101
|
Gani U, Sharma P, Tiwari H, Nautiyal AK, Kundan M, Wajid MA, Kesari R, Nargotra A, Misra P. Comprehensive genome-wide identification, characterization, and expression profiling of MATE gene family in Nicotiana tabacum. Gene 2021; 783:145554. [PMID: 33705813 DOI: 10.1016/j.gene.2021.145554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
The transporters belonging to the MATE family are involved in the transportation of diverse ligands, including metal ions and small organic molecules, and, therefore, play an important role in plant biology. Our genome-wide analysis led to the identification of 138 MATE genes in N. tabacum, which were grouped into four major phylogenetic clades. The expression of several NtMATE genes was reported to be differential in different tissues, namely young leaf, mature leaf, stem, root, and mature flower. The upstream regions of the NtMATE genes were predicted to contain several cis-acting elements associated with hormonal, developmental, and stress responses. Some of the genes were found to display induced expression following methyl jasmonate treatment. The co-expression analysis revealed 126 candidate transcription factor genes that might be involved in the transcriptional regulation of 21 NtMATE genes. Certain MATE genes (NtMATE81, NtMATE82, NtMATE88, and NtMATE89) were predicted to be targeted by micro RNAs (nta-miR167a, nta-miR167b, nta-miR167c, nta-miR167d and nta-miR167e). The computational analysis of MATE transporters provided insights into the key amino acid residues involved in the binding of the alkaloids. Further, the putative function of some of the NtMATE transporters was also revealed. The present study develops a solid foundation for the functional characterization of MATE transporter genes in N. tabacum.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Sharma
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harshita Tiwari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maridul Kundan
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mir Abdul Wajid
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi Kesari
- Department of Plant Breeding and Genetics, Bhola Paswan Shastri Agricultural College, Purnea, Bihar 854302, India
| | - Amit Nargotra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Prashant Misra
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
102
|
Huang Y, He G, Tian W, Li D, Meng L, Wu D, He T. Genome-Wide Identification of MATE Gene Family in Potato ( Solanum tuberosum L.) and Expression Analysis in Heavy Metal Stress. Front Genet 2021; 12:650500. [PMID: 34127928 PMCID: PMC8196238 DOI: 10.3389/fgene.2021.650500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 01/16/2023] Open
Abstract
A genome-wide identification and expression analysis of multidrug and toxic compound extrusion (MATE) gene family in potato was carried out to explore the response of MATE proteins to heavy meta stress. In this study, we identified 64 MATE genes from potato genome, which are located on 12 chromosomes, and are divided into I–IV subfamilies based on phylogenetic analysis. According to their order of appearance on the chromosomes, they were named from StMATE1–64. Subcellular location prediction showed that 98% of them are located on the plasma membrane as transporters. Synteny analysis showed that five pairs of collinearity gene pairs belonged to members of subfamily I and subfamily II had two pairs indicating that the duplication is of great significance to the evolution of genes in subfamilies I and II. Gene exon–intron structures and motif composition are more similar in the same subfamily. Every StMATE gene contained at least one cis-acting element associated with regulation of hormone transport. The relative expression levels of eight StMATE genes were significantly upregulated under Cu2+ stress compared with the non-stress condition (0 h). After Cd2+ stress for 24 h, the expression levels of StMATE33 in leaf tissue were significantly increased, indicating its crucial role in the process of Cd2+ stress. Additionally, StMATE18/60/40/33/5 were significantly induced by Cu2+ stress, while StMATE59 (II) was significantly induced by Ni2+ stress. Our study initially explores the biological functions of StMATE genes in the regulation of heavy metal stress, further providing a theoretical basis for studying the subsequent molecular mechanisms in detail.
Collapse
Affiliation(s)
- Yun Huang
- College of Agricultural, Guizhou University, Guiyang, China
| | - Guandi He
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Life Sciences, Guizhou University, Guiyang, China
| | - Weijun Tian
- College of Agricultural, Guizhou University, Guiyang, China
| | - Dandan Li
- College of Agricultural, Guizhou University, Guiyang, China
| | - Lulu Meng
- College of Agricultural, Guizhou University, Guiyang, China
| | - Danxia Wu
- College of Agricultural, Guizhou University, Guiyang, China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang, China.,Institute of New Rural Development, Guizhou University, Guiyang, China
| |
Collapse
|
103
|
Sun N, Xie YF, Wu Y, Guo N, Li DH, Gao JS. Genome-wide identification of ABCC gene family and their expression analysis in pigment deposition of fiber in brown cotton (Gossypium hirsutum). PLoS One 2021; 16:e0246649. [PMID: 33961624 PMCID: PMC8104370 DOI: 10.1371/journal.pone.0246649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
ABC (ATP-binding cassette) transporters are a class of superfamily transmembrane proteins that are commonly observed in natural organisms. The ABCC (ATP-binding cassette C subfamily) protein belongs to a subfamily of the ABC protein family and is a multidrug resistance-associated transporter that localizes to the tonoplast and plays a significant role in pathogenic microbial responses, heavy metal regulation, secondary metabolite transport, and plant growth. Recent studies have shown that the ABCC protein is also involved in the transport of anthocyanins/proanthocyanidins (PAs). To clarify the types and numbers of ABCC genes involved in PA transport in Gossypium hirsutum, the phylogenetic evolution, physical location, and structure of ABCC genes were classified by bioinformatic methods in the upland cotton genome, and the expression levels of these genes were analyzed at different developmental stages of the cotton fiber. The results showed that 42 ABCC genes were initially identified in the whole genome of upland cotton; they were designated GhABCC1-42. The gene structure and phylogenetic analysis showed that the closely related ABCC genes were structurally identical. The analysis of chromosomal localization demonstrated that there were no ABCC genes on the chromosomes of AD/At2, AD/At5, AD/At6, AD/At10, AD/At12, AD/At13, AD/Dt2, AD/Dt6, AD/Dt10, and AD/Dt13. Outside the genes, there were ABCC genes on other chromosomes, and gene clusters appeared on the two chromosomes AD/At11 and AD/Dt8. Phylogenetic tree analysis showed that some ABCC proteins in G. hirsutum were clustered with those of Arabidopsis thaliana, Vitis vinifera and Zea mays, which are known to function in anthocyanin/PA transport. The protein structure prediction indicated that the GhABCC protein structure is similar to the AtABCC protein in A. thaliana, and most of these proteins have a transmembrane domain. At the same time, a quantitative RT-PCR analysis of 42 ABCC genes at different developmental stages of brown cotton fiber showed that the relative expression levels of GhABCC24, GhABCC27, GhABCC28, GhABCC29 and GhABCC33 were consistent with the trend of PA accumulation, which may play a role in PA transport. These results provide a theoretical basis for further analysis of the function of the cotton ABCC genes and their role in the transport of PA.
Collapse
Affiliation(s)
- Na Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, PR China
| | - Yong-Fei Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, PR China
| | - Yong Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, PR China
| | - Ning Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, PR China
| | - Da-Hui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, PR China
| | - Jun-Shan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
104
|
Mackon E, Ma Y, Jeazet Dongho Epse Mackon GC, Usman B, Zhao Y, Li Q, Liu P. Computational and Transcriptomic Analysis Unraveled OsMATE34 as a Putative Anthocyanin Transporter in Black Rice ( Oryza sativa L.) Caryopsis. Genes (Basel) 2021; 12:583. [PMID: 33923742 PMCID: PMC8073145 DOI: 10.3390/genes12040583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanin is a flavonoid compound with potential antioxidant properties beneficial to human health and sustains plant growth and development under different environmental stresses. In black rice, anthocyanin can be found in the stems, leaves, stigmas, and caryopsis. Although the anthocyanin biosynthesis in rice has been extensively studied, limited knowledge underlying the storage mechanism and transporters is available. This study undertook the complementation of computational and transcriptome analysis to decipher a potential multidrug and toxic compound extrusion (MATE) gene candidate for anthocyanin transportation in black rice caryopsis. The phylogenetic analysis showed that OsMATE34 has the same evolutionary history and high similarities with VvAM1, VvAM3, MtMATE2, SlMATE/MTP77, RsMATE8, AtFFT, and AtTT12 involved in anthocyanin transportation. RNA sequencing analysis in black caryopsis (Bc; Bc11, Bc18, Bc25) and white caryopsis (Wc; Wc11, Wc18, Wc25), respectively, at 11 days after flowering (DAF), 18 DAF, and 25 DAF revealed a total of 36,079 expressed genes, including 33,157 known genes and 2922 new genes. The differentially expressed genes (DEGs) showed 15,573 genes commonly expressed, with 1804 and 1412 genes uniquely expressed in Bc and Wc, respectively. Pairwise comparisons showed 821 uniquely expressed genes out of 15,272 DEGs for Wc11 vs. Bc11, 201 uniquely expressed genes out of 16,240 DEGs for Wc18 vs. Bc18, and 2263 uniquely expressed genes out of 16,240 DEGs for Wc25 vs. Bc25. Along with anthocyanin biosynthesis genes (OsPAL, OsCHS, OsCHI, OsF3H, OsDFR, OsANS, and OsUFGT/Os3GT), OsMATE34 expression was significantly upregulated in all Bc but not in Wc. OsMATE34 expression was similar to OsGSTU34, a transporter of anthocyanin in rice leaves. Taken together, our results highlighted OsMATE34 (Os08g0562800) as a candidate anthocyanin transporter in rice caryopsis. This study provides a new finding and a clue to enhance the accumulation of anthocyanin in rice caryopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Piqing Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China; (E.M.); (Y.M.); (G.C.J.D.E.M.); (B.U.); (Y.Z.); (Q.L.)
