101
|
Chamorro-Flores A, Tiessen-Favier A, Gregorio-Jorge J, Villalobos-López MA, Guevara-García ÁA, López-Meyer M, Arroyo-Becerra A. High levels of glucose alter Physcomitrella patens metabolism and trigger a differential proteomic response. PLoS One 2020; 15:e0242919. [PMID: 33275616 PMCID: PMC7717569 DOI: 10.1371/journal.pone.0242919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Sugars act not only as substrates for plant metabolism, but also have a pivotal role in signaling pathways. Glucose signaling has been widely studied in the vascular plant Arabidopsis thaliana, but it has remained unexplored in non-vascular species such as Physcomitrella patens. To investigate P. patens response to high glucose treatment, we explored the dynamic changes in metabolism and protein population by applying a metabolomic fingerprint analysis (DIESI-MS), carbohydrate and chlorophyll quantification, Fv/Fm determination and label-free untargeted proteomics. Glucose feeding causes specific changes in P. patens metabolomic fingerprint, carbohydrate contents and protein accumulation, which is clearly different from those of osmotically induced responses. The maximal rate of PSII was not affected although chlorophyll decreased in both treatments. The biological process, cellular component, and molecular function gene ontology (GO) classifications of the differentially expressed proteins indicate the translation process is the most represented category in response to glucose, followed by photosynthesis, cellular response to oxidative stress and protein refolding. Importantly, although several proteins have high fold changes, these proteins have no predicted identity. The most significant discovery of our study at the proteome level is that high glucose increase abundance of proteins related to the translation process, which was not previously evidenced in non-vascular plants, indicating that regulation by glucose at the translational level is a partially conserved response in both plant lineages. To our knowledge, this is the first time that metabolome fingerprint and proteomic analyses are performed after a high sugar treatment in non-vascular plants. These findings unravel evolutionarily shared and differential responses between vascular and non-vascular plants.
Collapse
Affiliation(s)
- Alejandra Chamorro-Flores
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| | - Axel Tiessen-Favier
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV Unidad Irapuato), Irapuato, Guanajuato, México
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Instituto Politécnico Nacional-Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ciudad de México, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Cuernavaca, Morelos, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional (CIIDIR-IPN Unidad Sinaloa), Guasave, Sinaloa, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| |
Collapse
|
102
|
Nam KH, Kim DY, Pack IS, Kim CG. Compositional differences in hybrids between protoporphyrinogen IX oxidase (PPO)-inhibiting herbicide-resistant transgenic rice and weedy rice accessions. Food Chem 2020; 344:128584. [PMID: 33199119 DOI: 10.1016/j.foodchem.2020.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
We characterized the metabolites in grains of transgenic protoporphyrinogen IX oxidase-inhibiting herbicide-resistant rice and weedy accessions using GC-MS and examined whether the chemical composition of their hybrids differed from that of the parents. We found that the metabolite profiles of transgenic rice and weedy rice were clearly separated. Although the metabolite profiles of F2 progeny were partially separated from their parents, zygosity did not affect the profiles. The F2 progeny had similar or intermediate levels of most major nutritional components compared with their parents. However, levels of galactopyranose, trehalose, xylofuranose, mannitol, and benzoic acid were higher in the F2 progeny. Some fatty acids and organic acids also showed prominent quantitative differences between the F2 progeny and the parents. Changes in the metabolite levels of transgenic crop-weed hybrids compared to their parents might influence not only the ecological consequences of the hybrids, but also the nutritional quality and food safety.
Collapse
Affiliation(s)
- Kyong-Hee Nam
- LMO Research Team, National Institute of Ecology, Seocheon 33657, Republic of Korea.
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju 28116, Republic of Korea
| | - In Soon Pack
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju 28116, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju 28116, Republic of Korea.
| |
Collapse
|
103
|
Qian J, Sun T, Yan J, Hsu YF, Zheng M. Arabidopsis glucose-sensitive mutant 3 affects ABA biosynthesis and sensitivity during early seedling development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:20-29. [PMID: 32898831 DOI: 10.1016/j.plaphy.2020.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In plants, glucose (Glc) plays pivotal roles in development and stress responses mainly by supplying fuel for growth and regulating expression of genes essential for crosstalk with hormonal, oxidative, and defense signaling. However, the complicated relationship between Glc and plant hormones is still not very clear. In this study, gsm3 (glucose-sensitive mutant 3), an Arabidopsis mutant with Glc-sensitive phenotype, was identified. Compared to wild type, the cotyledon expansion rate of gsm3 was significantly decreased under the condition of 4.5% Glc. Fluridone was able to rescue the Glc-induced defects of gsm3 in cotyledon expansion. AAO3 and ABI4 are key genes involved in abscisic acid (ABA) biosynthesis and signaling transduction, respectively. We found that inactivation of AAO3 or ABI4 in gsm3 background led to reduced sensitivity to Glc. These results indicated that increased ABA synthesis resulted in the sensitivity of gsm3 to Glc. Moreover, our results indicated that gsm3 mutant accumulated more ROS, which made it more sensitive to the application of exogenous H2O2. Overall, GSM3 plays an important role in Glc-ABA signaling cascade during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Jie Qian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Tengfei Sun
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| | - Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
104
|
Zhong H, Zhang F, Pan M, Wu X, Zhang W, Han S, Xie H, Zhou X, Wang M, Ai CM, He T. Comparative phenotypic and transcriptomic analysis of Victoria and flame seedless grape cultivars during berry ripening. FEBS Open Bio 2020; 10:2616-2630. [PMID: 33090714 PMCID: PMC7714085 DOI: 10.1002/2211-5463.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Grape berry development is a highly coordinated and intricate process. Herein, we analyzed the phenotypic and transcriptomic patterns of Victoria (VT) and Flame Seedless (FS) grape varieties during berry development. Physiological analysis and transcriptomic sequencing were performed at four berry developmental phases. VT berry size was comparatively larger to the FS variety. At maturity, 80 days postanthesis (DPA), the FS soluble solids were 61.8% higher than VT. Further, 4889 and 2802 differentially expressed genes were identified from VT and FS 40 DPA to 80 DPA development stages, respectively. VvSWEET15, VvHXK, and MYB44 genes were up‐regulated during the postanthesis period, while bHLH14, linked to glucose metabolism, was gradually down‐regulated during berry development. These genes may have significant roles in berry development, ripening, and sugar accumulation.
Collapse
Affiliation(s)
- Haixia Zhong
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shouan Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hui Xie
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Caikasimu Maikeer Ai
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianming He
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
105
|
Jha UC, Bohra A, Pandey S, Parida SK. Breeding, Genetics, and Genomics Approaches for Improving Fusarium Wilt Resistance in Major Grain Legumes. Front Genet 2020; 11:1001. [PMID: 33193586 PMCID: PMC7644945 DOI: 10.3389/fgene.2020.01001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 12/29/2022] Open
Abstract
Fusarium wilt (FW) disease is the key constraint to grain legume production worldwide. The projected climate change is likely to exacerbate the current scenario. Of the various plant protection measures, genetic improvement of the disease resistance of crop cultivars remains the most economic, straightforward and environmental-friendly option to mitigate the risk. We begin with a brief recap of the classical genetic efforts that provided first insights into the genetic determinants controlling plant response to different races of FW pathogen in grain legumes. Subsequent technological breakthroughs like sequencing technologies have enhanced our understanding of the genetic basis of both plant resistance and pathogenicity. We present noteworthy examples of targeted improvement of plant resistance using genomics-assisted approaches. In parallel, modern functional genomic tools like RNA-seq are playing a greater role in illuminating the various aspects of plant-pathogen interaction. Further, proteomics and metabolomics have also been leveraged in recent years to reveal molecular players and various signaling pathways and complex networks participating in host-pathogen interaction. Finally, we present a perspective on the challenges and limitations of high-throughput phenotyping and emerging breeding approaches to expeditiously develop FW-resistant cultivars under the changing climate.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, India
| | - Shailesh Pandey
- Forest Protection Division, Forest Research Institute, Dehradun, India
| | | |
Collapse
|
106
|
Effect of seaweed on seed germination and biochemical constituents of Capsicum annuum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
107
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
108
|
Zhong Y, Xie J, Wen S, Wu W, Tan L, Lei M, Shi H, Zhu JK. TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 103:511-525. [PMID: 32279151 DOI: 10.1007/s11103-020-01006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
TPST is involved in fructose signaling to regulate the root development and expression of genes in biological processes including auxin biosynthesis and accumulation in Arabidopsis. Sulfonation of proteins by tyrosine protein sulfotransferases (TPST) has been implicated in many important biological processes in eukaryotic organisms. Arabidopsis possesses a single TPST gene and its role in auxin homeostasis and root development has been reported. Here we show that the Arabidopsis tpst mutants are hypersensitive to fructose. In contrast to sucrose and glucose, fructose represses primary root growth of various ecotypes of Arabidopsis at low concentrations. RNA-seq analysis identified 636 differentially expressed genes (DEGs) in Col-0 seedlings in response to fructose verses glucose. GO and KEGG analyses of the DEGs revealed that fructose down-regulates genes involved in photosynthesis, glucosinolate biosynthesis and IAA biosynthesis, but up-regulates genes involved in the degradation of branched amino acids, sucrose starvation response, and dark response. The fructose responsive DEGs in the tpst mutant largely overlapped with that in Col-0, and most DEGs in tpst displayed larger changes than in Col-0. Interestingly, the fructose up-regulated DEGs includes genes encoding two AtTPST substrate proteins, Phytosulfokine 2 (PSK2) and Root Meristem Growth Factor 7 (RGF7). Synthesized peptides of PSK-α and RGF7 could restore the fructose hypersensitivity of tpst mutant plants. Furthermore, auxin distribution and accumulation at the root tip were affected by fructose and the tpst mutation. Our findings suggest that fructose serves as a signal to regulate the expression of genes involved in various biological processes including auxin biosynthesis and accumulation, and that modulation of auxin accumulation and distribution in roots by fructose might be partly mediated by the TPST substrate genes PSK-α and RGF7.
