101
|
Pokhilko A, Ramos JA, Holtan H, Maszle DR, Khanna R, Millar AJ. Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis. J Theor Biol 2010; 270:31-41. [PMID: 21093457 PMCID: PMC3021735 DOI: 10.1016/j.jtbi.2010.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/25/2022]
Abstract
The E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1) plays a key role in the repression of the plant photomorphogenic development in darkness. In the presence of light, COP1 is inactivated by a mechanism which is not completely understood. This leads to accumulation of COP1's target transcription factors, which initiates photomorphogenesis, resulting in dramatic changes of the seedling's physiology. Here we use a mathematical model to explore the possible mechanism of COP1 modulation upon dark/light transition in Arabidopsis thaliana based upon data for two COP1 target proteins: HY5 and HFR1, which play critical roles in photomorphogenesis. The main reactions in our model are the inactivation of COP1 by a proposed photoreceptor-related inhibitor I and interactions between COP1 and a CUL4 (CULLIN4)-based ligase. For building and verification of the model, we used the available published and our new data on the kinetics of HY5 and HFR1 together with the data on COP1 abundance. HY5 has been shown to accumulate at a slower rate than HFR1. To describe the observed differences in the timecourses of the "slow" target HY5 and the "fast" target HFR1, we hypothesize a switch between the activities of COP1 and CUL4 ligases upon dark/light transition, with COP1 being active mostly in darkness and CUL4 in light. The model predicts a bi-phasic kinetics of COP1 activity upon the exposure of plants to light, with its restoration after the initial decline and the following slow depletion of the total COP1 content. CUL4 activity is predicted to increase in the presence of light. We propose that the ubiquitin ligase switch is important for the complex regulation of multiple transcription factors during plants development. In addition, this provides a new mechanism for sensing the duration of light period, which is important for seasonal changes in plant development.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
102
|
Moehninsi, Miura K, Nakajyo H, Yamada K, Hasegawa K, Shigemori H. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes. BMC PLANT BIOLOGY 2010; 10:111. [PMID: 20553608 PMCID: PMC3095276 DOI: 10.1186/1471-2229-10-111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/16/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Raphanusanin (Ra) is a light-induced growth inhibitor involved in the inhibition of hypocotyl growth in response to unilateral blue-light illumination in radish seedlings. Knowledge of the roles of Ra still remains elusive. To understand the roles of Ra and its functional coupling to light signalling, we constructed the Ra-induced gene library using the Suppression Subtractive Hybridisation (SSH) technique and present a comparative investigation of gene regulation in radish seedlings in response to short-term Ra and blue-light exposure. RESULTS The predicted gene ontology (GO) term revealed that 55% of the clones in the Ra-induced gene library were associated with genes involved in common defence mechanisms, including thirty four genes homologous to Arabidopsis genes implicated in R-gene-triggered resistance in the programmed cell death (PCD) pathway. Overall, the library was enriched with transporters, hydrolases, protein kinases, and signal transducers. The transcriptome analysis revealed that, among the fifty genes from various functional categories selected from 88 independent genes of the Ra-induced library, 44 genes were up-regulated and 4 were down-regulated. The comparative analysis showed that, among the transcriptional profiles of 33 highly Ra-inducible genes, 25 ESTs were commonly regulated by different intensities and duration of blue-light irradiation. The transcriptional profiles, coupled with the transcriptional regulation of early blue light, have provided the functional roles of many genes expected to be involved in the light-mediated defence mechanism. CONCLUSIONS This study is the first comprehensive survey of transcriptional regulation in response to Ra. The results described herein suggest a link between Ra and cellular defence and light signalling, and thereby contribute to further our understanding of how Ra is involved in light-mediated mechanisms of plant defence.
Collapse
Affiliation(s)
- Moehninsi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Haruyuki Nakajyo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kosumi Yamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Koji Hasegawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- KNC Laboratories Co, Ltd, Hyogo 651-2271, Japan
| | - Hideyuki Shigemori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
103
|
Zhou J, Wang X, He K, Charron JBF, Elling AA, Deng XW. Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. PLANT MOLECULAR BIOLOGY 2010; 72:585-95. [PMID: 20054610 DOI: 10.1007/s11103-009-9594-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 12/20/2009] [Indexed: 05/17/2023]
Abstract
Lysine residue 9 of histone H3 can either be acetylated or mono-, di-, or tri-methylated. These epigenetic states have a diverse impact on regulating gene transcriptional activity and chromatin organization. H3K9ac is invariably correlated with transcriptional activation, whereas H3K9me2 has been reported to be mainly located in constitutive heterochromatin in Arabidopsis. Here, we present epigenetic landscapes for histone H3 lysine 9 acetylation (H3K9ac) and dimethylation (H3K9me2) in Arabidopsis seedlings. The results show that H3K9ac targeted 5,206 non-transposable element (non-TE) genes and 321 transposable elements (TEs), whereas H3K9me2 targeted 2,281 TEs and 1,112 non-TE genes. H3K9ac was biased towards the 5' end of genes and peaked at the ATG position, while H3K9me2 tended to span the entire gene body. H3K9ac correlated with high gene expression, while H3K9me2 correlated with low expression. Analyses of H3K9ac and H3K9me2 with the available datasets of H3K27me3 and DNA methylation revealed a correlation between the occurrence of multiple epigenetic modifications and gene expression. Genes with H3K9ac alone were actively transcribed, while genes that were also modified by either H3K27me3 or DNA methylation showed a lower expression level, suggesting that a combination of repressive marks weakened the positive regulatory effect of H3K9ac. Furthermore, we observed a significant increase of the H3K9ac modification level of selected target genes in hda19 (histone deacetylase 19) mutant seedlings, which indicated that HDA19 plays an important role in regulating the level of H3K9ac and thereby influencing the transcriptional activity in young seedlings.
Collapse
Affiliation(s)
- Junli Zhou
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
104
|
Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, Sucgang R, Chen R, Zupan B, Loomis WF, Kuspa A, Shaulsky G. Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol 2010; 11:R35. [PMID: 20236529 PMCID: PMC2864575 DOI: 10.1186/gb-2010-11-3-r35] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/11/2010] [Accepted: 03/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionarily divergent organisms often share developmental anatomies despite vast differences between their genome sequences. The social amoebae Dictyostelium discoideum and Dictyostelium purpureum have similar developmental morphologies although their genomes are as divergent as those of man and jawed fish. RESULTS Here we show that the anatomical similarities are accompanied by extensive transcriptome conservation. Using RNA sequencing we compared the abundance and developmental regulation of all the transcripts in the two species. In both species, most genes are developmentally regulated and the greatest expression changes occur during the transition from unicellularity to multicellularity. The developmental regulation of transcription is highly conserved between orthologs in the two species. In addition to timing of expression, the level of mRNA production is also conserved between orthologs and is consistent with the intuitive notion that transcript abundance correlates with the amount of protein required. Furthermore, the conservation of transcriptomes extends to cell-type specific expression. CONCLUSIONS These findings suggest that developmental programs are remarkably conserved at the transcriptome level, considering the great evolutionary distance between the genomes. Moreover, this transcriptional conservation may be responsible for the similar developmental anatomies of Dictyostelium discoideum and Dictyostelium purpureum.
Collapse
Affiliation(s)
- Anup Parikh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Assessing the influence of adjacent gene orientation on the evolution of gene upstream regions in Arabidopsis thaliana. Genetics 2010; 185:695-701. [PMID: 20233855 DOI: 10.1534/genetics.110.114629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The orientation of flanking genes may influence the evolution of intergenic regions in which cis-regulatory elements are likely to be located: divergently transcribed genes share their 5' regions, resulting either in smaller "private" spaces or in overlapping regulatory elements. Thus, upstream sequences of divergently transcribed genes (bi-directional upstream regions, or URs) may be more constrained than those of uni-directional gene pairs. We investigated this effect by analyzing nucleotide variation segregating within and between Arabidopsis species. Compared to uni-directional URs, bi-directional URs indeed display lower population mutation rate, as well as more low-frequency polymorphisms. Furthermore, we find that bi-directional regions undergo selection for the maintenance of intergenic distance. Altogether, however, we observe considerable variation in evolutionary rates, with putative signatures of selection on two uni-directional upstream regions.
