101
|
Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses. BMC Genomics 2019; 20:326. [PMID: 31035917 PMCID: PMC6489225 DOI: 10.1186/s12864-019-5696-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background Controlled turnover of proteins as mediated by the ubiquitin proteasome system (UPS) is an important element in plant defense against environmental and pathogen stresses. E3 ligases play a central role in subjecting proteins to hydrolysis by the UPS. Recently, it has been demonstrated that a specific class of E3 ligases termed the U-box ligases are directly associated with the defense mechanisms against abiotic and biotic stresses in several plants. However, no studies on U-box E3 ligases have been performed in one of the important staple crops, barley. Results In this study, we identified 67 putative U-box E3 ligases from the barley genome and expressed sequence tags (ESTs). Similar to Arabidopsis and rice U-box E3 ligases, most of barley U-box E3 ligases possess evolutionary well-conserved domain organizations. Based on the domain compositions and arrangements, the barley U-box proteins were classified into eight different classes. Along with this new classification, we refined the previously reported classifications of U-box E3 ligase genes in Arabidopsis and rice. Furthermore, we investigated the expression profile of 67 U-box E3 ligase genes in response to drought stress and pathogen infection. We observed that many U-box E3 ligase genes were specifically up-and-down regulated by drought stress or by fungal infection, implying their possible roles of some U-box E3 ligase genes in the stress responses. Conclusion This study reports the classification of U-box E3 ligases in barley and their expression profiles against drought stress and pathogen infection. Therefore, the classification and expression profiling of barley U-box genes can be used as a platform to functionally define the stress-related E3 ligases in barley. Electronic supplementary material The online version of this article (10.1186/s12864-019-5696-z) contains supplementary material, which is available to authorized users.
Collapse
|
102
|
Proteomics Analysis to Identify Proteins and Pathways Associated with the Novel Lesion Mimic Mutant E40 in Rice Using iTRAQ-Based Strategy. Int J Mol Sci 2019; 20:ijms20061294. [PMID: 30875808 PMCID: PMC6471476 DOI: 10.3390/ijms20061294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
A novel rice lesion mimic mutant (LMM) was isolated from the mutant population of Japonica rice cultivar Hitomebore generated by ethyl methane sulfonate (EMS) treatment. Compared with the wild-type (WT), the mutant, tentatively designated E40, developed necrotic lesions over the whole growth period along with detectable changes in several important agronomic traits including lower height, fewer tillers, lower yield, and premature death. To understand the molecular mechanism of mutation-induced phenotypic differences in E40, a proteomics-based approach was used to identify differentially accumulated proteins between E40 and WT. Proteomic data from isobaric tags for relative and absolute quantitation (iTRAQ) showed that 233 proteins were significantly up- or down-regulated in E40 compared with WT. These proteins are involved in diverse biological processes, but phenylpropanoid biosynthesis was the only up-regulated pathway. Differential expression of the genes encoding some candidate proteins with significant up- or down-regulation in E40 were further verified by qPCR. Consistent with the proteomic results, substance and energy flow in E40 shifted from basic metabolism to secondary metabolism, mainly phenylpropanoid biosynthesis, which is likely involved in the formation of leaf spots.
Collapse
|
103
|
Kou Y, Qiu J, Tao Z. Every Coin Has Two Sides: Reactive Oxygen Species during Rice⁻ Magnaporthe oryzae Interaction. Int J Mol Sci 2019; 20:ijms20051191. [PMID: 30857220 PMCID: PMC6429160 DOI: 10.3390/ijms20051191] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) are involved in many important processes, including the growth, development, and responses to the environments, in rice (Oryza sativa) and Magnaporthe oryzae. Although ROS are known to be critical components in rice⁻M. oryzae interactions, their regulations and pathways have not yet been completely revealed. Recent studies have provided fascinating insights into the intricate physiological redox balance in rice⁻M. oryzae interactions. In M. oryzae, ROS accumulation is required for the appressorium formation and penetration. However, once inside the rice cells, M. oryzae must scavenge the host-derived ROS to spread invasive hyphae. On the other side, ROS play key roles in rice against M. oryzae. It has been known that, upon perception of M. oryzae, rice plants modulate their activities of ROS generating and scavenging enzymes, mainly on NADPH oxidase OsRbohB, by different signaling pathways to accumulate ROS against rice blast. By contrast, the M. oryzae virulent strains are capable of suppressing ROS accumulation and attenuating rice blast resistance by the secretion of effectors, such as AvrPii and AvrPiz-t. These results suggest that ROS generation and scavenging of ROS are tightly controlled by different pathways in both M. oryzae and rice during rice blast. In this review, the most recent advances in the understanding of the regulatory mechanisms of ROS accumulation and signaling during rice⁻M. oryzae interaction are summarized.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Zeng Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
104
|
Regulation of Plant Immunity by the Proteasome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:37-63. [DOI: 10.1016/bs.ircmb.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
105
|
Chen Z, Chen T, Sathe AP, He Y, Zhang XB, Wu JL. Identification of a Novel Semi-Dominant Spotted-Leaf Mutant with Enhanced Resistance to Xanthomonas oryzae pv. oryzae in Rice. Int J Mol Sci 2018; 19:E3766. [PMID: 30486418 PMCID: PMC6321207 DOI: 10.3390/ijms19123766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022] Open
Abstract
Many spotted-leaf mutants show enhanced disease resistance to multiple pathogen attacks; however, the mechanisms are largely unknown. Here, we reported a novel semi-dominant spotted-leaf mutant 24 (spl24) obtained from an ethyl methane sulfonate (EMS)-induced IR64 mutant bank. spl24 developed tiny brown lesions on the leaf tip and spread down gradually to the leaf base as well as the sheath at the early heading stage. The performances of major agronomic traits such as the plant height, panicle length, number of panicles/plant, and 1000-grain weight were significantly altered in spl24 when compared to the wild-type IR64. Furthermore, spl24 exhibited a premature senescing phenotype with degeneration of nuclear acids, significantly reduced soluble protein content, increased level of malonaldehyde (MDA), and lowered activities of reactive oxygen species (ROS) scavenging enzymes. Disease evaluation indicated that spl24 showed enhanced resistance to multiple races of Xanthomonas oryzae pv. oryzae, the causal pathogen of bacterial leaf blight in rice, with elevated expression of pathogenesis-related genes, salicylic acid (SA) signaling pathway-associated genes revealed by real-time quantitative PCR and high-throughput RNA sequencing analysis. Genetic analysis and gene mapping indicated that the lesion mimic phenotype was controlled by a novel semi-dominant nuclear gene. The mutation, tentatively termed as OsSPL24, was in a 110 kb region flanked by markers Indel-33 and Indel-12 in chromosome 11. Together, our data suggest that spl24 is a novel lesion mimic mutant with enhanced innate immunity and would facilitate the isolation and functional characterization of the target gene.
Collapse
Affiliation(s)
- Zheng Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Atul Prakash Sathe
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yuqing He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao-Bo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
106
|
Mandal A, Sharma N, Muthamilarasan M, Prasad M. Ubiquitination: a tool for plant adaptation to changing environments. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0255-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
107
|
Xu X, Chen Z, Shi YF, Wang HM, He Y, Shi L, Chen T, Wu JL, Zhang XB. Functional inactivation of OsGCNT induces enhanced disease resistance to Xanthomonas oryzae pv. oryzae in rice. BMC PLANT BIOLOGY 2018; 18:264. [PMID: 30382816 PMCID: PMC6211509 DOI: 10.1186/s12870-018-1489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Spotted-leaf mutants are important to reveal programmed cell death and defense-related pathways in rice. We previously characterized the phenotype performance of a rice spotted-leaf mutant spl21 and narrowed down the causal gene locus spl21(t) to an 87-kb region in chromosome 12 by map-based cloning. RESULT We showed that a single base substitution from A to G at position 836 in the coding sequence of Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT), effectively mutating Tyr to Cys at position 279 in the translated protein sequence, was responsible for the spotted-leaf phenotype as it could be rescued by functional complementation. Compared to the wild type IR64, the spotted-leaf mutant spl21 exhibited loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence associated genes, which indicated that OsGCNT regulates premature leaf senescence. Moreover, the enhanced resistance to the bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae, up-regulation of pathogenesis-related genes and increased level of jasmonate which suggested that OsGCNT is a negative regulator of defense response in rice. OsGCNT was expressed constitutively in the leaves, sheaths, stems, roots, and panicles, and OsGCNT-GFP was localized to the Golgi apparatus. High throughput RNA sequencing analysis provided further evidence for the biological effects of loss of OsGCNT function on cell death, premature leaf senescence and enhanced disease resistance in rice. Thus, we demonstrated that the novel OsGCNT regulated rice innate immunity and immunity-associated leaf senescence probably by changing the jasmonate metabolic pathway. CONCLUSIONS These results reveal that a novel gene Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT) is responsible for the spotted-leaf mutant spl21, and OsGCNT acts as a negative-regulator mediating defense response and immunity-associated premature leaf senescence probably by activating jasmonate signaling pathway.
