101
|
Sellaro R, Pacín M, Casal JJ. Meta-Analysis of the Transcriptome Reveals a Core Set of Shade-Avoidance Genes in Arabidopsis. Photochem Photobiol 2017; 93:692-702. [DOI: 10.1111/php.12729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Romina Sellaro
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
| | - Manuel Pacín
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
| | - Jorge J. Casal
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
- Fundación Instituto Leloir; Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET; Buenos Aires Argentina
| |
Collapse
|
102
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
103
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
104
|
Wasternack C. The Trojan horse coronatine: the COI1-JAZ2-MYC2,3,4-ANAC019,055,072 module in stomata dynamics upon bacterial infection. THE NEW PHYTOLOGIST 2017; 213:972-975. [PMID: 28079932 DOI: 10.1111/nph.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
105
|
OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci Rep 2017; 7:40175. [PMID: 28067270 PMCID: PMC5220304 DOI: 10.1038/srep40175] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/02/2016] [Indexed: 11/08/2022] Open
Abstract
Biosynthesis of sakuranetin, a flavonoid anti-fungal phytoalexin that occurs in rice, is highly dependent on jasmonic acid (JA) signalling and induced by a variety of environmental stimuli. We previously identified OsNOMT, which encodes naringenin 7-O-methyltransferase (NOMT); NOMT is a key enzyme for sakuranetin production. Although OsNOMT expression is induced by JA treatment, the regulation mechanism that activates the biosynthetic pathway of sakuranetin has not yet been elucidated. In this study, we show that JA-inducible basic helix-loop-helix transcriptional factor OsMYC2 drastically enhances the activity of the OsNOMT promoter and is essential for JA-inducible sakuranetin production. In addition, we identified 2 collaborators of OsMYC2, OsMYC2-like protein 1 and 2 (OsMYL1 and OsMYL2) that further activated the OsNOMT promoter in synergy with OsMYC2. Physical interaction of OsMYC2 with OsMYL1 and OsMYL2 further supported the idea that these interactions lead to the enhancement of the transactivation activity of OsMYC2. Our results indicate that JA signalling via OsMYC2 is reinforced by OsMYL1 and OsMYL2, resulting in the inductive production of sakuranetin during defence responses in rice.
Collapse
|
106
|
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 2016; 14:760-773. [PMID: 27795567 DOI: 10.1038/nrmicro.2016.149] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the diversification of Fungi and the rise of conifer-dominated and angiosperm- dominated forests, mutualistic symbioses developed between certain trees and ectomycorrhizal fungi that enabled these trees to colonize boreal and temperate regions. The evolutionary success of these symbioses is evident from phylogenomic analyses that suggest that ectomycorrhizal fungi have arisen in approximately 60 independent saprotrophic lineages, which has led to the wide range of ectomycorrhizal associations that exist today. In this Review, we discuss recent genomic studies that have revealed the adaptations that seem to be fundamental to the convergent evolution of ectomycorrhizal fungi, including the loss of some metabolic functions and the acquisition of effectors that facilitate mutualistic interactions with host plants. Finally, we consider how these insights can be integrated into a model of the development of ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Francis Martin
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Annegret Kohler
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Claude Murat
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), 54500 Vandoeuvre-lès-Nancy, France
| | - David S Hibbett
- Biology Department, Clark University, Lasry Center for Bioscience, 950 Main Street, Worcester, Massachusetts 01610, USA
| |
Collapse
|
107
|
Feng B, Ma S, Chen S, Zhu N, Zhang S, Yu B, Yu Y, Le B, Chen X, Dinesh-Kumar SP, Shan L, He P. PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity. EMBO Rep 2016; 17:1799-1813. [PMID: 27797852 DOI: 10.15252/embr.201642486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 11/09/2022] Open
Abstract
Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively.