| |
Collapse
|
105
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
106
|
Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, Garg M. Spotlight on the overlapping routes and partners for anthocyanin transport in plants. PHYSIOLOGIA PLANTARUM 2021; 171:868-881. [PMID: 33639001 DOI: 10.1111/ppl.13378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 05/27/2023]
Abstract
Secondary metabolites are produced by plants and are classified based on their chemical structure or the biosynthetic routes through which they are synthesized. Among them, flavonoids, including anthocyanins and pro-anthocyanidins (PAs), are abundant in leaves, flowers, fruits, and seed coats in plants. The anthocyanin biosynthetic pathway has been intensively studied, but the molecular mechanism of anthocyanin transport from the synthesis site to the storage site needs attention. Although the major transporters are well defined yet, the redundancy of these transporters for structurally similar or dis-similar anthocyanins motivates additional research. Herein, we reviewed the role of membrane transporters involved in anthocyanin transport, including ATP-binding cassette, multidrug and toxic compound extrusion (MATE), Bilitranslocase-homolog (BTL), and vesicle-mediated transport. We also highlight the ability of transporters to cater distinct anthocyanins or their chemically-modified forms with overlapping transport mechanisms and sequestration into the vacuoles. Our understanding of the anthocyanin transporters could provide anthocyanin-rich crops and fruits with a benefit on human health at a large scale.
Collapse
Affiliation(s)
- Satveer Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Natasha Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Ajay K Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
107
|
Ali E, Saand MA, Khan AR, Shah JM, Feng S, Ming C, Sun P. Genome-wide identification and expression analysis of detoxification efflux carriers (DTX) genes family under abiotic stresses in flax. PHYSIOLOGIA PLANTARUM 2021; 171:483-501. [PMID: 32270877 DOI: 10.1111/ppl.13105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 05/19/2023]
Abstract
The detoxification efflux carriers (DTX)/multidrug and toxic compound extrusion (MATE) transporters encompass an ancient gene family of secondary transporters involved in the process of plant detoxification. A genome-wide analysis of these transporters was carried out in order to better understand the transport of secondary metabolites in flaxseed genome (Linum usitassimum). A total of 73 genes coding for DTX/MATE transporters were identified. Gene structure, protein domain and motif organization were found to be notably conserved over the distinct phylogenetic groups, showing the evolutionary significant role of each class. Gene ontology (GO) annotation revealed a link to transporter activities, response to stimulus and localizations. The presence of various hormone and stress-responsive cis-regulatory elements in promoter regions could be directly correlated with the alteration of their transcripts. Tertiary structure showed conservation for pore size and constrains in the pore, which indicate their involvement in the exclusion of toxic substances from the cell. MicroRNA target analysis revealed that LuDTXs genes were targeted by different classes of miRNA families. Twelve LuDTX genes were chosen for further quantitative real-time polymerase chain reaction analysis in response to cold, salinity and cadmium stress at 0, 6, 12 and 24 hours after treatment. Altogether, the identified members of the DTX gene family, their expression profile, phylogenetic and miRNAs analysis might provide opportunities for future functional validation of this important gene family in flax.
Collapse
Affiliation(s)
- Essa Ali
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Mumtaz Ali Saand
- Department of Botany, Shah Abdul Latif University, Sindh, 66020, Pakistan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Ali Raza Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Cai Ming
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| |
Collapse
|
108
|
Zheng J, Liu L, Tao H, An Y, Wang L. Transcriptomic Profiling of Apple Calli With a Focus on the Key Genes for ALA-Induced Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:640606. [PMID: 33841467 PMCID: PMC8033201 DOI: 10.3389/fpls.2021.640606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 05/30/2023]
Abstract
The red color is an attractive trait of fruit and determines its market acceptance. 5-Aminolevulinic acid (ALA), an eco-friendly plant growth regulator, has played a universal role in plant secondary metabolism regulation, particularly in flavonoid biosynthesis. It has been widely reported that ALA can up-regulate expression levels of several structural genes related to flavonoid metabolism and anthocyanin accumulation. However, the molecular mechanisms behind ALA-induced expression of these genes are complicated and still far from being completely understood. In this study, transcriptome analysis identified the differentially expressed genes (DEGs) associated with ALA-induced anthocyanin accumulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the flavonoid biosynthesis (ko00941) pathway was significantly enhanced in the ALA-treated apple calli at 24, 48, and 72 h after the treatment. Expression pattern revealed that ALA up-regulated the expression of the structural genes related to not only anthocyanin biosynthesis (MdCHS, MdCHI, MdF3'H, MdDFR, MdANS, and MdUFGT) but also anthocyanin transport (MdGST and MdMATE). Two R2R3-MYB transcription factors (MdMYB10 and MdMYB9), which are the known positive regulators of anthocyanin biosynthesis, were significantly induced by ALA. Gene overexpression and RNA interference assays demonstrated that MdMYB10 and MdMYB9 were involved in ALA-induced anthocyanin biosynthesis. Moreover, MdMYB10 and MdMYB9 might positively regulate the transcription of MdMATE8 by binding to the promoter region. These results indicate that MdMYB10 and MdMYB9 modulated structural gene expression of anthocyanin biosynthesis and transport in response to ALA-mediated apple calli coloration at the transcript level. We herein provide new details regarding transcriptional regulation of ALA-induced color development.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Longbo Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Huihui Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
109
|
Wang Z, Luo Z, Liu Y, Li Z, Liu P, Bai G, Zhou Z, Xie H, Yang J. Molecular cloning and functional characterization of NtWRKY11b in promoting the biosynthesis of flavonols in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110799. [PMID: 33568298 DOI: 10.1016/j.plantsci.2020.110799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The biosynthesis of flavonols and anthocyanins is precisely regulated by different transcription factors in plants. WRKY11 promotes the biosynthesis of flavonoids in apple, but the molecular mechanism of WRKY11 regulating flavonols biosynthesis, and whether WRKY11 plays the same roles in other plants species remains to be further studied. Here, we cloned four NtWRKY11 genes from tobacco, which all contained the conserved WRKYGQK heptapeptide and a zinc-finger motif. The NtWRKY11b showed higher expression levels than the other NtWRKY11 genes in all the tobacco tissues examined, especially in tobacco leaves. Silencing of NtWRKY11b in tobacco leaves reduced the content of flavonols to 45.2 %-69.8 % of that in the WT plants, but overexpression of NtWRKY11b increased the flavonols content by 37.8 %-80.7 %. Transcriptome analysis revealed 8 flavonoids related differentially expressed genes (DEGs) between NtWRKY11b-OE and WT plants, among which the transcription of NtMYB12, NtFLS, NtGT5, and NtUFGT was significantly induced by posttranslational activation of NtWRKY11b with the presence of protein synthesis inhibitor, indicating a putative direct promotion of NtWRKY11b on the transcription of these flavonoids related genes. Chromatin immunoprecipitation assays further demonstrated that NtWRKY11b could bind to the promoter regions of NtMYB12, NtFLS, NtGT5, and NtUFGT to activate the transcription of these genes. Moreover, ectopic expression of NtWRKY11b also promoted the expression levels of NtCML38, NtCTL1, NtWRKY44, and NtCML37 genes, which have been shown to enhance plant resistance to various stresses. Our findings revealed the molecular mechanism of NtWRKY11b regulating flavonols biosynthesis, and provided a promising target for increasing flavonols content in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yongjun Liu
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
110
|
Robe K, Conejero G, Gao F, Lefebvre-Legendre L, Sylvestre-Gonon E, Rofidal V, Hem S, Rouhier N, Barberon M, Hecker A, Gaymard F, Izquierdo E, Dubos C. Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. THE NEW PHYTOLOGIST 2021; 229:2062-2079. [PMID: 33205512 DOI: 10.1111/nph.17090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is a major micronutrient and is required for plant growth and development. Nongrass species have evolved a reduction-based strategy to solubilize and take up Fe. The secretion of Fe-mobilizing coumarins (e.g. fraxetin, esculetin and sideretin) by plant roots plays an important role in this process. Although the biochemical mechanisms leading to their biosynthesis have been well described, very little is known about their cellular and subcellular localization or their mobility within plant tissues. Spectral imaging was used to monitor, in Arabidopsis thaliana, the in planta localization of Fe-mobilizing coumarins and scopolin. Molecular, genetic and biochemical approaches were also used to investigate the dynamics of coumarin accumulation in roots. These approaches showed that root hairs play a major role in scopoletin secretion, whereas fraxetin and esculetin secretion occurs through all epidermis cells. The findings of this study also showed that the transport of coumarins from the cortex to the rhizosphere relies on the PDR9 transporter under Fe-deficient conditions. Additional experiments support the idea that coumarins move throughout the plant body via the xylem sap and that several plant species can take up coumarins present in the surrounding media. Altogether, the data presented here demonstrate that coumarin storage and accumulation in roots is a highly complex and dynamic process.
