101
|
Galdon-Armero J, Arce-Rodriguez L, Downie M, Li J, Martin C. A Scanning Electron Micrograph-based Resource for Identification of Loci Involved in Epidermal Development in Tomato: Elucidation of a New Function for the Mixta-like Transcription Factor in Leaves. THE PLANT CELL 2020; 32:1414-1433. [PMID: 32169962 PMCID: PMC7203947 DOI: 10.1105/tpc.20.00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
The aerial epidermis of plants plays a major role in environmental interactions, yet the development of the cellular components of the aerial epidermis-trichomes, stomata, and pavement cells-is still not fully understood. We have performed a detailed screen of the leaf epidermis in two generations of the well-established Solanum lycopersicum cv M82 × Solanum pennellii ac. LA716 introgression line (IL) population using a combination of scanning electron microscopy (SEM) techniques. Quantification of trichome and stomatal densities in the ILs revealed four genomic regions with a consistently low trichome density. This study also found ILs with abnormal proportions of different trichome types and aberrant trichome morphologies. This work has led to the identification of new, unexplored genomic regions with roles in trichome formation in tomato. This study investigated one interval in IL2-6 in more detail and identified a new function for the transcription factor SlMixta-like in determining trichome patterning in leaves. This illustrates how these SEM images, publicly available to the research community, provide an important dataset for further studies on epidermal development in tomato and other species of the Solanaceae family.
Collapse
Affiliation(s)
- Javier Galdon-Armero
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Lisette Arce-Rodriguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, 36824 Irapuato, Guanajuato, Mexico
| | - Matthew Downie
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
102
|
Chalvin C, Drevensek S, Dron M, Bendahmane A, Boualem A. Genetic Control of Glandular Trichome Development. TRENDS IN PLANT SCIENCE 2020; 25:477-487. [PMID: 31983619 DOI: 10.1016/j.tplants.2019.12.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 05/28/2023]
Abstract
Plant glandular trichomes are epidermal secretory structures producing various specialized metabolites. These metabolites are involved in plant adaptation to its environment and many of them have remarkable properties exploited by fragrance, flavor, and pharmaceutical industries. The identification of genes controlling glandular trichome development is of high interest to understand how plants produce specialized metabolites. Our knowledge about this developmental process is still limited, but genes controlling glandular trichome initiation and morphogenesis have recently been identified. In particular, R2R3-MYB and HD-ZIP IV transcription factors appear to play essential roles in glandular trichome initiation in Artemisia annua and tomato. In this review, we focus on the results obtained in these two species and we propose genetic regulation models integrating these data.
Collapse
Affiliation(s)
- Camille Chalvin
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Stéphanie Drevensek
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Michel Dron
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Adnane Boualem
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
103
|
Knegt B, Meijer TT, Kant MR, Kiers ET, Egas M. Tetranychus evansi spider mite populations suppress tomato defenses to varying degrees. Ecol Evol 2020; 10:4375-4390. [PMID: 32489604 PMCID: PMC7246200 DOI: 10.1002/ece3.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023] Open
Abstract
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense-suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non-native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid- and salicylic acid-dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi-as all invasive populations we studied belong to one linage and both native populations to another-or the absence of specialized natural enemies in invasive T. evansi populations.
Collapse
Affiliation(s)
- Bram Knegt
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tomas T. Meijer
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Merijn R. Kant
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVU UniversityAmsterdamThe Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
104
|
Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 Promotes the Jasmonic Acid Pathway and Enhances Fusarium Wilt Resistance in Sweet Potato. THE PLANT CELL 2020; 32:1102-1123. [PMID: 32034034 PMCID: PMC7145486 DOI: 10.1105/tpc.19.00641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/05/2023]
Abstract
Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Yang
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Huo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhitong Ren
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
105
|
Zhang SW, Yuan C, An LY, Niu Y, Song M, Tang QL, Wei DY, Tian SB, Wang YQ, Yang Y, Wang ZM. SmCOI1 affects anther dehiscence in a male-sterile Solanum melongena line. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:1-8. [PMID: 32362742 PMCID: PMC7193836 DOI: 10.5511/plantbiotechnology.19.1107a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seed; however, the molecular mechanisms of anther indehiscence-based male sterility have not been thoroughly explored in eggplant (Solanum melongena L.). Here, we used two-dimensional gel electrophoresis to compare the protein profiles in the anthers of normally developing (F142) and anther indehiscent (S16) S. melongena plants. Four differentially expressed proteins were identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Of these proteins, the transcript accumulation of the eggplant CORONATINE INSENSITIVE1 (SmCOI1) was significantly downregulated in S16 relative to F142. Phylogenetic analysis showed that SmCOI1 has high amino acid sequence similarity and clustered into the same subgroup as its homologs in other members of the Solanaceae. Subcellular localization analysis showed that SmCOI1 localized to the nucleus. Moreover, reverse-transcription quantitative PCR revealed that the jasmonic acid pathway genes SmJAZ1 and SmOPR3 are upregulated in F142 relative to S16. Protein-protein interaction studies identified a direct interaction between SmCOI1 and SmOPR3, but SmCOI1 failed to interact with SmJAZ1. These findings shed light on the regulatory mechanisms of anther dehiscence in eggplant.
Collapse
Affiliation(s)
- Shao-Wei Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Chao Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Li-Yu An
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Yi Niu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Ming Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Qing-Lin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Da-Yong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Shi-Bing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
| | - Yong-Qing Wang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| | - Zhi-Ming Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| |
Collapse
|
106
|
Rastogi S, Shah S, Kumar R, Kumar A, Shasany AK. Comparative temporal metabolomics studies to investigate interspecies variation in three Ocimum species. Sci Rep 2020; 10:5234. [PMID: 32251340 PMCID: PMC7089951 DOI: 10.1038/s41598-020-61957-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Ocimum is one of the most revered medicinally useful plants which have various species. Each of the species is distinct in terms of metabolite composition as well as the medicinal property. Some basil types are used more often as an aromatic and flavoring ingredient. It would be informative to know relatedness among the species which though belong to the same genera while exclusively different in terms of metabolic composition and the operating pathways. In the present investigation the similar effort has been made in order to differentiate three commonly occurring Ocimum species having the high medicinal value, these are Ocimum sanctum, O. gratissimum and O. kilimandscharicum. The parameters for the comparative analysis of these three Ocimum species comprised of temporal changes in number leaf trichomes, essential oil composition, phenylpropanoid pathway genes expression and the activity of important enzymes. O. gratissimum was found to be richest in phenylpropanoid accumulation as well as their gene expression when compared to O. sanctum while O. kilimandscharicum was found to be accumulating terpenoid. In order to get an overview of this qualitative and quantitative regulation of terpenes and phenylpropenes, the expression pattern of some important transcription factors involved in secondary metabolism were also studied.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Centre for Biotechnology, Shiksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Saumya Shah
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India
| | - Ritesh Kumar
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India
| | - Ajay Kumar
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India.
| |
Collapse
|
107
|
Schuurink R, Tissier A. Glandular trichomes: micro-organs with model status? THE NEW PHYTOLOGIST 2020; 225:2251-2266. [PMID: 31651036 DOI: 10.1111/nph.16283] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are epidermal outgrowths that are the site of biosynthesis and storage of large quantities of specialized metabolites. Besides their role in the protection of plants against biotic and abiotic stresses, they have attracted interest owing to the importance of the compounds they produce for human use; for example, as pharmaceuticals, flavor and fragrance ingredients, or pesticides. Here, we review what novel concepts investigations on glandular trichomes have brought to the field of specialized metabolism, particularly with respect to chemical and enzymatic diversity. Furthermore, the next challenges in the field are understanding the metabolic network underlying the high productivity of glandular trichomes and the transport and storage of metabolites. Another emerging area is the development of glandular trichomes. Studies in some model species, essentially tomato, tobacco, and Artemisia, are now providing the first molecular clues, but many open questions remain: How is the distribution and density of different trichome types on the leaf surface controlled? When is the decision for an epidermal cell to differentiate into one type of trichome or another taken? Recent advances in gene editing make it now possible to address these questions and promise exciting discoveries in the near future.