Collapse
Affiliation(s)
- Xia Xu
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zheng Chen
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yong-feng Shi
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hui-mei Wang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yan He
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lei Shi
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Ting Chen
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-li Wu
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiao-bo Zhang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
108
|
Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1405-1422. [PMID: 29589041 PMCID: PMC6004277 DOI: 10.1007/s00122-018-3086-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/12/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat. Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT's (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5 × 107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
Collapse
Affiliation(s)
- Philomin Juliana
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Jesse A Poland
- Wheat Genetics Resource Center, Department of Plant Pathology and Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Gary C Bergstrom
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230, Chapingo, Edo. de México, Mexico
| | - Sridhar Bhavani
- CIMMYT, ICRAF house, United Nations Avenue, Gigiri, Village Market, Nairobi, 00621, Kenya
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
109
|
Kuki MC, Scapim CA, Rossi ES, Mangolin CA, do Amaral Júnior AT, Pinto RJB. Genome wide association study for gray leaf spot resistance in tropical maize core. PLoS One 2018; 13:e0199539. [PMID: 29953466 PMCID: PMC6023161 DOI: 10.1371/journal.pone.0199539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/08/2018] [Indexed: 12/30/2022] Open
Abstract
Gray leaf spot is a maize foliar disease with worldwide distribution and can drastically reduce the production in susceptible genotypes. Published works indicate that resistance to gray leaf spot is a complex trait controlled by multiple genes, with additive effect and influenced by environment. The aim of this study was to identify genomic regions, including putative genes, associated with resistance to gray leaf spot under natural conditions of disease occurrence. A genome wide association study was conducted with 355,972 single nucleotide polymorphism markers on a phenotypic data composed by 157 tropical maize inbred lines, evaluated at Maringá -Brazil. Seven single nucleotide polymorphisms were significantly associated with gray leaf spot, some of which were localized to previously reported quantitative trait loci regions. Three gene models linked to the associated single nucleotide polymorphism were expressed at flowering time and tissue related with gray leaf spot infection, explaining a considerable proportion of the phenotypic variance, ranging from 0.34 to 0.38. The gene model GRMZM2G073465 (bin 10.07) encodes a cysteine protease3 protein, gene model GRMZM2G007188 (bin 1.02) expresses a rybosylation factor-like protein and the gene model GRMZM2G476902 (bin 4.08) encodes an armadillo repeat protein. These three proteins are related with plant defense pathway. Once these genes are validated in next studies, they will be useful for marker-assisted selection and can help improve the understanding of maize resistance to gray leaf spot.
Collapse
Affiliation(s)
- Maurício Carlos Kuki
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Carlos Alberto Scapim
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Evandrei Santos Rossi
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | | | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | | |
Collapse
|
110
|
Chang H, Sang H, Wang J, McPhee KE, Zhuang X, Porter LD, Chilvers MI. Exploring the genetics of lesion and nodal resistance in pea ( Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq. PLANT DIRECT 2018; 2:e00064. [PMID: 31245727 PMCID: PMC6508546 DOI: 10.1002/pld3.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 05/30/2023]
Abstract
The disease white mold caused by the fungus Sclerotinia sclerotiorum is a significant threat to pea production, and improved resistance to this disease is needed. Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node, and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (Pisum sativum L.)-S. sclerotiorum pathosystem. In addition to nodal resistance, different pea lines display different levels of stem lesion size restriction, referred to as lesion resistance. It is unclear whether the genetics of lesion resistance and nodal resistance are identical or different. This study applied genome-wide association studies (GWAS) and RNA-Seq to understand the genetic makeup of these two types of resistance. The time series RNA-Seq experiment consisted of two pea lines (the susceptible 'Lifter' and the partially resistant PI 240515), two treatments (mock inoculated samples and S. sclerotiorum-inoculated samples), and three time points (12, 24, and 48 hr post inoculation). Integrated results from GWAS and RNA-Seq analyses identified different redox-related transcripts for lesion and nodal resistances. A transcript encoding a glutathione S-transferase was the only shared resistance variant for both phenotypes. There were more leucine rich-repeat containing transcripts found for lesion resistance, while different candidate resistance transcripts such as a VQ motif-containing protein and a myo-inositol oxygenase were found for nodal resistance. This study demonstrated the robustness of combining GWAS and RNA-Seq for identifying white mold resistance in pea, and results suggest different genetics underlying lesion and nodal resistance.
Collapse
Affiliation(s)
- Hao‐Xun Chang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Kevin E. McPhee
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMontana
| | - Xiaofeng Zhuang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
| | | | - Martin I. Chilvers
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| |
Collapse
|
111
|
Zhou B, Zeng L. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:615. [PMID: 29868071 PMCID: PMC5952000 DOI: 10.3389/fpls.2018.00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/18/2018] [Indexed: 06/01/2023]
Abstract
In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.
Collapse
|
112
|
Qin P, Fan S, Deng L, Zhong G, Zhang S, Li M, Chen W, Wang G, Tu B, Wang Y, Chen X, Ma B, Li S. LML1, Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with SPL33 in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:887-902. [PMID: 29566164 DOI: 10.1093/pcp/pcy056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Lesion mimic mutants are powerful tools for unveiling the molecular connections between cell death and pathogen resistance. Various proteins responsible for lesion mimics have been identified; however, the mechanisms underlying lesion formation and pathogen resistance are still unknown. Here, we identify a lesion mimic mutant in rice, lesion mimic leaf 1 (lml1). The lml1 mutant exhibited abnormal cell death and resistance to both bacterial blight and rice blast. LML1 is expressed in all types of leaf cells, and encodes a novel eukaryotic release factor 1 (eRF1) protein located in the endoplasmic reticulum. Protein sequences of LML1 orthologs are conserved in yeast, animals and plants. LML1 can partially rescue the growth delay phenotype of the LML1 yeast ortholog mutant, dom34. Both lml1 and mutants of AtLML1 (the LML1 Arabidopsis ortholog) exhibited a growth delay phenotype like dom34. This indicates that LML1 and its orthologs are functionally conserved. LML1 forms a functional complex with a eukaryotic elongation factor 1A (eEF1A)-like protein, SPL33/LMM5.1, whose mutant phenotype was similar to the lml1 phenotype. This complex was conserved between rice and yeast. Our work provides new insight into understanding the mechanism of cell death and pathogen resistance, and also lays a good foundation for studying the fundamental molecular function of Pelota/DOM34 and its orthologs in plants.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shijun Fan
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Luchang Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Guangrong Zhong
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan 641000, China
| | - Siwei Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Meng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Geling Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bin Tu
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Yuping Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Xuewei Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shigui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| |
Collapse
|
113
|
Fan J, Bai P, Ning Y, Wang J, Shi X, Xiong Y, Zhang K, He F, Zhang C, Wang R, Meng X, Zhou J, Wang M, Shirsekar G, Park CH, Bellizzi M, Liu W, Jeon JS, Xia Y, Shan L, Wang GL. The Monocot-Specific Receptor-like Kinase SDS2 Controls Cell Death and Immunity in Rice. Cell Host Microbe 2018; 23:498-510.e5. [PMID: 29576481 PMCID: PMC6267930 DOI: 10.1016/j.chom.2018.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/15/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022]
Abstract
Programmed cell death (PCD) plays critical roles in plant immunity but must be regulated to prevent excessive damage. The E3 ubiquitin ligase SPL11 negatively regulates PCD and immunity in plants. We show that SPL11 cell-death suppressor 2 (SDS2), an S-domain receptor-like kinase, positively regulates PCD and immunity in rice by engaging and regulating SPL11 and related kinases controlling defense responses. An sds2 mutant shows reduced immune responses and enhanced susceptibility to the blast fungus Magnaporthe oryzae. Conversely, SDS2 over-expression induces constitutive PCD accompanied by elevated immune responses and enhanced resistance to M. oryzae. SDS2 interacts with and phosphorylates SPL11, which in turn ubiquitinates SDS2, leading to its degradation. In addition, SDS2 interacts with related receptor-like cytoplasmic kinases, OsRLCK118/176, that positively regulate immunity by phosphorylating the NADPH oxidase OsRbohB to stimulate ROS production. Thus, a plasma membrane-resident protein complex consisting of SDS2, SPL11, and OsRLCK118/176 controls PCD and immunity in rice.