Collapse
|
106
|
Jung KH, Seo YS, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. PLANT PHYSIOLOGY 2010; 152:1674-92. [PMID: 20107022 PMCID: PMC2832257 DOI: 10.1104/pp.109.152157] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We previously characterized the rice (Oryza sativa) Submergence1 (Sub1) locus encoding three ethylene-responsive factor (ERF) transcriptional regulators. Genotypes carrying the Sub1A-1 allele are tolerant of prolonged submergence. To elucidate the mechanism of Sub1A-1-mediated tolerance, we performed transcriptome analyses comparing the temporal submergence response of Sub1A-1-containing tolerant M202(Sub1) with the intolerant isoline M202 lacking this gene. We identified 898 genes displaying Sub1A-1-dependent regulation. Integration of the expression data with publicly available metabolic pathway data identified submergence tolerance-associated pathways governing anaerobic respiration, hormone responses, and antioxidant systems. Of particular interest were a set of APETALA2 (AP2)/ERF family transcriptional regulators that are associated with the Sub1A-1-mediated response upon submergence. Visualization of expression patterns of the AP2/ERF superfamily members in a phylogenetic context resolved 12 submergence-regulated AP2/ERFs into three putative functional groups: (1) anaerobic respiration and cytokinin-mediated delay in senescence via ethylene accumulation during submergence (three ERFs); (2) negative regulation of ethylene-dependent gene expression (five ERFs); and (3) negative regulation of gibberellin-mediated shoot elongation (four ERFs). These results confirm that the presence of Sub1A-1 impacts multiple pathways of response to submergence.
Collapse
|
107
|
TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes. Funct Integr Genomics 2010; 10:265-76. [PMID: 20111976 DOI: 10.1007/s10142-010-0158-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/27/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 and 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in three to four separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the 13 genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane-bound complexes required for the conversion of solar energy into chemical energy and rate-limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.
Collapse
|
108
|
Ranjan A, Ansari SA, Srivastava R, Mantri S, Asif MH, Sawant SV, Tuli R. A T9G mutation in the prototype TATA-box TCACTATATATAG determines nucleosome formation and synergy with upstream activator sequences in plant promoters. PLANT PHYSIOLOGY 2009; 151:2174-86. [PMID: 19812181 PMCID: PMC2785982 DOI: 10.1104/pp.109.148064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 09/30/2009] [Indexed: 05/19/2023]
Abstract
We had earlier reported that mutations to G and C at the seventh and eighth positions in the prototype TATA-box TCACTATATATAG inhibited light-dependent activation of transcription from the promoter. In this study, we characterized mutations at the ninth position of the prototype TATA-box. Substitution of T at the ninth position with G or C enhanced transcription from the promoter in transgenic tobacco (Nicotiana tabacum) plants. The effect of T9G/C mutations was not light dependent, although the 9G/C TATA-box showed synergy with the light-responsive element (lre). However, the 9G/C mutants in the presence of lre failed to respond to phytochromes, sugar, and calcium signaling, in contrast to the prototype TATA-box with lre. The 9G/C mutation shifted the point of initiation of transcription, and transcription activation was dependent upon the type of activating element present upstream. The synergy in activation was noticed with lre and legumin activators but not with rbcS, Pcec, and PR-1a activators. The 9G mutation resulted in a micrococcal nuclease-sensitive region over the TATA-box, suggesting a nucleosome-free region, in contrast to the prototype promoter, which had a distinct nucleosome on the TATA-box. Thus, the transcriptional augmentation with mutation at the ninth position might be because of the loss of a repressive nucleosomal structure on the TATA-box. In agreement with our findings, the promoters containing TATAGATA as identified by genome-wide analysis of Arabidopsis (Arabidopsis thaliana) are not tightly repressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir V. Sawant
- National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow 226001, India
| | | |
Collapse
|
109
|
Charron JBF, He H, Elling AA, Deng XW. Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. THE PLANT CELL 2009; 21:3732-48. [PMID: 20008096 PMCID: PMC2814509 DOI: 10.1105/tpc.109.066845] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 10/08/2009] [Accepted: 11/18/2009] [Indexed: 05/18/2023]
Abstract
Although landscapes of several histone marks are now available for Arabidopsis thaliana and Oryza sativa, such profiles remain static and do not provide information about dynamic changes of plant epigenomes in response to developmental or environmental cues. Here, we analyzed the effects of light on four histone modifications (acetylation and trimethylation of lysines 9 and 27 on histone H3: H3K9ac, H3K9me3, H3K27ac, and H3K27me3, respectively). Our genome-wide profiling of H3K9ac and H3K27ac revealed that these modifications are nontransposable element gene-specific. By contrast, we found that H3K9me3 and H3K27me3 target nontransposable element genes, but also intergenic regions and transposable elements. Specific light conditions affected the number of modified regions as well as the overall correlation strength between the presence of specific modifications and transcription. Furthermore, we observed that acetylation marks not only ELONGATED HYPOCOTYL5 and HY5-HOMOLOG upon deetiolation, but also their downstream targets. We found that the activation of photosynthetic genes correlates with dynamic acetylation changes in response to light, while H3K27ac and H3K27me3 potentially contribute to light regulation of the gibberellin metabolism. Thus, this work provides a dynamic portrait of the variations in histone modifications in response to the plant's changing light environment and strengthens the concept that histone modifications represent an additional layer of control for light-regulated genes involved in photomorphogenesis.
Collapse
Affiliation(s)
- Jean-Benoit F. Charron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Hang He
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Axel A. Elling
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
110
|
Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z. Plant MetGenMAP: an integrative analysis system for plant systems biology. PLANT PHYSIOLOGY 2009; 151:1758-68. [PMID: 19819981 PMCID: PMC2786002 DOI: 10.1104/pp.109.145169] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The information and resources generated from diverse "omics" technologies provide opportunities for producing novel biological knowledge. It is essential to integrate various kinds of biological information and large-scale omics data sets through systematic analysis in order to describe and understand complex biological phenomena. For this purpose, we have developed a Web-based system, Plant MetGenMAP, which can comprehensively integrate and analyze large-scale gene expression and metabolite profile data sets along with diverse biological information. Using this system, significantly altered biochemical pathways and biological processes under given conditions can be retrieved rapidly and efficiently, and transcriptional events and/or metabolic changes in a pathway can be easily visualized. In addition, the system provides a unique function that can identify candidate promoter motifs associated with the regulation of specific biochemical pathways. We demonstrate the functions and application of the system using data sets from Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum), respectively. The results obtained by Plant MetGenMAP can aid in a better understanding of the mechanisms that underlie interesting biological phenomena and provide novel insights into the biochemical changes associated with them at the gene and metabolite levels. Plant MetGenMAP is freely available at http://bioinfo.bti.cornell.edu/tool/MetGenMAP.
Collapse
|
111
|
Hodgins-Davis A, Townsend JP. Evolving gene expression: from G to E to GxE. Trends Ecol Evol 2009; 24:649-58. [PMID: 19699549 PMCID: PMC2805859 DOI: 10.1016/j.tree.2009.06.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 12/21/2022]
Abstract
Analyses of gene expression data sets for multiple individuals and species promise to shed light on the mode of evolution of gene expression. However, complementary complexities challenge this goal. Characterization of the genetic variation underlying gene expression can easily be compromised by lack of environmental control. Conversely, the breadth of conclusions from studies of environmental effects has been limited by the use of single strains. Controlled studies have hinted at extensive genexenvironment interaction. Thus, both genetics and environment are key components in models of the evolution of gene expression. We review the literature on the evolution of gene expression in terms of genetics (G), environmental response (E) and GxE interactions to make this conceptual point.