Collapse
Affiliation(s)
- Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Science Research Cluster, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, the Netherlands
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| |
Collapse
|
108
|
Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proc Natl Acad Sci U S A 2020; 117:2211-2217. [PMID: 31964814 PMCID: PMC6994973 DOI: 10.1073/pnas.1913885117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As global climate change brings elevated average temperatures and more frequent and extreme weather events, pressure from biotic stresses will become increasingly compounded by harsh abiotic stress conditions. The plant hormone jasmonate (JA) promotes resilience to many environmental stresses, including attack by arthropod herbivores whose feeding activity is often stimulated by rising temperatures. How wound-induced JA signaling affects plant adaptive responses to elevated temperature (ET), however, remains largely unknown. In this study, we used the commercially important crop plant Solanum lycopersicum (cultivated tomato) to investigate the interaction between simulated heat waves and wound-inducible JA responses. We provide evidence that the heat shock protein HSP90 enhances wound responses at ET by increasing the accumulation of the JA receptor, COI1. Wound-induced JA responses directly interfered with short-term adaptation to ET by blocking leaf hyponasty and evaporative cooling. Specifically, leaf damage inflicted by insect herbivory or mechanical wounding at ET resulted in COI1-dependent stomatal closure, leading to increased leaf temperature, lower photosynthetic carbon assimilation rate, and growth inhibition. Pharmacological inhibition of HSP90 reversed these effects to recapitulate the phenotype of a JA-insensitive mutant lacking the COI1 receptor. As climate change is predicted to compound biotic stress with larger and more voracious arthropod pest populations, our results suggest that antagonistic responses resulting from a combination of insect herbivory and moderate heat stress may exacerbate crop losses.
Collapse
|
109
|
Ahmad RM, Cheng C, Sheng J, Wang W, Ren H, Aslam M, Yan Y. Interruption of Jasmonic Acid Biosynthesis Causes Differential Responses in the Roots and Shoots of Maize Seedlings against Salt Stress. Int J Mol Sci 2019; 20:ijms20246202. [PMID: 31835299 PMCID: PMC6969903 DOI: 10.3390/ijms20246202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022] Open
Abstract
Jasmonates (JAs) together with jasmonic acid and its offshoots are lipid-derived endogenous hormones that play key roles in both developmental processes and different defense responses in plants. JAs have been studied intensively in the past decades for their substantial roles in plant defense comebacks against diverse environmental stresses among model plants. However, the role of this phytohormone has been poorly investigated in the monocotyledonous species against abiotic stresses. In this study, a JA biosynthesis mutant opr7opr8 was used for the investigation of JA roles in the salt stress responses of maize seedlings, whose roots were exposed to 0 to 300 mM NaCl. Foliar stomatal observation showed that opr7opr8 had a larger stomatal aperture than wild type (WT) (B73) under salinity stress, indicating that JA positively regulates guard cell movement under salt stress. The results regarding chlorophyll content and leaf senescence showed that opr7opr8 exhibited delayed leaf senescence under salt stress as compared to WT, indicating that JA plays a role in salt-inducing cell death and subsequent leaf senescence. Moreover, the morphological parameters, including the length of the shoots and roots, and the fresh and dry weights of the shoots and roots, showed that after 7 days of salt treatment, opr7opr8 had heavier and longer shoots than WT but slighter and shorter roots than WT. In addition, ion analysis showed that opr7opr8 accumulated less sodium but more potassium in the leaves than WT but more sodium and less potassium in the roots than WT, suggesting that JA deficiency causes higher salt stress to the roots but less stress to the leaves of the seedlings. Reactive oxygen species (ROS) analysis showed that opr7opr8 produced less H2O2 than WT in the leaves but more H2O2 in the roots under salt treatment, and correspondingly, ROS-scavenging enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a similar variation, i.e., opr7opr8 has lower enzymatic activities in the shoots but higher activities in the roots than WT under salt treatment. For osmotic adjustment, opr7opr8 produced less proline in the shoots at 100 and 300 mM NaCl treatments but more in the roots than the WT roots under all salt treatments. In addition, the gene expression for abscisic acid (ABA) biosynthesis under salt stress was investigated. Results showed that the expression levels of four key enzymes of ABA biosynthesis, ZEP1, NCED5, AO1, and VP10, were significantly downregulated in the shoots as compared to WT under salt treatment. Putting all the data together, we concluded that JA-deficiency in maize seedlings reduced the salt-stress responses in the shoots but exaggerated the responses in the roots. In addition, endogenous JA acted as a positive regulator for the transportation of sodium ions from the roots to the shoots because the mutant opr7opr8 had a higher level of sodium in the roots but a significantly lower level in the shoots than WT. Furthermore, JA may act as a positive regulator for ABA biosynthesis in the leaves under salt stress.
Collapse
Affiliation(s)
- Ramala Masood Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Cheng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Jia Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Wei Wang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (W.W.); (H.R.)
| | - Hong Ren
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (W.W.); (H.R.)
| | - Muhammad Aslam
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Yuanxin Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (R.M.A.); (C.C.); (J.S.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
110
|
Rahim MA, Resentini F, Dalla Vecchia F, Trainotti L. Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 10:1143. [PMID: 31681342 PMCID: PMC6813659 DOI: 10.3389/fpls.2019.01143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/21/2019] [Indexed: 05/27/2023]
Abstract
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Biology, University of Padova, Padova, Italy
| | | | - Francesca Dalla Vecchia
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| | - Livio Trainotti
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| |
Collapse
|
111
|
Marciniak K, Przedniczek K. Comprehensive Insight into Gibberellin- and Jasmonate-Mediated Stamen Development. Genes (Basel) 2019; 10:genes10100811. [PMID: 31618967 PMCID: PMC6827089 DOI: 10.3390/genes10100811] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| | - Krzysztof Przedniczek
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| |
Collapse
|
112
|
Poudel AN, Holtsclaw RE, Kimberlin A, Sen S, Zeng S, Joshi T, Lei Z, Sumner LW, Singh K, Matsuura H, Koo AJ. 12-Hydroxy-Jasmonoyl-l-Isoleucine Is an Active Jasmonate That Signals through CORONATINE INSENSITIVE 1 and Contributes to the Wound Response in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2152-2166. [PMID: 31150089 DOI: 10.1093/pcp/pcz109] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blocked by mutation in CORONATINE INSENSITIVE 1. Increased anthocyanin accumulation by 12OH-JA-Ile was additionally observed in tomato and sorghum, and was disrupted by the COI1 defect in tomato jai1 mutant. In silico ligand docking predicted that 12OH-JA-Ile can maintain many of the key interactions with COI1-JAZ1 residues identified earlier by crystal structure studies using JA-Ile as ligand. Genetic alternation of jasmonate metabolic pathways in Arabidopsis to deplete both JA-Ile and 12OH-JA-Ile displayed enhanced jasmonate deficient wound phenotypes and was more susceptible to insect herbivory than that depleted in only JA-Ile. Conversely, mutants overaccumulating 12OH-JA-Ile showed intensified wound responses compared with wild type with similar JA-Ile content. These data are indicative of 12OH-JA-Ile functioning as an active jasmonate signal and contributing to wound and defense response in higher plants.
Collapse
Affiliation(s)
- Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Rebekah E Holtsclaw
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Shuai Zeng
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
- Health Management and Informatics, University of Missouri, Columbia, MO, USA
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- MU Metabolomics Core, University of Missouri, Columbia, MO, MO, USA
| | - Lloyd W Sumner
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- MU Metabolomics Core, University of Missouri, Columbia, MO, MO, USA
| | - Kamlendra Singh
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| |
Collapse
|
113
|
You X, Zhu S, Zhang W, Zhang J, Wang C, Jing R, Chen W, Wu H, Cai Y, Feng Z, Hu J, Yan H, Kong F, Zhang H, Zheng M, Ren Y, Lin Q, Cheng Z, Zhang X, Lei C, Jiang L, Wang H, Wan J. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. THE NEW PHYTOLOGIST 2019; 224:712-724. [PMID: 31264225 DOI: 10.1111/nph.16037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.