Collapse
Affiliation(s)
- Jiangbo Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Pengfei Bai
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yehui Xiong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangzong Meng
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jinggeng Zhou
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Mo Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Gautam Shirsekar
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Chan Ho Park
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Bellizzi
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Ye Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
114
|
Liu J, Deng J, Zhu F, Li Y, Lu Z, Qin P, Wang T, Dong J. The MtDMI2-MtPUB2 Negative Feedback Loop Plays a Role in Nodulation Homeostasis. PLANT PHYSIOLOGY 2018; 176:3003-3026. [PMID: 29440269 PMCID: PMC5884597 DOI: 10.1104/pp.17.01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
DOES NOT MAKE INFECTION 2 (MtDMI2) is a Leu rich repeat-type receptor kinase required for signal transduction in the Medicago truncatula/Sinorhizobium meliloti symbiosis pathway. However, the mechanisms through which MtDMI2 participates in nodulation homeostasis are poorly understood. In this study, we identified MtPUB2-a novel plant U-box (PUB)-type E3 ligase-and showed that it interacts with MtDMI2. MtDMI2 and MtPUB2 accumulation were shown to be similar in various tissues. Roots of plants in which MtPUB2 was silenced by RNAi (MtPUB2-RNAi plants) exhibited impaired infection threads, fewer nodules, and shorter primary root lengths compared to those of control plants transformed with empty vector. Using liquid chromatography-tandem mass spectrometry, we showed that MtDMI2 phosphorylates MtPUB2 at Ser-316, Ser-421, and Thr-488 residues. When MtPUB2-RNAi plants were transformed with MtPUB2S421D , which mimics the phosphorylated state, MtDMI2 was persistently ubiquitinated and degraded by MtPUB2S421D, resulting in fewer nodules than observed in MtPUB2/MtPUB2-RNAi-complemented plants. However, MtPUB2S421A /MtPUB2-RNAi-complemented plants showed no MtPUB2 ubiquitination activity, and their nodulation phenotype was similar to that of MtPUB2-RNAi plants transformed with empty vector. Further studies demonstrated that these proteins form a negative feedback loop of the prey (MtDMI2)-predator (MtPUB2) type. Our results suggest that the MtDMI2-MtPUB2 negative feedback loop, which displays crosstalk with the long-distance autoregulation of nodulation via MtNIN, plays an important role in nodulation homeostasis.
Collapse
Affiliation(s)
- Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lu
- University of Wyoming, Department of Atmospheric Science, Laramie, Wyoming
| | - Peibin Qin
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Chaoyang District, Beijing, 100015, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
115
|
Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1051-1064. [PMID: 29300985 PMCID: PMC6018903 DOI: 10.1093/jxb/erx458] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/13/2017] [Indexed: 05/19/2023]
Abstract
The exocyst, an evolutionarily conserved octameric protein complex involved in exocytosis, has been reported to be involved in diverse aspects of morphogenesis in Arabidopsis. However, the molecular functions of such exocytotic molecules in rice are poorly understood. Here, we examined the molecular function of OsSEC3A, an important subunit of the exocyst complex in rice. The OsSEC3A gene is expressed in various organs, and OsSEC3A has the potential ability to participate in the exocyst complex by interacting with several other exocyst subunits. Disruption of OsSEC3A by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) caused dwarf stature and a lesion-mimic phenotype. The Ossec3a mutant exhibited enhanced defense responses, as shown by up-regulated transcript levels of pathogenesis- and salicylic acid synthesis-related genes, increased levels of salicylic acid, and enhanced resistance to the fungal pathogen Magnaporthe oryzae. Subcellular localization analysis demonstrated that OsSEC3A has a punctate distribution with the plasma membrane. In addition, OsSEC3A interacted with rice SNAP25-type t-SNARE protein OsSNAP32, which is involved in rice blast resistance, via the C-terminus and bound to phosphatidylinositol lipids, particularly phosphatidylinositol-3-phosphate, through its N-terminus. These findings uncover the novel function of rice exocyst subunit SEC3 in defense responses.
Collapse
Affiliation(s)
- Jin Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: and
| |
Collapse
|
116
|
Zhang XB, Feng BH, Wang HM, Xu X, Shi YF, He Y, Chen Z, Sathe AP, Shi L, Wu JL. A substitution mutation in OsPELOTA confers bacterial blight resistance by activating the salicylic acid pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:160-172. [PMID: 29193778 DOI: 10.1111/jipb.12613] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/24/2017] [Indexed: 05/19/2023]
Abstract
We previously reported a spotted-leaf mutant pelota (originally termed HM47) in rice displaying arrested growth and enhanced resistance to multiple races of Xanthomonas oryzae pv. oryzae. Here, we report the map-based cloning of the causal gene OsPELOTA (originally termed splHM47 ). We identified a single base substitution from T to A at position 556 in the coding sequence of OsPELOTA, effectively mutating phenylalanine to isoleucine at position 186 in the translated protein sequence. Both functional complementation and over-expression could rescue the spotted-leaf phenotype. OsPELOTA, a paralogue to eukaryotic release factor 1 (eRF1), shows high sequence similarity to Drosophila Pelota and also localizes to the endoplasmic reticulum and plasma membrane. OsPELOTA is constitutively expressed in roots, leaves, sheaths, stems, and panicles. Elevated levels of salicylic acid and decreased level of jasmonate were detected in the pelota mutant. RNA-seq analysis confirmed that genes responding to salicylic acid were upregulated in the mutant. Our results indicate that the rice PELOTA protein is involved in bacterial leaf blight resistance by activating the salicylic acid metabolic pathway.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Bao-Hua Feng
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yong-Feng Shi
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yan He
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zheng Chen
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Atul Prakash Sathe
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Lei Shi
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
117
|
Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Campos Mantello C, Mellers G, Phan HTT, Rose GA, Tan KC, Oliver RP, Cockram J. Assessing European Wheat Sensitivities to Parastagonospora nodorum Necrotrophic Effectors and Fine-Mapping the Snn3-B1 Locus Conferring Sensitivity to the Effector SnTox3. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30022985 DOI: 10.3389/fpls.2017.0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.
Collapse
Affiliation(s)
- Rowena C Downie
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
- Plant Sciences Department, University of Cambridge, Cambridge, United Kingdom
| | - Laura Bouvet
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
- Plant Sciences Department, University of Cambridge, Cambridge, United Kingdom
| | - Eiko Furuki
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Nick Gosman
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Keith A Gardner
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Ian J Mackay
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Camila Campos Mantello
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Greg Mellers
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Huyen T T Phan
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Gemma A Rose
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - James Cockram
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| |
Collapse
|
118
|
Lee D, Lee G, Kim B, Jang S, Lee Y, Yu Y, Seo J, Kim S, Lee YH, Lee J, Kim S, Koh HJ. Identification of a Spotted Leaf Sheath Gene Involved in Early Senescence and Defense Response in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1274. [PMID: 30233619 PMCID: PMC6134203 DOI: 10.3389/fpls.2018.01274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 05/05/2023]
Abstract
Lesion mimic mutants (LMMs) commonly exhibit spontaneous cell death similar to the hypersensitive defense response that occurs in plants in response to pathogen infection. Several lesion mimic mutants have been isolated and characterized, but their molecular mechanisms remain largely unknown. Here, a spotted leaf sheath (sles) mutant derived from japonica cultivar Koshihikari is described. The sles phenotype differed from that of other LMMs in that lesion mimic spots were observed on the leaf sheath rather than on leaves. The sles mutant displayed early senescence, as shown, by color loss in the mesophyll cells, a decrease in chlorophyll content, and upregulation of chlorophyll degradation-related and senescence-associated genes. ROS content was also elevated, corresponding to increased expression of genes encoding ROS-generating enzymes. Pathogenesis-related genes were also activated and showed improved resistance to pathogen infection on the leaf sheath. Genetic analysis revealed that the mutant phenotype was controlled by a single recessive nuclear gene. Genetic mapping and sequence analysis showed that a single nucleotide substitution in the sixth exon of LOC_Os07g25680 was responsible for the sles mutant phenotype and this was confirmed by T-DNA insertion line. Taken together, our results revealed that SLES was associated with the formation of lesion mimic spots on the leaf sheath resulting early senescence and defense responses. Further examination of SLES will facilitate a better understanding of the molecular mechanisms involved in ROS homeostasis and may also provide opportunities to improve pathogen resistance in rice.