Collapse
Affiliation(s)
- Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
112
|
Lee TH, Kim YK, Pham TTM, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M, Yoon UH, Nahm BH. RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. PLANT PHYSIOLOGY 2009; 151:16-33. [PMID: 19605550 PMCID: PMC2735985 DOI: 10.1104/pp.109.139030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 07/06/2009] [Indexed: 05/18/2023]
Abstract
Microarray data can be used to derive understanding of the relationships between the genes involved in various biological systems of an organism, given the availability of databases of gene expression measurements from the complete spectrum of experimental conditions and materials. However, there have been no reports, to date, of such a database being constructed for rice (Oryza sativa). Here, we describe the construction of such a database, called RiceArrayNet (RAN; http://www.ggbio.com/arraynet/), which provides information on coexpression between genes in terms of correlation coefficients (r values). The average number of coexpressed genes is 214, with sd of 440 at r >or= 0.5. Given the correlation between genes in a gene pair, the degrees of closeness between genes can be visualized in a relational tree and a relational network. The distribution of correlated genes according to degree of stringency shows how each gene is related to other genes. As an application of RAN, the 16-member L7Ae ribosomal protein family was explored for coexpressed genes and gene expression values within and between rice and Arabidopsis (Arabidopsis thaliana), and common and unique features in coexpression partners and expression patterns were observed for these family members. We observed a correlation pattern between Os01g0968800, a drought-responsive element-binding transcription factor, Os02g0790500, a trehalose-6-phosphate synthase, and Os06g0219500, a small heat shock factor, reflecting the fact that genes responding to the same biological stresses are regulated together. The RAN database can be used as a tool to gain insight into a particular gene by examining its coexpression partners.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Division of Bioscience and Bioinformatics, Myong Ji University, Yongin, Kyonggido 449-728, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. PLANT, CELL & ENVIRONMENT 2009; 32:1211-29. [PMID: 19389052 DOI: 10.1111/j.1365-3040.2009.01978.x] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
MapMan is a software tool that supports the visualization of profiling data sets in the context of existing knowledge. Scavenger modules generate hierarchical and essentially non-redundant gene ontologies ('mapping files'). An ImageAnnotator module visualizes the data on a gene-by-gene basis on schematic diagrams ('maps') of biological processes. The PageMan module uses the same ontologies to statistically evaluate responses at the pathway or processes level. The generic structure of MapMan also allows it to be used for transcripts, proteins, enzymes and metabolites. MapMan was developed for use with Arabidopsis, but has already been extended for use with several other species. These tools are available as downloadable and web-based versions. After providing an introduction to the scope and use of MapMan, we present a case study where MapMan is used to analyse the transcriptional response of the crop plant maize to diurnal changes and an extension of the night. We then explain how MapMan can be customized to visually and systematically compare responses in maize and Arabidopsis. These analyses illustrate how MapMan can be used to analyse and compare global transcriptional responses between phylogenetically distant species, and show that analyses at the level of functional categories are especially useful in cross-species comparisons.
Collapse
Affiliation(s)
- Björn Usadel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany.
| | | | | | | | | | | |
Collapse
|
114
|
Takano M, Inagaki N, Xie X, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci U S A 2009; 106:14705-10. [PMID: 19706555 PMCID: PMC2732857 DOI: 10.1073/pnas.0907378106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are believed to be solely responsible for red and far-red light perception, but this has never been definitively tested. To directly address this hypothesis, a phytochrome triple mutant (phyAphyBphyC) was generated in rice (Oryza sativa L. cv. Nipponbare) and its responses to red and far-red light were monitored. Since rice only has three phytochrome genes (PHYA, PHYB and PHYC), this mutant is completely lacking any phytochrome. Rice seedlings grown in the dark develop long coleoptiles while undergoing regular circumnutation. The phytochrome triple mutants also show this characteristic skotomorphogenesis, even under continuous red or far-red light. The morphology of the triple mutant seedlings grown under red or far-red light appears completely the same as etiolated seedlings, and they show no expression of the light-induced genes. This is direct evidence demonstrating that phytochromes are the sole photoreceptors for perceiving red and far-red light, at least during rice seedling establishment. Furthermore, the shape of the triple mutant plants was dramatically altered. Most remarkably, triple mutants extend their internodes even during the vegetative growth stage, which is a time during which wild-type rice plants never elongate their internodes. The triple mutants also flowered very early under long day conditions and set very few seeds due to incomplete male sterility. These data indicate that phytochromes play an important role in maximizing photosynthetic abilities during the vegetative growth stage in rice.
Collapse
Affiliation(s)
- Makoto Takano
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
115
|
Walia H, Wilson C, Ismail AM, Close TJ, Cui X. Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. BMC Genomics 2009; 10:398. [PMID: 19706179 PMCID: PMC2739230 DOI: 10.1186/1471-2164-10-398] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 08/25/2009] [Indexed: 12/02/2022] Open
Abstract
Background Rice and barley are both members of Poaceae (grass family) but have a marked difference in salt tolerance. The molecular mechanism underlying this difference was previously unexplored. This study employs a comparative genomics approach to identify analogous and contrasting gene expression patterns between rice and barley. Results A hierarchical clustering approach identified several interesting expression trajectories among rice and barley genotypes. There were no major conserved expression patterns between the two species in response to salt stress. A wheat salt-stress dataset was queried for comparison with rice and barley. Roughly one-third of the salt-stress responses of barley were conserved with wheat while overlap between wheat and rice was minimal. These results demonstrate that, at transcriptome level, rice is strikingly different compared to the more closely related barley and wheat. This apparent lack of analogous transcriptional programs in response to salt stress is further highlighted through close examination of genes associated with root growth and development. Conclusion The analysis provides support for the hypothesis that conservation of transcriptional signatures in response to environmental cues depends on the genetic similarity among the genotypes within a species, and on the phylogenetic distance between the species.
Collapse
Affiliation(s)
- Harkamal Walia
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | | | | | | | | |
Collapse
|
116
|
[Advances in study of plant miRNAs under stressed environmental conditions]. YI CHUAN = HEREDITAS 2009; 31:227-35. [PMID: 19273434 DOI: 10.3724/sp.j.1005.2009.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Biotic and abiotic stresses influence plant growth and cause great loss to crop yield. In the long course of evolution, plants have developed intricate biological mechanism to resist stressed conditions. Under various stressed conditions, not only the protein-coding genes, but also the non-protein-coding genes were induced for response. More and more researches showed that the transcripts of these non-protein-coding genes played important role in regulation of gene expression. miRNA is one of the groups in these no-coding regulatory small RNAs. Recent findings showed that in order to resist the biotic and abiotic stresses, expression of microRNA (miRNA) genes will be induced and their transcripts (miRNAs) can regulate gene expression by guiding target mRNA cleavage or translation inhibition. This paper focused on the advances of plant miRNAs research in stressed conditions, especially induced expression of miRNA and target gene regulation and its role on adaptation under stressed conditions. Then, the methods of miRNA researches in stressed environments are discussed.
Collapse
|
117
|
VESTEG MATEJ, VACULA ROSTISLAV, BUREY SUZANNE, LÖFFELHARDT WOLFGANG, DRAHOVSKÁ HANA, MARTIN WILLIAM, KRAJČOVIČ JURAJ. Expression of Nucleus-Encoded Genes for Chloroplast Proteins in the FlagellateEuglena gracilis. J Eukaryot Microbiol 2009; 56:159-66. [DOI: 10.1111/j.1550-7408.2008.00383.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
118
|
Fu SX, Cheng H, Qi C. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Mol Biol Rep 2009; 36:2375-86. [PMID: 19219639 DOI: 10.1007/s11033-009-9460-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, Arabidopsis microarray was used to analyze the gene differential expression of the immature seeds 30 days after flowering of a high oil Brassica napus, H105, whose oil content was 46.04 +/- 1.42, 53.94 +/- 1.35 and 53.09 +/- 1.35% when planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m), respectively. Transcript levels of 363 genes and 421 genes were altered twofold or more for H105 planted in Xining and Lhasa compared to that in Nanjing, respectively. Together, there were 53 common up-regulated and 42 common down-regulated expression transcripts shared by H105 planted in Xining and Lhasa compared to that in Nanjing. Some important genes, such as sucrose synthase, pyruvate kinase and 6-phosphogluconate dehydrogenase which related to sugar metabolism were identified common up-regulated in higher oil content H105. These results revealed the expressional disciplinarian of correlative genes, and provided important information of the molecular genetic mechanism of oil content difference of rapeseed. In addition, these differential expression genes could be suitable as targets for genetic improvement of seed oil content.