Collapse
Affiliation(s)
- Xiaoman You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Wenwei Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Hongming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Hu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| |
Collapse
|
114
|
Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla JM, Solano R. Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in Marchantia polymorpha. THE PLANT CELL 2019; 31:2491-2509. [PMID: 31391256 PMCID: PMC6790078 DOI: 10.1105/tpc.18.00974] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 05/20/2023]
Abstract
The lipid-derived phytohormone jasmonoyl-isoleucine regulates plant immunity, growth and development in vascular plants by activating genome-wide transcriptional reprogramming. In Arabidopsis (Arabidopsis thaliana), this process is largely orchestrated by the master regulator MYC2 and related transcription factors (TFs). However, the TFs activating this pathway in basal plant lineages are currently unknown. We report the functional conservation of MYC-related TFs between the eudicot Arabidopsis and the liverwort Marchantia polymorpha, a plant belonging to an early diverging lineage of land plants. Phylogenetic analysis suggests that MYC function first appeared in charophycean algae and therefore predates the evolutionary appearance of any other jasmonate pathway component. M. polymorpha possesses two functionally interchangeable MYC genes, one in females and one in males. Similar to AtMYC2, MpMYCs showed nuclear localization, interaction with JASMONATE-ZIM-DOMAIN PROTEIN repressors, and regulation by light. Phenotypic and molecular characterization of loss- and gain-of-function mutants demonstrated that MpMYCs are necessary and sufficient for activating the jasmonate pathway in M. polymorpha, but unlike their Arabidopsis orthologs, do not regulate fertility. Therefore, despite 450 million years of independent evolution, MYCs are functionally conserved between bryophytes and eudicots. Genetic conservation in an early diverging lineage suggests that MYC function existed in the common ancestor of land plants and evolved from a preexisting MYC function in charophycean algae.
Collapse
Affiliation(s)
- María Peñuelas
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Isabel Monte
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, Faculty of Sciences, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Jose M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
115
|
Jasmonates-the Master Regulator of Rice Development, Adaptation and Defense. PLANTS 2019; 8:plants8090339. [PMID: 31505882 PMCID: PMC6784130 DOI: 10.3390/plants8090339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Rice is one of the most important food crops worldwide, as well as the model plant in molecular studies on the cereals group. Many different biotic and abiotic agents often limit rice production and threaten food security. Understanding the molecular mechanism, by which the rice plant reacts and resists these constraints, is the key to improving rice production to meet the demand of an increasing population. The phytohormone jasmonic acid (JA) and related compounds, collectively called jasmonates, are key regulators in plant growth and development. They are also one of the central players in plant immunity against biotic attacks and adaptation to unfavorable environmental conditions. Here, we review the most recent knowledge about jasmonates signaling in the rice crop model. We highlight the functions of jasmonates signaling in many adaptive responses, and also in rice growth and development processes. We also draw special attention to different signaling modules that are controlled by jasmonates in rice.
Collapse
|
116
|
You Y, Zhai Q, An C, Li C. LEUNIG_HOMOLOG Mediates MYC2-Dependent Transcriptional Activation in Cooperation with the Coactivators HAC1 and MED25. THE PLANT CELL 2019; 31:2187-2205. [PMID: 31320481 PMCID: PMC6751132 DOI: 10.1105/tpc.19.00115] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 05/19/2023]
Abstract
Groucho/Thymidine uptake 1 (Gro/Tup1) family proteins are evolutionarily conserved transcriptional coregulators in eukaryotic cells. Despite their prominent function in transcriptional repression, little is known about their role in transcriptional activation and the underlying mechanism. Here, we report that the plant Gro/Tup1 family protein LEUNIG_HOMOLOG (LUH) activates MYELOCYTOMATOSIS2 (MYC2)-directed transcription of JAZ2 and LOX2 via the Mediator complex coactivator and the histone acetyltransferase HAC1. We show that the Mediator subunit MED25 physically recruits LUH to MYC2 target promoters that then links MYC2 with HAC1-dependent acetylation of Lys-9 of histone H3 (H3K9ac) to activate JAZ2 and LOX2 Moreover, LUH promotes hormone-dependent enhancement of protein interactions between MYC2 and its coactivators MED25 and HAC1. Our results demonstrate that LUH interacts with MED25 and HAC1 through its distinct domains, thus imposing a selective advantage by acting as a scaffold for MYC2 activation. Therefore, the function of LUH in regulating jasmonate signaling is distinct from the function of TOPLESS, another member of the Gro/Tup1 family that represses MYC2-dependent gene expression in the resting stage.
Collapse
Affiliation(s)
- Yanrong You
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunpeng An
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
117
|
Arabidopsis Flowers Unlocked the Mechanism of Jasmonate Signaling. PLANTS 2019; 8:plants8080285. [PMID: 31416189 PMCID: PMC6724136 DOI: 10.3390/plants8080285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
The Arabidopsis male-sterile phenotype has been a wonderful model for jasmonate action in plants. It has allowed us to identify transcription factors that control gene expression during stamen and pollen maturation and provided for the discovery of the JAZ repressor proteins and the mechanism of jasmonate signaling. More recently, it has revealed intriguing details of the spatial localization of jasmonate synthesis and perception in stamen tissues. The extensive and thoughtful application of protein–protein interaction assays to identify JAZ-interacting partners has led to a much richer appreciation of the mechanisms by which jasmonate integrates with the actions of other hormones to regulate plant growth and physiological responses. This integration is strikingly evident in stamen and pollen development in Arabidopsis, which requires the actions of many hormones. Just as importantly, it is now evident that jasmonate has very different actions during flower development and reproduction in other plant species. This integration and diversity of action indicates that many exciting discoveries remain to be made in this area of jasmonate hormone signaling and response.
Collapse
|
118
|
Schubert R, Grunewald S, von Sivers L, Hause B. Effects of Jasmonate on Ethylene Function during the Development of Tomato Stamens. PLANTS 2019; 8:plants8080277. [PMID: 31405001 PMCID: PMC6724093 DOI: 10.3390/plants8080277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022]
Abstract
The phenotype of the tomato mutant jasmonate-insensitive1-1 (jai1-1) mutated in the JA-Ile co-receptor COI1 demonstrates JA function in flower development, since it is female-sterile. In addition, jai1-1 exhibits a premature anther dehydration and pollen release, being in contrast to a delayed anther dehiscence in the JA-insensitive Arabidopsis mutant coi1-1. The double mutant jai1-1 Never ripe (jai1-1 Nr), which is in addition insensitive to ethylene (ET), showed a rescue of the jai1-1 phenotype regarding pollen release. This suggests that JA inhibits a premature rise in ET to prevent premature stamen desiccation. To elucidate the interplay of JA and ET in more detail, stamen development in jai1-1 Nr was compared to wild type, jai1-1 and Nr regarding water content, pollen vitality, hormone levels, and accumulation of phenylpropanoids and transcripts encoding known JA- and ET-regulated genes. For the latter, RT-qPCR based on nanofluidic arrays was employed. The data showed that additional prominent phenotypic features of jai1-1, such as diminished water content and pollen vitality, and accumulation of phenylpropanoids were at least partially rescued by the ET-insensitivity. Hormone levels and accumulation of transcripts were not affected. The data revealed that strictly JA-regulated processes cannot be rescued by ET-insensitivity, thereby emphasizing a rather minor role of ET in JA-regulated stamen development.
Collapse
Affiliation(s)
- Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Stephan Grunewald
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Lea von Sivers
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany.
| |
Collapse
|
119
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Induction of essential oil production in Mentha x piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:142-153. [PMID: 31163341 DOI: 10.1016/j.plaphy.2019.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 05/14/2023]
Abstract
Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2 mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.