Collapse
Affiliation(s)
- Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Gileung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Backki Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Su Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Yunjoo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Yoye Yu
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, South Korea
| | - Joohyun Lee
- Department of Applied Bioscience, Graduate School of Konkuk University, Seoul, South Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Hee-Jong Koh
| |
Collapse
|
119
|
Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Campos Mantello C, Mellers G, Phan HTT, Rose GA, Tan KC, Oliver RP, Cockram J. Assessing European Wheat Sensitivities to Parastagonospora nodorum Necrotrophic Effectors and Fine-Mapping the Snn3-B1 Locus Conferring Sensitivity to the Effector SnTox3. FRONTIERS IN PLANT SCIENCE 2018; 9:881. [PMID: 30022985 PMCID: PMC6039772 DOI: 10.3389/fpls.2018.00881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.
Collapse
Affiliation(s)
- Rowena C. Downie
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
- Plant Sciences Department, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Rowena C. Downie, James Cockram,
| | - Laura Bouvet
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
- Plant Sciences Department, University of Cambridge, Cambridge, United Kingdom
| | - Eiko Furuki
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Nick Gosman
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Keith A. Gardner
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Ian J. Mackay
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Camila Campos Mantello
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Greg Mellers
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Huyen T. T. Phan
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Gemma A. Rose
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Richard P. Oliver
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - James Cockram
- Genetics and Breeding Department, National Institute of Agricultural Botany, Cambridge, United Kingdom
- *Correspondence: Rowena C. Downie, James Cockram,
| |
Collapse
|
120
|
Liao Y, Bai Q, Xu P, Wu T, Guo D, Peng Y, Zhang H, Deng X, Chen X, Luo M, Ali A, Wang W, Wu X. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:405. [PMID: 29643863 PMCID: PMC5882781 DOI: 10.3389/fpls.2018.00405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/14/2018] [Indexed: 05/15/2023]
Abstract
Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.
Collapse
Affiliation(s)
- Yongxiang Liao
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Que Bai
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Daiming Guo
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Yongbin Peng
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Xiaoshu Deng
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Xiaoqiong Chen
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Ming Luo
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT, Australia
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
- *Correspondence: Wenming Wang, Xianjun Wu,
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Sichuan, China
- *Correspondence: Wenming Wang, Xianjun Wu,
| |
Collapse
|
121
|
Xiao G, Zhou J, Lu X, Huang R, Zhang H. Excessive UDPG resulting from the mutation of UAP1 causes programmed cell death by triggering reactive oxygen species accumulation and caspase-like activity in rice. THE NEW PHYTOLOGIST 2018; 217:332-343. [PMID: 28967675 DOI: 10.1111/nph.14818] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/25/2017] [Indexed: 05/08/2023]
Abstract
Lesion mimic mutants are valuable to unravel the mechanisms governing the programmed cell death (PCD) process. Uridine 5'-diphosphoglucose-glucose (UDPG) functions as a signaling molecule activating multiple pathways in animals, but little is known about its function in plants. Two novel allelic mutants of spl29 with typical PCD characters and reduced pollen viability were obtained by ethane methyl sulfonate mutagenesis in rice cv Kitaake. The enzymatic analyses showed that UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) irreversibly catalyzed the decomposition of UDPG. Its activity was severely destroyed and caused excessive UDPG accumulation, with the lesion occurrence associated with the enhanced caspase-like activities in spl29-2. At the transcriptional level, several key genes involved in endoplasmic reticulum stress and the unfolded protein response were abnormally expressed. Moreover, exogenous UDPG could aggravate lesion initiation and development in spl29-2. Importantly, exogenous UDPG and its derivative UDP-N-acetylglucosamine could induce reactive oxygen species (ROS) accumulation and lesion mimics in Kitaake seedlings. These results suggest that the excessive accumulation of UDPG, caused by the mutation of UAP1, was a key biochemical event resulting in the lesion mimics in spl29-2. Thus, our findings revealed that UDPG might be an important component involved in ROS accumulation, PCD execution and lesion mimicking in rice, which also provided new clues for investigating the connection between sugar metabolism and PCD process.
Collapse
Affiliation(s)
- Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
122
|
Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. FRONTIERS IN PLANT SCIENCE 2018; 9:617. [PMID: 29868073 PMCID: PMC5952327 DOI: 10.3389/fpls.2018.00617] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 05/19/2023]
Abstract
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Collapse
Affiliation(s)
- Effi Haque
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Md. Mahmudul Hassan
- Division of Genetics, Genomics and Development School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Pankaj Bhowmik
- National Research Council of Canada, Saskatoon, SK, Canada
| | - M. Rezaul Karim
- Department of Biotechnology and Genetic Engineering Jahangirnagar University Savar, Dhaka, Bangladesh
| | - Magdalena Śmiech
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mahfuzur Rahman
- Extension Service, West Virginia University, Morgantown, WV, United States
| | - Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Extension Service, West Virginia University, Morgantown, WV, United States
- *Correspondence: Tofazzal Islam
| |
Collapse
|
123
|
Song G, Kwon CT, Kim SH, Shim Y, Lim C, Koh HJ, An G, Kang K, Paek NC. The Rice SPOTTED LEAF4 ( SPL4) Encodes a Plant Spastin That Inhibits ROS Accumulation in Leaf Development and Functions in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2018; 9:1925. [PMID: 30666263 PMCID: PMC6330318 DOI: 10.3389/fpls.2018.01925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 05/21/2023]
Abstract
Lesion mimic mutants (LMMs) are usually controlled by single recessive mutations that cause the formation of necrotic lesions without pathogen invasion. These genetic defects are useful to reveal the regulatory mechanisms of defense-related programmed cell death in plants. Molecular evidence has been suggested that some of LMMs are closely associated with the regulation of leaf senescence in rice (Oryza sativa). Here, we characterized the mutation underlying spotted leaf4 (spl4), which results in lesion formation and also affects leaf senescence in rice. Map-based cloning revealed that the γ ray-induced spl4-1 mutant has a single base substitution in the splicing site of the SPL4 locus, resulting in a 13-bp deletion within the encoded microtubule-interacting-and-transport (MIT) spastin protein containing an AAA-type ATPase domain. The T-DNA insertion spl4-2 mutant exhibited spontaneous lesions similar to those of the spl4-1 mutant, confirming that SPL4 is responsible for the LMM phenotype. In addition, both spl4 mutants exhibited delayed leaf yellowing during dark-induced or natural senescence. Western blot analysis of spl4 mutant leaves suggested possible roles for SPL4 in the degradation of photosynthetic proteins. Punctate signals of SPL4-fused fluorescent proteins were detected in the cytoplasm, similar to the cellular localization of animal spastin. Based on these findings, we propose that SPL4 is a plant spastin that is involved in multiple aspects of leaf development, including senescence.
