101
|
Inaji A, Okazawa A, Taguchi T, Nakamoto M, Katsuyama N, Yoshikawa R, Ohnishi T, Waller F, Ohta D. Rhizotaxis Modulation in Arabidopsis Is Induced by Diffusible Compounds Produced during the Cocultivation of Arabidopsis and the Endophytic Fungus Serendipita indica. PLANT & CELL PHYSIOLOGY 2020; 61:838-850. [PMID: 32016405 DOI: 10.1093/pcp/pcaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Rhizotaxis is established under changing environmental conditions via periodic priming of lateral root (LR) initiation at the root tips and adaptive LR formation along the primary root (PR). In contrast to the adaptable LR formation in response to nutrient availability, there is little information on root development during interactions with beneficial microbes. The Arabidopsis root system is characteristically modified upon colonization by the root endophytic fungus Serendipita indica, accompanied by a marked stimulation of LR formation and the inhibition of PR growth. This root system modification has been attributed to endophyte-derived indole-3-acetic acid (IAA). However, it has yet to be clearly explained how fungal IAA affects the intrinsic LR formation process. In this study, we show that diffusible compounds (chemical signals) other than IAA are present in the coculture medium of Arabidopsis and S. indica and induce auxin-responsive DR5::GUS expression in specific sections within the pericycle layer. The DR5::GUS expression was independent of polar auxin transport and the major IAA biosynthetic pathways, implicating unidentified mechanisms responsible for the auxin response and LR formation. Detailed metabolite analysis revealed the presence of multiple compounds that induce local auxin responses and LR formation. We found that benzoic acid (BA) cooperatively acted with exogenous IAA to generate a local auxin response in the pericycle layer, suggesting that BA is one of the chemical signals involved in adaptable LR formation. Identification and characterization of the chemical signals will contribute to a greater understanding of the molecular mechanisms underlying adaptable root development and to unconventional technologies for sustainable agriculture.
Collapse
Affiliation(s)
- Aoi Inaji
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Taiki Taguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Masatoshi Nakamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu Shiga, 525-8577 Japan
| | - Nao Katsuyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Ryoka Yoshikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Frank Waller
- Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-University Würzburg, Julius-von-Sachs-Platz 2, Würzburg D-97082, Germany
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| |
Collapse
|
102
|
Lin D, Yao H, Jia L, Tan J, Xu Z, Zheng W, Xue H. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. THE NEW PHYTOLOGIST 2020; 226:142-155. [PMID: 31745997 PMCID: PMC7065129 DOI: 10.1111/nph.16330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/10/2019] [Indexed: 05/03/2023]
Abstract
Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.
Collapse
Affiliation(s)
- De‐Li Lin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Yan Yao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Li‐Hua Jia
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Jin‐Fang Tan
- College of Resource and EnvironmentHenan Agricultural University450002ZhengzhouChina
| | - Zhi‐Hong Xu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Wen‐Ming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
- Joint Center for Single Cell BiologySchool of Agriculture and BiologyShanghai Jiao Tong University200240ShanghaiChina
| |
Collapse
|
103
|
Fan X, Che X, Lai W, Wang S, Hu W, Chen H, Zhao B, Tang M, Xie X. The auxin-inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply. Environ Microbiol 2020; 22:2053-2079. [PMID: 32079042 DOI: 10.1111/1462-2920.14952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Abstract
Phosphorus is a macronutrient that is essential for plant survival. Most land plants have evolved the ability to form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which enhances phosphate (Pi) acquisition. Modulation of Pi transporter systems is the master strategy used by mycorrhizal plants to adapt to ambient Pi concentrations. However, the specific functions of PHOSPHATE TRANSPORTER 1 (PHT1) genes, which are Pi transporters that are responsive to high Pi availability, are largely unknown. Here, we report that AsPT5, an Astragalus sinicus (Chinese milk vetch) member of the PHT1 gene family, is conserved across dicotyledons and is constitutively expressed in a broad range of tissues independently of Pi supply, but is remarkably induced by indole-3-acetic acid (auxin) treatment under moderately high Pi conditions. Subcellular localization experiments indicated that AsPT5 localizes to the plasma membrane of plant cells. Using reverse genetics, we showed that AsPT5 not only mediates Pi transport and remodels root system architecture but is also essential for arbuscule formation in A. sinicus under moderately high Pi concentrations. Overall, our study provides insight into the function of AsPT5 in Pi transport, AM development and the cross-talk between Pi nutrition and auxin signalling in mycorrhizal plants.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | | | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
104
|
Xuan W, De Gernier H, Beeckman T. The dynamic nature and regulation of the root clock. Development 2020; 147:147/3/dev181446. [DOI: 10.1242/dev.181446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Plants explore the soil by continuously expanding their root system, a process that depends on the production of lateral roots (LRs). Sites where LRs can be produced are specified in the primary root axis through a pre-patterning mechanism, determined by a biological clock that is coordinated by temporal signals and positional cues. This ‘root clock’ generates an oscillatory signal that is translated into a developmental cue to specify a set of founder cells for LR formation. In this Review, we summarize recent findings that shed light on the mechanisms underlying the oscillatory signal and discuss how a periodic signal contributes to the conversion of founder cells into LR primordia. We also provide an overview of the phases of the root clock that may be influenced by endogenous factors, such as the plant hormone auxin, and by exogenous environmental cues. Finally, we discuss additional aspects of the root-branching process that act independently of the root clock.