Collapse
Affiliation(s)
- Lorena Del Rosario Cappellari
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800, Río Cuarto, Argentina
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Erika Banchio
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800, Río Cuarto, Argentina.
| |
Collapse
|
120
|
Zhang H, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H. Tobacco transcription repressors NtJAZ: Potential involvement in abiotic stress response and glandular trichome induction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:388-397. [PMID: 31226508 DOI: 10.1016/j.plaphy.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Members of the Jasmonate ZIM domain (JAZ) proteins act as transcriptional repressors in the jasmonate (JA) hormonal response. To characterize the potential roles of JAZ gene family in plant development and abiotic stress response, fifteen JAZs were identified based on the genome of Nicotiana tabacum. Structural analysis confirmed the presence of single Jas and TIFY motif. Tissue expression pattern analysis indicated that NtJAZ-2, -3, -5, and -10 were highly expressed in roots and NtJAZ-11 was expressed only in the cotyledons. The transcript level of NtJAZ-3, -5, -9, and -10 in the stem epidermis was higher than that in the stem without epidermis. Dynamic expression of NtJAZs exposed to abiotic stress and phytohormone indicated that the expression of most NtJAZs was activated by salicylic acid, methyl jasmonate, gibberellic acid, cold, salt, and heat stresses. With abscisic acid treatment, NtJAZ-1, -2, and -3 were not activated; NtJAZ-4, -5, and -6 were up-regulated; and the remaining NtJAZ genes were inhibited. With drought stress, the expression of NtJAZ-1, -2, -3, -4, -5, -6, -7, and -8 was up-regulated, whereas the transcript of the remaining genes was inhibited. Moreover, high concentration MeJA (more than 1 mM MeJA) had an effect on secreting trichome induction, but inhabited the plant growth. Nine NtJAZs may play important role in secreting trichome induction. These results indicate that the JAZ proteins are convergence points for various phytohormone signal networks, which are involved in abiotic stress responses.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjiao Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dexin Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinling Yang
- Technology Center, China Tobacco Henan Industrial Co, Ltd., Zhengzhou, 450000, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co, Ltd., Zhengzhou, 450000, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
121
|
Zheng L, Nagpal P, Villarino G, Trinidad B, Bird L, Huang Y, Reed JW. miR167 limits anther growth to potentiate anther dehiscence. Development 2019; 146:dev.174375. [PMID: 31262724 DOI: 10.1242/dev.174375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
In flowering plants, anther dehiscence and pollen release are essential for sexual reproduction. Anthers dehisce after cell wall degradation weakens stomium cell junctions in each anther locule, and desiccation creates mechanical forces that open the locules. Either effect or both together may break stomium cell junctions. The microRNA miR167 negatively regulates ARF6 and ARF8, which encode auxin response transcription factors. Arabidopsis mARF6 or mARF8 plants with mutated miR167 target sites have defective anther dehiscence and ovule development. Null mir167a mutations recapitulated mARF6 and mARF8 anther and ovule phenotypes, indicating that MIR167a is the main miR167 precursor gene that delimits ARF6 and ARF8 expression in these organs. Anthers of mir167a or mARF6/8 plants overexpressed genes encoding cell wall loosening functions associated with cell expansion, and grew larger than wild-type anthers did starting at flower stage 11. Experimental desiccation enabled dehiscence of miR167-deficient anthers, indicating competence to dehisce. Conversely, high humidity conditions delayed anther dehiscence in wild-type flowers. These results support a model in which miR167-mediated anther growth arrest permits anther dehiscence. Without miR167 regulation, excess anther growth delays dehiscence by prolonging desiccation.
Collapse
Affiliation(s)
- Lanjie Zheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Gonzalo Villarino
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Laurina Bird
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Laboratoire de Reproduction et Developpement des Plantes, Ecole Normale Superieure de Lyon, 69342 Lyon, France
| |
Collapse
|
122
|
Zhai Q, Li C. The plant Mediator complex and its role in jasmonate signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3415-3424. [PMID: 31089685 PMCID: PMC6609880 DOI: 10.1093/jxb/erz233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/20/2023]
Abstract
The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
123
|
Mutation of ACX1, a Jasmonic Acid Biosynthetic Enzyme, Leads to Petal Degeneration in Chinese Cabbage ( Brassica campestris ssp. pekinensis). Int J Mol Sci 2019; 20:ijms20092310. [PMID: 31083282 PMCID: PMC6539522 DOI: 10.3390/ijms20092310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022] Open
Abstract
Petal color, size, and morphology play important roles in protecting other floral organs, attracting pollinators, and facilitating sexual reproduction in plants. In a previous study, we obtained a petal degeneration mutant (pdm) from the ‘FT’ doubled haploid line of Chinese cabbage and found that the candidate gene for pdm, Bra040093, encodes the enzyme acyl-CoA oxidase1. In this study, we sought to examine the gene networks regulating petal development in pdm plants. We show that the mRNA and protein expression of Bra040093, which is involved in the jasmonic acid (JA) biosynthetic pathway, were significantly lower in the petals of pdm plants than in those of ‘FT’ plants. Similarly, the JA and methyl jasmonate (MeJA) contents of petals were significantly lower in pdm plants than in ‘FT’ plants and we found that exogenous application of these hormones to the inflorescences of pdm plants restored the ‘FT’ phenotype. Comparative analyses of the transcriptomes of ‘FT’, pdm and pdm + JA (pJA) plants revealed 10,160 differentially expressed genes (DEGs) with consistent expression tendencies in ‘FT’ vs. pdm and pJA vs. pdm comparisons. Among these DEGs, we identified 69 DEGs related to floral organ development, 11 of which are involved in petal development regulated by JA. On the basis of qRT-PCR verification, we propose regulatory pathways whereby JA may mediate petal development in the pdm mutant. We demonstrate that mutation of Bra040093 in pdm plants leads to reduced JA levels and that this in turn promotes changes in the expression of genes that are expressed in response to JA, ultimately resulting in petal degeneration. These findings thus indicate that JA is associated with petal development in Chinese cabbage. These results enhance our knowledge on the molecular mechanisms underlying petal development and lay the foundations for further elucidation of the mechanisms associated with floral organ development in Chinese cabbage.
Collapse
|
124
|
Bac-Molenaar JA, Mol S, Verlaan MG, van Elven J, Kim HK, Klinkhamer PGL, Leiss KA, Vrieling K. Trichome Independent Resistance against Western Flower Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2019; 60:1011-1024. [PMID: 30715458 PMCID: PMC6534821 DOI: 10.1093/pcp/pcz018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/29/2019] [Indexed: 05/26/2023]
Abstract
Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.
Collapse
Affiliation(s)
- Johanna A Bac-Molenaar
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Wageningen University and Research, Violierenweg 1, MV Bleiswijk, The Netherlands
| | - Selena Mol
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Maarten G Verlaan
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Joke van Elven
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Hye Kyong Kim
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Wageningen University and Research, Violierenweg 1, MV Bleiswijk, The Netherlands
| | - Klaas Vrieling
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
125
|
Schubert R, Dobritzsch S, Gruber C, Hause G, Athmer B, Schreiber T, Marillonnet S, Okabe Y, Ezura H, Acosta IF, Tarkowska D, Hause B. Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility. THE PLANT CELL 2019; 31:1043-1062. [PMID: 30894458 PMCID: PMC6533027 DOI: 10.1105/tpc.18.00978] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 05/05/2023]
Abstract
The function of the plant hormone jasmonic acid (JA) in the development of tomato (Solanum lycopersicum) flowers was analyzed with a mutant defective in JA perception (jasmonate-insensitive1-1, jai1-1). In contrast with Arabidopsis (Arabidopsis thaliana) JA-insensitive plants, which are male sterile, the tomato jai1-1 mutant is female sterile, with major defects in female development. To identify putative JA-dependent regulatory components, we performed transcriptomics on ovules from flowers at three developmental stages from wild type and jai1-1 mutants. One of the strongly downregulated genes in jai1-1 encodes the MYB transcription factor SlMYB21. Its Arabidopsis ortholog plays a crucial role in JA-regulated stamen development. SlMYB21 was shown here to exhibit transcription factor activity in yeast, to interact with SlJAZ9 in yeast and in planta, and to complement Arabidopsis myb21-5 To analyze SlMYB21 function, we generated clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR associated protein 9 (Cas9) mutants and identified a mutant by Targeting Induced Local Lesions in Genomes (TILLING). These mutants showed female sterility, corroborating a function of MYB21 in tomato ovule development. Transcriptomics analysis of wild type, jai1-1, and myb21-2 carpels revealed processes that might be controlled by SlMYB21. The data suggest positive regulation of JA biosynthesis by SlMYB21, but negative regulation of auxin and gibberellins. The results demonstrate that SlMYB21 mediates at least partially the action of JA and might control the flower-to-fruit transition.