Collapse
Affiliation(s)
- San-Xiong Fu
- Nanjing Sub-Center (Rapeseed) of National Center of Oilseeds Crop Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | | |
Collapse
|
119
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
120
|
Rutitzky M, Ghiglione HO, Curá JA, Casal JJ, Yanovsky MJ. Comparative genomic analysis of light-regulated transcripts in the Solanaceae. BMC Genomics 2009; 10:60. [PMID: 19192291 PMCID: PMC2644711 DOI: 10.1186/1471-2164-10-60] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 02/03/2009] [Indexed: 12/18/2022] Open
Abstract
Background Plants use different light signals to adjust their growth and development to the prevailing environmental conditions. Studies in the model species Arabidopsis thaliana and rice indicate that these adjustments are mediated by large changes in the transcriptome. Here we compared transcriptional responses to light in different species of the Solanaceae to investigate common as well as species-specific changes in gene expression. Results cDNA microarrays were used to identify genes regulated by a transition from long days (LD) to short days (SD) in the leaves of potato and tobacco plants, and by phytochrome B (phyB), the photoreceptor that represses tuberization under LD in potato. We also compared transcriptional responses to photoperiod in Nicotiana tabacum Maryland Mammoth (MM), which flowers only under SD, with those of Nicotiana sylvestris, which flowers only under LD conditions. Finally, we identified genes regulated by red compared to far-red light treatments that promote germination in tomato. Conclusion Most of the genes up-regulated in LD were associated with photosynthesis, the synthesis of protective pigments and the maintenance of redox homeostasis, probably contributing to the acclimatization to seasonal changes in irradiance. Some of the photoperiodically regulated genes were the same in potato and tobacco. Others were different but belonged to similar functional categories, suggesting that conserved as well as convergent evolutionary processes are responsible for physiological adjustments to seasonal changes in the Solanaceae. A β-ZIP transcription factor whose expression correlated with the floral transition in Nicotiana species with contrasting photoperiodic responses was also regulated by photoperiod and phyB in potato, and is a candidate gene to act as a general regulator of photoperiodic responses. Finally, GIGANTEA, a gene that controls flowering time in Arabidopsis thaliana and rice, was regulated by photoperiod in the leaves of potato and tobacco and by red compared to far-light treatments that promote germination in tomato seeds, suggesting that a conserved light signaling cascade acts across developmental contexts and species.
Collapse
Affiliation(s)
- Mariana Rutitzky
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
121
|
Throude M, Bolot S, Bosio M, Pont C, Sarda X, Quraishi UM, Bourgis F, Lessard P, Rogowsky P, Ghesquiere A, Murigneux A, Charmet G, Perez P, Salse J. Structure and expression analysis of rice paleo duplications. Nucleic Acids Res 2009; 37:1248-59. [PMID: 19136467 PMCID: PMC2651813 DOI: 10.1093/nar/gkn1048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Having a well-known history of genome duplication, rice is a good model for studying structural and functional evolution of paleo duplications. Improved sequence alignment criteria were used to characterize 10 major chromosome-to-chromosome duplication relationships associated with 1440 paralogous pairs, covering 47.8% of the rice genome, with 12.6% of genes that are conserved within sister blocks. Using a micro-array experiment, a genome-wide expression map has been produced, in which 2382 genes show significant differences of expression in root, leaf and grain. By integrating both structural (1440 paralogous pairs) and functional information (2382 differentially expressed genes), we identified 115 paralogous gene pairs for which at least one copy is differentially expressed in one of the three tissues. A vast majority of the 115 paralogous gene pairs have been neofunctionalized or subfunctionalized as 88%, 89% and 96% of duplicates, respectively, expressed in grain, leaf and root show distinct expression patterns. On the basis of a Gene Ontology analysis, we have identified and characterized the gene families that have been structurally and functionally preferentially retained in the duplication showing that the vast majority (>85%) of duplicated have been either lost or have been subfunctionalized or neofunctionalized during 50–70 million years of evolution.
Collapse
Affiliation(s)
- Mickael Throude
- UMR 1095 INRA/UBP, Génétique, Diversité et Ecophysiologie des Céréales (GDEC), Domaine de Crouelle, 234, 63100 Clermont Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Hu W, Su YS, Lagarias JC. A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks. MOLECULAR PLANT 2009; 2:166-82. [PMID: 19529817 PMCID: PMC2639728 DOI: 10.1093/mp/ssn086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/08/2008] [Indexed: 05/20/2023]
Abstract
Dominant gain-of-function alleles of Arabidopsis phytochrome B were recently shown to confer light-independent, constitutive photomorphogenic (cop) phenotypes to transgenic plants (Su and Lagarias, 2007). In the present study, comparative transcription profiling experiments were performed to assess whether the pattern of gene expression regulated by these alleles accurately reflects the process of photomorphogenesis in wild-type Arabidopsis. Whole-genome transcription profiles of dark-grown phyAphyB seedlings expressing the Y276H mutant of phyB (YHB) revealed that YHB reprograms about 13% of the Arabidopsis transcriptome in a light-independent manner. The YHB-regulated transcriptome proved qualitatively similar to but quantitatively greater than those of wild-type seedlings grown under 15 or 50 micromol m(-2) m(-1) continuous red light (Rc). Among the 2977 genes statistically significant two-fold (SSTF) regulated by YHB in the absence of light include those encoding components of the photosynthetic apparatus, tetrapyrrole/pigment biosynthetic pathways, and early light-responsive signaling factors. Approximately 80% of genes SSTF regulated by Rc were also YHB-regulated. Expression of a notable subset of 346 YHB-regulated genes proved to be strongly attenuated by Rc, indicating compensating regulation by phyC-E and/or other Rc-dependent processes. Since the majority of these 346 genes are regulated by the circadian clock, these results suggest that phyA- and phyB-independent light signaling pathway(s) strongly influence clock output. Together with the unique plastid morphology of dark-grown YHB seedlings, these analyses indicate that the YHB mutant induces constitutive photomorphogenesis via faithful reconstruction of phyB signaling pathways in a light-independent fashion.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Shin Su
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- Present address: Carnegie Institution of Washington, Department of Plant Biology, Stanford, CA 94305, USA
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- To whom correspondence should be addressed. E-mail , fax +1-530-752-3085
| |
Collapse
|
123
|
Montgomery BL. Right place, right time: Spatiotemporal light regulation of plant growth and development. PLANT SIGNALING & BEHAVIOR 2008; 3:1053-60. [PMID: 19513238 PMCID: PMC2634459 DOI: 10.4161/psb.3.12.6857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 05/21/2023]
Abstract
Recent advances in our understanding of the roles of photoreceptors in light-dependent regulation of plant growth and development have been rapid and significant. Developments have been reported for numerous plant photoreceptor signaling pathways, yet researchers have made the most progress in increasing our comprehension of the roles of phytochrome family members, as well as the intracellular roles of phytochromes and phytochrome-interacting proteins in light-dependent signaling. An understudied, but vitally important, area of phytochrome biology centers on the roles phytochromes play in intercellular and interorgan signaling at the molecular level that results in the coordination of growth responses between distinct tissues and organs. This frontier of research into the spatiotemporal roles of phytochromes, and more generally plant photoreceptors, which is only beginning to be investigated and understood at the molecular genetic level, has a rich history of physiological data.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, Michigan USA
| |
Collapse
|
124
|
Sasidharan R, Chinnappa CC, Voesenek LACJ, Pierik R. The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. PLANT PHYSIOLOGY 2008; 4:528-9. [PMID: 18768908 PMCID: PMC2577261 DOI: 10.1104/pp.108.125518] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 08/26/2008] [Indexed: 05/18/2023]
Abstract
Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
125
|
Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, Seo YS, Shultz M, Ouyang S, Yuan Q, Frank BC, Ly E, Zheng L, Jia Y, Hsia AP, An K, Chou HH, Rocke D, Lee GC, Schnable PS, An G, Buell CR, Ronald PC. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 2008; 3:e3337. [PMID: 18836531 PMCID: PMC2556097 DOI: 10.1371/journal.pone.0003337] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/11/2008] [Indexed: 01/04/2023] Open
Abstract
Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Christopher Dardick
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, West Virginia, United States of America
| | - Laura E. Bartley
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Peijian Cao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jirapa Phetsom
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Young-Su Seo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Michael Shultz
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shu Ouyang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Qiaoping Yuan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bryan C. Frank
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eugene Ly
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Li Zheng
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Jia
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - An-Ping Hsia
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Kyungsook An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hui-Hsien Chou
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - David Rocke
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Geun Cheol Lee
- College of Business Administration, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Patrick S. Schnable
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Gynheung An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - C. Robin Buell
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
126
|
Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. MOLECULAR PLANT 2008; 1:720-31. [PMID: 19825576 DOI: 10.1093/mp/ssn022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heterosis, or hybrid vigor, refers to the phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance. Although a century-long history of research has generated several hypotheses regarding the genetic basis of heterosis, the molecular mechanisms underlying heterosis and heterotic gene expression remain elusive. Here, we report a genome-wide gene expression analysis of two heterotic crosses in rice, taking advantage of its fully sequenced genomes. Approximately 7-9% of the genes were differentially expressed in the seedling shoots from two sets of heterotic crosses, including many transcription factor genes, and exhibited multiple modes of gene action. Comparison of the putative promoter regions of the ortholog genes between inbred parents revealed extensive sequence variation, particularly small insertions/deletions (INDELs), many of which result in the formation/disruption of putative cis-regulatory elements. Together, these results suggest that a combinatorial interplay between expression of transcription factors and polymorphic promoter cis-regulatory elements in the hybrids is one plausible molecular mechanism underlying heterotic gene action and thus heterosis in rice.