Collapse
Affiliation(s)
- Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Jiyong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Suzhen Wen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Wenwu Wu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
109
|
Ni J, Li J, Zhu R, Zhang M, Qi K, Zhang S, Wu J. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves. Gene 2020; 743:144582. [PMID: 32173543 DOI: 10.1016/j.gene.2020.144582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 11/19/2022]
Abstract
As the main energy source for generating ATP during plant growth and development, sugars are synthesized in leaves, while sugar allocation depends on both intracellular transport between different organelles and source-to-sink transport. However, sugar transport related research is limited in pear. Here, a sugar transporter PbSWEET4 was identified that control sugar content and senescence in leaf. Phylogenetic analysis and multiple sequence alignment results indicated that PbSWEET4 was homologous to AtSWEET15, which contained two conserved domains and could promote senescence. The qRT-PCR and transcriptome database result showed that the expression of PbSWEET4 was positively correlated with leaf development, especially highly expressed in older leaves. Furthermore, the evaluation of promoter-GUS activity also indicated that PbSWEET4 exhibited the highest expression level in older leaves. The subcellular localization revealed that the PbSWEET4 localized in the plasma membrane. Finally, overexpression of the PbSWEET4 in strawberry plants could reduce leaf sugar content and chlorophyll content, while accelerate leaf senescence, which might be due to enhanced export of sugars from leaves. These results enrich the knowledge about the function of sugar exporter in regulating the fruit species development, and provide a novel genetic resource for future improvement in carbohydrate partitioning for pear and other fruit trees.
Collapse
Affiliation(s)
- Jiangping Ni
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongxiang Zhu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
110
|
Sasamori MH, Endres-Júnior D, Droste A. Conservation of Vriesea flammea L.B.Sm., an endemic Brazilian bromeliad: effects of nutrients and carbon source on plant development. BRAZ J BIOL 2020; 80:437-448. [DOI: 10.1590/1519-6984.215276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 11/21/2022] Open
Abstract
Abstract Bromeliaceae is restricted to the Neotropical region and has a high degree of endemism, which contributes to increased biodiversity because of the diverse morphological characteristics of individuals. In order to develop an in vitro conservation technology to obtain plants for reintroduction, seeds of Vriesea flammea L.B.Sm. were collected, sterilized and germinated in culture medium. The plants obtained were cultured for 180 days in MS medium with different concentrations of mineral nutrients (25 and 50% of nitrogenous salts and macronutrients), and different concentrations of sucrose (20, 30, 40, 50 and 60 g L-1), and then acclimatized for 150 days on commercial substrate. When seeds were sterilized directly, only 4% of them were contaminated, whereas sterilization of capsules resulted in 43.6% contaminated seeds. Germination rates above 80% were recorded. Low concentrations of nitrogenous salts and macronutrients produced greater than 76% survival and promoted greater in vitro plant development than the complete MS medium. The development of the aerial system, root system, fresh mass and photosynthetic pigments were positively related to sucrose concentration in vitro. The highest sucrose concentration also indirectly promoted greater development of the aerial system and fresh mass of acclimatized plants. We established conditions for in vitro cultivation and acclimatization for efficient propagation of V. flammea with a view towards conservation of the species or reestablishment of natural populations.
Collapse
|
111
|
Yan L, Li P, Zhao X, Ji R, Zhao L. Physiological and metabolic responses of maize (Zea mays) plants to Fe 3O 4 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137400. [PMID: 32105936 DOI: 10.1016/j.scitotenv.2020.137400] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 05/25/2023]
Abstract
Fe3O4 nanoparticles (NPs), as representative magnetic materials, have been widely used in the industrial and biomedical sectors, and their environmental impacts must be evaluated for their sustainable use. In this study, the interactions between Fe3O4 NPs and maize plants were investigated by a combination of phenotypic and metabolic approaches. Maize plants (Zea mays) were grown in soil treated with Fe3O4 NPs at 0, 50 and 500 mg/kg for 4 weeks. Fe3O4 NPs had no impact on plant biomass or photosynthesis. However, root length of maize plant significantly increased, with decreased malondialdehyde (MDA) level, indicating the positive effects on root development and membrane integrity. Inductively coupled plasma optical emission spectrometry (ICP-OES) revealed that Fe3O4 NPs resulted in a significant Fe accumulation in roots, instead of leaves. In addition, 500 mg/kg Fe3O4 NPs significantly promoted dehydrogenase enzyme activity by 84.9%. Metabolomics revealed that maize root metabolomes were re-programmed by Fe3O4 NPs exposure. Metabolic pathways associated with antioxidant and defence were inactivated by Fe3O4 NPs, indicating the protective role of Fe3O4 NPs for microbes and plant roots. Taken together, the results indicate a limited impact of environmental Fe3O4 NPs on plant growth. Taken together, the results of this study offer new insights into the molecular mechanisms by which maize responds to Fe3O4 NP exposure.
Collapse
Affiliation(s)
- Lei Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150000, China
| | - Peiye Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150000, China
| | - Xiaopeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
112
|
Ptak A, Morańska E, Skrzypek E, Warchoł M, Spina R, Laurain-Mattar D, Simlat M. Carbohydrates stimulated Amaryllidaceae alkaloids biosynthesis in Leucojum aestivum L. plants cultured in RITA ® bioreactor. PeerJ 2020; 8:e8688. [PMID: 32211230 PMCID: PMC7081780 DOI: 10.7717/peerj.8688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023] Open
Abstract
Background Leucojum aestivum L. is an important medicinal plant which produces Amaryllidaceae alkaloids, especially galanthamine and lycorine. Research is currently exploring the possibility of producing these alkaloids using biotechnological methods, including in vitro cultures. The biosynthesis of alkaloids may be affected by the types and concentrations of carbohydrate sources used in the medium. In the present investigation we performed such studies on in vitro cultures of L. aestivum with a view to obtaining plant material of good quality, characterized, in particular, by a high content of valuable Amaryllidaceae alkaloids. Methods We examined the effects of various types of carbohydrate sources—sucrose, glucose, fructose and maltose—at different concentrations (30, 60 and 90 g/L)—on the quality of L. aestivum plants grown in the RITA® bioreactor. The plants’ quality was assessed by their biomass increments, as well by as analysing photosynthetic pigments, endogenous sugar, phenolics and Amaryllidaceae alkaloid content. We also investigated the effect of sugars on the activity of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Results The highest biomass increments were observed in plants cultivated in the medium containing 90 g/L sucrose. The highest CAT activity was noted in cultures growing in the medium supplemented with 90 g/L maltose, while the highest POD activity was observed in the presence of 90 g/L fructose and 60 g/L maltose. No differences in SOD activity were observed. Moreover, the sugars did not affect the contents of chlorophyll a and carotenoids, whereas the highest amount of chlorophyll b was recorded in plants growing in the medium with 60 g/L maltose. No statistically significant differences were observed in the contents of endogenous sugars and phenolics in any in vitro conditions. However, the addition of sugar had a decisive effect on the biosynthesis of the Amaryllidaceae alkaloids. The highest distribution of alkaloids occurred in plants cultured in the medium containing 60 g/L sucrose. Six Amaryllidaceae alkaloids were detected in the plant tissue. The addition of 30 g/L fructose in the medium resulted in the accumulation of five alkaloids, including ismine, which was not identified in other analysed tissues. The highest concentration of galanthamine was observed in plants cultured in the presence of 30 g/L fructose and 60 g/L sucrose (39.2 and 37.5 µg/g of dry weight (DW), respectively). The plants grown in the medium containing 60 g/L sucrose exhibited the highest lycorine content (1048 µg/g of DW). Conclusions The type and concentration of sugar used in the medium have an essential influence on the biosynthesis of Amaryllidaceae alkaloids in L. aestivum plants cultured in a RITA® bioreactor. The results point to an interesting approach for commercial production of galanthamine and lycorine.