Collapse
Affiliation(s)
- Giha Song
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Choon-Tak Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yejin Shim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chaemyeong Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Seoul, South Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| |
Collapse
|
124
|
Zhou Q, Zhang Z, Liu T, Gao B, Xiong X. Identification and Map-Based Cloning of the Light-Induced Lesion Mimic Mutant 1 ( LIL1) Gene in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2122. [PMID: 29312386 PMCID: PMC5742160 DOI: 10.3389/fpls.2017.02122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 11/29/2017] [Indexed: 05/20/2023]
Abstract
The hypersensitive response (HR) is a mechanism by which plants prevent the spread of pathogen. Despite extensive study, the molecular mechanisms underlying HR remain poorly understood. Lesion mimic mutants (LMMs), such as LIL1 that was identified in an ethylmethane sulfonate mutagenized population of Indica rice (Oryza sativa L. ssp. Indica) 93-11, can be used to study the HR. Under natural field conditions, the leaves of LIL1 mutant plants exhibited light-induced, small, rust-red lesions that first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. Histochemical staining indicated that LIL1 lesions displayed an abnormal accumulation of reactive oxygen species (ROS) and resulted from programmed cell death (PCD). The LIL1 mutants also displayed increased expression of defense-related genes and enhanced resistance to rice blast fungus (Magnaporthe grisea). Genetic analysis showed that mutation of LIL1 created a semi-dominant allele. Using 1,758 individuals in the F2 population, LIL1 was mapped in a 222.3 kb region on the long arm of chromosome 7. That contains 12 predicted open reading frames (ORFs). Sequence analysis of these 12 candidate genes revealed a G to A base substitution in the fourth exon of LOC_Os07g30510, a putative cysteine-rich receptor-like kinase (CRK), which led to an amino acid change (Val 429 to Ile) in the LIL1 protein. Comparison of the transcript accumulation of the 12 candidate genes between LIL1 and 93-11 revealed that LOC_Os07g30510 was up-regulated significantly in LIL1. Overexpression of the LOC_Os07g30510 gene from LIL1 induced a LIL1-like lesion phenotype in Nipponbare. Thus, LIL1 is a novel LMM in rice that will facilitate the further study of the molecular mechanisms of HR and the rice blast resistance.
Collapse
Affiliation(s)
- Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha, China
| | - Zhifei Zhang
- Agricultural College, Hunan Agricultural University, Changsha, China
| | - Tiantian Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bida Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha, China
| |
Collapse
|
125
|
Mandal A, Mishra AK, Dulani P, Muthamilarasan M, Shweta S, Prasad M. Identification, characterization, expression profiling, and virus-induced gene silencing of armadillo repeat-containing proteins in tomato suggest their involvement in tomato leaf curl New Delhi virus resistance. Funct Integr Genomics 2017; 18:101-111. [PMID: 29250708 DOI: 10.1007/s10142-017-0578-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 12/07/2017] [Indexed: 11/28/2022]
Abstract
Armadillo repeat family is well-characterized in several plant species for their involvement in multiple regulatory processes including growth, development, and stress response. We have previously shown a three-fold higher expression of ARM protein-encoding in tomato cultivar tolerant to tomato leaf curl New Delhi virus (ToLCNDV) compared to susceptible cultivar upon virus infection. This suggests the putative involvement of ARM proteins in defense response against virus infection; however, no comprehensive investigation has been performed to address this inference. In the present study, we have identified a total of 46 ARM-repeat proteins (SlARMs), and 41 U-box-containing proteins (SlPUBs) in tomato. These proteins and their corresponding genes were studied for their physicochemical properties, gene structure, domain architecture, chromosomal localization, phylogeny, and cis-regulatory elements in the upstream promoter region. Expression profiling of candidate genes in response to ToLCNDV infection in contrasting tomato cultivars showed significant upregulation of SlARM18 in the tolerant cultivar. Virus-induced gene silencing of SlARM18 in the tolerant tomato cultivar conferred susceptibility, which suggests the involvement of this gene in resistance mechanism. Further studies are underway to functionally characterize SlARM18 to delineate its precise role in defense mechanism.
Collapse
Affiliation(s)
- Arunava Mandal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Awdhesh Kumar Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Priya Dulani
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | - Shweta Shweta
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
126
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
127
|
Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 2017; 13:e1006724. [PMID: 29131851 PMCID: PMC5703576 DOI: 10.1371/journal.ppat.1006724] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/27/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. Lipases are a large family of enzymes conferring lipid metabolism. Lipids and their metabolites play diverse roles in plant growth as well as response to environmental stimuli. Accumulating evidence implicates lipids as signaling molecules mediating plant immunity. Therefore, lipases are presumed to be actively involved in plant defense responses. Based on gene expression profiling, we have identified two functional GDSL lipases, encoded by OsGLIP1 and OsGLIP2, whose expression was suppressed by pathogen infection in the model cereal rice. Both OsGLIP1 and OsGLIP2 proteins localize to lipid droplets and the endoplasmic reticulum (ER) membrane, and they likely coordinate lipid metabolism with differential but complementary expression patterns in tissues and developmental stages. Consequently, alteration of OsGLIP gene expression was associated with substantial changes of lipid abundance and plant disease resistance. Our work identifies and characterizes two lipases that function as negative regulators of plant immune responses, strengthening the understanding of lipid metabolism in plant-microbe interactions.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
128
|
Zhang M, Zhang GQ, Kang HH, Zhou SM, Wang W. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2017; 58:1673-1688. [PMID: 29016965 DOI: 10.1093/pcp/pcx101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 07/15/2017] [Indexed: 05/25/2023]
Abstract
High salinity is one of the most severe environmental stresses and limits the growth and yield of diverse crop plants. We isolated a gene named TaPUB1 from wheat (Triticum aestivum L. cv HF9703) that encodes a novel protein containing a U-box domain, the precursor RNA processing 19p (Prp19) superfamily and WD-40 repeats. Real-time reverse transcription-PCR analysis showed that TaPUB1 transcript accumulation was up-regulated by high salinity, drought and phytohormones, suggesting that it plays a role in the abiotic-related defense response. We overexpressed TaPUB1 in Nicotiana benthamiana to evaluate the function of TaPUB1 in the regulation of the salt stress response. Transgenic N. benthamiana plants (OE) with constitutively overexpressed TaPUB1 under the control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter exhibited a higher germination rate, less growth inhibition, less Chl loss and higher photosynthetic capacity than wild-type (WT) plants under salt stress conditions. These results demonstrated the increased tolerance of OE plants to salt stress compared with the WT. The OE plants had lower osmotic potential (OP), reduced Na+ toxicity and less reactive oxygen species accumulation compared with the WT, which may be related to their higher level of osmolytes, lower Na+/K+ ratio and higher antioxidant enzyme activities under salt stress conditions. Consistent with these results, the up-regulated expression of osmic- and antioxidant-related genes in OE plants indicated a role for TaPUB1 in plant salt tolerance.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guang-Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Han-Han Kang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shu-Mei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
129
|
You Q, Zhai K, Yang D, Yang W, Wu J, Liu J, Pan W, Wang J, Zhu X, Jian Y, Liu J, Zhang Y, Deng Y, Li Q, Lou Y, Xie Q, He Z. An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host Microbe 2017; 20:758-769. [PMID: 27978435 DOI: 10.1016/j.chom.2016.10.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants.
Collapse
Affiliation(s)
- Quanyuan You
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Donglei Yang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingni Wu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhong Liu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Pan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xudong Zhu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yikun Jian
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingying Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yonggen Lou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Collaborative Innovation Center of Genetics and Development, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
130
|
Arabidopsis E3 Ubiquitin Ligases PUB22 and PUB23 Negatively Regulate Drought Tolerance by Targeting ABA Receptor PYL9 for Degradation. Int J Mol Sci 2017; 18:ijms18091841. [PMID: 28837065 PMCID: PMC5618490 DOI: 10.3390/ijms18091841] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022] Open
Abstract
Drought causes osmotic stress and rapidly triggers abscisic acid (ABA) accumulation in plants. The roles of various ABA receptors in drought tolerance and molecular mechanisms regulating ABA receptor stability needs to be elucidated. Here, we report that Arabidopsis plants overexpressing PYL9, one of the 14 pyrabactin resistance (PYR)/pyrabactin resistance-like (PYL)/regulatory component of ABA receptors (RCAR) family ABA receptors, gained drought tolerance trait. Osmotic stress induced accumulation of the PYL9 protein, which was regulated by the 26S proteasome. PYL9 interacted with two highly homologous plant U-box E3 ubiquitin ligases PUB22 and PUB23. In the cell-free degradation assay, the degradation of GST-PYL9 was accelerated in protein extract from plants overexpressing PUB22 but slowed down in protein extract from the pub22 pub23 double mutant. The in vivo decay of Myc-PYL9 was significantly reduced in the pub22 pub23 double mutant as compared with the wild-type. Additionally, PUB22 also interacted with other ABA receptors such as PYL5, PYL7 and PYL8. Considering the improved drought tolerance in the pub22 pub23 double mutant in previous studies, our results suggest that PUB22 and PUB23 negatively regulate drought tolerance in part by facilitating ABA receptors degradation.