.
Collapse
Affiliation(s)
- Ramona Schubert
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Susanne Dobritzsch
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Cornelia Gruber
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, 06120 Halle, Germany
| | - Benedikt Athmer
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Tom Schreiber
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Yoshihiro Okabe
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, v.v.i., CZ-78371, Olomouc, Czech Republic
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120 Halle, Germany
| |
Collapse
|
126
|
Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin-Samu AT, Wang Q, Xu X, Fei Z, Lu G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. PLANT, CELL & ENVIRONMENT 2019; 42:1205-1221. [PMID: 30203844 DOI: 10.1111/pce.13444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/24/2023]
Abstract
High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT-induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaolin Zhao
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Yanqiu Yan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | | | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou, China
| |
Collapse
|
127
|
Mycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system.
Collapse
|
128
|
Zhang Y, Xu K, Pei D, Yu D, Zhang J, Li X, Chen G, Yang H, Zhou W, Li C. ShORR-1, a Novel Tomato Gene, Confers Enhanced Host Resistance to Oidium neolycopersici. FRONTIERS IN PLANT SCIENCE 2019; 10:1400. [PMID: 31787994 PMCID: PMC6854008 DOI: 10.3389/fpls.2019.01400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 05/17/2023]
Abstract
A previous complementary cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis examined responses to the powdery mildew pathogen Oidium neolycopersici (On) of the resistant cultivar Solanum habrochiates G1.1560, carrying the Ol-1 resistance gene, and susceptible cultivar S. lycopersicum Moneymaker (MM). Among other findings, a differentially expressed transcript-derived fragment (DE-TDF) (M14E72-213) was upregulated in near isogenic line (NIL)-Ol-1, but absent in MM. This DE-TDF showed high homology to a gene of unknown function, which we named ShORR-1 (Solanum habrochaites Oidium Resistance Required-1). However, MM homolog of ShORR-1 (named ShORR-1-M) was still found with 95.26% nucleic acid sequence similarity to ShORR-1 from G1.1560 (named ShORR-1-G); this was because the cut sites of restriction enzymes in the previous complementary cDNA-AFLP analysis was absent in ShORR-1-M and differs at 13 amino acids from ShORR-1-G. Transient expression in onion epidermal cells showed that ShORR-1 is a membrane-localized protein. Virus-induced gene silencing (VIGS) of ShORR-1-G in G1.1560 plants increased susceptibility to On. Furthermore, overexpressing of ShORR-1-G conferred MM with resistance to On, involving extensive hydrogen peroxide accumulation and formation of abnormal haustoria. Knockdown of ShORR-1-M in MM did not affect its susceptibility to On, while overexpressing of ShORR-1-M enhanced MM's susceptibility to On. We also found that changes in transcript levels of six well-known hormone signaling and defense-related genes are involved in ShORR-1-G-mediated resistance to On. The results indicate that ShORR-1-M and ShORR-1-G have antagonistic effects in tomato responses to On, and that ShORR-1 is essential for Ol-1-mediated resistance in tomato.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Dongli Pei
- Department of Life Science, Shangqiu Normal University, Shangqiu, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Guo Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Hui Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Wenjie Zhou
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Chengwei Li
- Henan Engineering Research Center of Grain Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Chengwei Li,
| |
Collapse
|
129
|
Hall CR, Waterman JM, Vandegeer RK, Hartley SE, Johnson SN. The Role of Silicon in Antiherbivore Phytohormonal Signalling. FRONTIERS IN PLANT SCIENCE 2019; 10:1132. [PMID: 31620157 PMCID: PMC6759751 DOI: 10.3389/fpls.2019.01132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/15/2019] [Indexed: 05/22/2023]
Abstract
The role of plant silicon (Si) in the alleviation of abiotic and biotic stress is now widely recognised and researched. Amongst the biotic stresses, Si is known to increase resistance to herbivores through biomechanical and chemical mechanisms, although the latter are indirect and remain poorly characterised. Chemical defences are principally regulated by several antiherbivore phytohormones. The jasmonic acid (JA) signalling pathway is particularly important and has been linked to Si supplementation, albeit with some contradictory findings. In this Perspectives article, we summarise existing knowledge of how Si affects JA in the context of herbivory and present a conceptual model for the interactions between Si and JA signalling in wounded plants. Further, we use novel information from the model grass Brachypodium distachyon to underpin aspects of this model. We show that Si reduces JA concentrations in plants subjected to chemical induction (methyl jasmonate) and herbivory (Helicoverpa armigera) by 34% and 32%, respectively. Moreover, +Si plants had 13% more leaf macrohairs than -Si plants. From this study and previous work, our model proposes that Si acts as a physical stimulus in the plant, which causes a small, transient increase in JA. When +Si plants are subsequently attacked by herbivores, they potentially show a faster induction of JA due to this priming. +Si plants that have already invested in biomechanical defences (e.g. macrohairs), however, have less utility for JA-induced defences and show lower levels of JA induction overall.
Collapse
Affiliation(s)
- Casey R. Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jamie M. Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rebecca K. Vandegeer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Susan E. Hartley
- York Environment and Sustainability Institute, Department of Biology, University of York, York, United Kingdom
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Scott Johnson,
| |
Collapse
|
130
|
Shang Y, Wang K, Sun S, Zhou J, Yu JQ. COP9 Signalosome CSN4 and CSN5 Subunits Are Involved in Jasmonate-Dependent Defense Against Root-Knot Nematode in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:1223. [PMID: 31649695 PMCID: PMC6794412 DOI: 10.3389/fpls.2019.01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/04/2019] [Indexed: 05/03/2023]
Abstract
COP9 signalosome (CSN) is an evolutionarily conserved regulatory component of the ubiquitin/proteasome system that plays crucial roles in plant growth and stress tolerance; however, the mechanism of COP9-mediated resistance to root-knot nematodes (RKNs, e.g. Meloidogyne incognita) is not fully understood in plants. In the present study, we found that RKN infection in the roots rapidly increases the transcript levels of CSN subunits 4 and 5 (CSN4 and CSN5) and their protein accumulation in tomato (Solanum lycopersicum) plants. Suppression of CSN4 or CSN5 expression resulted in significantly increased number of egg masses and aggravated RKN-induced lipid peroxidation of cellular membrane but inhibited RKN-induced accumulation of CSN4 or CSN5 protein in tomato roots. Importantly, the RKN-induced accumulation of jasmonic acid (JA) and JA-isoleucine (JA-Ile), as well as the transcript levels of JA-related biosynthetic and signaling genes were compromised by CSN4 or CSN5 gene silencing. Moreover, protein-protein interaction assays demonstrated that CSN4 and CSN5B interact with the jasmonate ZIM domain 2 (JAZ2), which is the signaling component of the JA pathway. Silencing of CSN4 or CSN5 also compromises RKN-induced JAZ2 expression. Together, our findings indicate that CSN4 and CSN5 play critical roles in JA-dependent basal defense against RKN.