Collapse
Affiliation(s)
- Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Krakow, Poland
| | - Emilia Morańska
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Krakow, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | | | | | - Magdalena Simlat
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
113
|
Rashid FAA, Crisp PA, Zhang Y, Berkowitz O, Pogson BJ, Day DA, Masle J, Dewar RC, Whelan J, Atkin OK, Scafaro AP. Molecular and physiological responses during thermal acclimation of leaf photosynthesis and respiration in rice. PLANT, CELL & ENVIRONMENT 2020; 43:594-610. [PMID: 31860752 DOI: 10.1111/pce.13706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
To further our understanding of how sustained changes in temperature affect the carbon economy of rice (Oryza sativa), hydroponically grown plants of the IR64 cultivar were developed at 30°C/25°C (day/night) before being shifted to 25/20°C or 40/35°C. Leaf messenger RNA and protein abundance, sugar and starch concentrations, and gas-exchange and elongation rates were measured on preexisting leaves (PE) already developed at 30/25°C or leaves newly developed (ND) subsequent to temperature transfer. Following a shift in growth temperature, there was a transient adjustment in metabolic gene transcript abundance of PE leaves before homoeostasis was reached within 24 hr, aligning with Rdark (leaf dark respiratory CO2 release) and An (net CO2 assimilation) changes. With longer exposure, the central respiratory protein cytochrome c oxidase (COX) declined in abundance at 40/35°C. In contrast to Rdark , An was maintained across the three growth temperatures in ND leaves. Soluble sugars did not differ significantly with growth temperature, and growth was fastest with extended exposure at 40/35°C. The results highlight that acclimation of photosynthesis and respiration is asynchronous in rice, with heat-acclimated plants exhibiting a striking ability to maintain net carbon gain and growth when exposed to heat-wave temperatures, even while reducing investment in energy-conserving respiratory pathways.
Collapse
Affiliation(s)
- Fatimah Azzahra Ahmad Rashid
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, Tanjung Malim, Malaysia
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota
| | - You Zhang
- CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia
| | - Josette Masle
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Roderick C Dewar
- Research School of Biology, The Australian National University, Canberra, Australia
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew P Scafaro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
114
|
Fang JC, Liu HY, Tsai YC, Chou WL, Chang CC, Lu CA. A CCR4 Association Factor 1, OsCAF1B, Participates in the αAmy3 mRNA Poly(A) Tail Shortening and Plays a Role in Germination and Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:554-564. [PMID: 31782784 DOI: 10.1093/pcp/pcz221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| |
Collapse
|
115
|
Hu W, Huang Y, Loka DA, Bai H, Liu Y, Wang S, Zhou Z. Drought-induced disturbance of carbohydrate metabolism in anthers and male abortion of two Gossypium hirsutum cultivars differing in drought tolerance. PLANT CELL REPORTS 2020; 39:195-206. [PMID: 31680208 DOI: 10.1007/s00299-019-02483-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Cotton pollen abortion, under drought stress, was closely associated with changes in anther carbohydrate metabolism, and pollen abortion rate due to drought was higher in drought-sensitive cultivars than drought-tolerant cultivars. Cotton reproductive failure under drought stress is intrinsically connected with altered male fertility, however, studies investigating the effect of drought stress on cotton male fertility are nonexistent. Thus, a drought stress experiment was conducted with two cotton cultivars, differing in drought tolerance, to study pollen fertility and anthers' physiology. Results indicated that drought stress reduced pollen fertility of both cultivars due to decreases in anther starch and adenosine triphosphate (ATP) synthesis. Lower assimilate supply capacity in conjunction with impaired activities of ADP-glucose pyrophosphorylase and soluble starch synthase were the main reasons for the decreased starch levels in drought-stressed anthers. The decreased activities of sucrose synthetase and acid invertase were responsible for the higher sucrose level in drought-stressed anthers than well-watered anthers and the changing trend of sucrose was intensified by the decreased expressions of sucrose synthase genes (GhSusA, GhSusB, GhSusD) and acid invertase genes (GhINV1, GhINV2). However, despite sucrose degradation being limited in drought-stressed anthers, glucose level was higher in droughted anthers than well-watered ones, and that might be attributed to the down-regulated respiration since decreased anther ATP levels were detected in drought-stressed plants. Furthermore, compared to the drought-tolerant cultivar, pollen fertility was more suppressed by drought stress for the drought-sensitive cultivar, and that was attributed to the larger decrease in starch and ATP contents.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yanjun Huang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, 41335, Larissa, Greece
| | - Hua Bai
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, 64468, USA
| | - Yu Liu
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
116
|
Madany MMY, Obaid WA, Hozien W, AbdElgawad H, Hamed BA, Saleh AM. Salicylic acid confers resistance against broomrape in tomato through modulation of C and N metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:322-335. [PMID: 31911359 DOI: 10.1016/j.plaphy.2019.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
It is well known that parasitic weeds such as Orobanche (broomrape) significantly decrease crop growth and yield. Although hormonal priming is a well-known inducer of plant resistance against broomrapes (Orobanche spp.), the metabolic events associated with such resistance are poorly understood. Therefore, the current work was undertaken to elucidate the role of SA in inducing tomato resistance against Orobanche, considering its impact on carbon and nitrogen metabolism of the host. Total carbon and nitrogen and levels of carbon (sugars, organic acids and fatty acids) and nitrogen (amino acids and polyamines)-containing metabolites as well as the activities of some key enzymes involved in their metabolic pathways were evaluated. Broomrape infection significantly disrupted C/N ratio in the host roots. On contrary, SA treatment markedly induced accumulation of sugars, organic acids, fatty acids, amino acids as well as polyamines in healthy plants. Under broomrape challenge, SA mitigated the infection-induced growth inhibition by improving the level of nitrogen-containing osmoprotectants (proline, arginine and some polyamines). However, a decrease was observed in some C and N assimilates which are well known to be potentially transferred to the parasite, such as sucrose, asparagine, alanine, serine and glutamate. Interestingly, SA treatment induced the catapolism of polyamines and fatty acids in the host root. Accordingly, our study suggests that SA-induced resistance against broomrape relies on the rational utilization of C and N assimilates in a manner that disturbs the sink strength of the parasite and/or activates the defense pool of the host.
Collapse
Affiliation(s)
- Mahmoud M Y Madany
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 41411, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Wael A Obaid
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 41411, Saudi Arabia
| | - Wael Hozien
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Badreldin A Hamed
- Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
117
|
Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
118
|
Effects of Stripe Rust Infection on the Levels of Redox Balance and Photosynthetic Capacities in Wheat. Int J Mol Sci 2019; 21:ijms21010268. [PMID: 31906067 PMCID: PMC6981720 DOI: 10.3390/ijms21010268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023] Open
Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most destructive wheat disease and a major problem for the productivity of wheat in the world. To obtain a better understanding about different effects of redox homeostasis and photosystem (PS) to Pst infection in wheat, we investigated the differences in photosynthesis and the antioxidant defense system in wheat cultivar Chuanmai42 (CM42) in response to two Chinese Pst races known as CYR32 and V26. The results showed that V26-infected wheat accumulated a higher reactive oxygen species (ROS), cell death, and energy dissipation than CYR32-infected wheat when compared with the control. Furthermore, we found that the activities of three antioxidant enzymes (APX, GR, and GPX) and four resistance-related enzymes in CYR32-infected wheat were significantly higher than that in V26-infected wheat. In addition, quantitative RT-PCR indicated that the expression levels of two genes associated with resistant stripe rust in CYR32-infected wheat were clearly higher than that in V26-infected wheat. Compared with CYR32-infected wheat, lower photochemical efficiencies were observed in V26-infected wheat at the adult stage. Meanwhile, only a marked decline in D1 protein was observed in V26-infected wheat. We therefore deduced that wheat with stripe rust resistance could maintain high resistance and photosynthetic capacity by regulating the antioxidant system, disease-resistant related enzymes and genes, and the levels of PSII reaction center proteins.
Collapse
|
119
|
Dynamics of transcription–translation coordination tune bacterial indole signaling. Nat Chem Biol 2019; 16:440-449. [DOI: 10.1038/s41589-019-0430-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
|
120
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
121
|
|
122
|
Chen L, Wu Q, He W, He T, Wu Q, Miao Y. Combined De Novo Transcriptome and Metabolome Analysis of Common Bean Response to Fusarium oxysporum f. sp. phaseoli Infection. Int J Mol Sci 2019; 20:ijms20246278. [PMID: 31842411 PMCID: PMC6941151 DOI: 10.3390/ijms20246278] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
Molecular changes elicited by common bean (Phaseolus vulgaris L.) in response to Fusarium oxysproum f. sp. Phaseoli (FOP) remain elusive. We studied the changes in root metabolism during common bean–FOP interactions using a combined de novo transcriptome and metabolome approach. Our results demonstrated alterations of transcript levels and metabolite concentrations in common bean roots 24 h post infection as compared to control. The transcriptome and metabolome responses in common bean roots revealed significant changes in structural defense i.e., cell-wall loosening and weakening characterized by hyper accumulation of cell-wall loosening and degradation related transcripts. The levels of pathogenesis related genes were significantly higher upon FOP inoculation. Interestingly, we found the involvement of glycosylphosphatidylinositol- anchored proteins (GPI-APs) in signal transduction in response to FOP infection. Our results confirmed that hormones have strong role in signaling pathways i.e., salicylic acid, jasmonate, and ethylene pathways. FOP induced energy metabolism and nitrogen mobilization in infected common bean roots as compared to control. Importantly, the flavonoid biosynthesis pathway was the most significantly enriched pathway in response to FOP infection as revealed by the combined transcriptome and metabolome analysis. Overall, the observed modulations in the transcriptome and metabolome flux as outcome of several orchestrated molecular events are determinant of host’s role in common bean–FOP interactions.
