest estimate for the potentially redundant gene space in Arabidopsis thaliana. On this basis, a computational design of genome-wide family-specific artificial microRNAs (amiRNAs) was performed using high-performance computing resources. The amiRNA designs are searchable online (http://phantomdb.ucsd.edu). A computationally derived library of 22,000 amiRNAs was synthesized in 10 sublibraries of 1505 to 4082 amiRNAs, each targeting defined functional protein classes. For example, 2964 amiRNAs target annotated DNA and RNA binding protein families and 1777 target transporter proteins, and another sublibrary targets proteins of unknown function. To evaluate the potential of an amiRNA-based screen, we tested 122 amiRNAs targeting transcription factor, protein kinase, and protein phosphatase families. Several amiRNA lines showed morphological phenotypes, either comparable to known phenotypes of single and double/triple mutants or caused by overexpression of microRNAs. Moreover, novel morphological and abscisic acid-insensitive seed germination mutants were identified for amiRNAs targeting zinc finger homeodomain transcription factors and mitogen-activated protein kinase kinase kinases, respectively. These resources provide an approach for genome-wide genetic screens of the functionally redundant gene space in Arabidopsis.
Collapse
Affiliation(s)
- Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Wenxiao Chen
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Ulrich Deinlein
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Kenneth Chang
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Joffrey Fitz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
- Address correspondence to
| |
Collapse
|
135
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
136
|
Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3-GENES GENOMES GENETICS 2013; 3:231-49. [PMID: 23390600 PMCID: PMC3564984 DOI: 10.1534/g3.112.004465] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
Abstract
Proper regulation of anther differentiation is crucial for producing functional pollen, and defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22 mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new alleles of four premeiotic developmental mutants, including two novel alleles of msca1 and single new alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects, abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microsporocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences between grasses and eudicots and within the grasses.
Collapse
|
137
|
Gatz C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:151-9. [PMID: 23013435 DOI: 10.1094/mpmi-04-12-0078-ia] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant immune system encompasses an arsenal of defense genes that is activated upon recognition of a pathogen. Appropriate adjustment of gene expression is mediated by multiple interconnected signal transduction cascades that finally control the activity of transcription factors. These sequence-specific DNA-binding proteins act at the interface between the DNA and the regulatory protein network. In 1989, tobacco TGA1a was cloned as the first plant transcription factor. Since then, multiple studies have shown that members of the TGA family play important roles in defense responses against biotrophic and necrotrophic pathogens and against chemical stress. Here, we review 22 years of research on TGA factors which have yielded both consistent and conflicting results.
Collapse
Affiliation(s)
- Christiane Gatz
- Georg-August-University of Göttingen (GAU), Albrecht-von-Haller-Institute for Plant Sciences, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.
| |
Collapse
|
138
|
Traverso JA, Pulido A, Rodríguez-García MI, Alché JD. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:465. [PMID: 24294217 PMCID: PMC3827552 DOI: 10.3389/fpls.2013.00465] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 05/19/2023]
Abstract
The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network.