Collapse
Affiliation(s)
- Kevin Robe
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Geneviève Conejero
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Fei Gao
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1211, Switzerland
| | | | - Valérie Rofidal
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1211, Switzerland
| | - Arnaud Hecker
- INRAE, IAM, Université de Lorraine, Nancy, F-54000, France
| | - Frédéric Gaymard
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Esther Izquierdo
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Christian Dubos
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
111
|
Morris P, Carter EB, Hauck B, Lanot A, Theodorou MK, Allison G. Responses of Lotus corniculatus to environmental change 3: The sensitivity of phenolic accumulation to growth temperature and light intensity and effects on tissue digestibility. PLANTA 2021; 253:35. [PMID: 33459906 DOI: 10.1007/s00425-020-03524-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Growth temperature and light intensity are major drivers of phenolic accumulation in Lotus corniculatus resulting in major changes in carbon partitioning which significantly affects tissue digestibility and forage quality. The response of plant growth, phenolic accumulation and tissue digestibility to light and temperature was determined in clonal plants of three genotypes of Lotus corniculatus (birdsfoot trefoil) cv Leo, with low, intermediate or high levels of proanthocyanidins (condensed tannins). Plants were grown from 10 °C to 30 °C, or at light intensities from 20 to 500 µm m-2 s-1. Plants grown at 25 °C had the highest growth rate and highest digestibility, whereas the maximum tannin concentration was found in plants grown at 15 °C. Approximately linear increases in leaf flavonol glycoside levels were found with increasing growth temperature in the low tannin genotype. Tannin hydroxylation increased with increasing growth temperature but decreased with increasing light intensity. The major leaf flavonols were kaempferol glycosides of which kaempferol-3-glucoside and kaempferol-3,7-dirhamnoside were the major components. Increases in both tannin and total flavonol concentrations in leaves were linearly related to light intensity and were preceded by a specific increase in the transcript level of a non-legume type chalcone isomerase. Changes in growth temperature and light intensity, therefore, result in major changes in the partitioning of carbon into phenolics, which significantly affects tissue digestibility and nutritional quality with a high correlation between tannin concentration and leaf digestibility.
Collapse
Affiliation(s)
- Phillip Morris
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK.
| | - Eunice B Carter
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, UK
| | - Barbara Hauck
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, UK
| | - Alexandra Lanot
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Michael K Theodorou
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Department of Agriculture and Environment, Agriculture Centre for Sustainable Energy Systems, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Gordon Allison
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, UK
| |
Collapse
|
112
|
Cao Y, Xu L, Xu H, Yang P, He G, Tang Y, Qi X, Song M, Ming J. LhGST is an anthocyanin-related glutathione S-transferase gene in Asiatic hybrid lilies (Lilium spp.). PLANT CELL REPORTS 2021; 40:85-95. [PMID: 33210154 DOI: 10.1007/s00299-020-02615-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/28/2020] [Indexed: 05/26/2023]
Abstract
LhGST, an anthocyanin-related GST gene, was identified from Asiatic hybrid lilies. Expression and functional analyses demonstrated that LhGST might be involved in anthocyanin sequestration in lily tepals. Anthocyanins are responsible for the pink, red and purple pigmentation of flowers in Asiatic hybrid lilies, synthesized at the cytoplasmic surface of the endoplasmic reticulum (ER) and then transported to the vacuole. To date, the mechanism involved in the intracellular transport of anthocyanins in lilies has not been well elucidated. Here, full-length glutathione S-transferase gene (LhGST) was identified from lilies. Expression analysis revealed that LhGST was positively correlated with anthocyanin accumulation. Phylogenetic tree analysis showed that LhGST clustered with other anthocyanin-related GSTs in the same phi clade. Moreover, functional complementation of an Arabidopsis tt19 mutant demonstrated that LhGST might be involved in anthocyanin accumulation in lily tepals. Additionally, according to phenotype analysis, LhGST was found to be correlated with the transport of anthocyanin in lilies by virus-induced gene silencing (VIGS) assay. In addition, cis-element analysis of the LhGST promoter showed the presence of ABA-, auxin-, MeJA-, gibberellin-, light-, and stress-responsive elements and an MYB recognition site (MRS, CCGTTG). Yeast one-hybrid and dual-luciferase report assays revealed that the promoter of LhGST was activated by LhMYB12-lat, which is a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in lilies. In conclusion, our results revealed that LhGST plays a key role in anthocyanin transport and accumulation in the tepals of lilies.
Collapse
Affiliation(s)
- Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hua Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianyu Qi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
113
|
Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Schilling RK, Short L, Trittermann C, Gilliham M, Fleury D, Roy SJ, Pearson AS. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:131-140. [PMID: 32835651 DOI: 10.1071/fp20167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur × Kukri. This population was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping. Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of 3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress, including QTL for maintenance of shoot growth under salinity (QG(1-5).asl-5A, QG(1-5).asl-7B) sodium accumulation (QNa.asl-2A), chloride accumulation (QCl.asl-2A, QCl.asl-3A) and potassium:sodium ratio (QK:Na.asl-2DS2). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These findings are expected to facilitate the breeding of new salt tolerant wheat cultivars.
Collapse
Affiliation(s)
- Muhammad A Asif
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Melissa Garcia
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Chris Brien
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia; and School of Information Technology and Mathematical Sciences, The University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Kate Dowling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Delphine Fleury
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia; and Innolea, 6 chemin de Panedautes, 31700, Mondonville, France
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia; and Corresponding author.
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
114
|
Gani U, Vishwakarma RA, Misra P. Membrane transporters: the key drivers of transport of secondary metabolites in plants. PLANT CELL REPORTS 2021; 40:1-18. [PMID: 32959124 DOI: 10.1007/s00299-020-02599-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
This review summarizes the recent updates in the area of transporters of plant secondary metabolites, including their applied aspects in metabolic engineering of economically important secondary metabolites. Plants have evolved biosynthetic pathways to produce structurally diverse secondary metabolites, which serve distinct functions, including defense against pathogens and herbivory, thereby playing a pivotal role in plant ecological interactions. These compounds often display interesting bioactivities and, therefore, have been used as repositories of natural drugs and phytoceuticals for humans. At an elevated level, plant secondary metabolites could be cytotoxic to the plant cell itself; therefore, plants have developed sophisticated mechanisms to sequester these compounds to prevent cytotoxicity. Many of these valuable natural compounds and their precursors are biosynthesized and accumulated at diverse subcellular locations, and few are even transported to sink organs via long-distance transport, implying the involvement of compartmentalization via intra- and intercellular transport mechanisms. The transporter proteins belonging to different families of transporters, especially ATP binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) have been implicated in membrane-mediated transport of certain plant secondary metabolites. Despite increasing reports on the characterization of transporter proteins and their genes, our knowledge about the transporters of several medicinally and economically important plant secondary metabolites is still enigmatic. A comprehensive understanding of the molecular mechanisms underlying the whole route of secondary metabolite transportome, in addition to the biosynthetic pathways, will aid in systematic and targeted metabolic engineering of high-value secondary metabolites. The present review embodies a comprehensive update on the progress made in the elucidation of transporters of secondary metabolites in view of basic and applied aspects of their transport mechanism.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram A Vishwakarma
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Prashant Misra
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
115
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
116
|
Shitan N, Yazaki K. Dynamism of vacuoles toward survival strategy in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183127. [DOI: 10.1016/j.bbamem.2019.183127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
|
117
|
Alappat B, Alappat J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020; 25:E5500. [PMID: 33255297 PMCID: PMC7727665 DOI: 10.3390/molecules25235500] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field.