Collapse
Affiliation(s)
- Baomin Feng
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Shisong Ma
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Shuxin Zhang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | - Yu Yu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology and Howard Hughes Medical Institute, University of California, Riverside, CA, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology and Howard Hughes Medical Institute, University of California, Riverside, CA, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology and Howard Hughes Medical Institute, University of California, Riverside, CA, USA
| | | | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
108
|
Chen SP, Kuo CH, Lu HH, Lo HS, Yeh KW. The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding. PLoS Genet 2016; 12:e1006397. [PMID: 27780204 PMCID: PMC5079590 DOI: 10.1371/journal.pgen.1006397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022] Open
Abstract
IbNAC1 is known to activate the defense system by reprogramming a genetic network against herbivory in sweet potato. This regulatory activity elevates plant defense potential but relatively weakens plants by IbNAC1-mediated JA response. The mechanism controlling IbNAC1 expression to balance plant vitality and survival remains unclear. In this study, a wound-responsive G-box cis-element in the IbNAC1 promoter from -1484 to -1479 bp was identified. From a screen of wound-activated transcriptomic data, one transcriptional activator, IbbHLH3, and one repressor, IbbHLH4, were selected that bind to and activate or repress, respectively, the G-box motif in the IbNAC1 promoter to modulate the IbNAC1-mediated response. In the early wound response, the IbbHLH3-IbbHLH3 protein complex binds to the G-box motif to activate IbNAC1 expression. Thus, an elegant defense network is activated against wounding stress. Until the late stages of wounding, IbbHLH4 interacts with IbbHLH3, and the IbbHLH3-IbbHLH4 heterodimer competes with the IbbHLH3-IbbHLH3 complex to bind the G-box and suppress IbNAC1 expression and timely terminates the defense network. Moreover, the JAZs and IbEIL1 proteins interact with IbbHLH3 to repress the transactivation function of IbbHLH3 in non-wounded condition, but their transcription is immediately inhibited upon early wounding. Our work provides a genetic model that accurately switches the regulatory mechanism of IbNAC1 expression to adjust wounding physiology and represents a delicate defense regulatory network in plants.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Kuo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
109
|
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:147-156. [PMID: 27490895 DOI: 10.1016/j.pbi.2016.07.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are essential phytohormones regulating plant development and environmental adaptation. Many components of the JA-signalling pathway have been identified. However, our insight into the mechanisms by which a single bioactive JA hormone can regulate a myriad of physiological processes and provide specificity in the response remains limited. Recent findings on molecular components suggest that, despite apparent redundancy, specificity is achieved by (1) distinct protein-protein interactions forming unique JAZ/transcription factor complexes, (2) discrete spatiotemporal expression of specific components, (3) variable hormone thresholds for the formation of multiple JA receptor complexes and (4) integration of several signals by JA-pathway components. The molecular modularity that is thereby created enables a single bioactive hormone to specifically modulate multiple JA-outputs in response to different environmental and developmental cues.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
110
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
111
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:673-89. [PMID: 27086135 DOI: 10.1007/s11103-016-0480-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/09/2016] [Indexed: 05/20/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
112
|
Rai A, Umashankar S, Rai M, Kiat LB, Bing JAS, Swarup S. Coordinate Regulation of Metabolite Glycosylation and Stress Hormone Biosynthesis by TT8 in Arabidopsis. PLANT PHYSIOLOGY 2016; 171:2499-515. [PMID: 27432888 PMCID: PMC4972274 DOI: 10.1104/pp.16.00421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Secondary metabolites play a key role in coordinating ecology and defense strategies of plants. Diversity of these metabolites arises by conjugation of core structures with diverse chemical moieties, such as sugars in glycosylation. Active pools of phytohormones, including those involved in plant stress response, are also regulated by glycosylation. While much is known about the enzymes involved in glycosylation, we know little about their regulation or coordination with other processes. We characterized the flavonoid pathway transcription factor TRANSPARENT TESTA8 (TT8) in Arabidopsis (Arabidopsis thaliana) using an integrative omics strategy. This approach provides a systems-level understanding of the cellular machinery that is used to generate metabolite diversity by glycosylation. Metabolomics analysis of TT8 loss-of-function and inducible overexpression lines showed that TT8 coordinates glycosylation of not only flavonoids, but also nucleotides, thus implicating TT8 in regulating pools of activated nucleotide sugars. Transcriptome and promoter network analyses revealed that the TT8 regulome included sugar transporters, proteins involved in sugar binding and sequestration, and a number of carbohydrate-active enzymes. Importantly, TT8 affects stress response, along with brassinosteroid and jasmonic acid biosynthesis, by directly binding to the promoters of key genes of these processes. This combined effect on metabolite glycosylation and stress hormones by TT8 inducible overexpression led to significant increase in tolerance toward multiple abiotic and biotic stresses. Conversely, loss of TT8 leads to increased sensitivity to these stresses. Thus, the transcription factor TT8 is an integrator of secondary metabolism and stress response. These findings provide novel approaches to improve broad-spectrum stress tolerance.