Collapse
Affiliation(s)
- Hui-Yong Zhang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Jung KH, Lee J, Dardick C, Seo YS, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, Cho YJ, Lee GC, Lee Y, An G, Ronald PC. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet 2008; 4:e1000164. [PMID: 18725934 PMCID: PMC2515340 DOI: 10.1371/journal.pgen.1000164] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/15/2008] [Indexed: 12/29/2022] Open
Abstract
Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jinwon Lee
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chris Dardick
- The Appalachian Fruit Research Station, USDA-ARS, Kearneysville, West Virginia, United States of America
| | - Young-Su Seo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Peijian Cao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jirapa Phetsom
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xia Xu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shu Ouyang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kyungsook An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yun-Ja Cho
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Geun-Cheol Lee
- College of Business Administration, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Yoosook Lee
- School of Veterinary Medicine, Department of Pathology, Immunology and Microbiology, University of California Davis, Davis, California, United States of America
| | - Gynheung An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
128
|
Guo L, Zhou J, Elling AA, Charron JBF, Deng XW. Histone modifications and expression of light-regulated genes in Arabidopsis are cooperatively influenced by changing light conditions. PLANT PHYSIOLOGY 2008; 147:2070-83. [PMID: 18550682 PMCID: PMC2492627 DOI: 10.1104/pp.108.122929] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 06/03/2008] [Indexed: 05/19/2023]
Abstract
Here, we analyzed the effects of light regulation on four selected histone modifications (H3K4me3, H3K9ac, H3K9me2, and H3K27me3) and the relationship of these histone modifications with the expression of representative light-regulated genes. We observed that the histone modifications examined and gene transcription were cooperatively regulated in response to changing light environments. Using H3K9ac as an example, our analysis indicated that histone modification patterns are set up very early and are relatively stable during Arabidopsis (Arabidopsis thaliana) seedling development. Distinct photoreceptor systems are responsible for mediating the effects of different light qualities on histone modifications. Moreover, we found that light regulation of gene-specific histone modifications involved the known photomorphogenesis-related proteolytic system defined by the pleiotropic CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETOLIATED proteins and histone modification enzymes (such as HD1). Furthermore, our data suggest that light-regulated changes in histone modifications might be an intricate part of light-controlled gene transcription. Thus, it is possible that variations in histone modifications are an important physiological component of plant responses to changing light environments.
Collapse
Affiliation(s)
- Lan Guo
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
129
|
Garcia ME, Lynch T, Peeters J, Snowden C, Finkelstein R. A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. PLANT MOLECULAR BIOLOGY 2008; 67:643-58. [PMID: 18484180 DOI: 10.1007/s11103-008-9344-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 05/05/2008] [Indexed: 05/23/2023]
Abstract
The transcription factor ABA-Insensitive5 (ABI5) is a key regulator of ABA signaling and stress response in Arabidopsis seeds and seedlings. Potential ABI5-interacting proteins were identified by a yeast two-hybrid screen; the most prevalent interactors were a family of four highly conserved plant-specific proteins with no domains of known function, but homology to a previously characterized ABI Five Binding Protein (AFP). This study compares expression and function of the family members. The AFPs are induced by ABA and/or dehydrating stresses in young seedlings, but the developmental timing of their induction differs. Mutations in AFP1 or AFP2 result in increased sensitivity to ABA and salt, whereas afp4 mutants are mildly ABA-resistant. AFP2, like AFP1, acts epistatically to ABI5. Reduced germination or seedling growth of the mutants under stress correlates with a higher level of ABI5 protein when compared to wild-type seedlings, but it is not clear whether this is a cause or effect of the reduced growth. Although both ABI5 and the AFPs are ABA-induced, the ABI5:AFP ratio increases at high ABA concentrations, maintaining growth inhibition under severe stress. An AFP2:GFP fusion, which complements the afp2 mutation, is nuclear-localized in seedlings exposed to stress, but becomes delocalized before being degraded following removal of stress. The AFPs may also interact to varying extents with many ABI5-related bZIP transcription factors. This study suggests that germination and seedling growth are regulated by antagonistic interactions among at least two functionally redundant families, the AFPs and the ABI5-related proteins, providing a mechanism to fine-tune seedling stress responses.
Collapse
Affiliation(s)
- Mary Emily Garcia
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
130
|
Xiang D, Datla R, Li F, Cutler A, Malik MR, Krochko JE, Sharma N, Fobert P, Georges F, Selvaraj G, Tsang E, Klassen D, Koh C, Deneault JS, Nantel A, Nowak J, Keller W, Bekkaoui F. Development of a Brassica seed cDNA microarray. Genome 2008; 51:236-42. [PMID: 18356959 DOI: 10.1139/g07-115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brassica species represent several important crops including canola (Brassica napus). Understanding of genetic elements that contribute to seed-associated functions will impact future improvements in the canola crop. Brassica species share a very close taxonomic and molecular relationship with Arabidopsis thaliana. However, there are several subtle but distinct seed-associated agronomic characteristics that differ among the oil seed crop species. To address these, we have generated 67,535 ESTs predominately from Brassica seeds, analyzed these sequences, and identified 10,642 unigenes for the preparation of a targeted seed cDNA array. A set of 10,642 PCR primer pairs was designed and corresponding amplicons were produced for spotting, along with relevant controls. Critical quality control tests produced satisfactory results for use of this microarray in biological experiments. The microarray was also tested with specific RNA targets from embryos, germinating seeds, and leaf tissues. The hybridizations, signal intensities, and overall quality of these slides were consistent and reproducible. Additionally, there are 429 ESTs represented on the array that show no homology with any A. thaliana annotated gene or any gene in the Brassica genome databases or other plant databases; however, all of these probes hybridized to B. napus transcripts, indicating that the array also will be useful in defining expression patterns for genes so far unique to Brassica species.