Collapse
|
118
|
Identification of Anthocyanins-Related Glutathione S-Transferase (GST) Genes in the Genome of Cultivated Strawberry ( Fragaria × ananassa). Int J Mol Sci 2020; 21:ijms21228708. [PMID: 33218073 PMCID: PMC7698900 DOI: 10.3390/ijms21228708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
Anthocyanins are responsible for the red color of strawberry, they are a subclass of flavonoids synthesized in cytosol and transferred to vacuole to form the visible color. Previous studies in model and ornamental plants indicated members of the glutathione S-transferase (GST) gene family were involved in vacuolar accumulation of anthocyanins. In the present study, a total of 130 FaGST genes were identified in the genome of cultivated strawberry (Fragaria × ananassa), which were unevenly distributed across the 28 chromosomes from the four subgenomes. Evolutionary analysis revealed the expansion of FaGST family was under stable selection and mainly drove by WGD/segmental duplication event. Classification and phylogenetic analysis indicated that all the FaGST genes were clarified into seven subclasses, among which FaGST1, FaGST37, and FaGST97 belonging to Phi class were closely related to FvRAP, an anthocyanin-related GST of wildwood strawberry, and this clade was clustered with other known anthocyanin-related GSTs. RNAseq-based expression analysis at different developmental stages of strawberry revealed that the expression of FaGST1, FaGST37, FaGST39, FaGST73, and FaGST97 was gradually increased during the fruit ripening, consistent with the anthocyanins accumulation. These expression patterns of those five FaGST genes were also significantly correlated with those of other anthocyanin biosynthetic genes such as FaCHI, FaCHS, and FaANS, as well as anthocyanin regulatory gene FaMYB10. These results indicated FaGST1, FaGST37, FaGST39, FaGST73, and FaGST97 may function in vacuolar anthocyanin accumulation in cultivated strawberry.
Collapse
|
119
|
Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum. PLANTS 2020; 9:plants9111448. [PMID: 33120967 PMCID: PMC7716203 DOI: 10.3390/plants9111448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and the detoxification of toxins. Little is known about the MATE gene family in the Solanaceae, which includes species that produce a broad range of specialized metabolites. Here, we identified and analyzed the complement of MATE genes in pepper (Capsicum annuum) and potato (Solanum tuberosum). We classified all MATE genes into five groups based on their phylogenetic relationships and their gene and protein structures. Moreover, we discovered that tandem duplication contributed significantly to the expansion of the pepper MATE family, while both tandem and segmental duplications contributed to the expansion of the potato MATE family, indicating that MATEs took distinct evolutionary paths in these two Solanaceous species. Analysis of ω values showed that all potato and pepper MATE genes experienced purifying selection during evolution. In addition, collinearity analysis showed that MATE genes were highly conserved between pepper and potato. Analysis of cis-elements in MATE promoters and MATE expression patterns revealed that MATE proteins likely function in many stages of plant development, especially during fruit ripening, and when exposed to multiple stresses, consistent with the existence of functional differentiation between duplicated MATE genes. Together, our results lay the foundation for further characterization of pepper and potato MATE gene family members.
Collapse
|
120
|
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020; 25:E3809. [PMID: 32825684 PMCID: PMC7504512 DOI: 10.3390/molecules25173809] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Sciences, RomaTre University, v.le G. Marconi 446, 00146 Rome, Italy;
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira n°228, 4050-313 Porto, Portugal
| |
Collapse
|
121
|
Qiao C, Yang J, Wan Y, Xiang S, Guan M, Du H, Tang Z, Lu K, Li J, Qu C. A Genome-Wide Survey of MATE Transporters in Brassicaceae and Unveiling Their Expression Profiles under Abiotic Stress in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1072. [PMID: 32825473 PMCID: PMC7569899 DOI: 10.3390/plants9091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is important in the export of toxins and other substrates, but detailed information on this family in the Brassicaceae has not yet been reported compared to Arabidopsis thaliana. In this study, we identified 57, 124, 81, 85, 130, and 79 MATE genes in A. thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Brassica juncea, and Brassica nigra, respectively, which were unevenly distributed on chromosomes owing to both tandem and segmental duplication events. Phylogenetic analysis showed that these genes could be classified into four subgroups, shared high similarity and conservation within each group, and have evolved mainly through purifying selection. Furthermore, numerous B. napusMATE genes showed differential expression between tissues and developmental stages and between plants treated with heavy metals or hormones and untreated control plants. This differential expression was especially pronounced for the Group 2 and 3 BnaMATE genes, indicating that they may play important roles in stress tolerance and hormone induction. Our results provide a valuable foundation for the functional dissection of the different BnaMATE homologs in B. napus and its parental lines, as well as for the breeding of more stress-tolerant B. napus genotypes.
Collapse
Affiliation(s)
- Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Sirou Xiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
122
|
Elango D, Xue W, Chopra S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1727-1737. [PMID: 32801499 PMCID: PMC7415066 DOI: 10.1007/s12298-020-00848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 05/25/2023]
Abstract
Sorghum accumulates epi-cuticular wax (EW) in leaves, sheaths, and culms. EW reduces the transpirational and nontranspirational (nonstomatal) water loss and protects the plant from severe drought stress in addition to imparting resistance against insect pests. Results presented here are from the analysis of EW content of 387 diverse sorghum accessions and its genome-wide association study (GWAS). EW content in sorghum leaves ranged from 0.1 to 29.7 mg cm-2 with a mean value of 5.1 mg cm-2. GWAS using 265,487 single nucleotide polymorphisms identified thirty-seven putative genes associated (P < 9.89E-06) with EW biosynthesis and transport in sorghum. Major EW biosynthetic genes identified included 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III, an Ankyrin repeat protein, a bHLH-MYC, and an R2R3-MYB transcription factor. Genes involved in EW regulation or transport included an ABC transporter, a Lipid exporter ABCA1, a Multidrug resistance protein, Inositol 1, 3, 4-trisphosphate 5/6-kinase, and a Cytochrome P450. This GWA study thus demonstrates the potential for genetic manipulation of EW content in sorghum for better adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Weiya Xue
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA USA
| |
Collapse
|
123
|
Lin A, Ma J, Xu F, Xu W, Jiang H, Zhang H, Qu C, Wei L, Li J. Differences in Alternative Splicing between Yellow and Black-Seeded Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E977. [PMID: 32752101 PMCID: PMC7465011 DOI: 10.3390/plants9080977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Yellow seed coat color is a desirable characteristic in rapeseed (Brassica napus), as it is associated with higher oil content and higher quality of meal. Alternative splicing (AS) is a vital post-transcriptional regulatory process contributing to plant cell differentiation and organ development. To identify novel transcripts and differences at the isoform level that are associated with seed color in B. napus, we compared 31 RNA-seq libraries of yellow- and black-seeded B. napus at five different developmental stages. AS events in the different samples were highly similar, and intron retention accounted for a large proportion of the observed AS pattern. AS mainly occurred in the early and middle stage of seed development. Weighted gene co-expression network analysis (WGCNA) identified 23 co-expression modules composed of differentially spliced genes, and we picked out two of the modules whose functions were highly associated with seed color. In the two modules, we found candidate DAS (differentially alternative splicing) genes related to the flavonoid pathway, such as TT8 (BnaC09g24870D), TT5 (BnaA09g34840D and BnaC08g26020D), TT12 (BnaC06g17050D and BnaA07g18120D), AHA10 (BnaA08g23220D and BnaC08g17280D), CHI (BnaC09g50050D), BAN (BnaA03g60670D) and DFR (BnaC09g17150D). Gene BnaC03g23650D, encoding RNA-binding family protein, was also identified. The splicing of the candidate genes identified in this study might be used to develop stable, yellow-seeded B. napus. This study provides insight into the formation of seed coat color in B. napus.
Collapse
Affiliation(s)
- Ai Lin
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinqi Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fei Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wen Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Huanhuan Jiang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Haoran Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lijuan Wei
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
124
|
Ichino T, Maeda K, Hara-Nishimura I, Shimada T. Arabidopsis ECHIDNA protein is involved in seed coloration, protein trafficking to vacuoles, and vacuolar biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3999-4009. [PMID: 32201898 PMCID: PMC7475254 DOI: 10.1093/jxb/eraa147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 05/11/2023]
Abstract
Flavonoids are a major group of plant-specific metabolites that determine flower and seed coloration. In plant cells, flavonoids are synthesized at the cytosolic surface of the endoplasmic reticulum and are sequestered in the vacuole. It is possible that membrane trafficking, including vesicle trafficking and organelle dynamics, contributes to flavonoid transport and accumulation. However, the underlying mechanism has yet to be fully elucidated. Here we show that the Arabidopsis ECHIDNA protein plays a role in flavonoid accumulation in the vacuole and protein trafficking to the vacuole. We found defective pigmentation patterns in echidna seed, possibly caused by reduced levels of proanthocyanidins, which determine seed coloration. The echidna mutant has defects in protein sorting to the protein storage vacuole as well as vacuole morphology. These findings indicate that ECHIDNA is involved in the vacuolar trafficking pathway as well as the previously described secretory pathway. In addition, we found a genetic interaction between echidna and green fluorescent seed 9 (gfs9), a membrane trafficking factor involved in flavonoid accumulation. Our findings suggest that vacuolar trafficking and/or vacuolar development, both of which are collectively regulated by ECHIDNA and GFS9, are required for flavonoid accumulation, resulting in seed coat pigmentation.