Collapse
Affiliation(s)
- Limin Chen
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China
| | - Quancong Wu
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China
- Correspondence: ; Tel.: +86-578-2028375; Fax: +86-578-2173070
| | - Weimin He
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China
| | - Tianjun He
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China
| | - Qianqian Wu
- School of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yeminzi Miao
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China
| |
Collapse
|
123
|
Savchenko TV, Rolletschek H, Dehesh K. Jasmonates-Mediated Rewiring of Central Metabolism Regulates Adaptive Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2613-2620. [PMID: 31529102 PMCID: PMC6896697 DOI: 10.1093/pcp/pcz181] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 05/23/2023]
Abstract
The lipid-derived hormones jasmonates (JAs) play key functions in a wide range of physiological and developmental processes that regulate growth, secondary metabolism and defense against biotic and abiotic stresses. In this connection, biosynthesis, tissue-specific distribution, metabolism, perception, signaling of JAs have been the target of extensive studies. In recent years, the involvement of JAs signaling pathway in the regulation of growth and adaptive responses to environmental challenges has been further examined. However, JAs-mediated mechanisms underlying the transition from 'growth mode' to 'adaptive mode' remain ambiguous. Combined analysis of transgenic lines deficient in JAs signaling in conjunction with the data from JAs-treated plants revealed the function of these hormones in rewiring of central metabolism. The collective data illustrate JAs-mediated decrease in the levels of metabolites associated with active growth such as sucrose, raffinose, orotate, citrate, malate, and an increase in phosphorylated hexoses, responsible for the suppression of growth and photosynthesis, concurrent with the induction of protective metabolites, such as aromatic and branched-chain amino acids, and aspartate family of metabolites. This finding provides an insight into the function of JAs in shifting the central metabolism from the production of growth-promoting metabolites to protective compounds and expands our understanding of the role of JAs in resource allocation in response to environmental challenges.
Collapse
Affiliation(s)
- Tatyana V Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Institutskaya St. 2, Pushchino, Moscow Region 142290, Russian Federation
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben D-06466, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
124
|
Siddiqui H, Sami F, Hayat S. Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydr Res 2019; 487:107884. [PMID: 31811968 DOI: 10.1016/j.carres.2019.107884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023]
Abstract
Sugars are metabolic substrates playing a part in modulating various processes in plants during different phases of development. Thus, modulating the sugar metabolism can have intense effects on the plant metabolism. Glucose is a soluble sugar, found throughout the plant kingdom. Apart from being a universal carbon source, glucose also operates as a signaling molecule modulating various metabolic processes in plants. From germination to senescence, wide range of processes in plants is regulated by glucose. The effect of glucose is found to be concentration dependent. Photosynthesis and its related attributes, respiration and nitrogen metabolism are influenced by glucose application. Endogenous content of glucose increases upon exposure of plant to various abiotic stresses and also when glucose is supplied exogenously. Glucose accumulation alleviates the damaging effects of stress by enhancing production of antioxidants and compounds similar to that of photosynthetic CO2 fixation which act as an osmoticum by maintaining osmotic pressure inside the cell, pH homeostasis regulator and reduce membrane permeability during stress. Glucose interaction with various phytohormones has also been discussed in this review.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
125
|
Pan L, Guo Q, Chai S, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Li Z, Deng M, Jin F, Liu L, Wan H. Evolutionary Conservation and Expression Patterns of Neutral/Alkaline Invertases in Solanum. Biomolecules 2019; 9:biom9120763. [PMID: 31766568 PMCID: PMC6995568 DOI: 10.3390/biom9120763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
The invertase gene family in plants is composed of two subfamilies of enzymes, namely, acid- and neutral/alkaline invertases (cytosolic invertase, CIN). Both can irreversibly cleave sucrose into fructose and glucose, which are thought to play key roles in carbon metabolism and plant growth. CINs are widely found in plants, but little is reported about this family. In this paper, a comparative genomic approach was used to analyze the CIN gene family in Solanum, including Solanum tuberosum, Solanum lycopersicum, Solanum pennellii, Solanum pimpinellifolium, and Solanum melongena. A total of 40 CINs were identified in five Solanum plants, and sequence features, phylogenetic relationships, motif compositions, gene structure, collinear relationship, and expression profile were further analyzed. Sequence analysis revealed a remarkable conservation of CINs in sequence length, gene number, and molecular weight. The previously verified four amino acid residues (D188, E414, Arg430, and Ser547) were also observed in 39 out of 40 CINs in our study, showing to be deeply conserved. The CIN gene family could be distinguished into groups α and β, and α is further subdivided into subgroups α1 and α2 in our phylogenetic tree. More remarkably, each species has an average of four CINs in the α and β groups. Marked interspecies conservation and collinearity of CINs were also further revealed by chromosome mapping. Exon-intron configuration and conserved motifs were consistent in each of these α and β groups on the basis of in silico analysis. Expression analysis indicated that CINs were constitutively expressed and share similar expression profiles in all tested samples from S. tuberosum and S. lycopersicum. In addition, in CIN genes of the tomato and potato in response to abiotic and biotic stresses, phytohormones also performed. Overall, CINs in Solanum were encoded by a small and highly conserved gene family, possibly reflecting structural and functional conservation in Solanum. These results lay the foundation for further expounding the functional characterization of CIN genes and are also significant for understanding the evolutionary profiling of the CIN gene family in Solanum.
Collapse
Affiliation(s)
- Luzhao Pan
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.P.); (S.C.); (L.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Qinwei Guo
- Quzhou Academy of Agricultural Sciences, Quzhou 324000, Zhejiang, China;
| | - Songlin Chai
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.P.); (S.C.); (L.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Minghua Deng
- College of Horticulture and landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Fengmei Jin
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China;
| | - Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.P.); (S.C.); (L.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-571-86407677; Fax: +86-571-86400997
| |
Collapse
|
126
|
Wei B, Wang L, Bosland PW, Zhang G, Zhang R. Comparative transcriptional analysis of Capsicum flower buds between a sterile flower pool and a restorer flower pool provides insight into the regulation of fertility restoration. BMC Genomics 2019; 20:837. [PMID: 31711411 PMCID: PMC6849218 DOI: 10.1186/s12864-019-6210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system is an important mechanism to produce F1 hybrid seeds. Understanding the interaction that controls restoration at a molecular level will benefit plant breeders. The CMS is caused by the interaction between mitochondrial and nuclear genes, with the CMS phenotype failing to produce functional anthers, pollen, or male gametes. Thus, understanding the complex processes of anther and pollen development is a prerequisite for understanding the CMS system. Currently it is accepted that the Rf gene in the nucleus restores the fertility of CMS, however the Rf gene has not been cloned. In this study, CMS line 8A and the Rf line R1, as well as a sterile pool (SP) of accessions and a restorer pool (RP) of accessions analyzed the differentially expressed genes (DEGs) between CMS and its fertility restorer using the conjunction of RNA sequencing and bulk segregation analysis. RESULTS A total of 2274 genes were up-regulated in R1 as compared to 8A, and 1490 genes were up-regulated in RP as compared to SP. There were 891 genes up-regulated in both restorer accessions, R1 and RP, as compared to both sterile accessions, 8A and SP. Through annotation and expression analysis of co-up-regulated expressed genes, eight genes related to fertility restoration were selected. These genes encode putative fructokinase, phosphatidylinositol 4-phosphate 5-kinase, pectate lyase, exopolygalacturonase, pectinesterase, cellulose synthase, fasciclin-like arabinogalactan protein and phosphoinositide phospholipase C. In addition, a phosphatidylinositol signaling system and an inositol phosphate metabolism related to the fertility restorer of CMS were ranked as the most likely pathway for affecting the restoration of fertility in pepper. CONCLUSIONS Our study revealed that eight genes were related to the restoration of fertility, which provides new insight into understanding the molecular mechanism of fertility restoration of CMS in Capsicum.