Collapse
Affiliation(s)
- Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| |
Collapse
|
105
|
Wang X, Feng J, White PJ, Shen J, Cheng L. Heterogeneous phosphate supply influences maize lateral root proliferation by regulating auxin redistribution. ANNALS OF BOTANY 2020; 125:119-130. [PMID: 31560368 PMCID: PMC6948210 DOI: 10.1093/aob/mcz154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/16/2019] [Accepted: 09/20/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Roots take up phosphorus (P) as inorganic phosphate (Pi). Enhanced root proliferation in Pi-rich patches enables plants to capture the unevenly distributed Pi, but the underlying control of root proliferation remains largely unknown. Here, the role of auxin in this response was investigated in maize (Zea mays). METHODS A split-root, hydroponics system was employed to investigate root responses to Pi supply, with one (heterogeneous) or both (homogeneous) sides receiving 0 or 500 μm Pi. KEY RESULTS Maize roots proliferated in Pi-rich media, particularly with heterogeneous Pi supply. The second-order lateral root number was 3-fold greater in roots of plants receiving a heterogeneous Pi supply than in roots of plants with a homogeneous Pi supply. Root proliferation in a heterogeneous Pi supply was inhibited by the auxin transporter inhibitor 1-N-naphthylphthalamic acid (NPA). The proliferation of lateral roots was accompanied by an enhanced auxin response in the apical meristem and vascular tissues at the root tip, as demonstrated in a DR5::RFP marker line. CONCLUSIONS It is concluded that the response of maize root morphology to a heterogeneous Pi supply is modulated by local signals of Pi availability and systemic signals of plant P nutritional status, and is mediated by auxin redistribution.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Jingjing Feng
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jianbo Shen
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Lingyun Cheng
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| |
Collapse
|
106
|
Nadeem F, Ahmad Z, Ul Hassan M, Wang R, Diao X, Li X. Adaptation of Foxtail Millet ( Setaria italica L.) to Abiotic Stresses: A Special Perspective of Responses to Nitrogen and Phosphate Limitations. FRONTIERS IN PLANT SCIENCE 2020; 11:187. [PMID: 32184798 PMCID: PMC7058660 DOI: 10.3389/fpls.2020.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 05/12/2023]
Abstract
Amongst various environmental constraints, abiotic stresses are increasing the risk of food insecurity worldwide by limiting crop production and disturbing the geographical distribution of food crops. Millets are known to possess unique features of resilience to adverse environments, especially infertile soil conditions, although the underlying mechanisms are yet to be determined. The small diploid genome, short stature, excellent seed production, C4 photosynthesis, and short life cycle of foxtail millet make it a very promising model crop for studying nutrient stress responses. Known to be a drought-tolerant crop, it responds to low nitrogen and low phosphate by respective reduction and enhancement of its root system. This special response is quite different from that shown by maize and some other cereals. In contrast to having a smaller root system under low nitrogen, foxtail millet enhances biomass accumulation, facilitating root thickening, presumably for nutrient translocation. The low phosphate response of foxtail millet links to the internal nitrogen status, which tends to act as a signal regulating the expression of nitrogen transporters and hence indicates its inherent connection with nitrogen nutrition. Altogether, the low nitrogen and low phosphate responses of foxtail millet can act as a basis to further determine the underlying molecular mechanisms. Here, we will highlight the abiotic stress responses of foxtail millet with a key note on its low nitrogen and low phosphate adaptive responses in comparison to other crops.
Collapse
Affiliation(s)
- Faisal Nadeem
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Zeeshan Ahmad
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Ruifeng Wang
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuexian Li
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
- *Correspondence: Xuexian Li,
| |
Collapse
|
107
|
Farhadi S, Sabet MS, Malboobi MA, Moieni A. The Critical Role of AtPAP17 and AtPAP26 Genes in Arabidopsis Phosphate Compensation Network. FRONTIERS IN PLANT SCIENCE 2020; 11:565865. [PMID: 33101335 PMCID: PMC7554520 DOI: 10.3389/fpls.2020.565865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
Purple acid phosphatases (PAP)-encoding genes form a complex network that play a critical role in plant phosphate (Pi) homeostasis. Mostly, the functions of PAPs were investigated individually. However, the interactions of most of these genes in response to various concentrations of available Pi remain unknown. In this study, the roles of AtPAP17 and AtPAP26 genes, and their relationship within Pi homeostasis context were investigated. Surprisingly, atpap17 and atpap26 mutants not only showed no obvious developmental defects, but also produced higher biomass in compare to wild type (WT) plants under normal growth conditions. Comparing gene expression patterns of these mutants with WT plant, we identified a set of genes up-regulated in mutant plants but not in WT. Based on these unexpected results and up-regulation of AtPAP17 and AtPAP26 genes by the loss of function of each other, the hypothesis of compensation relationship between these genes in Pi homeostasis was assessed by generating atpap17/atpap26 double mutants. Observation of developmental defects in atpap17/atpap26 mutant but not in single mutants indicated a compensation relationship between AtPAP17 and AtPAP26 genes in Pi homeostasis network. Taken together, these results demonstrate the activation of AtPAP17 and AtPAP26 genes to buffer against the loss of function of each other, and this compensation relationship is vital for Arabidopsis growth and development.
Collapse
Affiliation(s)
- Siamak Farhadi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Mohammad Sadegh Sabet,
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ahmad Moieni
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
108
|
Etesami H, Adl SM. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-981-15-2576-6_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
109
|
Mitterreiter MJ, Bosch FA, Brylok T, Schwenkert S. The ER luminal C-terminus of AtSec62 is critical for male fertility and plant growth in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:5-17. [PMID: 31355985 DOI: 10.1111/tpj.14483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 05/25/2023]
Abstract
Protein translocation into the endoplasmic reticulum (ER) occurs either co- or post-translationally through the Sec translocation system. The Arabidopsis Sec post-translocon is composed of the protein-conducting Sec61 complex, the chaperone-docking protein AtTPR7, the J-domain-containing proteins AtERdj2A/B and the yet uncharacterized AtSec62. Yeast Sec62p is suggested to mainly function in post-translational translocation, whereas mammalian Sec62 also interacts with ribosomes. In Arabidopsis, loss of AtSec62 leads to impaired growth and drastically reduced male fertility indicating the importance of AtSec62 in protein translocation and subsequent secretion in male gametophyte development. Moreover, AtSec62 seems to be divergent in function as compared with yeast Sec62p, since we were not able to complement the thermosensitive yeast mutant sec62-ts. Interestingly, AtSec62 has an additional third transmembrane domain in contrast to its yeast and mammalian counterparts resulting in an altered topology with the C-terminus facing the ER lumen instead of the cytosol. In addition, the AtSec62 C-terminus has proven to be indispensable for AtSec62 function, since a construct lacking the C-terminal region was not able to rescue the mutant phenotype in Arabidopsis. We thus propose that Sec62 acquired a unique topology and function in protein translocation into the ER in plants.
Collapse
Affiliation(s)
- Melanie Jasmine Mitterreiter
- Department Biology I, Plant Sciences, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Franziska Annamaria Bosch
- Department Biology I, Plant Sciences, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Thomas Brylok
- Department Biology I, Plant Sciences, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biology I, Plant Sciences, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
110
|
Chai X, Xie L, Wang X, Wang H, Zhang J, Han Z, Wu T, Zhang X, Xu X, Wang Y. Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure. J Appl Microbiol 2019; 128:1460-1471. [PMID: 31829487 DOI: 10.1111/jam.14547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/01/2022]
Abstract
AIMS The purpose of this study was to select phosphorus-efficient apple rootstocks under phosphorus deficiency and to reveal the effects of different apple rootstocks on the rhizosphere bacterial community. METHODS AND RESULTS We used 83 hybrid lines of Malus robusta Rehd. × Malling 9 (M.9) to investigate their physiological traits and the phosphorus deficiency phenotypes of leaves in response to phosphorus deficiency (0·1 mmol l-1 PO4 3- ). All the plants were cultivated in pots in the greenhouse and watered using drip irrigation. In accordance with the results of investigation, we selected the phosphorus-efficient hybrid lines (PE) and the phosphorus-inefficient hybrid lines (PI) to research their root morphology and root hairs (RH). In addition, we used Illumina MiSeq sequencing to determine the bacterial community of the rhizosphere from different rootstocks. The results showed that the PE plants had better growth characteristics and stronger root plasticity than that of the PI plants, and phosphorus deficiency can stimulate the RH growth of PE plants. There was no significant difference in the rhizosphere bacterial diversity, but we found that the bacterial community structure was significantly different at the genus levels; in addition, 89 genera were found to have significant differences between PE and PI plants, especially Bacillus. The PE rhizosphere had more abundant Bacillus compared to the PI. High positive Pearson correlations with the phosphorus concentration in the plantlets of apple rootstocks were detected for the bacterial genera Bacillus (r: 0·776). CONCLUSIONS The phosphorus-efficient apple rootstocks adapted to phosphorus deficiency by shaping the root morphology. Notably, different apple rootstocks showed alteration of the microbes in rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY This study can provide the materials for exploring the mechanism of apple rootstock phosphorus absorption. In accordance with the different bacterial community compositions, we can develop the inoculants to promote nutrient uptake.