Collapse
Affiliation(s)
- Yifen Shang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kaixin Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shuchang Sun
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- *Correspondence: Jie Zhou,
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development, and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
131
|
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q. MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. THE PLANT CELL 2019; 31:106-127. [PMID: 30610166 PMCID: PMC6391702 DOI: 10.1105/tpc.18.00405] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
In tomato (Solanum lycopersicum), as in other plants, the immunity hormone jasmonate (JA) triggers genome-wide transcriptional changes in response to pathogen and insect attack. These changes are largely regulated by the basic helix-loop-helix (bHLH) transcription factor MYC2. The function of MYC2 depends on its physical interaction with the MED25 subunit of the Mediator transcriptional coactivator complex. Although much has been learned about the MYC2-dependent transcriptional activation of JA-responsive genes, relatively less studied is the termination of JA-mediated transcriptional responses and the underlying mechanisms. Here, we report an unexpected function of MYC2 in regulating the termination of JA signaling through activating a small group of JA-inducible bHLH proteins, termed MYC2-TARGETED BHLH1 (MTB1), MTB2, and MTB3. MTB proteins negatively regulate JA-mediated transcriptional responses via their antagonistic effects on the functionality of the MYC2-MED25 transcriptional activation complex. MTB proteins impair the formation of the MYC2-MED25 complex and compete with MYC2 to bind to its target gene promoters. Therefore, MYC2 and MTB proteins form an autoregulatory negative feedback circuit to terminate JA signaling in a highly organized manner. We provide examples demonstrating that gene editing tools such as CRISPR/Cas9 open up new avenues to exploit MTB genes for crop protection.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiafang Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mingming Fang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanhui Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
132
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
133
|
Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC. SlMYC1 Regulates Type VI Glandular Trichome Formation and Terpene Biosynthesis in Tomato Glandular Cells. THE PLANT CELL 2018; 30:2988-3005. [PMID: 30518626 PMCID: PMC6354261 DOI: 10.1105/tpc.18.00571] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 05/22/2023]
Abstract
Tomato (Solanum lycopersicum) glandular trichomes function as biochemical factories that synthesize a diverse array of specialized metabolites. Terpenoids are the most diverse class of plant specialized metabolites, with volatile mono- and sesquiterpenes playing important roles in plant defense. Although the biosynthetic pathways of volatile terpenes in tomato glandular trichomes have been well described, little is known about their regulation. Here, we demonstrate that SlMYC1, a basic helix-loop-helix transcription factor, differentially regulates mono- and sesquiterpene biosynthesis in the type VI glandular trichomes of tomato leaves and stems. SlMYC1 functions as a positive regulator of monoterpene biosynthesis in both leaf and stem trichomes but as a negative regulator of sesquiterpene biosynthesis in stem trichomes. SlMYC1 is also essential for type VI glandular trichome development, as knocking down SlMYC1 led to the production of smaller type VI glandular trichomes at lower densities, and knocking out this gene led to their absence. Our findings reveal a role for SlMYC1 not only in type VI glandular trichome development but also in the regulation of terpene biosynthesis in tomato.
Collapse
Affiliation(s)
- Jiesen Xu
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Zeger O van Herwijnen
- Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, The Netherlands
| | - Dörthe B Dräger
- Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, The Netherlands
| | - Chun Sui
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
134
|
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA. Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2018; 59:2462-2475. [PMID: 30124946 PMCID: PMC6290487 DOI: 10.1093/pcp/pcy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions.
Collapse
Affiliation(s)
- Roc�o Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Jasmijn Ruijgrok
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Nicole M Van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
135
|
Chen G, Klinkhamer PGL, Escobar-Bravo R, Leiss KA. Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:87-98. [PMID: 30348331 DOI: 10.1016/j.plantsci.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 05/08/2023]
Abstract
Variation in the induction of plant defenses along the plant canopy can determine distribution and colonization of arthropod herbivores within the plant. In tomato, type VI glandular trichomes, which are epidermal defensive structures, and their derived volatiles are induced by the phytohormone jasmonic acid (JA). How JA-mediated induction of these trichome-associated chemical defenses depends on the leaf developmental stage and correlates with resistance against herbivory is unknown. We showed that application of JA reduced thrips-associated damage, however the amplitude of this response was reduced in the fully developed leaves compared to those still developing. Although JA increased type-VI trichome densities in all leaf developmental stages, as well as JA-inducible defensive proteins, these increases were stronger in developing leaves. Remarkably, the concentration of trichome-derived volatiles was induced by JA to a larger degree in developing leaves than in fully developed leaves. In fully developed leaves, the increase in trichome-derived volatiles was explained by an enhanced production per trichome, while in developing leaves this was mainly caused by increases in type-VI trichome densities. Together, we showed that JA-mediated induction of trichome density and chemistry depends on leaf development stage, and it might explain the degree of thrips-associated leaf damage in tomato.
Collapse
Affiliation(s)
- Gang Chen
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| |
Collapse
|
136
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
137
|
Bai JF, Wang YK, Wang P, Yuan SH, Gao JG, Duan WJ, Wang N, Zhang FT, Zhang WJ, Qin MY, Zhao CP, Zhang LP. Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:754. [PMID: 30332983 PMCID: PMC6192174 DOI: 10.1186/s12864-018-5116-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background COI (CORONATINE INSENSITIVE), an F-box component of the Skp1-Cullin-F-box protein (SCFCOI1) ubiquitin E3 ligase, plays important roles in the regulation of plant growth and development. Recent studies have shown that COIs are involved in pollen fertility. In this study, we identified and characterized COI genes in the wheat genome and analyzed expression patterns under abiotic stress. Results A total of 18 COI candidate sequences for 8 members of COI gene family were isolated in wheat (Triticum aestivum L.). Phylogenetic and structural analyses showed that these COI genes could be divided into seven distinct subfamilies. The COI genes showed high expression in stamens and glumes. The qRT-PCR results revealed that wheat COIs were involved in several abiotic stress responses and anther/glume dehiscence in the photoperiod-temperature sensitive genic male sterile (PTGMS) wheat line BS366. Conclusions The structural characteristics and expression patterns of the COI gene family in wheat as well as the stress-responsive and differential tissue-specific expression profiles of each TaCOI gene were examined in PTGMS wheat line BS366. In addition, we examined SA- and MeJA-induced gene expression in the wheat anther and glume to investigate the role of COI in the JA signaling pathway, involved in the regulation of abnormal anther dehiscence in the PTGMS wheat line. The results of this study contribute novel and detailed information about the TaCOI gene family in wheat and could be used as a benchmark for future studies of the molecular mechanisms of PTGMS in other crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-5116-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Yu-Kun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.,Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Jian-Gang Gao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Na Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jie Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Meng-Ying Qin
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| |
Collapse
|
138
|
Yan J, Yao R, Chen L, Li S, Gu M, Nan F, Xie D. Dynamic Perception of Jasmonates by the F-Box Protein COI1. MOLECULAR PLANT 2018; 11:1237-1247. [PMID: 30092285 DOI: 10.1016/j.molp.2018.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 05/27/2023]
Abstract
Jasmonates (JAs) are cyclic fatty acid-derived phytohormones that regulate diverse aspects of plant defense and development. The endogenous active JA molecule (+)-7-iso-JA-L-Ile (JA-Ile) and its analog coronatine trigger formation of a complex with the F-box protein COI1 and JAZ repressors to induce degradation of the JAZs through the 26S proteasome pathway in a COI1-dependent manner. To reveal the formation process of COI1-JA-JAZ ternary complex, we employed several biochemical approaches to examine how JA is dynamically perceived. These analyses showed that the COI1 proteins of Arabidopsis and rice bind JA with appreciable binding affinity and revealed the kinetics and thermodynamics of the COI1-JA-JAZ ternary complex. Our results suggest that COI1 is the primary receptor perceiving the active JA molecule to initially form a COI1-JA complex that subsequently recruits JAZs for further signal transduction.