Collapse
Affiliation(s)
- Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Lanlan Wang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Paul W Bosland
- College of Agriculture, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, 88001, USA
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ru Zhang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| |
Collapse
|
127
|
Wang JG, Zhao TT, Wang WZ, Feng CL, Feng XY, Xiong GR, Shen LB, Zhang SZ, Wang WQ, Zhang ZX. Culm transcriptome sequencing of Badila (Saccharum officinarum L.) and analysis of major genes involved in sucrose accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:455-465. [PMID: 31655344 DOI: 10.1016/j.plaphy.2019.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane is an important sugar and energy crop worldwide. It utilises highly efficient C4 photosynthesis and accumulates sucrose in its culms. The sucrose content in sugarcane culms is a quantitative trait controlled by multiple genes. The regulatory mechanism underlying the maximum sucrose level in sugarcane culms remains unclear. We used transcriptome sequences to identify the potential regulatory genes involved in sucrose accumulation in Saccarum officinarum L. cv. Badila. The sucrose accumulating internodes at the elongation and mature growth stage and the immature internodes with low sucrose content at the mature stage were used for RNA sequencing. The obtained differentially expressed genes (DEGs) related to sucrose accumulation were analysed. Results showed that the transcripts encoding invertase (beta-fructofuranosidase, EC: 3.2.1.26) which catalyses sucrose hydrolysis and 6-phosphofructokinase (PFK, EC: 2.7.1.11), a key glycolysis regulatory enzyme, were downregulated in the high sucrose accumulation internodes. The transcripts encoding key enzymes for ABA, gibberellin and ethylene synthesis were also downregulated during sucrose accumulation. Furthermore, regulated protein kinase, transcription factor and sugar transporter genes were also obtained. This research can clarify the molecular regulation network of sucrose accumulation in sugarcane.
Collapse
Affiliation(s)
- Jun-Gang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Wen-Zhi Wang
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Cui-Lian Feng
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Xiao-Yan Feng
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Guo-Ru Xiong
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Lin-Bo Shen
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| | - Wen-Quan Wang
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| | - Zu-Xing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
128
|
Ahanger MA, Qin C, Maodong Q, Dong XX, Ahmad P, Abd Allah EF, Zhang L. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:1-13. [PMID: 31542655 DOI: 10.1016/j.plaphy.2019.09.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 05/28/2023]
Abstract
Influence of exogenously applied spermine (Spm) on growth and salinity stress tolerance in tomato was investigated. Salinity reduced growth, chlorophyll synthesis and mineral uptake leading to significant reduction in photosynthesis, however Spm application proved beneficial in alleviating the decline to considerable extent. Applied Spm improved nitrate reductase activity, δ-amino levulinic acid content and gas exchange parameters more apparently at 100 μM than 50 μM concentrations. Spm application enhanced the accumulation of compatible osmolytes including proline, glycine betaine and sugars leading to greater tissue water content and photosynthesis. Salinity stress induced oxidative effects were mitigated by Spm treatment reflected interms of reduced accumulation of reactive oxygen species and the activities of protease and lipoxygenase, hence leading to membrane strengthening and protection of their function. Differential influence of exogenous Spm was evident on the functioning of antioxidant system with SOD, GR and APX activities much higher in Spm treated seedlings than CAT and DHAR. Increased synthesis of GSH, AsA and tocopherol in Spm treated seedlings was obvious thereby helping in maintaining the redox homeostasis and the enzymatic antioxidant functioning. Interestingly Spm application maintained the nitric oxide levels higher than control under normal condition while as lowered its concentrations in salinity stressed seedlings depicting existence of probable interaction. Activities of polyamine metabolizing enzymes was up-regulated and the accumulation of secondary metabolites including phenols and flavonoids also increased due to Spm application. Further studies are required to understand the mechanisms clearly.
Collapse
Affiliation(s)
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Maodong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Xue Dong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
129
|
Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noël G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the "yin-yang" model? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110220. [PMID: 31521220 DOI: 10.1016/j.plantsci.2019.110220] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
Plants are sessile photo-autotrophic organisms continuously exposed to a variety of environmental stresses. Monitoring the sugar level and energy status is essential, since this knowledge allows the integration of external and internal cues required for plant physiological and developmental plasticity. Most abiotic stresses induce severe metabolic alterations and entail a great energy cost, restricting plant growth and producing important crop losses. Therefore, balancing energy requirements with supplies is a major challenge for plants under unfavorable conditions. The conserved kinases target of rapamycin (TOR) and sucrose-non-fermenting-related protein kinase-1 (SnRK1) play central roles during plant growth and development, and in response to environmental stresses; these kinases affect cellular processes and metabolic reprogramming, which has physiological and phenotypic consequences. The "yin-yang" model postulates that TOR and SnRK1 act in opposite ways in the regulation of metabolic-driven processes. In this review, we describe and discuss the current knowledge about the complex and intricate regulation of TOR and SnRK1 under abiotic stresses. We especially focus on the physiological perspective that, under certain circumstances during the plant stress response, the TOR and SnRK1 kinases could be modulated differently from what is postulated by the "yin-yang" concept.
Collapse
Affiliation(s)
- Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Rodrigo Parola
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Sofia Andreola
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Cintia Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), y Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| | - Giselle Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), y Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| |
Collapse
|
130
|
Zheng M, Yang T, Zhu C, Fu Y, Hsu YF. Arabidopsis GSM1 is involved in ABI4-regulated ABA signaling under high-glucose condition in early seedling growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110183. [PMID: 31481206 DOI: 10.1016/j.plantsci.2019.110183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
In plants, sugar acts as an essential signaling molecule that modulates various aspects of metabolism, growth and development, which are also controlled by phytohormones. However, the molecular mechanism of cross-talk between sugar and phytohormones still remains to be elucidated. We have identified gsm1 (glucose-hypersensitive mutant 1) as a mutant with impaired cotyledon development that shows sensitivity to exogenous abscisic acid (ABA). The addition of fluridone can reverse the glucose (Glc) inhibitory effect in gsm1, implying that endogenous ABA is involved in the Glc response of gsm1. In 4.5% Glc, the expression of Glc-induced ABA-responsive genes in gsm1-1 was nearly two times higher than that in the wild type. Compared to gsm1-1, the gsm1-1 abi4-1 double mutant exhibited reduced sensitivity to Glc and ABA, which was similar to the Glc and ABA insensitive phenotype of abi4-1, suggesting that ABI4 is epistatic to GSM1. In the treatment with 4.5% Glc, the GSM1 transcript level was greatly increased in abi4-1 by almost 4-fold of that in the wild type. These data suggest that GSM1 plays an important role in the ABI4-regulated Glc-ABA signaling cascade during Arabidopsis early seedling growth.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yufan Fu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
131
|
Lee HJ, Jeong J, Alves AC, Han ST, In G, Kim EH, Jeong WS, Hong YS. Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons. J Ginseng Res 2019; 43:654-665. [PMID: 31700261 PMCID: PMC6823831 DOI: 10.1016/j.jgr.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Panax ginseng Meyer has widely been used as a traditional herbal medicine because of its diverse health benefits. Amounts of ginseng compounds, mainly ginsenosides, vary according to seasons, varieties, geographical regions, and age of ginseng plants. However, no study has comprehensively determined perturbations of various metabolites in ginseng plants including roots and leaves as they grow. METHODS Nuclear magnetic resonance (1H NMR)-based metabolomics was applied to better understand the metabolic physiology of ginseng plants and their association with climate through global profiling of ginseng metabolites in roots and leaves during whole growing periods. RESULTS The results revealed that all metabolites including carbohydrates, amino acids, organic acids, and ginsenosides in ginseng roots and leaves were clearly dependent on growing seasons from March to October. In particular, ginsenosides, arginine, sterols, fatty acids, and uracil diphosphate glucose-sugars were markedly synthesized from March until May, together with accelerated sucrose catabolism, possibly associated with climatic changes such as sun exposure time and rainfall. CONCLUSION This study highlights the intrinsic metabolic characteristics of ginseng plants and their associations with climate changes during their growth. It provides important information not only for better understanding of the metabolic phenotype of ginseng but also for quality improvement of ginseng through modification of cultivation.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Gwangju, Republic of Korea
| | | | - Sung-Tai Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gyo In
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Woo-Sik Jeong
- Department of Food & Life Science, College of Biomedical Science & Engineering, Inje University, Gyeongsangnam, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
132
|
An J, Niu H, Ni Y, Jiang Y, Zheng Y, He R, Li J, Jiao Z, Zhang J, Li H, Li Q, Niu J. The miRNA-mRNA Networks Involving Abnormal Energy and Hormone Metabolisms Restrict Tillering in a Wheat Mutant dmc. Int J Mol Sci 2019; 20:E4586. [PMID: 31533225 PMCID: PMC6770018 DOI: 10.3390/ijms20184586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tillers not only determine plant architecture but also influence crop yield. To explore the miRNA regulatory network restraining tiller development in a dwarf-monoculm wheat mutant (dmc) derived from Guomai 301 (wild type, WT), we employed miRNome and transcriptome integrative analysis, real-time qRT-PCR, histochemistry, and determinations of the key metabolites and photosynthesis parameters. A total of 91 differentially expressed miRNAs (DEMs) were identified between dmc and WT. Among them, 40 key DEMs targeted 45 differentially expressed genes (DEGs) including the key DEGs encode growth-regulating factors (GRF), auxin response factors (ARF), and other proteins involved in the metabolisms of hormones and carbohydrates, etc. Compared with WT, both the chlorophyll contents and the photosynthesis rate were lower in dmc. The contents of glucose, sucrose, fructose, and maltose were lower in dmc. The contents of auxin (IAA) and zeatin (ZA) were significantly lower, but gibberellin (GA) was significantly higher in the tiller tissues of dmc. This research demonstrated that the DEMs regulating hormone and carbohydrate metabolisms were important causes for dmc to not tiller. A primary miRNA-mRNA regulatory model for dmc tillering was established. The lower photosynthesis rate, insufficient energy, and abnormal hormone metabolisms restrict tillering in dmc.