Collapse
Affiliation(s)
- Takuji Ichino
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Kazuki Maeda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- Correspondence:
| |
Collapse
|
125
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
126
|
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:100-108. [PMID: 32422532 DOI: 10.1016/j.pbi.2020.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are by far the largest class of polyphenols with huge structural and functional diversity. However, the mystery regarding the exact evolutionary pressures which lead to the amazing diversity in plant flavonoids has yet to be completely uncovered. Here we review recent advances in understanding the conservation and diversification of flavonoid pathway from algae and early land plants to vascular plants including the model plant Arabidopsis and economically important species such as cereals, legumes, and medicinal plants. Studies on the origin and evolution of R2R3-MYB regulatory system demonstrated its highly conserved function of regulating flavonoid production in land plants and this innovation appears to have been crucial in boosting the overall levels of these compounds in land plants. Convergent evolution has occurred as different flavonoids independently which emerged in distant taxa resulting in similar defense and tolerance characteristics against environmental stresses. Future studies on an increasing number of plant species taking advantage of newly developed genomic and metabolite profiling technologies are envisaged to provide comprehensive insight into flavonoid biosynthesis as well as pathway diversification and the underlying evolutionary mechanisms.
Collapse
Affiliation(s)
- Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
127
|
Chandran H, Meena M, Barupal T, Sharma K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00450. [PMID: 32373483 PMCID: PMC7193120 DOI: 10.1016/j.btre.2020.e00450] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Plants have been used throughout the world for its medicinal powers since ancient time. The pharmacological properties of plants are based on their phytochemical components especially the secondary metabolites which are outstanding sources of value added bioactive compounds. Secondary metabolites have complex chemical composition and are produced in response to various forms of stress to perform different physiological tasks in plants. They are used in pharmaceutical industries, cosmetics, dietary supplements, fragrances, flavors, dyes, etc. Extended use of these metabolites in various industrial sectors has initiated a need to focus research on increasing the production by employing plant tissue culture (PTC) techniques and optimizing their large scale production using bioreactors. PTC techniques being independent of climatic and geographical conditions will provide an incessant, sustainable, economical and viable production of secondary metabolites. This review article intends to assess the advantages of using plant tissue culture, distribution of important secondary metabolites in plant families, strategies involved for optimal metabolite production and the industrial importance of selected secondary metabolites.
Collapse
Affiliation(s)
- Hema Chandran
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tansukh Barupal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Kanika Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
128
|
Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, Batley J, Jiang J, Wang Y. Targeted Knockout of BnTT2 Homologues for Yellow-Seeded Brassica napus with Reduced Flavonoids and Improved Fatty Acid Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5676-5690. [PMID: 32394708 DOI: 10.1021/acs.jafc.0c01126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brassica napus is one of the important oil crops grown worldwide, and oil quality improvement is a major goal in rapeseed breeding. Yellow seed is an excellent trait, which has great potential in improving seed quality and economic value. In this study, we created stable yellow seed mutants using a CRISPR/Cas9 system and obtained the yellow seed phenotype only when the four alleles of two BnTT2 homologues were knocked out, indicating that the two BnTT2 homologues had conserved but redundant functions in regulating seed color. Histochemical staining and flavonoid metabolic analysis proved that the BnTT2 mutation hindered the synthesis and accumulation of proanthocyanidins. Transcriptome analysis also showed that the BnTT2 mutation inhibited the expression of genes in the phenylpropanoid and flavonoid biosynthetic pathway, which might be regulated by the complex of BnTT2, BnTT8 and BnTTG1. In addition, the homozygous mutants of BnTT2 homologues increased oil content and improved fatty acid composition with higher linoleic acid (C18:2) and linolenic acid (C18:3), which could be used for the genetic improvement of rapeseed. Overall, this research showed that the BnTT2 mutation can be used for yellow seed breeding and oil improvement, which is of great significance in improving the economic value of rapeseeds.
Collapse
Affiliation(s)
- Tao Xie
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tuli Guo
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qinfu Sun
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
129
|
Grunewald S, Marillonnet S, Hause G, Haferkamp I, Neuhaus HE, Veß A, Hollemann T, Vogt T. The Tapetal Major Facilitator NPF2.8 Is Required for Accumulation of Flavonol Glycosides on the Pollen Surface in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1727-1748. [PMID: 32156687 PMCID: PMC7203936 DOI: 10.1105/tpc.19.00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 05/02/2023]
Abstract
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Although the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that a member of the nitrate/peptide transporter family is required for the accumulation and transport of pollen-specific flavonol 3-o-sophorosides, characterized by a glycosidic β-1,2-linkage, to the pollen surface of Arabidopsis (Arabidopsis thaliana). Ectopic, transient expression in Nicotiana benthamiana epidermal leaf cells demonstrated localization of this flavonol sophoroside transporter (FST1) at the plasmalemma when fused to green fluorescent protein (GFP). We also confirmed the tapetum-specific expression of FST1 by GFP reporter lines driven by the FST1 promoter. In vitro characterization of FST1 activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1 insertion mutant by complementation with an FST1 genomic fragment restored the accumulation of flavonol glycosides in pollen grains to wild-type levels, corroborating the requirement of FST1 for transport of flavonol-3-o-sophorosides from the tapetum to the pollen surface.
Collapse
Affiliation(s)
- Stephan Grunewald
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- University Biocenter, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Ilka Haferkamp
- Plant Physiology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Astrid Veß
- Institute of Physiological Chemistry, Martin Luther University Halle-Wittenberg, D-06114 Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin Luther University Halle-Wittenberg, D-06114 Halle (Saale), Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| |
Collapse
|
130
|
Zhao J, Li P, Xia T, Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol 2020; 40:667-688. [PMID: 32321331 DOI: 10.1080/07388551.2020.1752617] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
131
|
Qu C, Yin N, Chen S, Wang S, Chen X, Zhao H, Shen S, Fu F, Zhou B, Xu X, Liu L, Lu K, Li J. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3033-3049. [PMID: 32052629 DOI: 10.1021/acs.jafc.9b07173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high levels of secondary metabolites in rapeseed play important roles in determining the oil quality and feeding value. Here, we characterized the metabolic profiles in seeds of various yellow- and black-seeded rapeseed accessions. Two hundred and forty-eight features were characterized, including 31 phenolic acids, 54 flavonoids, 24 glucosinolates, 65 lipid compounds, and 74 other polar compounds. The most abundant phenolic acids and various flavonoids (epicatechin, isorhamnetin, kaempferol, quercetin, and their derivatives) were widely detected and showed significant differences in distribution between the yellow- and black-seeded rapeseed. Furthermore, the related genes (e.g., BnTT3, BnTT18, BnTT10, BnTT12, and BnBAN) involved in the proanthocyanidin pathway had lower expression levels in yellow-seeded rapeseed, strongly suggesting that the seed coat color could be mainly determined by the levels of epicatechin and their derivatives. These results improve our understanding of the primary constituents of rapeseed and lay the foundation for breeding novel varieties with a high nutritional value.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xingyu Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N02X, Canada
| | - Baojin Zhou
- Deepxomics-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
132
|
Zhang Y, Ye J, Liu C, Xu Q, Long L, Deng X. Citrus PH4-Noemi regulatory complex is involved in proanthocyanidin biosynthesis via a positive feedback loop. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1306-1321. [PMID: 31728522 PMCID: PMC7031078 DOI: 10.1093/jxb/erz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/06/2019] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs; or condensed tannins) are a major class of flavonoids that contribute to citrus fruit quality. However, the molecular mechanism responsible for PA biosynthesis and accumulation in citrus remains unclear. Here, we identify a PH4-Noemi regulatory complex that regulates proanthocyanidin biosynthesis in citrus. Overexpression of PH4 or Noemi in citrus calli activated the expression of PA biosynthetic genes and significantly increased the PA content. Interestingly, Noemi was also shown to be up-regulated in CsPH4-overexpressing lines compared with wild-type calli. Simultaneously, CsPH4 partially complemented the PA-deficient phenotype of the Arabidopsis tt2 mutant and promoted PA accumulation in the wild-type. Further analysis revealed that CsPH4 interacted with Noemi, and together these proteins synergistically activated the expression of PA biosynthetic genes by directly binding to the MYB-recognizing elements (MRE) of the promoters of these genes. Moreover, CsPH4 could directly bind to the promoter of Noemi and up-regulate the expression of this gene. These findings explain how the CsPH4-Noemi regulatory complex contributes to the activation of PA biosynthetic genes via a positive feedback loop and provide new insights into the molecular mechanisms underlying PA biosynthesis, which can be effectively employed for metabolic engineering to improve citrus fruit quality.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lichang Long
- Agriculture Bureau of Hongjiang City, Hongjiang, Hunan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
133
|
Jiang N, Lee YS, Mukundi E, Gomez-Cano F, Rivero L, Grotewold E. Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110335. [PMID: 31928687 DOI: 10.1016/j.plantsci.2019.110335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
The visual phenotypes afforded by flavonoid pigments have provided invaluable tools for modern genetics. Many Arabidopsis transparent testa (tt) mutants lacking the characteristic proanthocyanidin (PA) seed coat pigmentation and often failing to accumulate anthocyanins in vegetative tissues have been characterized. These mutants have significantly contributed to our understanding of flavonoid biosynthesis, regulation, and transport. A comprehensive screening for tt mutants in available large T-DNA collection lines resulted in the identification of 16 independent lines lacking PAs and anthocyanins, or with seed coat pigmentation clearly distinct from wild type. Segregation analyses and the characterization of second alleles in the genes disrupted by the indexed T-DNA insertions demonstrated that all the lines contained at least one additional mutation responsible for the tt phenotypes. Using a combination of RNA-Seq and whole genome re-sequencing and confirmed through complementation, we show here that these mutations correspond to novel alleles of ttg1 (two alleles), tt3 (two alleles), tt5 (two alleles), ban (two alleles), tt1 (two alleles), and tt8 (six alleles), which harbored additional T-DNA insertions, indels, missense mutations, and large genomic deletion. Several of the identified alleles offer interesting perspectives on flavonoid biosynthesis and regulation.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Eric Mukundi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Luz Rivero
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA.