Collapse
|
131
|
Shi Y, Niu K, Huang B, Liu W, Ma H. Transcriptional Responses of Creeping Bentgrass to 2,3-Butanediol, a Bacterial Volatile Compound (BVC) Analogue. Molecules 2017; 22:molecules22081318. [PMID: 28813015 PMCID: PMC6152298 DOI: 10.3390/molecules22081318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial volatile compounds (BVCs) have been reported to enhance plant growth and elicit plant defenses against fungal infection and insect damage. The objective of this study was to determine transcriptomic changes in response to synthetic BVC that could be associated with plant resistance to Rhizoctonia solani in creeping bentgrass. The 2,3-butanediol (BD) (250 µM) was sprayed on creeping bentgrass leaves grown in jam jars. The result showed that synthetic BD induced plant defense against R. solani for creeping bentgrass. Transcriptomic analysis demonstrated that more genes were repressed by BD while less showed up-regulation. BD suppressed the expression of some regular stress-related genes in creeping bentgrass, such as pheromone activity, calcium channel activity, photosystem II oxygen evolving complex, and hydrolase activity, while up-regulated defense related transcription factors (TFs), such as basic helix-loop-helix (bHLH) TFs, cysteine2-cysteine2-contans-like (C2C2-CO) and no apical meristem TFs (NAC). Other genes related to disease resistance, such as jasmonic acid (JA) signaling, leucine rich repeats (LRR)-transmembrane protein kinase, pathogen-related (PR) gene 5 receptor kinase and nucleotide binding site-leucine rich repeats (NBS-LRR) domain containing plant resistance gene (R-gene) were also significantly up-regulated. These results suggest that BD may induce changes to the plant transcriptome in induced systemic resistance (ISR) pathways.
Collapse
Affiliation(s)
- Yi Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining 810016, China.
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| |
Collapse
|
132
|
Song J, Mo X, Yang H, Yue L, Song J, Mo B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS One 2017; 12:e0182402. [PMID: 28771553 PMCID: PMC5542650 DOI: 10.1371/journal.pone.0182402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
133
|
Liao D, Cao Y, Sun X, Espinoza C, Nguyen CT, Liang Y, Stacey G. Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK5) protein abundance. THE NEW PHYTOLOGIST 2017; 214:1646-1656. [PMID: 28195333 DOI: 10.1111/nph.14472] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 05/21/2023]
Abstract
Long-chain chitooligosaccharides are fungal microbe-associated molecular patterns (MAMPs) that are recognized by LYSIN MOTIF RECEPTOR KINASE5 (LYK5), inducing the formation of a complex with CHITIN ELICITOR RECEPTOR KINASE1 (CERK1). Formation of this complex leads to activation of the CERK1 intracellular kinase domain and induction of plant innate immunity in Arabidopsis. We found that addition of chitooctaose induced LYK5 protein accumulation as a result of de novo gene expression and the inhibition of LYK5 protein degradation. Screening the putative E3 ligases for interaction with LYK5 identified PLANT U-BOX13 (PUB13), which complexed with LYK5, but this complex dissociated upon addition of chitooctaose. Consistent with these results, LYK5 protein abundance was higher in pub13 mutants compared with the wild type without chitooctaose treatment, while similar abundance was detected with the addition of chitooctaose. The pub13 mutants showed hypersensitivity to chitooctaose-induced rapid responses, such as the production of reactive oxygen species (ROS) and mitogen-activated protein (MAP) kinase phosphorylation, but exhibited normal responses to subsequent long-term chitooctaose treatment, such as gene expression and callose deposition. In addition, PUB13 could ubiquitinate the LYK5 kinase domain in vitro. Taken together, our results suggest an important regulatory function for the turnover of LYK5 mediated by the E3 ligase PUB13.
Collapse
Affiliation(s)
- Dehua Liao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yangrong Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Catherine Espinoza
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cuong T Nguyen
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Yan Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
134
|
Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2933-2949. [PMID: 28486617 DOI: 10.1093/jxb/erx136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitination system plays important roles in the degradation and modification of substrate proteins. In this study, we characterize a putative U-box type E3 ubiquitin ligase gene, VpPUB24 (plant U-box protein 24), from Chinese wild grapevine, Vitis pseudoreticulata accession Baihe-35-1. We show that VpPUB24 is induced by a number of stresses, especially cold treatment. Real-time PCR analysis indicated that the PUB24 transcripts were increased after cold stress in different grapevine species, although the relative expression level was different. In grapevine protoplasts, we found that VpPUB24 was expressed at a low level at 22 °C but accumulated rapidly following cold treatment. A yeast two-hybrid assay revealed that VpPUB24 interacted physically with VpICE1. Further experiments indicated that VpICE1 is targeted for degradation via the 26S proteasome and that the degradation is accelerated by VpHOS1, and not by VpPUB24. Immunoblot analyses indicated that VpPUB24 promotes the accumulation of VpICE1 and suppresses the expression of VpHOS1 to regulate the abundance of VpICE1. Furthermore, VpICE1 promotes transcription of VpPUB24 at low temperatures. We also found that VpPUB24 interacts with VpHOS1 in a yeast two-hybrid assay. Additionally, over-expression of VpPUB24 in Arabidopsis thaliana enhanced cold tolerance. Collectively, our results suggest that VpPUB24 interacts with VpICE1 to play a role in cold stress.
Collapse
Affiliation(s)
- Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
135
|
Furlan G, Nakagami H, Eschen-Lippold L, Jiang X, Majovsky P, Kowarschik K, Hoehenwarter W, Lee J, Trujillo M. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. THE PLANT CELL 2017; 29:726-745. [PMID: 28280093 PMCID: PMC5435422 DOI: 10.1105/tpc.16.00654] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 05/11/2023]
Abstract
Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.
Collapse
Affiliation(s)
- Giulia Furlan
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Plant Proteomics Research Unit, Yokohama 230-0045, Japan
- Max-Planck-Institute for Plant Breeding Research, Protein Mass Spectrometry Service, Cologne 50829, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Xiyuan Jiang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Petra Majovsky
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Kathrin Kowarschik
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| |
Collapse
|
136
|
Jiao L, Zhang Y, Lu J. Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera 'Thompson Seedless'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:53-63. [PMID: 28039816 DOI: 10.1016/j.plaphy.2016.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/25/2023]
Abstract
Many U-box proteins have been identified and characterized as important factors against environmental stresses such as chilling, heat, salinity and pathogen attack in plant. Our previous research reported the cloning of a novel U-box protein gene VaPUB from Vitis amurensis 'Zuoshanyi' grape and suggested a function of it in related to cold stress in the model plant Arabidopsis system. In this study, the role of VaPUB in response to biotic and abiotic stress was further analyzed in the homologous grapevine system by studying the transcript regulation and the protein accumulation in VaPUB transgenic vines. The expression analysis assay shown that VaPUB was significantly up-regulated 6 h after cold treatment and as early as 2 h post inoculation with Plasmopara viticola, a pathogen causing downy mildew disease in grapevine. Over-expressing VaPUB in V. Vinifera 'Thompson Seedless' affected the microstructure of leaves. The proteome assay shown that the accumulation of pathogenesis-related protein PR10 and many proteins involved in carbon and energy metabolism, oxidation reaction and protein metabolism were significantly altered in transgenic vines. In comparison with wild type plants, the expression level of PR10 family genes was significantly decreased in VaPUB transgenic vines under P. viticola treatment or cold stress. Results from this study showed that the U-box protein gene PUB quickly responded to both biotic stress and abiotic stress and significantly influenced the accumulation of resistance related proteins in grapevine.