Collapse
Affiliation(s)
- Amit Rai
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
| | - Shivshankar Umashankar
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
| | - Megha Rai
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
| | - Lim Boon Kiat
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
| | - Johanan Aow Shao Bing
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
| | - Sanjay Swarup
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
| |
Collapse
|
113
|
Abstract
Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.
Collapse
|
114
|
Thatcher LF, Cevik V, Grant M, Zhai B, Jones JDG, Manners JM, Kazan K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2367-86. [PMID: 26896849 PMCID: PMC4809290 DOI: 10.1093/jxb/erw040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Murray Grant
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Bing Zhai
- College of Biological Sciences, China Agricultural University, Beijing 100093, China
| | | | - John M Manners
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia The Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland 4072, Australia
| |
Collapse
|
115
|
Mira MM, Wally OSD, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C. Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2231-46. [PMID: 26962208 PMCID: PMC4809281 DOI: 10.1093/jxb/erw022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous studies have shown that the beneficial effect of suppression of the Arabidopsis phytoglobin 2 gene, PGB2, on somatic embryogenesis occurs through the accumulation of nitric oxide (NO) within the embryogenic cells originating from the cultured explant. NO activates the expression of Allene oxide synthase (AOS) and Lipoxygenase 2 (LOX2), genes encoding two key enzymes of the jasmonic acid (JA) biosynthetic pathway, elevating JA content within the embryogenic tissue. The number of embryos in the single aos1-1 mutant and pgb2-aos1-1 double mutant declined, and was not rescued by increasing levels of NO stimulating embryogenesis in wild-type tissue. NO also influenced JA responses by up-regulating PLANT DEFENSIN 1 (PDF1) and JASMONATE-ZIM-PROTEIN (JAZ1), as well as down-regulating MYC2. The NO and JA modulation of MYC2 and JAZ1 controlled embryogenesis. Ectopic expression of JAZ1 or suppression of MYC2 promoted the formation of somatic embryos, while repression of JAZ1 and up-regulation of MYC2 reduced the embryogenic performance. Sustained expression of JAZ1 induced the transcription of several indole acetic acid (IAA) biosynthetic genes, resulting in higher IAA levels in the embryogenic cells. Collectively these data fit a model integrating JA in the PGB2 regulation of Arabidopsis embryogenesis. Suppression of PGB2 increases JA through NO. Elevated levels of JA repress MYC2 and induce JAZ1, favoring the accumulation of IAA in the explants and the subsequent production of somatic embryos.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Owen S. D. Wally
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Mohamed Elhiti
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Adel El-Shanshory
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Dhadi S. Reddy
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
116
|
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2519-2532. [PMID: 26931169 PMCID: PMC4809300 DOI: 10.1093/jxb/erw071] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Nobuhiro Akiyoshi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
117
|
Schmiesing A, Emonet A, Gouhier-Darimont C, Reymond P. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract. PLANT PHYSIOLOGY 2016; 170:2432-43. [PMID: 26884488 PMCID: PMC4825139 DOI: 10.1104/pp.16.00031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 05/04/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated.
Collapse
Affiliation(s)
- André Schmiesing
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Aurélia Emonet
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
118
|
Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Fang S, Chu J, Li S, Xin H. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2829-45. [PMID: 27162276 PMCID: PMC4861026 DOI: 10.1093/jxb/erw122] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Linchuan Fang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lingye Su
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xinbo Li
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Sospeter Karanja Karungo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shuang Fang
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
119
|
Chiangga S, Pornkaveerat W, Frank T. On a Fitzhugh–Nagumo type model for the pulse-like jasmonate defense response in plants. Math Biosci 2016; 273:80-90. [DOI: 10.1016/j.mbs.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
120
|
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34:441-449. [PMID: 26876016 DOI: 10.1016/j.biotechadv.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies.
Collapse
Affiliation(s)
- Meiliang Zhou
- Institute of Biology, Leiden University, Sylvius Laboratory, P.O. Box 9505, 2300 RA, Leiden, The Netherlands; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Johan Memelink
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
121
|
de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. THE NEW PHYTOLOGIST 2016; 209:1120-34. [PMID: 26428397 PMCID: PMC4791170 DOI: 10.1111/nph.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 05/21/2023]
Abstract
Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.