| |
Collapse
|
134
|
Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:637-652. [PMID: 31626358 DOI: 10.1111/tpj.14570] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 05/18/2023]
Abstract
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Joint Center for Life Sciences, Tsinghua University-Peking University, Beijing, 100084, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Wu
- Joint Center for Life Sciences, Tsinghua University-Peking University, Beijing, 100084, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng-Ling Guan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cui-Huan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pan Geng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
135
|
Kusakizako T, Miyauchi H, Ishitani R, Nureki O. Structural biology of the multidrug and toxic compound extrusion superfamily transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183154. [PMID: 31866287 DOI: 10.1016/j.bbamem.2019.183154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/27/2022]
Abstract
Xenobiotic and metabolite extrusion is an important process for the proper functions of cells and their compartments, including acidic organelles. MATE (multidrug and toxic compound extrusion) is a large family of secondary active transporters involved in the transport of various compounds across cellular and organellar membranes, and is present in the three domains of life. The major substrates of the bacterial MATE transporters are cationic compounds, including clinically important antibiotics, and thereby MATE transporters confer multi-drug resistance to pathogenic bacteria. The plant MATE transporters are important for the accumulation of various metabolites in organelles, including vacuoles. The human MATE transporters are expressed in the brush-border membrane of the kidney, and are involved in the clearance of cationic drugs from the body. During the past decade, progress in structural biology has clarified the transport mechanism of these MATE transporters in atomic detail. The present review summarizes the reported structures of MATE family transporters, along with their structure-guided functional analyses. This integrated view of the structures of MATE transporters provides novel insights into their transport mechanism.
Collapse
Affiliation(s)
- Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotake Miyauchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
136
|
Chatham LA, Paulsmeyer M, Juvik JA. Prospects for economical natural colorants: insights from maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2927-2946. [PMID: 31451836 DOI: 10.1007/s00122-019-03414-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Anthocyanin pigments from maize offer a natural yet economical alternative to artificial dyes. Breeding for optimal colorant production requires understanding and integrating all facets of anthocyanin chemistry and genetics research. Replacing artificial dyes with natural colorants is becoming increasingly popular in foods and beverages. However, natural colorants are often expensive, have lower stability, and reduced variability in hue. Purple corn is rich in anthocyanins and offers a scalable and affordable alternative to synthetic dyes ranging in color from orange to reddish-purple. This diversity is attributable to differences in anthocyanin composition and concentration. Here we review the chemistry, biosynthesis, and genetics of purple corn and outline key factors associated with the feasibility of producing an economical source of natural colorants. Anthocyanin compositional modifications including acylation, methylation, and polymerization with flavan-3-ols can influence color stability and hue, yet there is more to learn regarding the genetic factors responsible for these modifications. Activators and repressors of anthocyanin biosynthesis structural genes as well as factors controlling trafficking and storage largely control anthocyanin yield. Further knowledge of these mechanisms will allow breeders to apply molecular strategies that accelerate the production of purple corn hybrids to meet growing demands for natural colorants.
Collapse
Affiliation(s)
- Laura A Chatham
- University of Illinois Urbana Champaign, Urbana, IL, 61802, USA
| | | | - John A Juvik
- University of Illinois Urbana Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
137
|
Demurtas OC, de Brito Francisco R, Diretto G, Ferrante P, Frusciante S, Pietrella M, Aprea G, Borghi L, Feeney M, Frigerio L, Coricello A, Costa G, Alcaro S, Martinoia E, Giuliano G. ABCC Transporters Mediate the Vacuolar Accumulation of Crocins in Saffron Stigmas. THE PLANT CELL 2019; 31:2789-2804. [PMID: 31548254 PMCID: PMC6881118 DOI: 10.1105/tpc.19.00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 05/10/2023]
Abstract
Compartmentation is a key strategy enacted by plants for the storage of specialized metabolites. The saffron spice owes its red color to crocins, a complex mixture of apocarotenoid glycosides that accumulate in intracellular vacuoles and reach up to 10% of the spice dry weight. We developed a general approach, based on coexpression analysis, heterologous expression in yeast (Saccharomyces cerevisiae), and in vitro transportomic assays using yeast microsomes and total plant metabolite extracts, for the identification of putative vacuolar metabolite transporters, and we used it to identify Crocus sativus transporters mediating vacuolar crocin accumulation in stigmas. Three transporters, belonging to both the multidrug and toxic compound extrusion and ATP binding cassette C (ABCC) families, were coexpressed with crocins and/or with the gene encoding the first dedicated enzyme in the crocin biosynthetic pathway, CsCCD2. Two of these, belonging to the ABCC family, were able to mediate transport of several crocins when expressed in yeast microsomes. CsABCC4a was selectively expressed in C. sativus stigmas, was predominantly tonoplast localized, transported crocins in vitro in a stereospecific and cooperative way, and was able to enhance crocin accumulation when expressed in Nicotiana benthamiana leaves.plantcell;31/11/2789/FX1F1fx1.
Collapse
Affiliation(s)
- Olivia Costantina Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
| | | | - Gianfranco Diretto
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
| | - Sarah Frusciante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
| | - Marco Pietrella
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Citrus and Tree Fruit, 47121 Forlì, Italy
| | - Giuseppe Aprea
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
| | - Lorenzo Borghi
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Mistianne Feeney
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Adriana Coricello
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, 00123, Rome, Italy
| |
Collapse
|
138
|
Chen G, Liang H, Zhao Q, Wu AM, Wang B. Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico. Int J Biol Macromol 2019; 143:732-743. [PMID: 31622702 DOI: 10.1016/j.ijbiomac.2019.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 10/02/2019] [Indexed: 01/30/2023]
Abstract
Flavonoids in tea plant are the important bioactive compounds for both human health and taste quality. Multidrug and Toxic compound Extrusion (MATE) proteins could improve flavonoid accumulations by transporting and sequestering the flavonoid in vacuoles. We identified 41 putative MATE genes in tea plants. The similar intron-exon structures of tea MATEs clustered within the same gene clade. The correlation analysis of tea flavonoid and transcriptome data showed that TEA006173 might be involve in the tea flavonoid accumulation. The RT-PCR results confirmed that TEA006173 showed high expression in the young leaf tissues. Tertiary structure prediction has shown that TEA006173 contained the 12 helices with three active pockets, comprising 13 critical residues. The present study provided the structural variations and expression patterns of tea MATEs and it would be helpful for taste and nutrient quality improvement in tea plant.