Collapse
Affiliation(s)
- Li Jiao
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China.
| |
Collapse
|
137
|
Wang N, Xing Y, Lou Q, Feng P, Liu S, Zhu M, Yin W, Fang S, Lin Y, Zhang T, Sang X, He G. Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:84-94. [PMID: 28013174 DOI: 10.1016/j.jplph.2016.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant hormones coordinate a plant's responses to environmental stimuli and the endogenous developmental programs for cell division and elongation. Brassinosteroids are among the most important of these hormones in plant development. Recently, the ubiquitin-26S-proteasome system was identified to play a key role in hormone biology. In this study, we analyzed the function of a rice (Oryza sativa) gene, DSG1, which encodes a U-box E3 ubiquitin ligase. In the dsg1 mutant (an allelic mutant of tud1), the lengths of the roots, internodes, panicles, and seeds were shorter than that in the wild-type, which was due to defects in cell division and elongation. In addition, the leaves of the dsg1 mutant were wider and curled. The DSG1 protein is nuclear- and cytoplasm-localized and does not show tissue specificity in terms of its expression, which occurs in roots, culms, leaves, sheaths, and spikelets. The dsg1 mutant is less sensitive to brassinosteroid treatment than the wild-type, and DSG1 expression is negatively regulated by brassinosteroids, ethylene, auxin, and salicylic acid. These results demonstrate that DSG1 positively regulates cell division and elongation and may be involved in multiple hormone pathways.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Yadi Xing
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Qijin Lou
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Song Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Meidan Zhu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Wuzhong Yin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Shunran Fang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Yan Lin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Tianquan Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
138
|
Zhou B, Mural RV, Chen X, Oates ME, Connor RA, Martin GB, Gough J, Zeng L. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. PLANT PHYSIOLOGY 2017; 173:1371-1390. [PMID: 27909045 PMCID: PMC5291023 DOI: 10.1104/pp.16.01190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 05/06/2023]
Abstract
Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart.
Collapse
Affiliation(s)
- Bangjun Zhou
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Ravi V Mural
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Xuanyang Chen
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Matt E Oates
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Richard A Connor
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Gregory B Martin
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Julian Gough
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Lirong Zeng
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.);
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.);
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.);
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| |
Collapse
|
139
|
Wang S, Lei C, Wang J, Ma J, Tang S, Wang C, Zhao K, Tian P, Zhang H, Qi C, Cheng Z, Zhang X, Guo X, Liu L, Wu C, Wan J. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:899-913. [PMID: 28199670 PMCID: PMC5441852 DOI: 10.1093/jxb/erx001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lesion-mimic mutants are useful to dissect programmed cell death and defense-related pathways in plants. Here we identified a new rice lesion-mimic mutant, spotted leaf 33 (spl33) and cloned the causal gene by a map-based cloning strategy. SPL33 encodes a eukaryotic translation elongation factor 1 alpha (eEF1A)-like protein consisting of a non-functional zinc finger domain and three functional EF-Tu domains. spl33 exhibited programmed cell death-mediated cell death and early leaf senescence, as evidenced by analyses of four histochemical markers, namely H2O2 accumulation, cell death, callose accumulation and TUNEL-positive nuclei, and by four indicators, namely loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence-associated genes. Defense responses were induced in the spl33 mutant, as shown by enhanced resistance to both the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae and by up-regulation of defense response genes. Transcriptome analysis of the spl33 mutant and its wild type provided further evidence for the biological effects of loss of SPL33 function in cell death, leaf senescence and defense responses in rice. Detailed analyses showed that reactive oxygen species accumulation may be the cause of cell death in the spl33 mutant, whereas uncontrolled activation of multiple innate immunity-related receptor genes and signaling molecules may be responsible for the enhanced disease resistance observed in spl33. Thus, we have demonstrated involvement of an eEF1A-like protein in programmed cell death and provided a link to defense responses in rice.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Cailin Lei
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jiulin Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jian Ma
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Chunlian Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Kaijun Zhao
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Peng Tian
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Huan Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyan Qi
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zhijun Cheng
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xiuping Guo
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Linglong Liu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jianmin Wan
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
140
|
Liu Q, Ning Y, Zhang Y, Yu N, Zhao C, Zhan X, Wu W, Chen D, Wei X, Wang GL, Cheng S, Cao L. OsCUL3a Negatively Regulates Cell Death and Immunity by Degrading OsNPR1 in Rice. THE PLANT CELL 2017; 29:345-359. [PMID: 28100706 PMCID: PMC5354189 DOI: 10.1105/tpc.16.00650] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 05/20/2023]
Abstract
Cullin3-based RING E3 ubiquitin ligases (CRL3), composed of Cullin3 (CUL3), RBX1, and BTB proteins, are involved in plant immunity, but the function of CUL3 in the process is largely unknown. Here, we show that rice (Oryza sativa) OsCUL3a is important for the regulation of cell death and immunity. The rice lesion mimic mutant oscul3a displays a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in pathogenesis-related gene expression as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. We cloned the OsCUL3a gene via a map-based strategy and found that the lesion mimic phenotype of oscul3a is associated with the early termination of OsCUL3a protein. Interaction assays showed that OsCUL3a interacts with both OsRBX1a and OsRBX1b to form a multisubunit CRL in rice. Strikingly, OsCUL3a interacts with and degrades OsNPR1, which acts as a positive regulator of cell death in rice. Accumulation of OsNPR1 protein is greater in the oscul3a mutant than in the wild type. Furthermore, the oscul3a osnpr1 double mutant does not exhibit the lesion mimic phenotype of the oscul3a mutant. Our data demonstrate that OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice.
Collapse
Affiliation(s)
- Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Chunde Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400 China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
141
|
Li Z, Ding B, Zhou X, Wang GL. The Rice Dynamin-Related Protein OsDRP1E Negatively Regulates Programmed Cell Death by Controlling the Release of Cytochrome c from Mitochondria. PLoS Pathog 2017; 13:e1006157. [PMID: 28081268 PMCID: PMC5266325 DOI: 10.1371/journal.ppat.1006157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/25/2017] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (PCD) mediated by mitochondrial processes has emerged as an important mechanism for plant development and responses to abiotic and biotic stresses. However, the role of translocation of cytochrome c from the mitochondria to the cytosol during PCD remains unclear. Here, we demonstrate that the rice dynamin-related protein 1E (OsDRP1E) negatively regulates PCD by controlling mitochondrial structure and cytochrome c release. We used a map-based cloning strategy to isolate OsDRP1E from the lesion mimic mutant dj-lm and confirmed that the E409V mutation in OsDRP1E causes spontaneous cell death in rice. Pathogen inoculation showed that dj-lm significantly enhances resistance to fungal and bacterial pathogens. Functional analysis of the E409V mutation showed that the mutant protein impairs OsDRP1E self-association and formation of a higher-order complex; this in turn reduces the GTPase activity of OsDRP1E. Furthermore, confocal microscopy showed that the E409V mutation impairs localization of OsDRP1E to the mitochondria. The E409V mutation significantly affects the morphogenesis of cristae in mitochondria and causes the abnormal release of cytochrome c from mitochondria into cytoplasm. Taken together, our results demonstrate that the mitochondria-localized protein OsDRP1E functions as a negative regulator of cytochrome c release and PCD in plants. Plants have developed a hypersensitive response (HR) that shows rapid programed cell death (PCD) around the infection site, which in turn limits pathogen invasion and restricts the spread of pathogens. Although many studies reported the characterization of PCD in different pathosystems in the last decade, the molecular mechanisms on how PCD is initiated and how it regulates host resistance are still unclear. Lesion mimic mutants exhibit spontaneous HR-like cell death without pathogen invasion and are ideal genetic materials for dissecting the PCD pathway. In this study, we characterized the lesion mimic gene OsDRP1E that negatively regulates plant PCD through the control of cytochrome c release from mitochondria. Our results suggest that the E409V point mutation in the dynamin-related protein OsDRP1E affects the morphogenesis of mitochondrial cristae that leads to the cytochrome c release into cytoplasm. This study provides new insights into the function of dynamin-related proteins in plant immunity.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Bo Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (GLW); (BD)
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (GLW); (BD)
| |
Collapse
|
142
|
Byun MY, Cui LH, Oh TK, Jung YJ, Lee A, Park KY, Kang BG, Kim WT. Homologous U-box E3 Ubiquitin Ligases OsPUB2 and OsPUB3 Are Involved in the Positive Regulation of Low Temperature Stress Response in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:16. [PMID: 28163713 PMCID: PMC5247461 DOI: 10.3389/fpls.2017.00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
Rice U-box E3 Ub ligases (OsPUBs) are implicated in biotic stress responses. However, their cellular roles in response to abiotic stress are poorly understood. In this study, we performed functional analyses of two homologous OsPUB2 and OsPUB3 in response to cold stress (4°C). OsPUB2 was up-regulated by high salinity, drought, and cold, whereas OsPUB3 was constitutively expressed. A subcellular localization assay revealed that OsPUB2 and OsPUB3 were localized to the exocyst positive organelle (EXPO)-like punctate structures. OsPUB2 was also localized to the nuclei. OsPUB2 and OsPUB3 formed a hetero-dimeric complex as well as homo-dimers in yeast cells and in vitro. OsPUB2/OsPUB3 exhibited self-ubiquitination activities in vitro and were rapidly degraded in the cell-free extracts with apparent half-lives of 150-160 min. This rapid degradation of OsPUB2/OsPUB3 was delayed in the presence of the crude extracts of cold-treated seedlings (apparent half-lives of 200-280 min). Moreover, a hetero-dimeric form of OsPUB2/OsPUB3 was more stable than the homo-dimers. These results suggested that OsPUB2 and OsPUB3 function coordinately in response to cold stress. OsPUB2- and OsPUB3-overexpressing transgenic rice plants showed markedly better tolerance to cold stress than did the wild-type plants in terms of survival rates, chlorophyll content, ion leakage, and expression levels of cold stress-inducible marker genes. Taken together, these results suggested that the two homologous rice U-box E3 Ub ligases OsPUB2 and OsPUB3 are positive regulators of the response to cold stress.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Tae Kyung Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Ye-Jin Jung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Andosung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Bin Goo Kang
- ReSEAT Program, Korea Institute of Science and Technology Information Seoul, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| |
Collapse
|
143
|
Zhao J, Liu P, Li C, Wang Y, Guo L, Jiang G, Zhai W. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. J Genet Genomics 2016; 44:107-118. [PMID: 28162958 DOI: 10.1016/j.jgg.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 11/19/2022]
Abstract
Lesion mimic mutant (LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5, which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A (eEF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indica-specific manner, respectively. In addition, high-throughput mRNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous eEF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.