Collapse
Affiliation(s)
- Jose A. Traverso
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Amada Pulido
- Departamento de Fisiología Vegetal, Universidad de GranadaGranada, Spain
| | | | - Juan D. Alché
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alché, Plant Reproductive Biology Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish Council for Scientific Research, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| |
Collapse
|
139
|
Sánchez-Riego AM, López-Maury L, Florencio FJ. Glutaredoxins are essential for stress adaptation in the cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2013; 4:428. [PMID: 24204369 PMCID: PMC3816324 DOI: 10.3389/fpls.2013.00428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/10/2013] [Indexed: 05/10/2023]
Abstract
Glutaredoxins are small redox proteins able to reduce disulfides and mixed disulfides between GSH and proteins. Synechocystis sp. PCC 6803 contains three genes coding for glutaredoxins: ssr2061 (grxA) and slr1562 (grxB) code for dithiolic glutaredoxins while slr1846 (grxC) codes for a monothiolic glutaredoxin. We have analyzed the expression of these glutaredoxins in response to different stresses, such as high light, H2O2 and heat shock. Analysis of the mRNA levels showed that grxA is only induced by heat while grxC is repressed by heat shock and is induced by high light and H2O2. In contrast, grxB expression was maintained almost constant under all conditions. Analysis of GrxA and GrxC protein levels by western blot showed that GrxA increases in response to high light, heat or H2O2 while GrxC is only induced by high light and H2O2, in accordance with its mRNA levels. In addition, we have also generated mutants that have interrupted one, two, or three glutaredoxin genes. These mutants were viable and did not show any different phenotype from the WT under standard growth conditions. Nevertheless, analysis of these mutants under several stress conditions revealed that single grxA mutants grow slower after H2O2, heat and high light treatments, while mutants in grxB are indistinguishable from WT. grxC mutants were hypersensitive to treatments with H2O2, heat, high light and metals. A double grxAgrxC mutant was found to be even more sensitive to H2O2 than each corresponding single mutants. Surprisingly a mutation in grxB suppressed totally or partially the phenotypes of grxA and grxC mutants except the H2O2 sensitivity of the grxC mutant. This suggests that grxA and grxC participate in independent pathways while grxA and grxB participate in a common pathway for H2O2 resistance. The data presented here show that glutaredoxins are essential for stress adaptation in cyanobacteria, although their targets and mechanism of action remain unidentified.
Collapse
Affiliation(s)
| | | | - Francisco J. Florencio
- *Correspondence: Francisco J. Florencio, Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av Americo Vespucio 49, E 41092 Seville, Spain e-mail:
| |
Collapse
|
140
|
Allen EMG, Mieyal JJ. Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 2012; 17:1748-63. [PMID: 22530666 PMCID: PMC3474186 DOI: 10.1089/ars.2012.4644] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Glutaredoxin (Grx) is the primary enzyme responsible for catalysis of deglutathionylation of protein-mixed disulfides with glutathione (GSH) (protein-SSG). This reversible post-translational modification alters the activity and function of many proteins important in regulation of critical cellular processes. Aberrant regulation of protein glutathionylation/deglutathionylation reactions due to changes in Grx activity can disrupt both apoptotic and survival signaling pathways. RECENT ADVANCES Grx is known to regulate the activity of many proteins through reversible glutathionylation, such as Ras, Fas, ASK1, NFκB, and procaspase-3, all of which play important roles in control of apoptosis. Reactive oxygen species and/or reactive nitrogen species mediate oxidative modifications of critical Cys residues on these apoptotic mediators, facilitating protein-SSG formation and thereby altering protein function and apoptotic signaling. CRITICAL ISSUES Much of what is known about the regulation of apoptotic mediators by Grx and reversible glutathionylation has been gleaned from in vitro studies of discrete apoptotic pathways. To relate these results to events in vivo it is important to examine changes in protein-SSG status in situ under natural cellular conditions, maintaining relevant GSH:GSSG ratios and using appropriate inducers of apoptosis. FUTURE DIRECTIONS Apoptosis is a highly complex, tightly regulated process involving many different checks and balances. The influence of Grx activity on the interconnectivity among these various pathways remains unknown. Knowledge of the effects of Grx is essential for developing novel therapeutic approaches for treating diseases involving dysregulated apoptosis, such as cancer, heart disease, diabetes, and neurodegenerative diseases, where alterations in redox homeostasis are hallmarks for pathogenesis.