Collapse
Affiliation(s)
- Guanming Chen
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Haohong Liang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qi Zhao
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
139
|
Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S. The multitasking abilities of MATE transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4643-4656. [PMID: 31106838 DOI: 10.1093/jxb/erz246] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
As sessile organisms, plants constantly monitor environmental cues and respond appropriately to modulate their growth and development. Membrane transporters act as gatekeepers of the cell regulating both the inflow of useful materials as well as exudation of harmful substances. Members of the multidrug and toxic compound extrusion (MATE) family of transporters are ubiquitously present in almost all forms of life including prokaryotes and eukaryotes. In bacteria, MATE proteins were originally characterized as efflux transporters conferring drug resistance. There are 58 MATE transporters in Arabidopsis thaliana, which are also known as DETOXIFICATION (DTX) proteins. In plants, these integral membrane proteins are involved in a diverse array of functions, encompassing secondary metabolite transport, xenobiotic detoxification, aluminium tolerance, and disease resistance. MATE proteins also regulate overall plant development by controlling phytohormone transport, tip growth processes, and senescence. While most of the functional characterizations of MATE proteins have been reported in Arabidopsis, recent reports suggest that their diverse roles extend to numerous other plant species. The wide array of functions exhibited by MATE proteins highlight their multitasking ability. In this review, we integrate information related to structure and functions of MATE transporters in plants. Since these transporters are central to mechanisms that allow plants to adapt to abiotic and biotic stresses, their study can potentially contribute to improving stress tolerance under changing climatic conditions.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Debojyoti Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagyashri Deepak Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Cellular Organization and Signalling, National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Sanchali Nanda
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Rini Rahiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Nimisha Panchakshari
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Genetics, Ludwig Maximilians Universität, Biocenter, Germany
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
140
|
Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, Quattrocchio F, Koes R, Ruperti B, Bertini E, Zenoni S, Tornielli GB. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1220-1241. [PMID: 31125454 DOI: 10.1111/tpj.14419] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The accumulation of secondary metabolites and the regulation of tissue acidity contribute to the important traits of grape berry and influence plant performance in response to abiotic and biotic factors. In several plant species a highly conserved MYB-bHLH-WD (MBW) transcriptional regulatory complex controls flavonoid pigment synthesis and transport, and vacuolar acidification in epidermal cells. An additional component, represented by a WRKY-type transcription factor, physically interacts with the complex increasing the expression of some target genes and adding specificity for other targets. Here we investigated the function of MBW(W) complexes involving two MYBs (VvMYB5a and VvMYB5b) and the WRKY factor VvWRKY26 in grapevine (Vitis vinifera L.). Using transgenic grapevine plants we showed that these complexes affected different aspects of morphology, plant development, pH regulation, and pigment accumulation. Transcriptomic analysis identified a core set of putative target genes controlled by VvMYB5a, VvMYB5b, and VvWRKY26 in different tissues. Our data indicated that VvWRKY26 enhances the expression of selected target genes induced by VvMYB5a/b. Among these targets are genes involved in vacuolar hyper-acidification, such as the P-type ATPases VvPH5 and VvPH1, and trafficking, and genes involved in the biosynthesis of flavonoids. In addition, VvWRKY26 is recruited specifically by VvMYB5a, reflecting the functional diversification of VvMYB5a and VvMYB5b. The expression of MBWW complexes in vegetative organs, such as leaves, indicates a possible function of vacuolar hyper-acidification in the repulsion of herbivores and/or in developmental processes, as shown by defects in transgenic grape plants where the complex is inactivated.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Erika Cavallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Amanda R Walker
- CSIRO Agriculture & Food, Waite Campus, Urrbrae, South Australia, Australia
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mattijs Bliek
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1090GE, Amsterdam, the Netherlands
| | - Francesca Quattrocchio
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1090GE, Amsterdam, the Netherlands
| | - Ronald Koes
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1090GE, Amsterdam, the Netherlands
| | - Benedetto Ruperti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Edoardo Bertini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
141
|
Li J, Zhang K, Meng Y, Li Q, Ding M, Zhou M. FtMYB16 interacts with Ftimportin-α1 to regulate rutin biosynthesis in tartary buckwheat. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1479-1481. [PMID: 30963665 PMCID: PMC6662100 DOI: 10.1111/pbi.13121] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Affiliation(s)
- Jinbo Li
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Life Science CollegeLuoyang Normal UniversityLuoyangChina
| | - Kaixuan Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Meng
- College of Landscape and TravelAgricultural University of HebeiBaodingChina
| | - Qiong Li
- School of NursingHunan University of Chinese MedicineChangshaChina
| | - Mengqi Ding
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
142
|
Liu Y, Qi Y, Zhang A, Wu H, Liu Z, Ren X. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). PLANT MOLECULAR BIOLOGY 2019; 100:451-465. [PMID: 31079310 DOI: 10.1007/s11103-019-00870-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 05/11/2023]
Abstract
AcGST1, an anthocyanin-related GST, may functions as a carrier to transport anthocyanins from ER to tonoplast in kiwifruit. It was positively regulated by AcMYBF110 through directly binding to its promoter. Anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum but accumulate predominantly in the vacuole. Previous studies in model and ornamental plants have suggested that a member of the glutathione S-transferase (GST) gene family is involved in sequestration of anthocyanins into the vacuole. However, little is known about anthocyanin-related GST protein in kiwifruit. Here, four putative AcGSTs were identified from the genome of the red-fleshed Actinidia chinensis cv 'Hongyang'. Expression analyses reveal only the expression of AcGST1 was highly consistent with anthocyanin accumulation. Molecular complementation of Arabidopsis tt19 demonstrates AcGST1 can complement the anthocyanin-less phenotype of tt19. Transient expression in Actinidia arguta fruits further confirms that AcGST1 is functional in anthocyanin accumulation in kiwifruit. In vitro assays show the recombinant AcGST1 increases the water solubility of cyanidin-3-O-galactoside (C3Gal) and cyanidin-3-O-xylo-galactoside (C3XG). We further show that AcGST1 protein is localized not only in the ER but also on the tonoplast, indicating AcGST1 (like AtTT19) may functions as a carrier protein to transport anthocyanins to the tonoplast in kiwifruit. Moreover, the promoter of AcGST1 can be activated by AcMYBF110, based on results from transient dual-luciferase assays and yeast one-hybrid assays. EMSAs show that AcMYBF110 binds directly to CAGTTG and CCGTTG motifs in the AcGST1 promoter. These results indicate that AcMYBF110 plays an important role in transcriptional regulation of AcGST1 and, therefore, in controlling accumulation of anthocyanins in kiwifruit.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yingwei Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aling Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanxiao Wu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
143
|
Huang Y, Wu Q, Wang S, Shi J, Dong Q, Yao P, Shi G, Xu S, Deng R, Li C, Chen H, Zhao H. FtMYB8 from Tartary buckwheat inhibits both anthocyanin/Proanthocyanidin accumulation and marginal Trichome initiation. BMC PLANT BIOLOGY 2019; 19:263. [PMID: 31215400 PMCID: PMC6582506 DOI: 10.1186/s12870-019-1876-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/06/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Because flavonoids and trichomes play crucial roles in plant defence, their formation requires fine transcriptional control by multiple transcription factor families. However, little is known regarding the mechanism of the R2R3-MYB transcription factors that regulate both flavonoid metabolism and trichome development. RESULTS Here, we identified a unique SG4-like-MYB TF from Tartary buckwheat, FtMYB8, which harbours the C2 repression motif and an additional TLLLFR repression motif. The expression profiles of FtMYB8 combined with the transcriptional activity of PFtMYB8 promoter showed that FtMYB8 mRNA mainly accumulated in roots during the true leaf stage and flowering stage and in bud trichomes and flowers, and the expression of this gene was markedly induced by MeJA, ABA and UV-B treatments but repressed by dark treatment. Overexpression of FtMYB8 in Arabidopsis reduces the accumulation of anthocyanin/proanthocyanidin by specifically inhibiting TT12 expression, which may depend on the interaction between FtMYB8 and TT8. Interestingly, this interaction may also negatively regulate the marginal trichome initiation in Arabidopsis leaves. CONCLUSIONS Taken together, our results suggest that FtMYB8 may fine-tune the accumulation of anthocyanin/proanthocyanidin in the roots and flowers of Tartary buckwheat by balancing the inductive effects of transcriptional activators, and probably regulate trichome distribution in the buds of Tartary buckwheat.
Collapse
Affiliation(s)
- Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Shuang Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Jiaqi Shi
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Guannan Shi
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Shuangxiu Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Renyu Deng
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an, 625014 Sichuan Province China
| |
Collapse
|
144
|
Liu T, Zhang Y, Zhang X, Sun Y, Wang H, Song J, Li X. Transcriptome analyses reveal key genes involved in skin color changes of 'Xinlimei' radish taproot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:528-539. [PMID: 31029026 DOI: 10.1016/j.plaphy.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The color of radish (Raphanus sativus) taproot skin is an important visual quality. 'Xinlimei' radish is a red-fleshed cultivar with skin that changes color from red to white and finally to green at the mature stage, and appearance quality is strongly affected if the red color does not fade completely on a single taproot or simultaneously among different taproots. In the present study, anthocyanin and chlorophyll contents and the transcriptome of radish taproot skin at three distinct coloration stages were analyzed to explore the mechanism of color changes. The results showed that decreased anthocyanin and increased chlorophyll contents correlated with the color-fading process. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes indicated that anthocyanin and chlorophyll metabolism pathways play important roles in color changes. In red color-fading process, the expression levels of anthocyanin biosynthetic genes (except PAL and C4H), a transport gene (RsTT19), and two anthocyanin biosynthesis transcription factors (TFs), RsMYB1 and RsTT8, were significantly downregulated, whereas peroxidase-encoding genes were significantly upregulated. In the skin-greening process, expression of most chlorophyll biosynthetic genes and two TFs (RsGLK1 and RsGLK2) that likely positively regulate chlorophyll biosynthesis was significantly upregulated. Thus, changes in the expression of these genes may be responsible for the color changes that occur in 'Xinlimei' taproot skin. This is the first report on the roles of chlorophyll metabolism genes and their dynamic relationship with anthocyanin metabolism genes in radish. The findings provide valuable information and theoretical guidelines for improving the appearance quality of 'Xinlimei' radish taproots.