Collapse
Affiliation(s)
- Junhang An
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Hao Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yongxing Zheng
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Ruishi He
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
133
|
Nasir F, Shi S, Tian L, Chang C, Ma L, Li X, Gao Y, Tian C. Strigolactones shape the rhizomicrobiome in rice (Oryza sativa). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:118-133. [PMID: 31300137 DOI: 10.1016/j.plantsci.2019.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 05/03/2023]
Abstract
The rhizomicrobiome helps the host plant to better adapt to environmental stresses. In contrast, plant-derived metabolic substances, including phytohormones, play an active role in structuring rhizomicrobiome. Although strigolactones (SLs), a group of phytohormones, serve as potential rhizosphere signaling molecules, their contributions in shaping the rice (Oryza sativa) rhizomicrobiome remain elusive. To address this issue, we compared the rhizomicrobiome of rice mutants defective in either SL biosynthesis or signaling and wild-type (WT) plants. To understand whether SL-regulated metabolic pathways shape the rhizomicrobiome, a correlation network analysis was conducted among the metabolic pathway-related genes and the rhizomicrobiome of rice. Compared to WT, higher bacterial richness (evidenced by the operational taxonomic unit richness) and lower fungal diversity (evidenced by the Shannon index) were observed in both SL deficient dwarf17 (d17) and signaling (d14) mutants. Additionally, remarkable differences were observed in the composition of a large number of bacterial communities than the fungal communities in the d17 and d14 mutants with respect to the WT. The abundance of certain beneficial bacterial taxa, including Nitrosomonadaceae and Rhodanobacter, were significantly decreased in both mutants relative to the WT. Correlation network analysis between SL-regulated metabolic pathway-associated genes and rhizomicrobiome proposed a role for SL-dependent metabolic pathways in shaping rhizomicrobiome composition. Taken together, our study suggests that SL biosynthesis and signaling play a key role in determining the rice rhizomicrobiome, directly or indirectly, through the mediation of distinct metabolic pathways. Based on our findings, the genetic modulation of rice SL biosynthesis and/or signaling pathways may help to recruit/increase the abundance of the desired rhizomicrobiome, which may assist in the stress resilience of rice.
Collapse
Affiliation(s)
- Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, Jilin Province, China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, Jilin Province, China.
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin Province, China.
| |
Collapse
|
134
|
Jiao Y, Srba M, Wang J, Chen W. Correlation of Autophagosome Formation with Degradation and Endocytosis Arabidopsis Regulator of G-Protein Signaling (RGS1) through ATG8a. Int J Mol Sci 2019; 20:ijms20174190. [PMID: 31461856 PMCID: PMC6747245 DOI: 10.3390/ijms20174190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Damaged or unwanted cellular proteins are degraded by either autophagy or the ubiquitin/proteasome pathway. In Arabidopsis thaliana, sensing of D-glucose is achieved by the heterotrimeric G protein complex and regulator of G-protein signaling 1 (AtRGS1). Here, we showed that starvation increases proteasome-independent AtRGS1 degradation, and it is correlated with increased autophagic flux. RGS1 promoted the production of autophagosomes and autophagic flux; RGS1-yellow fluorescent protein (YFP) was surrounded by vacuolar dye FM4-64 (red fluorescence). RGS1 and autophagosomes co-localized in the root cells of Arabidopsis and BY-2 cells. We demonstrated that the autophagosome marker ATG8a interacts with AtRGS1 and its shorter form with truncation of the seven transmembrane and RGS1 domains in planta. Altogether, our data indicated the correlation of autophagosome formation with degradation and endocytosis of AtRGS1 through ATG8a.
Collapse
Affiliation(s)
- Yue Jiao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Miroslav Srba
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Jingchun Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.
- College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
135
|
Abd Elwahed MS, Abd El-Aziz ME, Shaaban EA, Salama DM. New trend to use biochar as foliar application for wheat plants ( Triticum Aestivum). JOURNAL OF PLANT NUTRITION 2019; 42:1180-1191. [DOI: 10.1080/01904167.2019.1609503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 09/01/2023]
Affiliation(s)
| | - M. E. Abd El-Aziz
- Polymers & Pigments Department, National Research Centre, Dokki, Giza, Egypt
| | - E. A. Shaaban
- Pomology Department, National Research Centre, Dokki, Giza, Egypt
| | - Dina M. Salama
- Vegetable Departments, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
136
|
Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling. Cells 2019; 8:cells8060560. [PMID: 31181814 PMCID: PMC6628381 DOI: 10.3390/cells8060560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles in plants’ sugar transport, growth, and development, and possess an important potential to enhance plants’ performance of multiple agronomic traits, especially crop yield and stress tolerance. However, the evolutionary dynamics of this important gene family in Gramineae crops are still not well-documented and functional differentiation of rice STP genes remain unclear. To address this gap, we conducted a comparative genomic study of STP genes in seven representative Gramineae crops, which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb), Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV showed an observable number expansion compared to Clade II. Our results of identified duplication events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication (WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion mechanisms of the STP gene family among the tested species were different. Further selective force studies revealed that the STP gene family in Gramineae crops was under purifying selective forces and different clades and orthologous groups with different selective forces. Furthermore, expression analysis showed that rice STP genes play important roles not only in flower organs development but also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection, and wounding. The current study highlighted the expansion and evolutionary patterns of the STP gene family in Gramineae genomes and provided some important messages for the future functional analysis of Gramineae crop STP genes.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuangmiao Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Tong Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
137
|
Zhao ML, Ni J, Chen MS, Xu ZF. Ectopic Expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J Causes Late-Flowering and Heterostylous Phenotypes in Arabidopsis but not in Jatropha. Int J Mol Sci 2019; 20:E2165. [PMID: 31052421 PMCID: PMC6540179 DOI: 10.3390/ijms20092165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
Trehalose-6-phosphate (T6P) phosphatase (TPP), a dephosphorylating enzyme, catalyzes the dephosphorylation of T6P, generating trehalose. In Jatropha, we found six members of the TPP family. Five of them JcTPPA, JcTPPC, JcTPPD, JcTPPG, and JcTPPJ are highly expressed in female flowers or male flowers, or both, suggesting that members of the JcTPP family may participate in flower development in Jatropha. The wide expression of JcTPPJ gene in various organs implied its versatile roles and thus was chosen for unraveling its biological functions during developmental process. We constructed an overexpression vector of JcTPPJ cDNA driven by the cauliflower mosaic virus (CaMV) 35S promoter for genetic transformation. Compared with control Arabidopsis plants, 35S:JcTPPJ transgenic Arabidopsis plants presented greater sucrose contents in their inflorescences and displayed late-flowering and heterostylous phenotypes. Exogenous application of sucrose to the inflorescence buds of wild-type Arabidopsis repressed the development of the perianth and filaments, with a phenocopy of the 35S:JcTPPJ transgenic Arabidopsis. These results suggested that the significantly increased sucrose level in the inflorescence caused (or induced) by JcTTPJ overexpression, was responsible for the formation of heterostylous flower phenotype. However, 35S:JcTPPJ transgenic Jatropha displayed no obvious phenotypic changes, implying that JcTPPJ alone may not be sufficient for regulating flower development in Jatropha. Our results are helpful for understanding the function of TPPs, which may regulate flower organ development by manipulating the sucrose status in plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Ni
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|
138
|
Sakaguchi J, Matsushita T, Watanabe Y. DWARF4 accumulation in root tips is enhanced via blue light perception by cryptochromes. PLANT, CELL & ENVIRONMENT 2019; 42:1615-1629. [PMID: 30620085 DOI: 10.1111/pce.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4-GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | | | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
139
|
Wu Y, Li Y, Li Y, Ma Y, Zhao Y, Wang C, Chi H, Chen M, Ding Y, Guo X, Min L, Zhang X. Proteomic analysis reveals that sugar and fatty acid metabolisms play a central role in sterility of the male-sterile line 1355A of cotton. J Biol Chem 2019; 294:7057-7067. [PMID: 30862676 PMCID: PMC6497933 DOI: 10.1074/jbc.ra118.006878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/22/2019] [Indexed: 11/06/2022] Open
Abstract
Cotton (Gossypium spp.) is one of the most important economic crops and exhibits yield-improving heterosis in specific hybrid combinations. The genic male-sterility system is the main strategy used for producing heterosis in cotton. To better understand the mechanisms of male sterility in cotton, we carried out two-dimensional electrophoresis (2-DE) and label-free quantitative proteomics analysis in the anthers of two near-isogenic lines, the male-sterile line 1355A and the male-fertile line 1355B. We identified 39 and 124 proteins that were significantly differentially expressed between these two lines in the anthers at the tetrad stage (stage 7) and uninucleate pollen stage (stage 8), respectively. Gene ontology-based analysis revealed that these differentially expressed proteins were mainly associated with pyruvate, carbohydrate, and fatty acid metabolism. Biochemical analysis revealed that in the anthers of line 1355A, glycolysis was activated, which was caused by a reduction in fructose, glucose, and other soluble sugars, and that accumulation of acetyl-CoA was increased along with a significant increase in C14:0 and C18:1 free fatty acids. However, the activities of pyruvate dehydrogenase and fatty acid biosynthesis were inhibited and fatty acid β-oxidation was activated at the translational level in 1355A. We speculate that in the 1355A anther, high rates of glucose metabolism may promote fatty acid synthesis to enable anther growth. These results provide new insights into the molecular mechanism of genic male sterility in upland cotton.