Collapse
Affiliation(s)
- Erin M G Allen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | |
Collapse
|
141
|
Abstract
Grxs (glutaredoxins) are small ubiquitous redox enzymes. They are generally involved in the reduction of oxidative modifications using glutathione. Grxs are not only able to reduce protein disulfides and the low-molecular-mass antioxidant dehydroascorbate, but also represent the major enzyme class responsible for deglutathionylation reactions. Functional proteomics, including interaction studies, comparative activity measurements using heterologous proteins and structural analysis are combined to provide important insights into the crucial function of Grxs in cellular redox networks. Summarizing the current understanding of Grxs, with a special focus on organelle-localized members across species, genus and kingdom boundaries (including cyanobacteria, plants, bacteria, yeast and humans) lead to two different classifications, one according to sequence structure that gives insights into the diversification of Grxs, and another according to function within the cell that provides a basis for assessing the different roles of Grxs.
Collapse
|
142
|
Shearer HL, Cheng YT, Wang L, Liu J, Boyle P, Després C, Zhang Y, Li X, Fobert PR. Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1459-68. [PMID: 22876961 DOI: 10.1094/mpmi-09-11-0256] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transcriptional reprogramming during induction of salicylic acid (SA)-mediated defenses is regulated primarily by NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1), likely through interactions with TGA bZIP transcription factors. To ascertain the contributions of clade I TGA factors (TGA1 and TGA4) to defense responses, a tga1-1 tga4-1 double mutant was constructed and challenged with Pseudomonas syringae and Hyaloperonospora arabidopsidis. Although the mutant displayed enhanced susceptibility to virulent P. syringae, it was not compromised in systemic acquired resistance against this pathogen or resistance against avirulent H. arabidopsidis. Microarray analysis of nonelicited and SA-treated plants indicated that clade I TGA factors regulate fewer genes than NPR1. Approximately half of TGA-dependent genes were regulated by NPR1 but, in all cases, the direction of change was opposite in the two mutants. In support of the microarray data, the NPR1-independent disease resistance observed in the autoimmune resistance (R) gene mutant snc1 is partly compromised by tga1-1 tga4-1 mutations, and a triple mutant of clade I TGA factors with npr1-1 is more susceptible than either parent. These results suggest that clade I TGA factors are required for resistance against virulent pathogens and avirulent pathogens mediated by at least some R gene specificities, acting substantially through NPR1-independent pathways.
Collapse
|
143
|
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 2012; 17:1124-60. [PMID: 22531002 DOI: 10.1089/ars.2011.4327] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
Collapse
Affiliation(s)
- Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | | | | | | | | |
Collapse
|
144
|
Schippers JHM, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. ROS homeostasis during development: an evolutionary conserved strategy. Cell Mol Life Sci 2012; 69:3245-57. [PMID: 22842779 PMCID: PMC11114851 DOI: 10.1007/s00018-012-1092-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.
Collapse
Affiliation(s)
- Jos H. M. Schippers
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hung M. Nguyen
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dandan Lu
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Romy Schmidt
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
145
|
Abstract
Evidence from confocal microscopic reconstruction of maize anther development in fertile, mac1 (excess germ cells), and msca1 (no germ cells) flowers indicates that the male germ line is multiclonal and uses the MAC1 protein to organize the somatic niche. Furthermore, we identified redox status as a determinant of germ cell fate, defining a mechanism distinct from the animal germ cell lineage. Decreasing oxygen or H(2)O(2) increases germ cell numbers, stimulates superficial germ cell formation, and rescues germinal differentiation in msca1 flowers. Conversely, oxidizing environments inhibit germ cell specification and cause ectopic differentiation in deeper tissues. We propose that hypoxia, arising naturally within growing anther tissue, acts as a positional cue to set germ cell fate.