Collapse
Affiliation(s)
- X Chai
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - L Xie
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - X Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - H Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - J Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, P. R. China
| | - Z Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - T Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - X Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - X Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Y Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
111
|
Wang QJ, Yuan Y, Liao Z, Jiang Y, Wang Q, Zhang L, Gao S, Wu F, Li M, Xie W, Liu T, Xu J, Liu Y, Feng X, Lu Y. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. THE PLANT GENOME 2019; 12:1-13. [PMID: 33016582 DOI: 10.3835/plantgenome2019.06.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study. Hap5, harboring 12 favorable SNPs, could enhance strong root systems and P absorption under low-P stress. Phosphorus is an essential macronutrient required for normal plant growth and development. Determining the genetic basis of root traits will enhance our understanding of maize's (Zea mays L.) tolerance to low-P stress. Here, we identified significant phenotypic differences for 13 traits in maize seedlings subjected to P-sufficient and P-deficient conditions. Six extremely sensitive and seven low-P stress tolerant inbreds were selected from 356 inbred lines of maize. No significant differences were observed between temperate and tropical-subtropical groups with respect to trait ratios associated with the adaptation to low-P stress. The broad-sense heritability of these traits ranged from relatively moderate (0.59) to high (0.90). Through genome-wide association mapping with 541,575 informative single nucleotide polymorphisms (SNPs), 551, 1140 and 1157 significant SNPs were detected for the 13 traits in 2012, 2016 and both years combined, respectively, along with 23 shared candidate genes, seven of which overlapped with reported quantitative trait loci and genes for low-P stress. Five haplotypes located in candidate gene GRMZM2G009544 were identified; among these, Hap5, harboring 12 favorable SNP alleles, showed significantly greater values for the root traits studied than the other four haplotypes under both experimental conditions. The candidate genes and favorable haplotypes and alleles identified here provide promising resources for genetic studies and molecular breeding for improving tolerance to abiotic stress in maize.
Collapse
Affiliation(s)
- Qing-Jun Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yibing Yuan
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Zhengqiao Liao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yi Jiang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Litian Zhang
- College of Chuancha, Yibin Univ., Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Menglu Li
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Wubing Xie
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Tianhong Liu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yaxi Liu
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| |
Collapse
|
112
|
Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC. Role of cis-zeatin in root responses to phosphate starvation. THE NEW PHYTOLOGIST 2019; 224:242-257. [PMID: 31230346 DOI: 10.1111/nph.16020] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 05/02/2023]
Abstract
Phosphate (Pi) is an essential nutrient for all organisms. Roots are underground organs, but the majority of the root biology studies have been done on root systems growing in the presence of light. Root illumination alters the Pi starvation response (PSR) at different intensities. Thus, we have analyzed morphological, transcriptional and physiological responses to Pi starvation in dark-grown roots. We have identified new genes and pathways regulated by Pi starvation that were not described previously. We also show that Pi-starved plants increase the cis-zeatin (cZ) : trans-zeatin (tZ) ratio. Transcriptomic analyses show that tZ preferentially represses cell cycle and PSR genes, whereas cZ induces genes involved in cell and root hair elongation and differentiation. In fact, cZ-treated seedlings show longer root system as well as longer root hairs compared with tZ-treated seedlings, increasing the total absorbing surface. Mutants with low cZ concentrations do not allocate free Pi in roots during Pi starvation. We propose that Pi-starved plants increase the cZ : tZ ratio to maintain basal cytokinin responses and allocate Pi in the root system to sustain its growth. Therefore, cZ acts as a PSR hormone that stimulates root and root hair elongation to enlarge the root absorbing surface and to increase Pi concentrations in roots.
Collapse
Affiliation(s)
- Javier Silva-Navas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Angela Saez
- Centro de Investigación en Producción Animal y Vegetal (CIPAV), Timac Agro Int-Roullier Group, Polígono Arazuri-Orcoyen, C/C n Degrees 32, ZIP 31160, Orcoyen, Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Jose M Garcia-Mina
- Environmental Biology Department, University of Navarra, Pamplona, ZIP 31009, Navarra, Spain
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Pamplona, ZIP 31009, Navarra, Spain
| | - Roberto Baigorri
- Centro de Investigación en Producción Animal y Vegetal (CIPAV), Timac Agro Int-Roullier Group, Polígono Arazuri-Orcoyen, C/C n Degrees 32, ZIP 31160, Orcoyen, Spain
| | - Ranjan Swarup
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
- Centre for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| |
Collapse
|
113
|
López-Bucio JS, Salmerón-Barrera GJ, Ravelo-Ortega G, Raya-González J, León P, de la Cruz HR, Campos-García J, López-Bucio J, Guevara-García ÁA. Mitogen-activated protein kinase 6 integrates phosphate and iron responses for indeterminate root growth in Arabidopsis thaliana. PLANTA 2019; 250:1177-1189. [PMID: 31190117 DOI: 10.1007/s00425-019-03212-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
A MAPK module, of which MPK6 kinase is an important component, is involved in the coordination of the responses to Pi and Fe in the primary root meristem of Arabidopsis thaliana. Phosphate (Pi) deficiency induces determinate primary root growth in Arabidopsis through cessation of cell division in the meristem, which is linked to an increased iron (Fe) accumulation. Here, we show that Mitogen-Activated Protein Kinase6 (MPK6) has a role in Arabidopsis primary root growth under low Pi stress. MPK6 activity is induced in roots in response to low Pi, and such induction is enhanced by Fe supplementation, suggesting an MPK6 role in coordinating Pi/Fe balance in mediating root growth. The differentiation of the root meristem induced by low Pi levels correlates with altered expression of auxin-inducible genes and auxin transporter levels via MPK6. Our results indicate a critical role of the MPK6 kinase in coordinating meristem cell activity to Pi and Fe availability for proper primary root growth.