Collapse
Affiliation(s)
- Yuanlong Wu
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yanlong Li
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yaoyao Li
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yizan Ma
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yunlong Zhao
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Chaozhi Wang
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Huabin Chi
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Miao Chen
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yuanhao Ding
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Xiaoping Guo
- the College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Ling Min
- From the National Key Laboratory of Crop Genetic Improvement and
| | - XianLong Zhang
- From the National Key Laboratory of Crop Genetic Improvement and
| |
Collapse
|
140
|
Min JH, Park CR, Jang YH, Ju HW, Lee KH, Lee S, Kim CS. A basic helix-loop-helix 104 (bHLH104) protein functions as a transcriptional repressor for glucose and abscisic acid signaling in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:34-42. [PMID: 30639920 DOI: 10.1016/j.plaphy.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Transduction of glucose (Glc) signaling is critical for plant development, metabolism, and stress responses. However, identifying initial Glc sensing and response stimulating mechanisms in plants has been difficult due to dual functions of glucose as energy sources and signaling component. A basic Helix-Loop-Helix 104 (bHLH104) protein is a homolog of bHLH34 previously isolated from Arabidopsis that functions as a transcriptional activator of Glc and abscisic acid (ABA) responses. In this study, we characterized bHLH104 as a transcription factor that binds to the regulatory region of Arabidopsis Plasma membrane Glc-responsive Regulator (AtPGR) gene. The bHLH104 binds to 5'-AANA-3' element of the promoter region of AtPGR in vitro and represses beta-glucuronidase (GUS) activity in AtPGR promoter-GUS transgenic plants. Genetic approaches show that bHLH104 positively regulates Glc and abscisic acid (ABA) response. These results suggest that bHLH104 is involved in Glc- and ABA-mediated signaling pathway. Taken together, these findings provide evidence that bHLH104 is an important transcription regulator in plant-sensitivity to Glc and ABA signaling.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Cho-Rong Park
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yun-Ha Jang
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
141
|
Wenke K, Kopka J, Schwachtje J, van Dongen JT, Piechulla B. Volatiles of rhizobacteria Serratia and Stenotrophomonas alter growth and metabolite composition of Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:109-119. [PMID: 30030887 DOI: 10.1111/plb.12878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/18/2018] [Indexed: 05/24/2023]
Abstract
The emission of volatiles is a common, but mostly neglected, ability of bacteria that is important for inter- and intraspecific interactions. Currently, limited information is available on how the bacterial volatile (mVOC) signal is integrated into a plant's life at the physiological, transcriptional and metabolic level. Previous results provided evidence for volatile-dependent regulation of WRKY18, a pathogen-responsive transcription factor of Arabidopsis thaliana in co-culture with two rhizobacteria, Serratia plymuthica HRO-C48 and Stenotrophomonas maltophilia R3089. Dual cultures of these bacteria and A. thaliana; application of the common mVOC 2-phenyl-ethanol; extraction of metabolites of A. thaliana after exposure to bacterial volatiles; and analysis of the metabolomes (GC-TOF/MS) were carried out. The prominent microbial aromatic compound 2-phenyl-ethanol, emitted by both bacteria, negatively affects growth of A. thaliana wild type, whereas WRKY18 T-DNA insertion mutants were significantly more tolerant than wild-type seedlings. This paper also demonstrates for the first time the impact of the rhizobacterial volatiles on the metabolome of A. thaliana. Upon mVOC exposure the plants rearrange their metabolism by accumulation of e.g. amino acids and TCA intermediates that potentially allow plants to cope with and survive this stress. Our findings illustrate the high degree of complexity of metabolic rearrangements underlying the interactions of bacterial volatile elicitors and resulting plant responses. Furthermore, the impact of the volatile 2-phenyl-ethanol as a signal in the WRKY18-dependent pathway highlights this compound as an important molecular player.
Collapse
Affiliation(s)
- K Wenke
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - J Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - J Schwachtje
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - J T van Dongen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - B Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
142
|
Sami F, Hayat S. Effect of glucose on the morpho-physiology, photosynthetic efficiency, antioxidant system, and carbohydrate metabolism in Brassica juncea. PROTOPLASMA 2019; 256:213-226. [PMID: 30066267 DOI: 10.1007/s00709-018-1291-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The present experiment was conducted to investigate the promotive effects of exogenous glucose (Glc) on the morpho-physiology in Brassica juncea. L. cv. RGN-48. The plants were treated with the different concentrations (0, 2, 4, and 8%) of glucose as foliar spray at 25 days after sowing (DAS) for 5 days consecutively. The plants were collected to analyze various growth and photosynthetic parameters at 30, 45, and 60 DAS. After 5 days exposure to Glc, the level of carbohydrate, total reducing sugars, proline, plant water status, chlorophyll content, as well as that of activities of peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), and superoxide dismutase (EC 1.15.1.1) were increased. Glc application also enhanced the gaseous exchange parameters, i.e., stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), and net photosynthetic rate (PN) in intact leaf. Other enzymes, such as nitrate reductase (EC 1.7.99.4) and carbonic anhydrase (EC 4.2.1.1) were also increased. Additionally, microscopic studies further reveal a remarkable increase in the stomatal aperture on Glc exposure. Moreover, exogenous Glc decreases the levels of malondialdehyde (MDA), superoxide radical (O2·-) and hydrogen peroxide (H2O2). This indicates that exogenous Glc application has a positive effect on Brassica juncea plants.
Collapse
Affiliation(s)
- Fareen Sami
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
143
|
Rahman MM, Mostofa MG, Rahman MA, Miah MG, Saha SR, Karim MA, Keya SS, Akter M, Islam M, Tran LSP. Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas. PROTOPLASMA 2019; 256:181-191. [PMID: 30062531 DOI: 10.1007/s00709-018-1289-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Sapota (Achras sapota), a fruit tree with nutritional and medicinal properties, is known to thrive in salt-affected areas. However, the underlying mechanisms that allow sapota to adapt to saline environment are yet to be explored. Here, we examined various morphological, physiological, and biochemical features of sapota under a gradient of seawater (0, 4, 8, and 12 dS m-1) to study its adaptive responses against salinity. Our results showed that seawater-induced salinity negatively impacted on growth-related attributes, such as plant height, root length, leaf area, and dry biomass in a dose-dependent manner. This growth reduction was positively correlated with reductions in relative water content, stomatal conductance, xylem exudation rate, and chlorophyll, carbohydrate, and protein contents. However, the salt tolerance index did not decline in proportional to the increasing doses of seawater, indicating a salt tolerance capacity of sapota. Under salt stress, ion analysis revealed that Na+ mainly retained in roots, whereas K+ and Ca2+ were more highly accumulated in leaves than in roots, suggesting a potential mechanism in restricting transport of excessive Na+ to leaves to facilitate the uptake of other essential minerals. Sapota plants also maintained an improved leaf succulence with increasing levels of seawater. Furthermore, increased accumulations of proline, total amino acids, soluble sugars, and reducing sugars suggested an enhanced osmoprotective capacity of sapota to overcome salinity-induced osmotic stress. Our results demonstrate that the salt adaptation strategy of sapota is attributed to increased leaf succulence, selective transport of minerals, efficient Na+ retention in roots, and accumulation of compatible solutes.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Satya Ranjan Saha
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Abdul Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Munny Akter
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohidul Islam
- Hill Agricultural Research Station, Raikhali, Rangamati Hill District, Bangladesh
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
144
|
Vasantharaja R, Abraham LS, Inbakandan D, Thirugnanasambandam R, Senthilvelan T, Jabeen SA, Prakash P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
145
|
Macovei A, Pagano A, Cappuccio M, Gallotti L, Dondi D, De Sousa Araujo S, Fevereiro P, Balestrazzi A. A Snapshot of the Trehalose Pathway During Seed Imbibition in Medicago truncatula Reveals Temporal- and Stress-Dependent Shifts in Gene Expression Patterns Associated With Metabolite Changes. FRONTIERS IN PLANT SCIENCE 2019; 10:1590. [PMID: 31921241 PMCID: PMC6930686 DOI: 10.3389/fpls.2019.01590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Trehalose, a non-reducing disaccharide with multiple functions, among which source of energy and carbon, stress protectant, and signaling molecule, has been mainly studied in relation to plant development and response to stress. The trehalose pathway is conserved among different organisms and is composed of three enzymes: trehalose-6-phosphate synthase (TPS), which converts uridine diphosphate (UDP)-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P), trehalose-6-phosphatase (TPP), which dephosphorylates T6P to produce trehalose, and trehalase (TRE), responsible for trehalose catabolism. In plants, the trehalose pathway has been mostly studied in resurrection plants and the model plant Arabidopsis thaliana, where 11 AtTPS, 10 AtTPP, and 1 AtTRE genes are present. Here, we aim to investigate the involvement of the trehalose pathway in the early stages of seed germination (specifically, seed imbibition) using the model legume Medicago truncatula as a working system. Since not all the genes belonging to the trehalose pathway had been identified in M. truncatula, we first conducted an in silico analysis using the orthologous gene sequences from A. thaliana. Nine MtTPSs, eight MtTPPs, and a single MtTRE gene were hereby identified. Subsequently, the expression profiles of all the genes (together with the sucrose master-regulator SnRK1) were investigated during seed imbibition with water or stress agents (polyethylene glycol and sodium chloride). The reported data show a temporal distribution and preferential expression of specific TPS and TPP isoforms during seed imbibition with water. Moreover, it was possible to distinguish a small set of genes (e.g., MtTPS1, MtTPS7, MtTPS10, MtTPPA, MtTPPI, MtTRE) having a potential impact as precocious hallmarks of the seed response to stress. When the trehalose levels were measured by high-performance liquid chromatography, a significant decrease was observed during seed imbibition, suggesting that trehalose may act as an energy source rather than osmoprotectant. This is the first report investigating the expression profiles of genes belonging to the trehalose pathway during seed imbibition, thus ascertaining their involvement in the pre-germinative metabolism and their potential as tools to improve seed germination efficiency.