Collapse
Affiliation(s)
- Daoquan Xiang
- Plant Biotechnology Institute, National Research Council, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Nuruzzaman M, Gupta M, Zhang C, Wang L, Xie W, Xiong L, Zhang Q, Lian X. Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol Genet Genomics 2008; 280:139-51. [PMID: 18491141 DOI: 10.1007/s00438-008-0351-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 05/03/2008] [Indexed: 01/15/2023]
Abstract
Thioredoxin (Trx) proteins play important biological functions in cells by changing redox via thioldisulfide exchange. This system is especially widespread in plants. Through database search, we identified 30 potential Trx protein-encoding genes (OsTrx) in rice (Oryza sativa L.). An analysis of the complete set of OsTrx proteins is presented here, including chromosomal location, conserved motifs, domain duplication, and phylogenetic relationships. Our findings suggest that the expansion of the Trx gene family in rice, in large part, occurred due to gene duplication. A comprehensive expression profile of Trx genes family was investigated by analyzing the signal data of this family extracted from the whole genome microarray analysis of Minghui 63 and Zhenshan 97, two indica parents, and their hybrid Shanyou 63, using 27 different tissues representing the entire life cycle of rice. Results revealed specific expression of some members at germination transition as well as the 3-leaf stage during the vegetative growth phase of rice. OsTrx genes were also found to be differentially up- or down-regulated in rice seedlings subjected to treatments of phytohormones and light/dark conditions. The expression levels of the OsTrx genes in the different tissues and under different treatments were also checked by RT-PCR analysis. The identification of OsTrx genes showing differential expression in specific tissues among different genotypes or in response to different environmental cues could provide a new avenue for functional analyses in rice.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Paul LK, Khurana JP. Phytochrome-mediated light signaling in plants: emerging trends. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:9-22. [PMID: 23572870 PMCID: PMC3550659 DOI: 10.1007/s12298-008-0002-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytochromes maximally absorb in the red and far-red region of the solar spectrum and play a key role in regulating plant growth and development. Our understanding of the phytochrome-mediated light perception and signal transduction has improved dramatically during the past decade. However, some recent findings challenge a few of the well-accepted earlier models regarding phytochrome structure and function. Identification of a serine/threonine specific protein phosphatase 2A (FyPP) and a type 5 protein phosphatases (PAPP5), and the phytochrome-mediated phosphorylation of phytochrome interacting factor 3 (PIF3), auxin inducible genes (Aux/IAA) and cryptochromes have opened new vistas in phytochrome biology. Importantly, the significance of proteolysis and chromatin-remodeling pathways in phytochrome signaling is becoming more apparent. The emerging concept of phytochrome as a master regulator in orchestrating downstream signaling components has become more convincing with the advent of global expression profiling of genes. Upcoming data also provide fresh insights into the nuclear localization, speckle formation, nucleo-cytoplasmic partitioning and organ-specificity aspects of phytochromes. This article highlights recent advances in phytochrome biology with emphasis on the elucidation of novel components of light signal transduction.
Collapse
Affiliation(s)
- Laju K. Paul
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Jitendra P. Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
133
|
Hwang YS, Quail PH. Phytochrome-Regulated PIL1 Derepression is Developmentally Modulated. ACTA ACUST UNITED AC 2008; 49:501-11. [DOI: 10.1093/pcp/pcn024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
134
|
Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 2008; 451:475-9. [PMID: 18216856 DOI: 10.1038/nature06448] [Citation(s) in RCA: 767] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/01/2007] [Indexed: 11/09/2022]
Abstract
Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway, but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression. However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein's ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.
Collapse
Affiliation(s)
- Suhua Feng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. PLANT PHYSIOLOGY 2008. [PMID: 18065552 DOI: 10.1104/pp.107.11282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The basic leucine (Leu) zipper (bZIP) proteins compose a family of transcriptional regulators present exclusively in eukaryotes. The bZIP proteins characteristically harbor a bZIP domain composed of two structural features: a DNA-binding basic region and the Leu zipper dimerization region. They have been shown to regulate diverse plant-specific phenomena, including seed maturation and germination, floral induction and development, and photomorphogenesis, and are also involved in stress and hormone signaling. We have identified 89 bZIP transcription factor-encoding genes in the rice (Oryza sativa) genome. Their chromosomal distribution and sequence analyses suggest that the bZIP transcription factor family has evolved via gene duplication. The phylogenetic relationship among rice bZIP domains as well as with bZIP domains from other plant bZIP factors suggests that homologous bZIP domains exist in plants. Similar intron/exon structural patterns were observed in the basic and hinge regions of their bZIP domains. Detailed sequence analysis has been done to identify additional conserved motifs outside the bZIP domain and to predict their DNA-binding site specificity as well as dimerization properties, which has helped classify them into different groups and subfamilies, respectively. Expression of bZIP transcription factor-encoding genes has been analyzed by full-length cDNA and expressed sequence tag-based expression profiling. This expression profiling was complemented by microarray analysis. The results indicate specific or coexpression patterns of rice bZIP transcription factors starting from floral transition to various stages of panicle and seed development. bZIP transcription factor-encoding genes in rice also displayed differential expression patterns in rice seedlings in response to abiotic stress and light irradiation. An effort has been made to link the structure and expression pattern of bZIP transcription factor-encoding genes in rice to their function, based on the information obtained from our analyses and earlier known results. This information will be important for functional characterization of bZIP transcription factors in rice.
Collapse
Affiliation(s)
- Aashima Nijhawan
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | | | |
Collapse
|
136
|
Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 2008; 9:91-101. [DOI: 10.1038/nrg2286] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
137
|
Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. PLANT PHYSIOLOGY 2008; 146:333-50. [PMID: 18065552 PMCID: PMC2245831 DOI: 10.1104/pp.107.112821] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/28/2007] [Indexed: 05/18/2023]
Abstract
The basic leucine (Leu) zipper (bZIP) proteins compose a family of transcriptional regulators present exclusively in eukaryotes. The bZIP proteins characteristically harbor a bZIP domain composed of two structural features: a DNA-binding basic region and the Leu zipper dimerization region. They have been shown to regulate diverse plant-specific phenomena, including seed maturation and germination, floral induction and development, and photomorphogenesis, and are also involved in stress and hormone signaling. We have identified 89 bZIP transcription factor-encoding genes in the rice (Oryza sativa) genome. Their chromosomal distribution and sequence analyses suggest that the bZIP transcription factor family has evolved via gene duplication. The phylogenetic relationship among rice bZIP domains as well as with bZIP domains from other plant bZIP factors suggests that homologous bZIP domains exist in plants. Similar intron/exon structural patterns were observed in the basic and hinge regions of their bZIP domains. Detailed sequence analysis has been done to identify additional conserved motifs outside the bZIP domain and to predict their DNA-binding site specificity as well as dimerization properties, which has helped classify them into different groups and subfamilies, respectively. Expression of bZIP transcription factor-encoding genes has been analyzed by full-length cDNA and expressed sequence tag-based expression profiling. This expression profiling was complemented by microarray analysis. The results indicate specific or coexpression patterns of rice bZIP transcription factors starting from floral transition to various stages of panicle and seed development. bZIP transcription factor-encoding genes in rice also displayed differential expression patterns in rice seedlings in response to abiotic stress and light irradiation. An effort has been made to link the structure and expression pattern of bZIP transcription factor-encoding genes in rice to their function, based on the information obtained from our analyses and earlier known results. This information will be important for functional characterization of bZIP transcription factors in rice.
Collapse
Affiliation(s)
- Aashima Nijhawan
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | | | |
Collapse
|
138
|
Shen Y, Khanna R, Carle CM, Quail PH. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. PLANT PHYSIOLOGY 2007; 145:1043-51. [PMID: 17827270 PMCID: PMC2048774 DOI: 10.1104/pp.107.105601] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The phytochrome (phy) family of sensory photoreceptors (phyA-phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcription factor family, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Previous evidence indicates that the binding of the photoactivated photoreceptor molecule to PIF3 induces rapid phosphorylation of the transcription factor in the cell prior to its degradation via the ubiqitin-proteosome system. To investigate whether this apparent primary signaling mechanism can be generalized to other phy-interacting partners, we have examined the molecular behavior of a second related phy-interacting member of the basic helix-loop-helix family, PIF5, during early deetiolation, immediately following initial exposure of dark-grown seedlings to light. The data show that red light induces very rapid phosphorylation and subsequent degradation (t(1/2) < 5 min) of PIF5 via the proteosome system upon irradiation. Photobiological and genetic evidence indicates that the photoactivated phy molecule acts within 60 s to induce this phosphorylation of PIF5, and that phyA and phyB redundantly dominate this process, with phyD playing an apparently minor role. Collectively, the data support the proposal that the rapid phy-induced phosphorylation of PIF3 and PIF5 may represent the biochemical mechanism of primary signal transfer from photoactivated photoreceptor to binding partner, and that phyA and phyB (and possibly phyD) may signal to multiple, shared partners utilizing this common mechanism.