Collapse
Affiliation(s)
- Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | | | - Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Patricia León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, CP 62250, Cuernavaca, Morelos, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | | |
Collapse
|
114
|
Rubilar-Hernández C, Osorio-Navarro C, Cabello F, Norambuena L. PI4KIII β Activity Regulates Lateral Root Formation Driven by Endocytic Trafficking to the Vacuole. PLANT PHYSIOLOGY 2019; 181:112-126. [PMID: 31285293 PMCID: PMC6716240 DOI: 10.1104/pp.19.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 06/01/2023]
Abstract
Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIβ1 and PI4KIIIβ2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIβ1 and PI4KIIIβ2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIβ1 and PI4KIIIβ2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIβ1 and PI4KIIIβ2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIβ1 and PI4KIIIβ2 in LR primordium formation in Arabidopsis.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Francisca Cabello
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
115
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
116
|
Pan W, Wu Y, Xie Q. Regulation of Ubiquitination Is Central to the Phosphate Starvation Response. TRENDS IN PLANT SCIENCE 2019; 24:755-769. [PMID: 31176527 DOI: 10.1016/j.tplants.2019.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants have developed numerous strategies to overcome the limiting availability of the essential nutrient phosphate in nature. Recent studies reveal that post-translational modification (PTM) by ubiquitination is an important and central regulation mechanism in the plant phosphate starvation response (PSR). Ubiquitination precisely modulates the stability and trafficking of proteins in response to the heterogeneous phosphate supplement. Induction of autophagy provides novel insights into the molecular mechanisms under phosphate starvation. In this review, we present and discuss novel findings on the regulation of diverse PSRs through ubiquitination. Resolving these regulation mechanisms will pave the way to improve phosphate acquisition and utilization efficiency in crops.
Collapse
Affiliation(s)
- Wenbo Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
117
|
Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One 2019; 14:e0220374. [PMID: 31344115 PMCID: PMC6657917 DOI: 10.1371/journal.pone.0220374] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, little is known about these transporters in oilseed rape. Therefore, the aim of the present study was to characterize the members of the PHT1 gene family in allotetraploid Brassica napus and to analyze their expression profiles in response to environmental stresses. In total, 49 PHT1 family members were identified in B. napus, including 27 genes in the A subgenome and 22 in the C subgenome. Most of the PHT1 proteins were predicted to localize to the plasma membrane. Phylogenetic analysis suggested that the members of the PHT1 gene family can be divided into seven clades, with the introns/exons and protein motifs conserved in each clade. Collinearity analysis revealed that most of the BnaPHT1 genes shared syntenic relationships with PHT1 members in Arabidopsis thaliana, B. rapa, and B. oleracea, and that whole-genome duplication (polyploidy) played a major driving force for BnaPHT1 evolution in addition to segmental duplication. Transcript abundance analysis showed that a broad range of expression patterns of individual BnaPHT1 genes occurred in response to phosphorus (P) deficiency. In addition, the expression levels of BnaPHT1 genes can be regulated by different nutrient stresses, including nitrogen (N), potassium (K), sulfur (S) and iron (Fe) stresses. Moveover, salt and drought stresses can regulate the transcript abundances of BnaPHT1s, as well as phytohormones including auxin and cytokinin. Gene coexpression analysis based on the RNA-seq data implied that BnaPHT1s might cooperate with each other as well as with other genes to regulate nutrient homeostasis in B. napus. Further analysis of the promoters revealed that GT-1, DRE and P1BS elements are widely distributed within the promoter regions of BnaPHT1 genes. Our results indicate that BnaPHT1s might be involved in cross-talk for sensing the external status of P, N, K, S and Fe, as well as salt and drought stresses. Moreover, these processes might be mediated by phytohormones. Our findings provide the first step in the complex genetic dissection of the Pi transport system in plants and implicate multiple transcriptional regulation, which probably refers to new roles of PHT1 genes in B. napus.
Collapse
Affiliation(s)
- Yu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiangsheng Ye
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
118
|
Schuetz M, Fidanza M, Mattsson J. Identification of Auxin Response Factor-Encoding Genes Expressed in Distinct Phases of Leaf Vein Development and with Overlapping Functions in Leaf Formation. PLANTS 2019; 8:plants8070242. [PMID: 31340490 PMCID: PMC6681221 DOI: 10.3390/plants8070242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
Based on mutant phenotypes the MONOPTEROS (MP)/Auxin Response Factor 5 (ARF5) gene acts in several developmental processes including leaf vein development. Since overlapping functions among ARF genes are common, we assessed the related ARF 3-8 and 19 genes for potential overlap in expression during vein development using in-situ hybridization. Like MP/ARF5, ARF3 was expressed in preprocambial and procambial cells. ARF7 was also expressed in procambial cells, close to and during vein differentiation. ARF19 was expressed in differentiating vessel elements. To assess if genes with vein expression have overlapping functions, double mutants were generated. While arf3, 5 and 7 mutants formed leaves normally, double mutant combinations of mp/arf5 with arf3 or arf7 resulted in a breakdown of leaf formation. Instead, novel structures not present in any of the single mutants formed. The results implicate ARF3 and ARF7 in rosette leaf formation and suggest that their functions overlap and act in parallel with MP/ARF5 in this process. The observed vascular expression patterns suggest unique functions (ARF7 and 19) and potentially overlapping functions (ARF3 and 5) in vein development. Since arf3 arf5 double mutants do not form leaves, assessment of their potential combined action in vein development will require the use of conditional mutants.
Collapse
Affiliation(s)
- Mathias Schuetz
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Botany, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Mario Fidanza
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Neurosurgery, Stanford University, 300 Pasteur Dr., Palo Alto, CA 94304, USA
| | - Jim Mattsson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
119
|
Iglesias MJ, Colman SL, Terrile MC, París R, Martín-Saldaña S, Chevalier AA, Álvarez VA, Casalongué CA. Enhanced Properties of Chitosan Microparticles over Bulk Chitosan on the Modulation of the Auxin Signaling Pathway with Beneficial Impacts on Root Architecture in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6911-6920. [PMID: 31194542 DOI: 10.1021/acs.jafc.9b00907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Improving the root system architecture (RSA) under adverse environmental conditions by using biostimulants is emerging as a new way to boost crop productivity. Recently, we have reported the characterization of novel chitosan-based microparticles (CS-MPs) with promising biological properties as rooting agents in lettuce. In this work, we demonstrated that in contrast to bulk chitosan (CS), which exerts root growth inhibition, CS-MPs promoted root growth and development from 1 to 10 μg mL-1 without cytotoxicity effects at higher doses in Arabidopsis and lettuce seedlings. In addition, we studied the mechanistic mode of action of CS-MPs in the development of early RSA in the Arabidopsis model. CS-MPs unchained accurate and sustained spatio-temporal activation of the nuclear auxin signaling pathway. Our findings validated a promising scenario for the application of CS-MPs in the modulation of RSA to respond to changing soil environments and improve crop performance.