Collapse
Affiliation(s)
- Tongjin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| |
Collapse
|
145
|
Kubes J, Skalicky M, Tumova L, Martin J, Hejnak V, Martinkova J. Vanadium elicitation of Trifolium pratense L. cell culture and possible pathways of produced isoflavones transport across the plasma membrane. PLANT CELL REPORTS 2019; 38:657-671. [PMID: 30770962 DOI: 10.1007/s00299-019-02397-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/06/2019] [Indexed: 05/16/2023]
Abstract
Vanadium compounds increased the content and release of distinct isoflavones in a Trifolium pratense suspension culture. Regarding transport-mechanism inhibitors, the process was mostly facilitated by ABC proteins and vesicular transport. The transport of isoflavones and other secondary metabolites is an important part of metabolism within plants and cultures in vitro regarding their role in defence against various abiotic and biotic stressors. This research focuses on the way how to increase production and exudation of isoflavones by application of chemical elicitor and the basic identification of their transport mechanisms across cell membranes. The release of five isoflavones (genistin, genistein, biochanin A, daidzein, and formononetin) into a nutrient medium was determined in a Trifolium pratense var. DO-8 suspension culture after two vanadium compound treatments and cultivation for 24 and 48 h. The NH4VO3 solution caused a higher concentration of isoflavones in the medium after 24 h. This increased content of secondary metabolites was subsequently suppressed by distinct transport-mechanism inhibitors. The transport of isoflavones in T. pratense was mostly affected by ABC inhibitors from the multidrug-resistance-associated protein subfamily, but the genistein concentration in the medium was lower after treatment with multidrug-resistance protein subfamily inhibitors. Brefeldin A, which blocks vesicular transport, also decreased the concentration of some isoflavones in the nutrient medium.
Collapse
Affiliation(s)
- Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 02, Hradec Králové, Czech Republic
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic.
| | - Lenka Tumova
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 02, Hradec Králové, Czech Republic
| | - Jan Martin
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 02, Hradec Králové, Czech Republic
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Jaroslava Martinkova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| |
Collapse
|
146
|
Eichenberger M, Hansson A, Fischer D, Dürr L, Naesby M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:4975775. [PMID: 29771352 DOI: 10.1093/femsyr/foy046] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.
Collapse
Affiliation(s)
- Michael Eichenberger
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland.,Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Anders Hansson
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - David Fischer
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Lara Dürr
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Michael Naesby
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| |
Collapse
|
147
|
Ma B, Liao L, Fang T, Peng Q, Ogutu C, Zhou H, Ma F, Han Y. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:674-686. [PMID: 30183123 PMCID: PMC6381788 DOI: 10.1111/pbi.13007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 05/23/2023]
Abstract
Acidity is one of the main determinants of fruit organoleptic quality. Here, comparative transcriptome analysis was conducted between two cultivars that showed a significant difference in fruit acidity, but contained homozygous non-functional alleles at the major gene Ma1 locus controlling apple fruit acidity. A candidate gene for fruit acidity, designated M10, was identified. The M10 gene encodes a P-type proton pump, P3A -ATPase, which facilitates malate uptake into the vacuole. The Ma10 gene is significantly associated with fruit malate content, accounting for ~7.5% of the observed phenotypic variation in apple germplasm. Subcellular localization assay showed that the Ma10 is targeted to the tonoplast. Overexpression of the Ma10 gene can complement the defect in proton transport of the mutant YAK2 yeast strain and enhance the accumulation of malic acid in apple callus. Moreover, its ectopic expression in tomato induces a decrease in fruit pH. These results suggest that the Ma10 gene has the capacity for proton pumping and plays an important role in fruit vacuolar acidification in apple. Our study provides useful knowledge towards comprehensive understanding of the complex mechanism regulating apple fruit acidity.
Collapse
Affiliation(s)
- Baiquan Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| | - Ting Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Graduate University of Chinese Academy of SciencesBeijingChina
| | - Qian Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Graduate University of Chinese Academy of SciencesBeijingChina
| | - Collins Ogutu
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Graduate University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
148
|
Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Joubert F, Apostolides Z. Functional annotation of putative QTL associated with black tea quality and drought tolerance traits. Sci Rep 2019; 9:1465. [PMID: 30728388 PMCID: PMC6365519 DOI: 10.1038/s41598-018-37688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
The understanding of black tea quality and percent relative water content (%RWC) traits in tea (Camellia sinensis) by a quantitative trait loci (QTL) approach can be useful in elucidation and identification of candidate genes underlying the QTL which has remained to be difficult. The objective of the study was to identify putative QTL controlling black tea quality and percent relative water traits in two tea populations and their F1 progeny. A total of 1,421 DArTseq markers derived from the linkage map identified 53 DArTseq markers to be linked to black tea quality and %RWC. All 53 DArTseq markers with unique best hits were identified in the tea genome. A total of 5,592 unigenes were assigned gene ontology (GO) terms, 56% comprised biological processes, cellular component (29%) and molecular functions (15%), respectively. A total of 84 unigenes in 15 LGs were assigned to 25 different Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways based on categories of secondary metabolite biosynthesis. The three major enzymes identified were transferases (38.9%), hydrolases (29%) and oxidoreductases (18.3%). The putative candidate proteins identified were involved in flavonoid biosynthesis, alkaloid biosynthesis, ATPase family proteins related to abiotic/biotic stress response. The functional annotation of putative QTL identified in this current study will shed more light on the proteins associated with caffeine and catechins biosynthesis and % RWC. This study may help breeders in selection of parents with desirable DArTseq markers for development of new tea cultivars with desirable traits.
Collapse
Affiliation(s)
- Robert K Koech
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.,Kenya Agriculture and Livestock Research Organization, Tea Research Institute, P.O. Box 820, Kericho, 20200, Kenya
| | - Pelly M Malebe
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Christopher Nyarukowa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Richard Mose
- James Finlay (Kenya) Limited, P.O. Box 223, Kericho, 20200, Kenya
| | - Samson M Kamunya
- Kenya Agriculture and Livestock Research Organization, Tea Research Institute, P.O. Box 820, Kericho, 20200, Kenya
| | - Fourie Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
149
|
A method for visualizing fluorescence of flavonoid therapeutics in vivo in the model eukaryote Dictyostelium discoideum. Biotechniques 2019; 66:65-71. [DOI: 10.2144/btn-2018-0084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Naturstoff reagent A (diphenylboric acid 2-aminoethyl ester [DPBA]) has been used historically in plant science to observe polyphenolic pigments, such as flavonoids, whose fluorescence requires enhancement to be visible by microscopy. Flavonoids are common dietary constituents and are the focus of considerable attention because of their potential as novel therapies for numerous diseases. The molecular basis of therapeutic activity is only gradually being established, and one strand of such research is making use of the social amoeba Dictyostelium discoideum. We extended the application of DPBA to flavonoid imaging in these preclinical studies, and report the first method for use of DPBA in this eukaryotic model microbe and its applicability alongside subcellular markers. This in vivo fluorescence imaging provided a useful adjunct to parallel chemical and genetic studies.
Collapse
|
150
|
Jia M, Liu X, Xue H, Wu Y, Shi L, Wang R, Chen Y, Xu N, Zhao J, Shao J, Qi Y, An L, Sheen J, Yu F. Noncanonical ATG8-ABS3 interaction controls senescence in plants. NATURE PLANTS 2019; 5:212-224. [PMID: 30664732 PMCID: PMC6368864 DOI: 10.1038/s41477-018-0348-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis is essential for cellular functions and longevity, and the loss of proteostasis is one of the hallmarks of senescence. Autophagy is an evolutionarily conserved cellular degradation pathway that is critical for the maintenance of proteostasis. Paradoxically, autophagy deficiency leads to accelerated protein loss by unknown mechanisms. We discover that the ABNORMAL SHOOT3 (ABS3) subfamily of multidrug and toxic compound extrusion transporters promote senescence under natural and carbon-deprivation conditions in Arabidopsis thaliana. The senescence-promoting ABS3 pathway functions in parallel with the longevity-promoting autophagy to balance plant senescence and survival. Surprisingly, ABS3 subfamily multidrug and toxic compound extrusion proteins interact with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) at the late endosome to promote senescence and protein degradation without canonical cleavage and lipidation of ATG8. This non-autophagic ATG8-ABS3 interaction paradigm is probably conserved among dicots and monocots. Our findings uncover a previously unknown non-autophagic function of ATG8 and an unrecognized senescence regulatory pathway controlled by ATG8-ABS3-mediated proteostasis.
Collapse
Affiliation(s)
- Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Rui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Department of Molecular Genetics, Center for Applied Plant Science, Ohio State University, Columbus, OH, USA
| | - Yu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ni Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|