Collapse
Affiliation(s)
- Jiying Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Kaifeng Institute for Food and Drug Control, Kaifeng 475000, China
| | - Pengcheng Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunrong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lequn Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
144
|
Wang T, Chang C, Gu C, Tang S, Xie Q, Shen QH. An E3 Ligase Affects the NLR Receptor Stability and Immunity to Powdery Mildew. PLANT PHYSIOLOGY 2016; 172:2504-2515. [PMID: 27780896 PMCID: PMC5129731 DOI: 10.1104/pp.16.01520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 05/24/2023]
Abstract
Following the detection of pathogen cognate effectors, plant Nod-like receptors (NLRs) trigger isolate-specific immunity that is generally associated with cell death. The regulation of NLR stability is important to ensure effective immunity. In barley (Hordeum vulgare), the allelic Mildew locus A (MLA) receptors mediate isolate-specific disease resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Currently, how MLA stability is controlled remains unknown. Here, we identified an MLA-interacting RING-type E3 ligase, MIR1, that interacts with several MLAs. We showed that the carboxyl-terminal TPR domain of MIR1 mediates the interaction with the coiled-coil domain-containing region of functional MLAs, such as MLA1, MLA6, and MLA10, but not with that of the nonfunctional MLA18-1. MIR1 can ubiquitinate the amino-terminal region of MLAs in vitro and promotes the proteasomal degradation of MLAs in vitro and in planta. Both proteasome inhibitor treatment and virus-induced gene silencing-mediated MIR1 silencing significantly increased MLA abundance in barley transgenic lines. Furthermore, overexpression of MIR1 specifically compromised MLA-mediated disease resistance in barley, while coexpression of MIR1 and MLA10 attenuated MLA10-induced cell death signaling in Nicotiana benthamiana Together, our data reveal a mechanism for the control of the stability of MLA immune receptors and for the attenuation of MLA-triggered defense signaling by a RING-type E3 ligase via the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Gu
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
145
|
Quantification of hydrogen peroxide in plant tissues using Amplex Red. Methods 2016; 109:105-113. [DOI: 10.1016/j.ymeth.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
|
146
|
Lee IH, Lee IC, Kim J, Kim JH, Chung EH, Kim HJ, Park SJ, Kim YM, Kang SK, Nam HG, Woo HR, Lim PO. NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 158:180-99. [PMID: 26910207 DOI: 10.1111/ppl.12434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - In Chul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Su Jin Park
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yong Min Kim
- Department of Bioscience, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sin Kyu Kang
- Department of Bioscience, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea.
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
147
|
Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, Chen X. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genet 2016; 12:e1006311. [PMID: 27618555 PMCID: PMC5019419 DOI: 10.1371/journal.pgen.1006311] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. Plants have evolved sophistical immunity system in fighting against pathogenic micro-organisms including bacteria, fungi and oomycetes. Upon perception of pathogens, the immune system activates rapid cell death, characterized as a form of hypersensitive response typically in and around the infection sites to restrict pathogen invasion and prevent disease development. Recent studies have suggested that MVBs-mediated vesicular trafficking might play key roles in plant immunity and cell death. However, the molecular regulation is poorly known. By using the lesion resembling disease (lrd) mutant, lrd6-6, which exhibits autoimmunity and spontaneous cell death, we characterized LRD6-6 as a MVBs-localized AAA ATPase. We found that the ATPase LRD6-6 was required for MVBs-mediated vesicular trafficking and inhibited the biosynthesis of antimicrobial compounds for immune response in rice. Both the ATPase activity and homo-dimerization of LRD6-6 were essential for its inhibition on immunity and cell death. The catalytically inactive ATPase, LRD6-6E315Q, played dominant-negative effect on inhibition of immunity in plants. In addition, the LRD6-6 protein co-localized with the MVBs-spread marker protein RabF1/ARA6 and also interacted with ESCRT-III components OsSNF7 and OsVPS2. In summary, our study has shown that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Sihui Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Ruihong Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Zhixiong Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Can Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Bingtian Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
148
|
Ning Y, Wang R, Shi X, Zhou X, Wang GL. A Layered Defense Strategy Mediated by Rice E3 Ubiquitin Ligases against Diverse Pathogens. MOLECULAR PLANT 2016; 9:1096-1098. [PMID: 27381441 DOI: 10.1016/j.molp.2016.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
149
|
He F, Chen S, Ning Y, Wang GL. Rice (Oryza sativa
) Protoplast Isolation and Its Application for Transient Expression Analysis. ACTA ACUST UNITED AC 2016; 1:373-383. [DOI: 10.1002/cppb.20026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing China
| | - Songbiao Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences; Fuzhou Fujian China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing China
- Department of Plant Pathology, The Ohio State University; Columbus Ohio
| |
Collapse
|
150
|
Wang N, Liu Y, Cong Y, Wang T, Zhong X, Yang S, Li Y, Gai J. Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1189-209. [PMID: 27057003 DOI: 10.1093/pcp/pcw068] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 03/13/2016] [Indexed: 05/05/2023]
Abstract
Plant U-box (PUB) E3 ubiquitin ligases play important roles in hormone signaling pathways and response to abiotic stresses, but little is known about them in soybean, Glycine max. Here, we identified and characterized 125 PUB genes from the soybean genome, which were classified into eight groups according to their protein domains. Soybean PUB genes (GmPUB genes) are broadly expressed in many tissues and are a little more abundant in the roots than in the other tissues. Nine GmPUB genes, GmPUB1-GmPUB9, showed induced expression patterns by drought, and the expression of GmPUB8 was also induced by exogenous ABA and NaCl. GmPUB8 was localized to post-Golgi compartments, interacting with GmE2 protein as demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments, and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. Heterogeneous overexpression of GmPUB8 in Arabidopsis showed decreased drought tolerance, enhanced sensitivity with respect to osmotic and salt stress inhibition of seed germination and seedling growth, and inhibited ABA- and mannitol-mediated stomatal closure. Eight drought stress-related genes were less induced in GmPUB8-overexpressing Arabidopsis after drought treatment compared with the wild type and the pub23 mutant. Taken together, our results suggested that GmPUB8 might negatively regulate plant response to drought stress. In addition, Y2H and BiFC showed that GmPUB8 interacted with soybean COL (CONSTANS LIKE) protein. GmPUB8-overexpressing Arabidopsis flowered earlier under middle- and short-day conditions but later under long-day conditions, indicating that GmPUB8 might regulate flowering time in the photoperiod pathway. This study helps us to understand the functions of PUB E3 ubiquitin ligases in soybean.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaping Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahui Cong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiujuan Zhong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shouping Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|