Collapse
Affiliation(s)
- Yu Shen
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
139
|
Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu X, Reid JB, Lin C. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. PLANT PHYSIOLOGY 2007; 145:106-18. [PMID: 17644628 PMCID: PMC1976579 DOI: 10.1104/pp.107.099838] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 06/13/2007] [Indexed: 05/16/2023]
Abstract
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA(4) in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA(4) content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Bioenergy and Biomaterial Research Center, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Jiao Y, Deng XW. A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol 2007; 8:R28. [PMID: 17326825 PMCID: PMC1852403 DOI: 10.1186/gb-2007-8-2-r28] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/18/2006] [Accepted: 02/27/2007] [Indexed: 12/20/2022] Open
Abstract
A genome-wide survey of the transcriptional activity of TE-related genes that were associated with fifteen developmental stages and stress conditions revealed clear, albeit low, general transcription of TE-related genes. Background Transposable element (TE)-related genes comprise a significant portion of the gene catalog of grasses, although their functions are insufficiently characterized. The recent availability of TE-related gene annotation from the complete genome sequence of rice (Oryza sativa) has created an opportunity to conduct a comprehensive evaluation of the transcriptional activities of these potentially mobile elements and their related genes. Results We conducted a genome-wide survey of the transcriptional activity of TE-related genes associated with 15 developmental stages and stress conditions. This dataset was obtained using a microarray encompassing 2,191 unique TE-related rice genes, which were represented by oligonucleotide probes that were free from cross-hybridization. We found that TE-related genes exhibit much lower transcriptional activities than do non-TE-related genes, although representative transcripts were detected from all superfamilies of both type I and II TE-related genes. The strongest transcriptional activities were detected in TE-related genes from among the MULE and CACTA superfamilies. Phylogenetic analyses suggest that domesticated TE-related genes tend to form clades with active transcription. In addition, chromatin-level regulations through histone and DNA modifications, as well as enrichment of certain cis elements in the promoters, appear to contribute to the transcriptional activation of representative TE-related genes. Conclusion Our findings reveal clear, albeit low, general transcription of TE-related genes. In combination with phylogenetic analysis, transcriptional analysis has the potential to lead to the identification of domesticated TEs with adapted host functions.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
141
|
Koutsos AC, Blass C, Meister S, Schmidt S, MacCallum RM, Soares MB, Collins FH, Benes V, Zdobnov E, Kafatos FC, Christophides GK. Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfly Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:11304-9. [PMID: 17563388 PMCID: PMC2040894 DOI: 10.1073/pnas.0703988104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The African mosquito Anopheles gambiae is the major vector of human malaria. We report a genome-wide survey of mosquito gene expression profiles clustered temporally into developmental programs and spatially into adult tissue-specific patterns. Global expression analysis shows that genes that belong to related functional categories or that encode the same or functionally linked protein domains are associated with characteristic developmental programs or tissue patterns. Comparative analysis of our data together with data published from Drosophila melanogaster reveal an overall strong and positive correlation of developmental expression between orthologous genes. The degree of correlation varies, depending on association of orthologs with certain developmental programs or functional groups. Interestingly, the similarity of gene expression is not correlated with the coding sequence similarity of orthologs, indicating that expression profiles and coding sequences evolve independently. In addition to providing a comprehensive view of temporal and spatial gene expression during the A. gambiae life cycle, this large-scale comparative transcriptomic analysis has detected important evolutionary features of insect transcriptomes.
Collapse
Affiliation(s)
- Anastasios C. Koutsos
- *Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Claudia Blass
- *Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stephan Meister
- *Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sabine Schmidt
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Robert M. MacCallum
- *Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | | | - Frank H. Collins
- Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556; and
| | - Vladimir Benes
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Evgeny Zdobnov
- **Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Fotis C. Kafatos
- *Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
- To whom correspondence may be addressed at:
Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, Room 6167, Sir Alexander Fleming Building, SW7 2AZ London, United Kingdom. E-mail: or
| | - George K. Christophides
- *Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
- To whom correspondence may be addressed at:
Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, Room 6167, Sir Alexander Fleming Building, SW7 2AZ London, United Kingdom. E-mail: or
| |
Collapse
|
142
|
Lu Y, He X, Zhong S. Cross-species microarray analysis with the OSCAR system suggests an INSR->Pax6->NQO1 neuro-protective pathway in aging and Alzheimer's disease. Nucleic Acids Res 2007; 35:W105-14. [PMID: 17545194 PMCID: PMC1933158 DOI: 10.1093/nar/gkm408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OSCAR is a web platform for cluster and cross-species analysis of microarray data. It provides a comprehensive but friendly environment to both users and algorithm developers. For users, OSCAR provides cluster tools for both single and multiple species data, together with interactive analysis features. For single species data, OSCAR currently provides Hierarchical Clustering, K-means, partition around medoids (PAM), Self-Organizing Map (SOM), Tight Clustering and a novel algorithm called ‘Consensus Tight-clustering’. The new Consensus Tight-clustering algorithm delivers robust gene clusters and its result is more resistant to false positives than other state-of-the-art algorithms. For cross-species data analysis, OSCAR provides two novel computational tools: ‘coherentCluster’, ‘coherentSubset’ and a novel visualization tool: ‘comparative heatmap’. Applying the coherentCluster algorithm to human and fly aging data, we identified several coherent clusters of genes, which share co-regulation patterns that are highly correlated with the aging process in both of the two species. One coherent cluster suggests insulin receptor (INSR) may regulate Pax6 in both species and across different tissues. Further analysis with human brain expression and pathological data suggests an INSR->Pax6->quinone oxidoreductase (NQO1)->detoxification neuro-protective pathway might be present in aging or diseased brain. For algorithm developers, OSCAR is a plug-and-play platform. With little effort, developers can plug their own algorithms into the OSCAR server without revealing the source codes, which will equip their command line executables with user-friendly interface and interactive analysis capability. In summary, OSCAR initiates an open platform for development and application of clustering and cross-species analysis programs. OSCAR stands for an open system for cluster analysis of microarray data. It is available at: http://biocomp.bioen.uiuc.edu/oscar
Collapse
Affiliation(s)
- Yue Lu
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
| | - Xin He
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
| | - Sheng Zhong
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
- *To whom correspondence should be addressed.
| |
Collapse
|
143
|
Wu S, Yu Z, Wang F, Li W, Ye C, Li J, Tang J, Ding J, Zhao J, Wang B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol Biotechnol 2007; 36:102-12. [PMID: 17914189 DOI: 10.1007/s12033-007-0009-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/30/1999] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-L-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering.
Collapse
Affiliation(s)
- Suowei Wu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Zhou X, Wang G, Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 2007; 3:103. [PMID: 17437028 PMCID: PMC1865585 DOI: 10.1038/msb4100143] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/11/2007] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in post-transcriptional gene regulation. In plants, mature miRNAs pair with complementary sites on mRNAs and subsequently lead to cleavage and degradation of the mRNAs. Many miRNAs target mRNAs that encode transcription factors; therefore, they regulate the expression of many downstream genes. In this study, we carry out a survey of Arabidopsis microRNA genes in response to UV-B radiation, an important adverse abiotic stress. We develop a novel computational approach to identify microRNA genes induced by UV-B radiation and characterize their functions in regulating gene expression. We report that in A. thaliana, 21 microRNA genes in 11 microRNA families are upregulated under UV-B stress condition. We also discuss putative transcriptional downregulation pathways triggered by the induction of these microRNA genes. Moreover, our approach can be directly applied to miRNAs responding to other abiotic and biotic stresses and extended to miRNAs in other plants and metazoans.