Collapse
Affiliation(s)
- Jianbin Yan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Suhua Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Min Gu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
139
|
Sui J, Wang C, Liu X, Fang N, Liu Y, Wang W, Yan N, Zhang HB, Du Y, Liu X, Lu T, Zhang Z, Zhang H. Formation of α- and β-Cembratriene-Diols in Tobacco ( Nicotiana tabacum L.) Is Regulated by Jasmonate-Signaling Components via Manipulating Multiple Cembranoid Synthetic Genes. Molecules 2018; 23:E2511. [PMID: 30274345 PMCID: PMC6222485 DOI: 10.3390/molecules23102511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
Cembranoids are a group of natural diterpenoid compounds with pharmaceutical potentials, and the cembratriene-diols produced by Nicotiana (tobacco) species display activities in anti-nicotine addiction and neuron protection. Although the enzymes catalyzing cembratriene-diols' formation in tobacco have been investigated, the regulatory mechanism underlying this physiological process remains unknown. This study has investigated the roles of phytohormone jasmonic acid (JA) in regulating cembratriene-diol formation in N. tabacum cv. TN90 and found that JA and COI1, the receptor protein of the bioactive derivative of JA (i.e., JA-Ile), display critical roles in regulating cembratriene-diols' formation and the expression of cembranoid synthetic genes CBTS, P450 and NtLTP1. Further studies showed that over-expressing either the gene encoding bHLH transcription factor MYC2a or that encoding MYB transcription factor MYB305 could upregulate the cembranoid synthetic genes and enhance the cembranoid production in plants with dysfunction of COI1. Further studies suggest that COI1 and its downstream regulators MYC2a and MYB305 also modulate the trichome secretion, which is correlated with cembranoid formation. Taken together, this study has demonstrated a critical role of JA-signaling components in governing the cembratriene-diol formation and the transcription of cembratriene-diol synthetic genes in tobacco. Findings in this study are of great importance to reveal the molecular regulatory mechanism underlying cembranoid synthesis.
Collapse
Affiliation(s)
- Jinkai Sui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Chunkai Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaofeng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Wenjing Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Huai-Bao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
140
|
Xu S, Liao CJ, Jaiswal N, Lee S, Yun DJ, Lee SY, Garvey M, Kaplan I, Mengiste T. Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 Regulates Responses to Systemin, Necrotrophic Fungi, and Insect Herbivory. THE PLANT CELL 2018; 30:2214-2229. [PMID: 30131419 PMCID: PMC6181013 DOI: 10.1105/tpc.17.00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Endogenous peptides regulate plant immunity and growth. Systemin, a peptide specific to the Solanaceae, is known for its functions in plant responses to insect herbivory and pathogen infections. Here, we describe the identification of the tomato (Solanum lycopersicum) PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the TOMATO PROTEIN KINASE1b (TPK1b) interacting protein and demonstrate its biological functions in systemin signaling and tomato immune responses. Tomato PORK1 RNA interference (RNAi) plants with significantly reduced PORK1 expression showed increased susceptibility to tobacco hornworm (Manduca sexta), reduced seedling growth sensitivity to the systemin peptide, and compromised systemin-mediated resistance to Botrytis cinerea. Systemin-induced expression of Proteinase Inhibitor II (PI-II), a classical marker for systemin signaling, was abrogated in PORK1 RNAi plants. Similarly, in response to systemin and wounding, the expression of jasmonate pathway genes was attenuated in PORK1 RNAi plants. TPK1b, a key regulator of tomato defense against B. cinerea and M. sexta, was phosphorylated by PORK1. Interestingly, wounding- and systemin-induced phosphorylation of TPK1b was attenuated when PORK1 expression was suppressed. Our data suggest that resistance to B. cinerea and M. sexta is dependent on PORK1-mediated responses to systemin and subsequent phosphorylation of TPK1b. Altogether, PORK1 regulates tomato systemin, wounding, and immune responses.
Collapse
Affiliation(s)
- Siming Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK 21 Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Michael Garvey
- Department of Entomology, Smith Hall, Purdue University, West Lafayette, Indiana 47907-2089
| | - Ian Kaplan
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
141
|
Niwa T, Suzuki T, Takebayashi Y, Ishiguro R, Higashiyama T, Sakakibara H, Ishiguro S. Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SlMYB21 transcription factor in tomato. Biosci Biotechnol Biochem 2018; 82:292-303. [PMID: 29448919 DOI: 10.1080/09168451.2017.1422107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plants coordinate the timing of flower opening with pollen and gynoecium maturation to achieve successful pollination. However, little is known about how the coordination is executed. We found that flower bud development was paused immediately before flower opening in a jasmonic acid (JA)-insensitive tomato mutant, jai1-1. Phytohormone measurement and RNA analysis in flower buds revealed that newly synthesised JA peaked at two days before flower opening and the expression of a transcription factor gene SlMYB21 delayed in jai1-1. Buds of transgenic tomato plants expressing an artificial repressor, AtMYB24-SRDX, which was expected to impede the function of SlMYB21, aborted flower opening and resembled those of jai1-1. Furthermore, the AtMYB24-SRDX plants produced abnormal pollen grains deficient in germination and pistils that did not support pollen tube elongation. We concluded that JA facilitates the expression of SlMYB21, which coordinates flower opening, pollen maturation, and gynoecium function in tomato.
Collapse
Affiliation(s)
- Tomoko Niwa
- a Graduate School of Bio-agricultural Sciences , Nagoya University , Nagoya , Japan
| | - Takamasa Suzuki
- b College of Bioscience and Biotechnology , Chubu University , Kasugai , Japan
| | | | - Rie Ishiguro
- a Graduate School of Bio-agricultural Sciences , Nagoya University , Nagoya , Japan
| | - Tetsuya Higashiyama
- d Graduate School of Science , Nagoya University , Nagoya , Japan.,e Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Nagoya , Japan
| | - Hitoshi Sakakibara
- a Graduate School of Bio-agricultural Sciences , Nagoya University , Nagoya , Japan.,c RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| | - Sumie Ishiguro
- a Graduate School of Bio-agricultural Sciences , Nagoya University , Nagoya , Japan
| |
Collapse
|
142
|
Liu MJ, Sugimoto K, Uygun S, Panchy N, Campbell MS, Yandell M, Howe GA, Shiu SH. Regulatory Divergence in Wound-Responsive Gene Expression between Domesticated and Wild Tomato. THE PLANT CELL 2018; 30:1445-1460. [PMID: 29743197 PMCID: PMC6096591 DOI: 10.1105/tpc.18.00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
The evolution of transcriptional regulatory mechanisms is central to how stress response and tolerance differ between species. However, it remains largely unknown how divergence in cis-regulatory sites and, subsequently, transcription factor (TF) binding specificity contribute to stress-responsive expression divergence, particularly between wild and domesticated species. By profiling wound-responsive gene transcriptomes in wild Solanum pennellii and domesticated S. lycopersicum, we found extensive wound response divergence and identified 493 S. lycopersicum and 278 S. pennellii putative cis-regulatory elements (pCREs) that were predictive of wound-responsive gene expression. Only 24-52% of these wound response pCREs (depending on wound response patterns) were consistently enriched in the putative promoter regions of wound-responsive genes across species. In addition, between these two species, their differences in pCRE site sequences were significantly and positively correlated with differences in wound-responsive gene expression. Furthermore, ∼11-39% of pCREs were specific to only one of the species and likely bound by TFs from different families. These findings indicate substantial regulatory divergence in these two plant species that diverged ∼3-7 million years ago. Our study provides insights into the mechanistic basis of how the transcriptional response to wounding is regulated and, importantly, the contribution of cis-regulatory components to variation in wound-responsive gene expression between a wild and a domesticated plant species.
Collapse
Affiliation(s)
- Ming-Jung Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Koichi Sugimoto
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Sahra Uygun
- Genetics Program, Michigan State University, East Lansing, Michigan 48824
| | - Nicholas Panchy
- Genetics Program, Michigan State University, East Lansing, Michigan 48824
| | - Michael S Campbell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112
- USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
143
|
Xie Q, Liu P, Shi L, Miao H, Bo K, Wang Y, Gu X, Zhang S. Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1239-1252. [PMID: 29492617 DOI: 10.1007/s00122-018-3074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/16/2018] [Indexed: 05/24/2023]
Abstract
Map-based cloning was used to identify the ns gene, which was involved in the formation of cucumber numerous fruit spines together with other genes under regulation by plant hormone signal transduction. The cucumber (Cucumis sativus) fruit spine density has an important impact on the commercial value. However, little is known about the regulatory mechanism for the fruit spine formation. Here, we identified NUMEROUS SPINES (NS), which regulate fruit spine development by modulating the Auxin signaling pathway. We fine-mapped the ns using a 2513 F2 population derived from NCG122 (numerous fruit spines line) and NCG121 (few fruit spines line), and showed that NS encoded auxin transporter-like protein 3. Genetic diversity analysis of the NS gene in natural populations revealed that one SNP and one InDel in the coding region of ns are co-segregated with the fruit spine density. The NS protein sequence was highly conserved among plants, but its regulation of fruit spine development in cucumber seems to be a novel function. Transcriptome profiling indicated that the plant hormone signal transduction-related genes were highly enriched in the up-regulated genes in NCG122 versus NCG121. Moreover, expression pattern analysis of the auxin signal pathway-related genes in NCG122 versus NCG121 showed that upstream genes of the pathway (like ns candidate gene Csa2M264590) are down-regulated, while the downstream genes are up-regulated. Quantitative reverse transcription PCR confirmed the differential expression during the fruit spine development. Therefore, reduced expression of ns may promote the fruit spine formation. Our findings provide a valuable framework for dissecting the regulatory mechanism for the fruit spine development.