Collapse
Affiliation(s)
- Marta de Torres Zabala
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Bing Zhai
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Siddharth Jayaraman
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Garoufalia Eleftheriadou
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Ron Yang
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - William Truman
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMN55108USA
| | - Saijung Tang
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Murray Grant
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| |
Collapse
|
122
|
Rest JS, Wilkins O, Yuan W, Purugganan MD, Gurevitch J. Meta-analysis and meta-regression of transcriptomic responses to water stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:548-60. [PMID: 26756945 PMCID: PMC4815425 DOI: 10.1111/tpj.13124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 05/16/2023]
Abstract
The large amounts of transcriptome data available for Arabidopsis thaliana make a compelling case for the need to generalize results across studies and extract the most robust and meaningful information possible from them. The results of various studies seeking to identify water stress-responsive genes only partially overlap. The aim of this work was to combine transcriptomic studies in a systematic way that identifies commonalities in response, taking into account variation among studies due to batch effects as well as sampling variation, while also identifying the effect of study-specific variables, such as the method of applying water stress, and the part of the plant the mRNA was extracted from. We used meta-analysis, the quantitative synthesis of independent research results, to summarize expression responses to water stress across studies, and meta-regression to model the contribution of covariates that may affect gene expression. We found that some genes with small but consistent differential responses become evident only when results are synthesized across experiments, and are missed in individual studies. We also identified genes with expression responses that are attributable to use of different plant parts and alternative methods for inducing water stress. Our results indicate that meta-analysis and meta-regression provide a powerful approach for identifying a robust gene set that is less sensitive to idiosyncratic results and for quantifying study characteristics that result in contrasting gene expression responses across studies. Combining meta-analysis with individual analyses may contribute to a richer understanding of the biology of water stress responses, and may prove valuable in other gene expression studies.
Collapse
Affiliation(s)
- Joshua S. Rest
- Department of Ecology and Evolution, 650 Life SciencesStony Brook UniversityStony BrookNY11794–5245USA
| | - Olivia Wilkins
- Center for Genomics and Systems BiologyNew York University12 Waverly PlaceNew YorkNY10003USA
| | - Wei Yuan
- Center for Genomics and Systems BiologyNew York University12 Waverly PlaceNew YorkNY10003USA
| | - Michael D. Purugganan
- Center for Genomics and Systems BiologyNew York University12 Waverly PlaceNew YorkNY10003USA
| | - Jessica Gurevitch
- Department of Ecology and Evolution, 650 Life SciencesStony Brook UniversityStony BrookNY11794–5245USA
| |
Collapse
|
123
|
Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1233-40. [PMID: 26096226 DOI: 10.1111/pbi.12417] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/21/2023]
Abstract
Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
124
|
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development - active and inactive compounds. N Biotechnol 2015; 33:604-613. [PMID: 26581489 DOI: 10.1016/j.nbt.2015.11.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022]
Abstract
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| |
Collapse
|
125
|
Boter M, Golz JF, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R. FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. THE PLANT CELL 2015; 27:3160-74. [PMID: 26530088 PMCID: PMC4682293 DOI: 10.1105/tpc.15.00220] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 05/21/2023]
Abstract
The plant hormone jasmonate (JA) plays an important role in regulating growth, development, and immunity. Activation of the JA-signaling pathway is based on the hormone-triggered ubiquitination and removal of transcriptional repressors (JASMONATE-ZIM DOMAIN [JAZ] proteins) by an SCF receptor complex (SCF(COI1)/JAZ). This removal allows the rapid activation of transcription factors (TFs) triggering a multitude of downstream responses. Identification of TFs bound by the JAZ proteins is essential to better understand how the JA-signaling pathway modulates and integrates different responses. In this study, we found that the JAZ3 repressor physically interacts with the YABBY (YAB) family transcription factor FILAMENTOUS FLOWER (FIL)/YAB1. In Arabidopsis thaliana, FIL regulates developmental processes such as axial patterning and growth of lateral organs, shoot apical meristem activity, and inflorescence phyllotaxy. Phenotypic analysis of JA-regulated responses in loss- and gain-of-function FIL lines suggested that YABs function as transcriptional activators of JA-triggered responses. Moreover, we show that MYB75, a component of the WD-repeat/bHLH/MYB complex regulating anthocyanin production, is a direct transcriptional target of FIL. We propose that JAZ3 interacts with YABs to attenuate their transcriptional function. Upon perception of JA signal, degradation of JAZ3 by the SCF(COI1) complex releases YABs to activate a subset of JA-regulated genes in leaves leading to anthocyanin accumulation, chlorophyll loss, and reduced bacterial defense.