Collapse
Affiliation(s)
- Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Guandong Wang
- Department of Computer Science and Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Genetics, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Computer Science and Engineering, Department of Genetics, Washington University in Saint Louis, Saint Louis, MO 63130-4899, USA. Tel.: +1 314 935 8788; Fax: +1 314 935 7302; E-mail:
| |
Collapse
|
145
|
Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. PLANT PHYSIOLOGY 2007; 143:1467-83. [PMID: 17293439 PMCID: PMC1851844 DOI: 10.1104/pp.106.091900] [Citation(s) in RCA: 486] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
F-box proteins constitute a large family in eukaryotes and are characterized by a conserved F-box motif (approximately 40 amino acids). As components of the Skp1p-cullin-F-box complex, F-box proteins are critical for the controlled degradation of cellular proteins. We have identified 687 potential F-box proteins in rice (Oryza sativa), the model monocotyledonous plant, by a reiterative database search. Computational analysis revealed the presence of several other functional domains, including leucine-rich repeats, kelch repeats, F-box associated domain, domain of unknown function, and tubby domain in F-box proteins. Based upon their domain composition, they have been classified into 10 subfamilies. Several putative novel conserved motifs have been identified in F-box proteins, which do not contain any other known functional domain. An analysis of a complete set of F-box proteins in rice is presented, including classification, chromosomal location, conserved motifs, and phylogenetic relationship. It appears that the expansion of F-box family in rice, in large part, might have occurred due to localized gene duplications. Furthermore, comprehensive digital expression analysis of F-box protein-encoding genes has been complemented with microarray analysis. The results reveal specific and/or overlapping expression of rice F-box protein-encoding genes during floral transition as well as panicle and seed development. At least 43 F-box protein-encoding genes have been found to be differentially expressed in rice seedlings subjected to different abiotic stress conditions. The expression of several F-box protein-encoding genes is also influenced by light. The structure and function of F-box proteins in plants is discussed in light of these results and the published information. These data will be useful for prioritization of F-box proteins for functional validation in rice.
Collapse
Affiliation(s)
- Mukesh Jain
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110 021, India
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Plants have evolved complex and sophisticated transcriptional networks that mediate developmental changes in response to light. These light-regulated processes include seedling photomorphogenesis, seed germination and the shade-avoidance and photoperiod responses. Understanding the components and hierarchical structure of the transcriptional networks that are activated during these processes has long been of great interest to plant scientists. Traditional genetic and molecular approaches have proved powerful in identifying key regulatory factors and their positions within these networks. Recent genomic studies have further revealed that light induces massive reprogramming of the plant transcriptome, and that the early light-responsive genes are enriched in transcription factors. These combined approaches provide new insights into light-regulated transcriptional networks.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular and Developmental Biology, 165 Prospect Street, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | |
Collapse
|
147
|
Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. PLANT MOLECULAR BIOLOGY 2007; 63:591-608. [PMID: 17225073 PMCID: PMC1805039 DOI: 10.1007/s11103-006-9111-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Accepted: 11/03/2006] [Indexed: 05/13/2023]
Abstract
To elucidate genome-level responses to drought and high-salinity stress in rice, a 70 mer oligomer microarray covering 36,926 unique genes or gene models was used to profile genome expression changes in rice shoot, flag leaf and panicle under drought or high-salinity conditions. While patterns of gene expression in response to drought or high-salinity stress within a particular organ type showed significant overlap, comparison of expression profiles among different organs showed largely organ-specific patterns of regulation. Moreover, both stresses appear to alter the expression patterns of a significant number of genes involved in transcription and cell signaling in a largely organ-specific manner. The promoter regions of genes induced by both stresses or induced by one stress in more than one organ types possess relative enrichment of two cis-elements (ABRE core and DRE core) known to be associated with water stress. An initial computational analysis indicated that novel promoter motifs are present in the promoters of genes involved in rehydration after drought. This analysis suggested that rice might possess a mechanism that actively detects rehydration and facilitates rapid recovery. Overall, our data supports a notion that organ-specific gene regulation in response to the two abiotic stresses may primarily be mediated by organ-specific transcription responses.
Collapse
Affiliation(s)
- Junli Zhou
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| | - Xiangfeng Wang
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing Genomics Institute, Beijing, 101300 People’s Republic of China
| | - Yuling Jiao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| | - Yonghua Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province People’s Republic of China
| | - Xigang Liu
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
| | - Kun He
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| | - Chen Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing Genomics Institute, Beijing, 101300 People’s Republic of China
| | - Ligeng Ma
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
| | - Jian Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing Genomics Institute, Beijing, 101300 People’s Republic of China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province People’s Republic of China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province People’s Republic of China
| | - Liumin Fan
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
| | - Xing Wang Deng
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, 100871 People’s Republic of China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206 People’s Republic of China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| |
Collapse
|
148
|
Shin J, Park E, Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:981-94. [PMID: 17319847 DOI: 10.1111/j.1365-313x.2006.03021.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phytochromes are red/far-red light receptors that regulate various light responses by initiating the transcriptional cascades responsible for changing the expression patterns of 10-30% of the entire plant transcriptome. Several transcription factors that are thought to participate in this process have been identified, but the functional relationships among them have not yet been fully elucidated. Here we investigated the functional relationship between two such transcription factors, PIF3 and HY5, and their effects on anthocyanin biosynthesis. Our results revealed that PIF3 and HY5 do not regulate each other at either the transcriptional or the protein levels in continuous light conditions, suggesting that they are not directly linked within phytochrome-mediated signaling. We found that both PIF3 and HY5 positively regulate anthocyanin biosynthesis by activating the transcription of the same anthocyanin biosynthetic genes, but the positive effects of PIF3 required functional HY5. Chromatin immunoprecipitation analyses indicated that both PIF3 and HY5 regulate anthocyanin biosynthetic gene expression by directly binding to different regions of the gene promoters in vivo. Additional experiments revealed that PIF3 bound the promoters regardless of light and HY5. Collectively, these data show that PIF3 and HY5 regulate anthocyanin biosynthesis by simultaneously binding anthocyanin biosynthetic gene promoters at separate sequence elements.
Collapse
Affiliation(s)
- Jieun Shin
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | |
Collapse
|
149
|
Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S. Proteome dynamics during plastid differentiation in rice. PLANT PHYSIOLOGY 2007; 143:912-23. [PMID: 17189339 PMCID: PMC1803725 DOI: 10.1104/pp.106.090738] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch).
Collapse
Affiliation(s)
- Torsten Kleffmann
- Institute of Plant Sciences, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
150
|
Mathews S. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 2006; 15:3483-503. [PMID: 17032252 DOI: 10.1111/j.1365-294x.2006.03051.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phytochromes are photoreceptors that provide plants with circadian, seasonal, and positional information critical for the control of germination, seedling development, shade avoidance, reproduction, dormancy, and sleep movements. Phytochromes are unique among photoreceptors in their capacity to interconvert between a red-absorbing form (absorption maximum of approximately 660 nm) and a far-red absorbing form (absorption maximum of approximately 730 nm), which occur in a dynamic equilibrium within plant cells, corresponding to the proportions of red and far-red energy in ambient light. Because pigments in stems and leaves absorb wavelengths below about 700 nm, this provides plants with an elegant system for detecting their position relative to other plants, with which the plants compete for light. Certain aspects of phytochrome-mediated development outside of flowering plants are strikingly similar to those that have been characterized in Arabidopsis thaliana and other angiosperms. However, early diverging land plants have fewer distinct phytochrome gene lineages, suggesting that both diversification and subfunctionalization have been important in the evolution of the phytochrome gene family. There is evidence that subfunctionalization proceeded by the partitioning among paralogues of photosensory specificity, physiological response modes, and light-regulated gene expression and protein stability. Parallel events of duplication and functional divergence may have coincided with the evolution of canopy shade and the increasing complexity of the light environment. Within angiosperms, patterns of functional divergence are clade-specific and the roles of phytochromes in A. thaliana change across environments, attesting to the evolutionary flexibility and contemporaneous plasticity of phytochrome signalling in the control of development.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|