Collapse
Affiliation(s)
- María José Iglesias
- UNMdP, CONICET, Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Mar del Plata , Funes 3250 , B7600 Mar del Plata , Argentina
| | - Silvana Lorena Colman
- UNMdP, CONICET, Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Mar del Plata , Funes 3250 , B7600 Mar del Plata , Argentina
| | - María Cecilia Terrile
- UNMdP, CONICET, Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Mar del Plata , Funes 3250 , B7600 Mar del Plata , Argentina
| | - Ramiro París
- UNMdP, CONICET, Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Mar del Plata , Funes 3250 , B7600 Mar del Plata , Argentina
| | - Sergio Martín-Saldaña
- Gihon Laboratorios Químicos SRL , Calle 4 y 5 Parque Industrial General Salvio , B7600 Mar del Plata , Argentina
| | - Alberto Antonio Chevalier
- Gihon Laboratorios Químicos SRL , Calle 4 y 5 Parque Industrial General Salvio , B7600 Mar del Plata , Argentina
| | - Vera Alejandra Álvarez
- UNMdP, CONICET, Instituto Investigación de Ciencia & Tecnología de Materiales INTEMA, UE-CONICET-UNMDP, Grupo Materiales Compuestos Termoplásticos, Facultad de Ingeniería , Universidad Nacional de Mar del Plata , Avenida Colón 10850 , B7600 Mar del Plata , Argentina
| | - Claudia Anahí Casalongué
- UNMdP, CONICET, Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Mar del Plata , Funes 3250 , B7600 Mar del Plata , Argentina
| |
Collapse
|
120
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
121
|
Pan Q, Shikano I, Hoover K, Liu TX, Felton GW. Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. J Chem Ecol 2019; 45:515-524. [PMID: 31127421 DOI: 10.1007/s11829-018-9634-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Although the tritrophic interactions of plants, insect herbivores and their natural enemies have been intensely studied for several decades, the roles of entomopathogens in their indirect modulation of plant-insect relationships is still unclear. Here, we employed a sublethal dose of a baculovirus with a relatively broad host range (AcMNPV) to explore if feeding by baculovirus-challenged Helicoverpa zea caterpillars induces direct defenses in the tomato plant. We examined induction of plant defenses following feeding by H. zea, including tomato plants fed on by healthy caterpillars, AcMNPV-challenged caterpillars, or undamaged controls, and subsequently compared the transcript levels of defense related proteins (i.e., trypsin proteinase inhibitors, peroxidase and polyphenol oxidase) and other defense genes (i.e., proteinase inhibitor II and cysteine proteinase inhibitor) from these plants, in addition to comparing caterpillar relative growth rates. As a result, AcMNPV-challenged caterpillars induced the highest plant anti-herbivore defenses. We examined several elicitors and effectors in the secretions of these caterpillars (i.e., glucose oxidase, phospholipase C, and ATPase hydrolysis), which surprisingly did not differ between treatments. Hence, we suggest that the greater induction of plant defenses by the virus-challenged caterpillars may be due to differences in the amount of these secretions deposited during feeding or to some other unknown factor(s).
Collapse
Affiliation(s)
- Qinjian Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
122
|
Zhang X, Wang B, Zhao Y, Zhang J, Li Z. Auxin and GA signaling play important roles in the maize response to phosphate deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:177-188. [PMID: 31128687 DOI: 10.1016/j.plantsci.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 05/26/2023]
Abstract
Phytohormone signaling is involved in the low-phosphate (LP) response and causes root system changes. To understand the roles of auxin and gibberellic acid (GA) in the maize response to LP stress, inbred line Q319 was used to identify the changes in root morphology and the gene expression response to LP stress with or without exogenous auxin, GA or their inhibitors. The root morphology, IAA and GAs concentration and genes related to the LP response, cell elongation and division, auxin transport and signaling, and GA synthesis and signaling were analyzed. The LP-induced maize root morphological adaption was dependent on changes in the expression of related genes, like IPS1, pht1;1 LPR1b, KRPs, and EXPB1-4. The altered local auxin concentration and signaling were involved in promoting axial root elongation and reducing lateral root density and length under LP conditions, which were regulated by PID and PP2A activity and the auxin signaling pathway. The upregulation of the GA synthesis genes AN1, GA20ox1, and GA20ox2 and the downregulation of the GA inactive genes GA2ox1 and GA2ox2 were observed in maize roots subjected to LP stress, and the increased GA biosynthesis and signaling were involved in root growth. Both hormones participate in LP stress response and jointly regulated root modification and LP acclimation in maize.
Collapse
Affiliation(s)
- Xinrui Zhang
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, PR China.
| | - Baomei Wang
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, PR China.
| | - Yajie Zhao
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, PR China.
| | - Juren Zhang
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, PR China.
| | - Zhaoxia Li
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, PR China.
| |
Collapse
|
123
|
He Y, Pantigoso HA, Wu Z, Vivanco JM. Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J Appl Microbiol 2019; 127:196-207. [PMID: 30955229 DOI: 10.1111/jam.14273] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 01/23/2023]
Abstract
AIMS This study builds upon the premise that roots culture distinct bacteria at specific stages of plant growth to benefit of specific microbial services needed at that particular growth stage. Accordingly, we hypothesized that the co-inoculation of beneficial microbes with distinct properties at specific stages of plant development would enhance plant performance. METHODS AND RESULTS The chosen microbes were Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus mojavensis and Pseudomonas putida. These microbes were selected based on their specific services ranging from nutrient solubilization, root growth promotion and disease resistance, and were applied to the roots of tomato plants at specific time points when those services were needed the most by the plant. Laboratory and greenhouse studies were conducted to evaluate the effects of co-inoculation at specific stages of development compared to single microbial applications. CONCLUSION In general, the combination of three microbes gave the highest biomass and yield without the presence of disease. Applications of three microbes showed the highest root/shoot ratio, and applications of four microbes the lowest ratio. Pseudomonas putida significantly increased fruit macronutrient and micronutrient contents. SIGNIFICANCE AND IMPACT OF THE STUDY Our studies suggest that co-inoculation of three or four microbes is a good strategy for healthy crop production.