Collapse
Affiliation(s)
- Marta Boter
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - John F Golz
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Selena Giménez-Ibañez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
126
|
Pauwels L, Ritter A, Goossens J, Durand AN, Liu H, Gu Y, Geerinck J, Boter M, Vanden Bossche R, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Solano R, Stone S, Innes RW, Callis J, Goossens A. The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. PLANT PHYSIOLOGY 2015; 169:1405-17. [PMID: 26320228 PMCID: PMC4587444 DOI: 10.1104/pp.15.00479] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/27/2015] [Indexed: 05/20/2023]
Abstract
Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.
Collapse
Affiliation(s)
- Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Andrés Ritter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Hongxia Liu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Yangnan Gu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jan Geerinck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Marta Boter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Rebecca De Clercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Kris Gevaert
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roberto Solano
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Sophia Stone
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roger W Innes
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Judy Callis
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| |
Collapse
|
127
|
Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Int J Mol Sci 2015; 16:18752-77. [PMID: 26270661 PMCID: PMC4581270 DOI: 10.3390/ijms160818752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 02/03/2023] Open
Abstract
Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.
Collapse
|
128
|
Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 2015; 5:11244. [PMID: 26174967 PMCID: PMC4502395 DOI: 10.1038/srep11244] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Labiatae) is an emerging model plant for traditional medicine, and tanshinones are among the pharmacologically active constituents of this plant. Although extensive chemical and pharmaceutical studies of these compounds have been performed, studies on the basic helix-loop-helix (bHLH) transcription factors that regulate tanshinone biosynthesis are limited. In our study, 127 bHLH transcription factor genes were identified in the genome of S. miltiorrhiza, and phylogenetic analysis indicated that these SmbHLHs could be classified into 25 subfamilies. A total of 19 sequencing libraries were constructed for expression pattern analyses using RNA-Seq. Based on gene-specific expression patterns and up-regulated expression patterns in response to MeJA treatment, 7 bHLH genes were revealed as potentially involved in the regulation of tanshinone biosynthesis. Among them, the gene expression of SmbHLH37, SmbHLH74 and SmbHLH92 perfectly matches the accumulation pattern of tanshinone biosynthesis in S. miltiorrhiza. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factors in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- 1] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China [2] Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Shilin Chen
- 1] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China [2] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
129
|
Goossens J, Swinnen G, Vanden Bossche R, Pauwels L, Goossens A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. THE NEW PHYTOLOGIST 2015; 206:1229-37. [PMID: 25817565 DOI: 10.1111/nph.13398] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
Abstract
The bHLH transcription factor MYC2, together with its paralogues MYC3 and MYC4, is a master regulator of the response to the jasmonate (JA) hormone in Arabidopsis (Arabidopsis thaliana). In the absence of JA, JASMONATE ZIM (JAZ) proteins interact with the MYC proteins to block their activity. Understanding of the mechanism and specificity of this interaction is key to unravel JA signalling. We generated mutant MYC proteins and assessed their activity and the specificity of their interaction with the 12 Arabidopsis JAZ proteins. We show that the D94N mutation present in the atr2D allele of MYC3 abolishes the interaction between MYC3 and most JAZ proteins. The same effect is observed when the corresponding conserved Asp (D105) was mutated in MYC2. Accordingly, MYC2(D105N) activated target genes in the presence of JAZ proteins, in contrast to wild-type MYC2. JAZ1 and JAZ10 were the only JAZ proteins still showing interaction with the mutant MYC proteins, due to a second MYC interaction domain, besides the classical Jas domain. Our results visualize the divergence among JAZ proteins in their interaction with MYC proteins. Ultimately, the transferability of the Asp-to-Asn amino acid change might facilitate the design of hyperactive transcription factors for plant engineering.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Gwen Swinnen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
130
|
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. THE PLANT CELL 2015; 27:1634-49. [PMID: 26071420 PMCID: PMC4498205 DOI: 10.1105/tpc.15.00110] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/04/2015] [Accepted: 05/26/2015] [Indexed: 05/20/2023]
Abstract
Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plant development, serves as an important endogenous signal to activate senescence-associated gene expression and induce leaf senescence. This study revealed one of the mechanisms underlying JA-induced leaf senescence: antagonistic interactions of the bHLH subgroup IIIe factors MYC2, MYC3, and MYC4 with the bHLH subgroup IIId factors bHLH03, bHLH13, bHLH14, and bHLH17. We showed that MYC2, MYC3, and MYC4 function redundantly to activate JA-induced leaf senescence. MYC2 binds to and activates the promoter of its target gene SAG29 (SENESCENCE-ASSOCIATED GENE29) to activate JA-induced leaf senescence. Interestingly, plants have evolved an elaborate feedback regulation mechanism to modulate JA-induced leaf senescence: The bHLH subgroup IIId factors (bHLH03, bHLH13, bHLH14, and bHLH17) bind to the promoter of SAG29 and repress its expression to attenuate MYC2/MYC3/MYC4-activated JA-induced leaf senescence. The antagonistic regulation by activators and repressors would mediate JA-induced leaf senescence at proper level suitable for plant survival in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hua Gao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
131
|
Huang XS, Zhang Q, Zhu D, Fu X, Wang M, Zhang Q, Moriguchi T, Liu JH. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3259-74. [PMID: 25873670 PMCID: PMC4449543 DOI: 10.1093/jxb/erv138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene.
Collapse
Affiliation(s)
- Xiao-San Huang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qinghua Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dexin Zhu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xingzheng Fu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Min Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qian Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Takaya Moriguchi
- National Institute of Fruit Tree Science, Tsukuba 305-8605, Japan
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
132
|
Tsuda K, Somssich IE. Transcriptional networks in plant immunity. THE NEW PHYTOLOGIST 2015; 206:932-947. [PMID: 25623163 DOI: 10.1111/nph.13286] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| |
Collapse
|
133
|
Seo E, Choi D. Functional studies of transcription factors involved in plant defenses in the genomics era. Brief Funct Genomics 2015; 14:260-7. [PMID: 25839837 DOI: 10.1093/bfgp/elv011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plant transcription factors (TFs) play roles in diverse biological processes including defense responses to pathogens. Here, we provide an overview of recent studies of plant TFs with regard to defense responses. TFs play roles in plant innate immunity by regulating genes related to pathogen-associated molecular pattern-triggered immunity, effector-triggered immunity, hormone signaling pathways and phytoalexin synthesis. Currently, genome-wide phylogenetic and transcriptomic analyses are as important as functional analyses in the study of plant TFs. The integration of genomics information with the knowledge obtained from functional studies provides new insights into the regulation of plant defense mechanisms as well as engineering crops with improved resistance to invading pathogens.
Collapse
|
134
|
Caarls L, Pieterse CMJ, Van Wees SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:170. [PMID: 25859250 PMCID: PMC4373269 DOI: 10.3389/fpls.2015.00170] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.
Collapse
Affiliation(s)
| | | | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
135
|
Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 2015; 99:3797-806. [PMID: 25805345 DOI: 10.1007/s00253-015-6533-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022]
Abstract
Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.
Collapse
|
136
|
Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. MOLECULAR PLANT 2015; 8:378-88. [PMID: 25667003 DOI: 10.1016/j.molp.2014.11.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/07/2023]
Abstract
In complex, constantly changing environments, plants have developed astonishing survival strategies. These elaborated strategies rely on rapid and precise gene regulation mediated by transcription factors (TFs). TFs represent a large fraction of plant genomes and among them, MYBs and basic helix-loop-helix (bHLHs) have unique inherent properties specific to plants. Proteins of these two TF families can act as homo- or heterodimers, associate with proteins from other protein families, or form MYB/bHLH complexes to regulate distinct cellular processes. The ability of MYBs and bHLHs to interact with multiple protein partners has evolved to keep up with the increased metabolic complexity of multi-cellular organisms. Association and disassociation of dynamic TF complexes in response to developmental and environmental cues are controlled through a plethora of regulatory mechanisms specifically modulating TF activity. Regulation of TFs at the protein level is critical for efficient and precise control of their activity, and thus provides the mechanistic basis for a rapid on-and-off switch of TF activity. In this review, examples of post-translational modifications, protein-protein interactions, and subcellular mobilization of TFs are discussed with regard to the relevance of these regulatory mechanisms for the specific activation of MYBs and bHLHs in response to a given environmental stimulus.