Collapse
Affiliation(s)
- Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Michela Cappuccio
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
| | - Lucia Gallotti
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Susana De Sousa Araujo
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
| | - Pedro Fevereiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
- *Correspondence: Alma Balestrazzi,
| |
Collapse
|
146
|
Jahan A, Komatsu K, Wakida-Sekiya M, Hiraide M, Tanaka K, Ohtake R, Umezawa T, Toriyama T, Shinozawa A, Yotsui I, Sakata Y, Takezawa D. Archetypal Roles of an Abscisic Acid Receptor in Drought and Sugar Responses in Liverworts. PLANT PHYSIOLOGY 2019; 179:317-328. [PMID: 30442644 PMCID: PMC6324230 DOI: 10.1104/pp.18.00761] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/27/2018] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) controls seed dormancy and stomatal closure through binding to the intracellular receptor Pyrabactin resistance1 (Pyr1)/Pyr1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) in angiosperms. Genes encoding PYR/PYL/RCAR are thought to have arisen in the ancestor of embryophytes, but the roles of the genes in nonvascular plants have not been determined. In the liverwort Marchantia polymorpha, ABA reduces growth and enhances desiccation tolerance through increasing accumulation of intracellular sugars and various transcripts such as those of Late Embryogenesis Abundant (LEA)-like genes. In this study, we analyzed a gene designated MpPYL1, which is closely related to PYR/PYL/RCAR of angiosperms, in transgenic liverworts. Transgenic lines overexpressing MpPYL1-GFP showed ABA-hypersensitive growth with enhanced desiccation tolerance, whereas Mppyl1 generated by CRISPR-Cas9-mediated genome editing showed ABA-insensitive growth with reduced desiccation tolerance. Transcriptome analysis indicated that MpPYL1 is a major regulator of abiotic stress-associated genes, including all 35 ABA-induced LEA-like genes. Furthermore, these transgenic plants showed altered responses to extracellular Suc, suggesting that ABA and PYR/PYL/RCAR function in sugar responses. The results presented here reveal an important role of PYR/PYL/RCAR in the ABA response, which was likely acquired in the common ancestor of land plants. The results also indicate the archetypal role of ABA and its receptor in sugar response and accumulation processes for vegetative desiccation tolerance in bryophytes.
Collapse
Affiliation(s)
- Akida Jahan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kenji Komatsu
- Department of Bioresource Development, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Mai Wakida-Sekiya
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Mayuka Hiraide
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Keisuke Tanaka
- The NODAI Genome Research Center (NGRC), Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Rumi Ohtake
- The NODAI Genome Research Center (NGRC), Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tsukasa Toriyama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
147
|
Santos IR, Maximiano MR, Almeida RF, da Cunha RNV, Lopes R, Scherwinski-Pereira JE, Mehta A. Genotype-dependent changes of gene expression during somatic embryogenesis in oil palm hybrids (Elaeis oleifera x E. guineensis). PLoS One 2018; 13:e0209445. [PMID: 30596686 PMCID: PMC6312368 DOI: 10.1371/journal.pone.0209445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
To understand the molecular processes triggered during the different steps of somatic embryogenesis (SE) in oil palm, the expression of 19 genes associated to SE identified in proteomic and transcriptomic studies was investigated by qRT-PCR. To evaluate the differential expression of these genes, two interspecific hybrid genotypes (Elaeis oleifera x Elaeis guineensis) contrasting for the acquisition of embryogenic competence were used. Aclorophyllated leaves of both hybrids, one responsive (B351733) and the other non-responsive (B352933) to SE were submitted to callus induction and collected at different time points: 0 (before induction), 14, 30, 90 and 150 days of callus induction (doi). The results obtained showed that all evaluated genes were downregulated at 14 doi in the responsive genotype when compared to the non-responsive. It was also possible to observe that most of the genes changed their expression behavior at 30 doi and were upregulated thereafter until 150 doi, with the exception of the pathogenesis-related PRB1-3-like (PRB1-3) gene, which did not show differential expression at 30 doi and was downregulated at 90 and 150 doi when compared to the non-responsive hybrid. These results indicate that 30 doi is a turning point in gene expression, probably associated to embryogenic competence acquisition. We also show that the expression behavior of the responsive genotype is more stable than that of the non-responsive when the different induction time points are compared to 0 doi (before induction). Moreover, the results obtained in this study corroborate our hypothesis that the regulation of genes involved in the control of oxidative stress and energy metabolism are crucial for the acquisition of embryogenic competence in oil palm.
Collapse
Affiliation(s)
- Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Brasília—DF, Brazil
| | - Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Raphael Ferreira Almeida
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Brasília—DF, Brazil
| | | | | | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| |
Collapse
|
148
|
Liu Y, Wang J, Yin H, Zhang A, Huang S, Wang TJ, Meng Q, Nan N, Wu Y, Guo P, Ahmad R, Liu B, Xu ZY. Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module. PLANT MOLECULAR BIOLOGY 2018; 98:495-506. [PMID: 30406469 DOI: 10.1007/s11103-018-0791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/22/2018] [Indexed: 05/29/2023]
Abstract
Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
149
|
Otori K, Tanabe N, Tamoi M, Shigeoka S. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Biosci Biotechnol Biochem 2018; 83:472-481. [PMID: 30488772 DOI: 10.1080/09168451.2018.1550355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that alterations in sugar partitioning affect the expression of genes involved in hormone biosynthesis and responses, including BRANCHED1 (BRC1), resulting in enhanced shoot branching in transgenic Arabidopsis plants overexpressing cyanobacterial fructose-1,6-bisphosphatase-II in the cytosol (AcF). The exogenous treatment of wild-type Arabidopsis plants with sugars showed the same transcript characteristics, indicating that sugars act as a signal for branching. We also found that the reductions induced in BRC1 expression levels in wild-type plants by the sugar treatments were suppressed in the knockout mutant of sugar transporter 1 (stp1-1). Intracellular sugar contents were similar in stp1-1 and wild-type plants following the sugar treatments, suggesting that STP1 acts as a factor for the regulation of shoot branching depending on extracellular sugar contents. Abbreviations: BRC1: BRABCHED1; FBP/SBPase: fructose-1,6-/sedoheptulose-1,7-bisphosphatase; Glc: glucose; HXK: hexokinase; SnRK1.1/AKIN10: SNF1-RELATED PROTEIN KINASE 1.1; Suc: sucrose; SnRK1: sucrose non-fermenting 1-related protein kinase; STP: sugar transporter protein.
Collapse
Affiliation(s)
- Kumi Otori
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| | - Noriaki Tanabe
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| | - Masahiro Tamoi
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| | - Shigeru Shigeoka
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| |
Collapse
|
150
|
Sucrose synthesis in Unpollinated ovaries of pomegranate (Punica granatum L.), as well as, in reproductive and vegetative shoot apices. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|