Collapse
Affiliation(s)
- Y He
- School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, PR China.,Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - H A Pantigoso
- Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Z Wu
- School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, PR China
| | - J M Vivanco
- Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
124
|
Motte H, Vanneste S, Beeckman T. Molecular and Environmental Regulation of Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:465-488. [PMID: 30822115 DOI: 10.1146/annurev-arplant-050718-100423] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| |
Collapse
|
125
|
Lee HY, Chen Z, Zhang C, Yoon GM. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1927-1940. [PMID: 30810167 PMCID: PMC6436150 DOI: 10.1093/jxb/erz074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) deficiency severely influences the growth and reproduction of plants. To cope with Pi deficiency, plants initiate morphological and biochemical adaptive responses upon sensing low Pi in the soil, and the plant hormone ethylene plays a crucial role during this process. However, how regulation of ethylene biosynthesis influences the Pi-induced adaptive responses remains unclear. Here, we determine the roles of rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), the rate-limiting enzymes in ethylene biosynthesis, in response to Pi deficiency. Through analysis of tissue-specific expression of OsACS in response to Pi deficiency and OsACS mutants generated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] genome editing, we found that two members of the OsACS family, i.e. OsACS1 and OsACS2, are involved but differed in their importance in controlling the remodeling of root system architecture, transcriptional regulation of Pi starvation-induced genes, and cellular phosphorus homeostasis. Interestingly, in contrast to the known inhibitory role of ethylene on root elongation, both OsACS mutants, especially OsACS1, almost fail to promote lateral root growth in response to Pi deficiency, demonstrating a stimulatory role for ethylene in lateral root development under Pi-deficient conditions. Together, this study provides new insights into the roles of ethylene in Pi deficiency response in rice seedlings and the isoform-specific function of OsACS genes in this process.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Cankui Zhang
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
126
|
Wang Y, Zhang F, Cui W, Chen K, Zhao R, Zhang Z. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:258-268. [PMID: 30824004 DOI: 10.1016/j.plantsci.2018.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 05/26/2023]
Abstract
Plants have evolved phosphate (Pi) starvation response to adapt the low-Pi environment. The regulation of adaptive responses to phosphorus deficiency by the PHR1-miR399-PHO2 module has been well studied in Arabidopsis thaliana but not in strawberry. Transcription factor PHR1 as the central regulator in the Pi starvation signaling has been revealed in a few plant species. However, the function of PHR1 homologues in strawberry is still unknown. In this study, a total of 13 MYB-CC genes were identified in the woodland strawberry (Fragaria vesca) genome and the FvPHR1 gene was characterized. FvPHR1 contains MYB domain and coiled-coil (CC) domain and is localized in the nucleus. FvPHR1 also exhibits trans-activation ability. Furthermore, the P content in leaves of FvPHR1-overexpressing woodland strawberries was significantly increased by 1.38-fold to 1.78-fold compared with that in the wild type. FvPHR1 was also demonstrated to directly bind to the FvMIR399a promoter and positively regulate the expression of FvmiR399a in woodland strawberry. These results showed that PHR1-miR399 module is involved in the regulation of phosphate-signaling pathway and phosphate homeostasis in woodland strawberry.
Collapse
Affiliation(s)
- Yan Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weixu Cui
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Keqin Chen
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui Zhao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
127
|
Fabiańska I, Gerlach N, Almario J, Bucher M. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:2123-2137. [PMID: 30317641 PMCID: PMC6519159 DOI: 10.1111/nph.15538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 05/22/2023]
Abstract
Plants respond to phosphorus (P) limitation through an array of morphological, physiological and metabolic changes which are part of the phosphate (Pi) starvation response (PSR). This response influences the establishment of the arbuscular mycorrhizal (AM) symbiosis in most land plants. It is, however, unknown to what extent available P and the PSR redefine plant interactions with the fungal microbiota in soil. Using amplicon sequencing of the fungal taxonomic marker ITS2, we examined the changes in root-associated fungal communities in the AM nonhost species Arabidopsis thaliana in response to soil amendment with P and to genetic perturbations in the plant PSR. We observed robust shifts in root-associated fungal communities of P-replete plants in comparison with their P-deprived counterparts, while bulk soil communities remained unaltered. Moreover, plants carrying mutations in the phosphate signaling network genes, phr1, phl1 and pho2, exhibited similarly altered root fungal communities characterized by the depletion of the chytridiomycete taxon Olpidium brassicae specifically under P-replete conditions. This study highlights the nutritional status and the underlying nutrient signaling network of an AM nonhost plant as previously unrecognized factors influencing the assembly of the plant fungal microbiota in response to P in nonsterile soil.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Nina Gerlach
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Juliana Almario
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
- Present address:
Center for Plant Molecular BiologyUniversity of TübingenTübingen72074Germany
| | - Marcel Bucher
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
| |
Collapse
|
128
|
Méndez-Bravo A, Ruiz-Herrera LF, Cruz-Ramírez A, Guzman P, Martínez-Trujillo M, Ortiz-Castro R, López-Bucio J. CONSTITUTIVE TRIPLE RESPONSE1 and PIN2 act in a coordinate manner to support the indeterminate root growth and meristem cell proliferating activity in Arabidopsis seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:175-186. [PMID: 30823995 DOI: 10.1016/j.plantsci.2018.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 05/26/2023]
Abstract
The plant hormone ethylene induces auxin biosynthesis and transport and modulates root growth and branching. However, its function on root stem cells and the identity of interacting factors for the control of meristem activity remains unclear. Genetic analysis for primary root growth in wild-type (WT) Arabidopsis thaliana seedlings and ethylene-related mutants showed that the loss-of-function of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) inhibits cell division and elongation. This phenotype is associated with an increase in the expression of the auxin transporter PIN2 and a drastic decrease in the expression of key factors for stem cell niche maintenance such as PLETHORA1, SHORT ROOT and SCARECROW. While the root stem cell niche is affected in ctr1 mutants, its maintenance is severely compromised in the ctr1-1eir1-1(pin2) double mutant, in which an evident loss of proliferative capacity of the meristematic cells leads to a fully differentiated root meristem shortly after germination. Root traits affected in ctr1-1 mutants could be restored in ctr1-1ein2-1 double mutants. These results reveal that ethylene perception via CTR1 and EIN2 in the root modulates the proliferative capacity of root stem cells via affecting the expression of genes involved in the two major pathways, AUX-PIN-PLT and SCR-SHR, which are key factors for proper root stem cell niche maintenance.
Collapse
Affiliation(s)
- Alejandro Méndez-Bravo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - Plinio Guzman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, C. P. 91070, Xalapa, Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
129
|
Yeh CM, Kobayashi K, Fujii S, Fukaki H, Mitsuda N, Ohme-Takagi M. Blue Light Regulates Phosphate Deficiency-Dependent Primary Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1803. [PMID: 32082352 PMCID: PMC7005603 DOI: 10.3389/fpls.2019.01803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/24/2019] [Indexed: 05/09/2023]
Abstract
Plants have evolved mechanisms to improve utilization efficiency or acquisition of inorganic phosphate (Pi) in response to Pi deficiency, such as altering root architecture, secreting acid phosphatases, and activating the expression of genes related to Pi uptake and recycling. Although many genes responsive to Pi starvation have been identified, transcription factors that affect tolerance to Pi deficiency have not been well characterized. We show here that the ectopic expression of B-BOX32 (BBX32) and the mutation of ELONGATED HYPOCOTYL 5 (HY5), whose transcriptional activity is negatively regulated by BBX32, resulted in the tolerance to Pi deficiency in Arabidopsis. The primary root lengths of 35S:BBX32 and hy5 plants were only slightly inhibited under Pi deficient condition and the fresh weights were significantly higher than those of wild type. The Pi deficiency-tolerant root phenotype of hy5 was similarly observed when grown on the medium without Pi. In addition, a double mutant, hy5 slr1, without lateral roots, also showed a long primary root phenotype under phosphate deficiency, indicating that the root phenotype of hy5 does not result from an increase of external Pi uptake. Moreover, we found that blue light may regulate Pi deficiency-dependent primary root growth inhibition through activating peroxidase gene expression, suggesting the Pi-deficiency tolerant root phenotype of hy5 may be due to blockage of blue light responses. Altogether, this study points out light quality may play an important role in the regulation of Pi deficiency responses. It may contribute to regulate plant growth under Pi deficiency through proper illumination.