Collapse
Affiliation(s)
- Timothy Kelliher
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
146
|
Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4901-17. [PMID: 22844095 PMCID: PMC3427993 DOI: 10.1093/jxb/ers167] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The PIN-FORMED (PIN) auxin efflux transport protein family has been well characterized in the model plant Arabidopsis thaliana, where these proteins are crucial for auxin regulation of various aspects of plant development. Recent evidence indicates that PIN proteins may play a role in fruit set and early fruit development in tomato (Solanum lycopersicum), but functional analyses of PIN-silenced plants failed to corroborate this hypothesis. Here it is demonstrated that silencing specifically the tomato SlPIN4 gene, which is predominantly expressed in tomato flower bud and young developing fruit, leads to parthenocarpic fruits due to precocious fruit development before fertilization. This phenotype was associated with only slight modifications of auxin homeostasis at early stages of flower bud development and with minor alterations of ARF and Aux/IAA gene expression. However, microarray transcriptome analysis and large-scale quantitative RT-PCR profiling of transcription factors in developing flower bud and fruit highlighted differentially expressed regulatory genes, which are potential targets for auxin control of fruit set and development in tomato. In conclusion, this work provides clear evidence that the tomato PIN protein SlPIN4 plays a major role in auxin regulation of tomato fruit set, possibly by preventing precocious fruit development in the absence of pollination, and further gives new insights into the target genes involved in fruit set.
Collapse
Affiliation(s)
- Fabien Mounet
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Present address: UMR 5546, Laboratoire de Recherche en Sciences VégétalesF-31326 Castanet TolosanFrance
| | - Annick Moing
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Present address: Institute of Soil Science and Plant Cultivation, Department of Biochemistry and Crop Quality24100 PulawyPoland
| | - Johannes Rohrmann
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Johann Petit
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Virginie Garcia
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Mickaël Maucourt
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Kentaro Yano
- Meiji University1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, 214-8571Japan
| | - Catherine Deborde
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Koh Aoki
- Kazusa DNA Research Institute2-6-7 Kazusa-Kamatari, KisarazuJapan
- Present address: Osaka Prefecture University, Environmental and Life Sciences, 1-1 Gakuen-cho, Naka-ku, SakaiOsaka 599-8531Japan
| | - Hélène Bergès
- INRA-Centre National de Ressources Génomiques VégétalesF-31326 Castanet TolosanFrance
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC46022 ValenciaSpain
| | - Alisdair R. Fernie
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Institut Jean-Pierre Bourgin, UMR1318-INRA-AgroParisTech, INRA Centre of Versailles-GrignonF-78026 Versailles cedexFrance
| | - Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
147
|
Zander M, Chen S, Imkampe J, Thurow C, Gatz C. Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. MOLECULAR PLANT 2012; 5:831-40. [PMID: 22207719 DOI: 10.1093/mp/ssr113] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glutaredoxins are small heat-stable oxidoreductases that transfer electrons from glutathione (GSH) to oxidized cysteine residues, thereby contributing to protein integrity and regulation. In Arabidopsis thaliana, floral glutaredoxins ROXY1 and ROXY2 and pathogen-induced ROXY19/GRX480 interact with bZIP transcription factors of the TGACG (TGA) motif-binding family. ROXY1, ROXY2, and TGA factors PERIANTHIA, TGA9, and TGA10 play essential roles in floral development. In contrast, ectopically expressed ROXY19/GRX480 negatively regulates expression of jasmonic acid (JA)/ethylene (ET)-induced defense genes through an unknown mechanism that requires clade II transcription factors TGA2, TGA5, and/or TGA6. Here, we report that at least 17 of the 21 land plant-specific glutaredoxins encoded in the Arabidopsis genome interact with TGA2 in a yeast-two-hybrid system. To investigate their capacity to interfere with the expression of JA/ET-induced genes, we developed a transient expression system. Activation of the ORA59 (OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF-domain protein 59) promoter by transcription factor EIN3 (ETHYLENE INSENSITVE 3) was suppressed by co-expressed ROXY19/GRX480. Suppression depended on the L**LL motif in the C-terminus of ROXY19/GRX480. This putative protein interaction domain was recently described as being essential for the TGA/ROXY interaction. Ten of the 17 tested ROXY proteins suppressed ORA59 promoter activity, which correlated with the presence of the C-terminal ALWL motif, which is essential for ROXY1 function in flower development. ROXY19/GRX480-mediated repression depended on the GSH binding site, suggesting that redox modification of either TGA factors or as yet unknown target proteins is important for the suppression of ORA59 promoter activity.