Collapse
Affiliation(s)
- Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panna Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixue Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
144
|
Chen Y, Chi Y, Meng Q, Wang X, Yu D. GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:25-31. [PMID: 29544210 DOI: 10.1016/j.plaphy.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 05/20/2023]
Abstract
In plants, various proteins are regulated by the ubiquitin-mediated system in response to different environmental stresses, such as drought, cold and heat. The Skp1-Cullin-F-box (SCF) complex, one of the multisubunit E3 ligases, has been shown to be involved in abiotic response pathways. In this study, Glycine max SKP1-like 1 (GmSK1), which had the typical characteristics of an SKP1 protein, with an alpha/beta structure, targeted to the cytoplasm and nucleus, was isolated from soybean [Glycine max (L.)]. GmSK1 was constitutively expressed in all the tested tissues, especially in the roots. Furthermore, the expression of GmSK1 was simultaneously induced by abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), NaCl, low temperatures and drought, which suggests important roles for GmSK1 in plant responses to hormone treatments and abiotic stress. GmSK1-overexpressing transgenic tobacco (Nicotiana tobacum cv. Samsun) plants showed enhanced tolerance to high salinity and drought stress; exhibited significantly reduced inhibition of growth, greenness and water loss; and exhibited increased MDA accumulation compared with wild-type controls. Our results suggest that GmSK1 might play a role in the crosstalk between ubiquitination and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Yanping Chen
- College of Life Sciences/National Center for Soybean Improvement/Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yingjun Chi
- College of Life Sciences/National Center for Soybean Improvement/Nanjing Agricultural University, Nanjing, 210095, China; College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingchang Meng
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaolin Wang
- College of Life Sciences/National Center for Soybean Improvement/Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- College of Life Sciences/National Center for Soybean Improvement/Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
145
|
Lu C, Qi J, Hettenhausen C, Lei Y, Zhang J, Zhang M, Zhang C, Song J, Li J, Cao G, Malook SU, Wu J. Elevated CO 2 differentially affects tobacco and rice defense against lepidopteran larvae via the jasmonic acid signaling pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:412-431. [PMID: 29319235 DOI: 10.1111/jipb.12633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/05/2018] [Indexed: 05/20/2023]
Abstract
Atmospheric CO2 levels are rapidly increasing due to human activities. However, the effects of elevated CO2 (ECO2 ) on plant defense against insects and the underlying mechanisms remain poorly understood. Here we show that ECO2 increased the photosynthetic rates and the biomass of tobacco and rice plants, and the chewing lepidopteran insects Spodoptera litura and Mythimna separata gained less and more mass on tobacco and rice plants, respectively. Consistently, under ECO2 , the levels of jasmonic acid (JA), the main phytohormone controlling plant defense against these lepidopteran insects, as well as the main defense-related metabolites, were increased and decreased in insect-damaged tobacco and rice plants. Importantly, bioassays and quantification of defense-related metabolites in tobacco and rice silenced in JA biosynthesis and perception indicate that ECO2 changes plant resistance mainly by affecting the JA pathway. We further demonstrate that the defensive metabolites, but not total N or protein, are the main factors contributing to the altered defense levels under ECO2 . This study illustrates that ECO2 changes the interplay between plants and insects, and we propose that crops should be studied for their resistance to the major pests under ECO2 to predict the impact of ECO2 on future agroecosystems.
Collapse
Affiliation(s)
- Chengkai Lu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mou Zhang
- College of Plant Protection, Yunnan Agriculture University, Kunming 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Saif Ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
146
|
Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li X, Xia X, Cai X, Zhou J, Zhou Y, Yu J, Foyer CH, Shi K. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca 2+ Signaling in Tomato. THE PLANT CELL 2018; 30:652-667. [PMID: 29511053 PMCID: PMC5894845 DOI: 10.1105/tpc.17.00537] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/11/2018] [Accepted: 03/01/2018] [Indexed: 05/15/2023]
Abstract
Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Cui Lei
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
| | - Xin Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xinzhong Cai
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| |
Collapse
|
147
|
Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li X, Xia X, Cai X, Zhou J, Zhou Y, Yu J, Foyer CH, Shi K. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca 2+ Signaling in Tomato. THE PLANT CELL 2018. [PMID: 29511053 DOI: 10.1105/tpc.1700537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Cui Lei
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
| | - Xin Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xinzhong Cai
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| |
Collapse
|
148
|
MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat Commun 2018; 9:822. [PMID: 29483511 PMCID: PMC5826930 DOI: 10.1038/s41467-018-03238-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/26/2018] [Indexed: 01/08/2023] Open
Abstract
Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by increasing panicle size and altering floral development so that all spikelets are fertile and set grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles, and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new mechanism for increasing GNP, with the potential to boost grain yield, and provide insight into the regulation of plant inflorescence architecture and development. Inflorescence architecture affects crop grain yield. Here, the authors deploy whole-genome sequencing-based bulk segregant analysis to identify the causal gene of a sorghum multi-seeded (msd) mutant and suggest MSD1 regulating the fertility of the pedicellate spikelets through jasmonic acid pathway.
Collapse
|
149
|
Su Q, Chen G, Mescher MC, Peng Z, Xie W, Wang S, Wu Q, Liu J, Li C, Wang W, Zhang Y. Whitefly aggregation on tomato is mediated by feeding‐induced changes in plant metabolites that influence the behaviour and performance of conspecifics. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Su
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Gong Chen
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
- College of Plant ProtectionHunan Agricultural University Changsha Hunan China
| | - Mark C. Mescher
- Department of Environmental Systems ScienceETH Zürich Zürich Switzerland
| | - Zhengke Peng
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Shaoli Wang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Qingjun Wu
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Jie Liu
- National Agro‐Technical, Extension and Service Centre Beijing China
| | - Chuanren Li
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
| | - Wenkai Wang
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
| | - Youjun Zhang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
150
|
Yu X, Chen G, Tang B, Zhang J, Zhou S, Hu Z. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:65-73. [PMID: 29362100 DOI: 10.1016/j.plantsci.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 05/07/2023]
Abstract
JAZ (Jasmonate ZIM-domain) proteins are important repressors in JA signaling pathway. JAZs were proved taking part in various development processes and resistance to biotic and abiotic stresses in Arabiodopsis. However, in tomato, the functional study of JAZs is rare, especially on plant growth and development. Here, a typical tomato JAZ gene, SlJAZ2 was isolated. Tomato plants overexpressing SlJAZ2 exhibited quicker leaf initiation, reduced plant height and internode length, decreasing trichomes, earlier lateral bud emergence and advanced flowering transition. Further experiments showed that the pith cells in transgenic plant stem were much smaller than wild-type and the genes related to cell elongation and gibberellin biosynthesis were down-regulated. Genes mediating trichome formation were also inhibited in plant stem epidermis. In addition, the flower initiation of transgenic plants were earlier and genes controlling flowering time were up-regulated significantly after SlJAZ2 was overexpressed. Our research demonstrates that SlJAZ2 accelerates the transition from vegetative growth to reproductive growth.
Collapse
Affiliation(s)
- Xiaohui Yu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Boyan Tang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|