Collapse
Affiliation(s)
- Chuan-Ming Yeh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Institute of Tropical Plant Sciences and Microbiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Fujii
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Masaru Ohme-Takagi,
| |
Collapse
|
130
|
Wu J, Cao J, Su M, Feng G, Xu Y, Yi H. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. HORTICULTURE RESEARCH 2019; 6:33. [PMID: 30854210 PMCID: PMC6395741 DOI: 10.1038/s41438-018-0116-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 05/06/2023]
Abstract
Alkaline stress has serious-negative effects on citrus production. Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka) (Cj) is a rootstock that is tolerant to alkaline stress and iron deficiency. Trifoliate orange (Poncirus trifoliata (L.) Raf.) (Pt), the most widely used rootstock in China, is sensitive to alkaline stress. To investigate the molecular mechanism underlying the tolerance of Cj to alkaline stress, next-generation sequencing was employed to profile the root transcriptomes and small RNAs of Cj and Pt seedlings that were cultured in nutrient solutions along a three pH gradient. This two-level regulation data set provides a system-level view of molecular events with a precise resolution. The data suggest that the auxin pathway may play a central role in the inhibitory effect of alkaline stress on root growth and that the regulation of auxin homeostasis under alkaline stress is important for the adaptation of citrus to alkaline stress. Moreover, the jasmonate (JA) pathway exhibits the opposite response to alkaline stress in Cj and Pt and may contribute to the differences in the alkaline stress tolerance and iron acquisition between Cj and Pt. The dataset provides a wealth of genomic resources and new clues to further study the mechanisms underlying alkaline stress resistance in Cj.
Collapse
Affiliation(s)
- Juxun Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Junying Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Mei Su
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Guizhi Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Yanhui Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 PR China
| |
Collapse
|
131
|
Prince SJ, Valliyodan B, Ye H, Yang M, Tai S, Hu W, Murphy M, Durnell LA, Song L, Joshi T, Liu Y, Van de Velde J, Vandepoele K, Grover Shannon J, Nguyen HT. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number. PLANT, CELL & ENVIRONMENT 2019; 42:212-229. [PMID: 29749073 DOI: 10.1111/pce.13333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/26/2018] [Indexed: 05/04/2023]
Abstract
Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNPs)-based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter Class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, 3 significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem, and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions.
Collapse
Affiliation(s)
- Silvas J Prince
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
- Noble Research Institute, Ardmore, 73401, OK, USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Ming Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Wushu Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Mackensie Murphy
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Lorellin A Durnell
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Li Song
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Trupti Joshi
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yang Liu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jan Van de Velde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
132
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Tormos-Moltó S, Pérez-Pérez JM. Morphological Characterization of Root System Architecture in Diverse Tomato Genotypes during Early Growth. Int J Mol Sci 2018; 19:E3888. [PMID: 30563085 PMCID: PMC6321557 DOI: 10.3390/ijms19123888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Plant roots exploit morphological plasticity to adapt and respond to different soil environments. We characterized the root system architecture of nine wild tomato species and four cultivated tomato (Solanum lycopersicum L.) varieties during early growth in a controlled environment. Additionally, the root system architecture of six near-isogenic lines from the tomato 'Micro-Tom' mutant collection was also studied. These lines were affected in key genes of ethylene, abscisic acid, and anthocyanin pathways. We found extensive differences between the studied lines for a number of meaningful morphological traits, such as lateral root distribution, lateral root length or adventitious root development, which might represent adaptations to local soil conditions during speciation and subsequent domestication. Taken together, our results provide a general quantitative framework for comparing root system architecture in tomato seedlings and other related species.
Collapse
Affiliation(s)
| | | | - Sergio Tormos-Moltó
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.
- OQOTECH Process Validation System, 03801 Alcoy, Spain.
| | | |
Collapse
|
133
|
García-Gaytán V, Hernández-Mendoza F, Coria-Téllez AV, García-Morales S, Sánchez-Rodríguez E, Rojas-Abarca L, Daneshvar H. Fertigation: Nutrition, Stimulation and Bioprotection of the Root in High Performance. PLANTS (BASEL, SWITZERLAND) 2018; 7:E88. [PMID: 30360461 PMCID: PMC6313855 DOI: 10.3390/plants7040088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022]
Abstract
Temperature changes, drought, frost, and the presence of pest and diseases place enormous stress on crops, which implies that the potential performance of these crops may be affected. One of the main goals for agronomists, horticulturists, growers, physiologists, soil scientists, geneticists, plant breeders, phytopathologists, and microbiologists is to increase the food production on the same cultivable area and to ensure that they are safe and of high quality. Understanding the biophysical changes in soil will help to manage the crop's ability to cope with biotic and abiotic stress. Optimization is needed in the nutrition of crops, which involves the use of biostimulants to counter oxidative stress and the management of strain bioformulations (bacteria and fungi) that protect and stimulate roots for the acquisition of nutrients. The implementation of these strategies in fertigation programs improves crop yields. This article addresses the importance of the stimulation and the bioprotection of the root as a fundamental pillar in ensuring the high performance of a crop.
Collapse
Affiliation(s)
- Víctor García-Gaytán
- Laboratorio de Análisis y Diagnóstico del Patrimonio (LADIPA), Colegio de Michoacán, A.C., Cerro de Nahuatzen 85, La Piedad 59699, Michoacán, Mexico.
| | - Fanny Hernández-Mendoza
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo 56230, Texcoco, Estado de México, Mexico.
| | - Ana Velia Coria-Téllez
- Laboratorio de Análisis y Diagnóstico del Patrimonio (LADIPA), Colegio de Michoacán, A.C., Cerro de Nahuatzen 85, La Piedad 59699, Michoacán, Mexico.
| | - Soledad García-Morales
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico.
| | - Esteban Sánchez-Rodríguez
- Laboratorio de Análisis y Diagnóstico del Patrimonio (LADIPA), Colegio de Michoacán, A.C., Cerro de Nahuatzen 85, La Piedad 59699, Michoacán, Mexico.
| | - Luis Rojas-Abarca
- Laboratorio de Análisis y Diagnóstico del Patrimonio (LADIPA), Colegio de Michoacán, A.C., Cerro de Nahuatzen 85, La Piedad 59699, Michoacán, Mexico.