Collapse
Affiliation(s)
- Mark Zander
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
148
|
Idrovo Espín FM, Peraza-Echeverria S, Fuentes G, Santamaría JM. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:113-22. [PMID: 22410205 DOI: 10.1016/j.plaphy.2012.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 05/23/2023]
Abstract
The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya.
Collapse
Affiliation(s)
- Fabio Marcelo Idrovo Espín
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 N° 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, Mexico
| | | | | | | |
Collapse
|
149
|
Radchuk V, Kumlehn J, Rutten T, Sreenivasulu N, Radchuk R, Rolletschek H, Herrfurth C, Feussner I, Borisjuk L. Fertility in barley flowers depends on Jekyll functions in male and female sporophytes. THE NEW PHYTOLOGIST 2012; 194:142-157. [PMID: 22269089 DOI: 10.1111/j.1469-8137.2011.04032.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Owing to its evolutional plasticity and adaptability, barley (Hordeum vulgare) is one of the most widespread crops in the world. Despite this evolutionary success, sexual reproduction of small grain cereals is poorly investigated, making discovery of novel genes and functions a challenging priority. Barley gene Jekyll appears to be a key player in grain development; however, its role in flowers has remained unknown. • Here, we studied RNAi lines of barley, where Jekyll expression was repressed to different extents. The impact of Jekyll on flower development was evaluated based on differential gene expression analysis applied to anthers and gynoecia of wildtype and transgenic plants, as well as using isotope labeling experiments, hormone analysis, immunogold- and TUNEL-assays and in situ hybridization. • Jekyll is expressed in nurse tissues mediating gametophyte-sporophyte interaction in anthers and gynoecia, where JEKYLL was found within the intracellular membranes. The repression of Jekyll impaired pollen maturation, anther dehiscence and induced a significant loss of fertility. The presence of JEKYLL on the pollen surface also hints at possible involvement in the fertilization process. • We conclude that the role of Jekyll in cereal sexual reproduction is clearly much broader than has been hitherto realized.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Cornelia Herrfurth
- Georg August University, Albrecht von Haller Institute, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg August University, Albrecht von Haller Institute, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| |
Collapse
|
150
|
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012; 16:567-86. [PMID: 22053845 DOI: 10.1089/ars.2011.4255] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, besides the well-established disulfide/dithiol exchange reactions specifically controlled by thioredoxins (TRXs), protein S-glutathionylation is emerging as an alternative redox modification occurring under stress conditions. This modification, consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue, can not only protect specific cysteines from irreversible oxidation but also modulate protein activities and appears to be specifically controlled by small disulfide oxidoreductases of the TRX superfamily named glutaredoxins (GRXs). RECENT STUDIES In recent times, several studies allowed significant progress in this area, mostly due to the identification of several plant proteins undergoing S-glutathionylation and to the characterization of the molecular mechanisms and the proteins involved in the control of this modification. CRITICAL ISSUES This article provides a global overview of protein glutathionylation in photosynthetic organisms with particular emphasis on the mechanisms of protein glutathionylation and deglutathionylation and a focus on the role of GRXs. Then, we describe the methods employed for identification of glutathionylated proteins in photosynthetic organisms and review the targets and the possible physiological functions of protein glutathionylation. FUTURE DIRECTIONS In order to establish the importance of protein S-glutathionylation in photosynthetic organisms, future studies should be aimed at delineating more accurately the molecular mechanisms of glutathionylation and deglutathionylation reactions, at identifying proteins undergoing S-glutathionylation in vivo under diverse conditions, and at investigating the importance of redoxins, GRX, and TRX, in the control of this redox modification in vivo.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|