Collapse
Affiliation(s)
- Marie Pireyre
- DynaMo DNRF Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo DNRF Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
137
|
Zhu Z, Lee B. Friends or foes: new insights in jasmonate and ethylene co-actions. PLANT & CELL PHYSIOLOGY 2015; 56:414-20. [PMID: 25435545 DOI: 10.1093/pcp/pcu171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One strategy for sessile plants to adapt to their surrounding environment involves the modulation of their various internal phytohormone signaling and distributions when the plants sense environmental change. There are currently dozens of identified phytohormones in plant cells and they act in concert to regulate plant growth, development, metabolism and defense. It has been determined that phytohormones often act together to achieve certain physiological functions. Thus, the study of hormone-hormone interactions is becoming a competitive research field for deciphering the underlying regulatory mechanisms. Among phytohormones, jasmonate and ethylene present a fascinating case of synergism and antagonism. They are commonly recognized as defense hormones that act synergistically. Plants impaired in jasmonate and/or ethylene signaling are susceptible to infections by necrotrophic fungi, suggesting that these two hormones are both required for defense. Moreover, jasmonate and ethylene also act antagonistically, such as in the regulation of apical hook development and wounding responses. Here, we highlight the recent breakthroughs in the understanding of jasmonate-ethylene co-actions and point out the potential power of studying protein-protein interactions for systematically exploring signal cross-talk.
Collapse
Affiliation(s)
- Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Benjamin Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
138
|
Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC PLANT BIOLOGY 2015; 15:35. [PMID: 25652257 PMCID: PMC4340109 DOI: 10.1186/s12870-014-0403-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Bode A Olukolu
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|
139
|
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun 2015; 6:6095. [PMID: 25648767 PMCID: PMC4347201 DOI: 10.1038/ncomms7095] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply. GTR1 is known to transport glucosinolates in Arabidopsis. Here, Saito et al. show that GTR1 also transports the plant hormones jasmonate and gibberellin when heterologously expressed in Xenopus oocytes, and that gtr1 mutant plants show a gibberellin-related fertility phenotype.
Collapse
Affiliation(s)
- Hikaru Saito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shin Hamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Miyu Kanamori-Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomoya Utsumi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Jing Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shinji Masuda
- 1] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [2] Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Hiroyuki Ohta
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan [2] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
140
|
Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, Brandizzi F, Matsuura H, Howe GA. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem 2014; 289:29728-38. [PMID: 25210037 PMCID: PMC4207986 DOI: 10.1074/jbc.m114.603084] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Indexed: 01/13/2023] Open
Abstract
The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-L-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses.
Collapse
Affiliation(s)
- Abraham J Koo
- From the Department of Energy-Plant Research Laboratory and the Division of Biochemistry, Interdisciplinary Plant Group, and
| | | | - Starla Zemelis
- From the Department of Energy-Plant Research Laboratory and
| | - Arati N Poudel
- the Division of Biochemistry, Interdisciplinary Plant Group, and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Tong Zhang
- the Division of Biochemistry, Interdisciplinary Plant Group, and
| | - Naoki Kitaoka
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and
| | | | - Hideyuki Matsuura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and
| | - Gregg A Howe
- From the Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
141
|
Song S, Qi T, Wasternack C, Xie D. Jasmonate signaling and crosstalk with gibberellin and ethylene. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:112-119. [PMID: 25064075 DOI: 10.1016/j.pbi.2014.07.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, D-06120 Halle (Saale), Germany
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
142
|
Frerigmann H, Berger B, Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:349-69. [PMID: 25049362 PMCID: PMC4149720 DOI: 10.1104/pp.114.240887] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/20/2014] [Indexed: 05/18/2023]
Abstract
By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Bettina Berger
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| |
Collapse
|
143
|
Phytochrome regulation of plant immunity in vegetation canopies. J Chem Ecol 2014; 40:848-57. [PMID: 25063023 DOI: 10.1007/s10886-014-0471-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/05/2023]
Abstract
Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.
Collapse
|
144
|
Rational design of a ligand-based antagonist of jasmonate perception. Nat Chem Biol 2014; 10:671-6. [PMID: 24997606 DOI: 10.1038/nchembio.1575] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/21/2014] [Indexed: 01/30/2023]
Abstract
(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) regulates developmental and stress responses in plants. Its perception involves the formation of a ternary complex with the F-box COI1 and a member of the JAZ family of co-repressors and leads to JAZ degradation. Coronatine (COR) is a bacterial phytotoxin that functionally mimics JA-Ile and interacts with the COI1-JAZ co-receptor with higher affinity than JA-Ile. On the basis of the co-receptor structure, we designed ligand derivatives that spatially impede the interaction of the co-receptor proteins and, therefore, should act as competitive antagonists. One derivative, coronatine-O-methyloxime (COR-MO), has strong activity in preventing the COI1-JAZ interaction, JAZ degradation and the effects of JA-Ile or COR on several JA-mediated responses in Arabidopsis thaliana. Moreover, it potentiates plant resistance, preventing the effect of bacterially produced COR during Pseudomonas syringae infections in different plant species. In addition to the utility of COR-MO for plant biology research, our results underscore its biotechnological potential for safer and sustainable agriculture.
Collapse
|
145
|
Abstract
Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.
Collapse
Affiliation(s)
- Javier E Moreno
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, CC 242 Ciudad Universitaria, Santa Fe, Argentina,
| | | |
Collapse
|
146
|
Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity. J Chem Ecol 2014; 40:657-75. [PMID: 24973116 DOI: 10.1007/s10886-014-0468-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.
Collapse
Affiliation(s)
- Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
147
|
Ruduś I, Terai H, Shimizu T, Kojima H, Hattori K, Nishimori Y, Tsukagoshi H, Kamiya Y, Seo M, Nakamura K, Kępczyński J, Ishiguro S. Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana. PLANT CELL REPORTS 2014; 33:849-860. [PMID: 24430866 DOI: 10.1007/s00299-013-1561-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.
Collapse
Affiliation(s)
- Izabela Ruduś
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Chico JM, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, Solano R. Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis. THE PLANT CELL 2014; 26:1967-1980. [PMID: 24824488 PMCID: PMC4079362 DOI: 10.1105/tpc.114.125047] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reduction of the red/far-red (R/FR) light ratio that occurs in dense canopies promotes plant growth to outcompete neighbors but has a repressive effect on jasmonate (JA)-dependent defenses. The molecular mechanism underlying this trade-off is not well understood. We found that the JA-related transcription factors MYC2, MYC3, and MYC4 are short-lived proteins degraded by the proteasome, and stabilized by JA and light, in Arabidopsis thaliana. Dark and CONSTITUTIVE PHOTOMORPHOGENIC1 destabilize MYC2, MYC3, and MYC4, whereas R and blue (B) lights stabilize them through the activation of the corresponding photoreceptors. Consistently, phytochrome B inactivation by monochromatic FR light or shade (FR-enriched light) destabilizes these three proteins and reduces their stabilization by JA. In contrast to MYCs, simulated shade conditions stabilize seven of their 10 JAZ repressors tested and reduce their degradation by JA. MYC2, MYC3, and MYC4 are required for JA-mediated defenses against the necrotrophic pathogen Botrytis cinerea and for the shade-triggered increased susceptibility, indicating that this negative effect of shade on defense is likely mediated by shade-triggered inactivation of MYC2, MYC3, and MYC4. The opposite regulation of protein stability of MYCs and JAZs by FR-enriched light help explain (on the molecular level) the long-standing observation that canopy shade represses JA-mediated defenses, facilitating reallocation of resources from defense to growth.
Collapse
Affiliation(s)
- José-Manuel Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernández-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Patricia Fernández-Calvo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Mónica Díez-Díaz
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
149
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|
150
|
Fonseca S, Fernández-Calvo P, Fernández GM, Díez-Díaz M, Gimenez-Ibanez S, López-Vidriero I, Godoy M, Fernández-Barbero G, Van Leene J, De Jaeger G, Franco-Zorrilla JM, Solano R. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLoS One 2014; 9:e86182. [PMID: 24465948 PMCID: PMC3900477 DOI: 10.1371/journal.pone.0086182] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs). Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.
Collapse
Affiliation(s)
- Sandra Fonseca
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Patricia Fernández-Calvo
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Guillermo M. Fernández
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Monica Díez-Díaz
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Selena Gimenez-Ibanez
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Marta Godoy
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Gemma Fernández-Barbero
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - José Manuel Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | - Roberto Solano
- Departamento de Genetica Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
- * E-mail:
| |
Collapse
|