| | - Hadiseh Daneshvar
- Collage of Agriculture and Natural Resource, University of Tehran, Karaj 3158777871, Alborz, Iran.
| |
Collapse
|
134
|
Liao D, Wang S, Cui M, Liu J, Chen A, Xu G. Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2018; 19:E3146. [PMID: 30322086 PMCID: PMC6213213 DOI: 10.3390/ijms19103146] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
Most terrestrial plants are able to form a root symbiosis with arbuscular mycorrhizal (AM) fungi for enhancing the assimilation of mineral nutrients. AM fungi are obligate symbionts that depend on host plants as their sole carbon source. Development of an AM association requires a continuous signal exchange between the two symbionts, which triggers coordinated differentiation of both partners, to enable their interaction within the root cells. The control of the AM symbiosis involves a finely-tuned process, and an increasing number of studies have pointed to a pivotal role of several phytohormones, such as strigolactones (SLs), gibberellic acids (GAs), and auxin, in the modulation of AM symbiosis, through the early recognition of events up to the final arbuscular formation. SLs are involved in the presymbiotic growth of the fungus, while auxin is required for both the early steps of fungal growth and the differentiation of arbuscules. GAs modulate arbuscule formation in a dose-dependent manner, via DELLA proteins, a group of GRAS transcription factors that negatively control the GA signaling. Here, we summarize the recent findings on the roles of these plant hormones in AM symbiosis, and also explore the current understanding of how the DELLA proteins act as central regulators to coordinate plant hormone signaling, to regulate the AM symbiosis.
Collapse
Affiliation(s)
- Dehua Liao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuangshuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Miaomiao Cui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
135
|
Parry G. Low Phosphate Puts Auxin in the Root Hairs. TRENDS IN PLANT SCIENCE 2018; 23:845-847. [PMID: 30097376 DOI: 10.1016/j.tplants.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The molecular changes that allow plant roots to response to low phosphate levels are poorly understood. A series of three papers investigate this phenomenon and reveal which components of the auxin response are key for transmitting the phosphate signal into changes in root hair phenotypes.
Collapse
Affiliation(s)
- Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
136
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
137
|
Ristova D, Giovannetti M, Metesch K, Busch W. Natural genetic variation shapes root system responses to phytohormones in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:468-481. [PMID: 30030851 PMCID: PMC6220887 DOI: 10.1111/tpj.14034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 05/21/2023]
Abstract
Plants adjust their architecture by modulating organ growth. This ability is largely dependent on phytohormones. While responses to phytohormones have been studied extensively, it remains unclear to which extent and how these responses are modulated in non-reference strains. Here, we assess variation of root traits upon treatment with auxin, cytokinin and abscisic acid (ABA) in 192 Arabidopsis accessions. We identify common response patterns, uncover the extent of their modulation by specific genotypes, and find that the Col-0 reference accession is not a good representative of the species in this regard. We conduct genome-wide association studies and identify 114 significant associations, most of them relating to ABA treatment. The numerous ABA candidate genes are not enriched for known ABA-associated genes, indicating that we largely uncovered unknown players. Overall, our study provides a comprehensive view of the diversity of hormone responses in the Arabidopsis thaliana species, and shows that variation of genes that are yet mostly not associated with such a role to determine natural variation of the response to phytohormones.
Collapse
Affiliation(s)
- Daniela Ristova
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Marco Giovannetti
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Kristina Metesch
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
- Salk Institute for Biological StudiesPlant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory10010 N Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
138
|
Ahmad Z, Nadeem F, Wang R, Diao X, Han Y, Wang X, Li X. A Larger Root System Is Coupled With Contrasting Expression Patterns of Phosphate and Nitrate Transporters in Foxtail Millet [ Setaria italica (L.) Beauv.] Under Phosphate Limitation. FRONTIERS IN PLANT SCIENCE 2018; 9:1367. [PMID: 30271421 PMCID: PMC6146770 DOI: 10.3389/fpls.2018.01367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/28/2018] [Indexed: 05/24/2023]
Abstract
Foxtail millet [Setaria italica (L.) Beauv.], a widely cultivated food and fodder crop, develops a smaller root system while enlarges the root diameter facilitating nutrient transport under nitrogen limitation. How foxtail millet responds to phosphate limitation (LP) remains unaddressed. LP seedlings of the sequenced variety Yugu1 had significantly lower P concentrations in both shoots and roots and displayed higher levels of anthocyanin accumulation in leaves, indicating that the seedlings suffered from P limitation under hydroponic culture. One obvious and adaptive phenotype of LP plants was the larger root system mostly as the result of stimulation of lateral root proliferation in terms of the number, density, and length. Preferential biomass accumulation in the root under LP ensured carbon provision for root expansion and resulted in significant increases in the total and specific root length, which substantially extended the absorptive surface of P in the growth medium. Elevation of auxin and gibberellin concentrations might serve as an internal boost underpinning root architectural re-patterning under LP. Not just morphological adaptation, up-regulation of expression of SiPHT1;1 and SiPHT1;4 in roots and that of SiPHT1;2 in roots and shoots preconditioned adaptive enhancement of P uptake and translocation under LP. Interestingly, internal nitrogen surpluses occurred as indicated by dramatic increases in free amino acids in LP shoots and roots and higher concentrations of nitrogen in roots. Such nitrogen surplus 'signals' tended to switch down expression of nitrate transporters SiNRT2.1 and SiNAR2.1 in the root and that of SiNRT1.11 and SiNRT1.12 in the shoot to reduce nitrate mobilization toward or within the shoot. Together, our work provided new insights into adaption of a critical cereal crop to LP and its innate connection with nitrogen nutrition.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Faisal Nadeem
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Ruifeng Wang
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhuai Han
- Department of Crop Sciences, Shanxi Agricultural University, Taigu, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Xuexian Li
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
139
|
Huang KL, Ma GJ, Zhang ML, Xiong H, Wu H, Zhao CZ, Liu CS, Jia HX, Chen L, Kjorven JO, Li XB, Ren F. The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots. PLANT PHYSIOLOGY 2018; 178:413-427. [PMID: 30026290 PMCID: PMC6130041 DOI: 10.1104/pp.17.01713] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/12/2018] [Indexed: 05/19/2023]
Abstract
PHOSPHATE STARVATION RESPONSE1 (PHR1) is a key regulatory component of the response to phosphate (Pi) starvation. However, the regulation of PHR1 in this response remains poorly understood. Here, we report that PHR1 is a target of the transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 and is positively regulated by auxin signaling in Arabidopsis (Arabidopsis thaliana) roots. PHR1 expression was induced by exogenous auxin and suppressed by auxin transport inhibitors in Arabidopsis roots. In the PHR1 promoter, three auxin-response elements, which are bound directly by ARF7 and ARF19, were shown to be essential for PHR1 expression. The arf7, arf19, and arf7 arf19 mutants showed down-regulated expression of PHR1 and downstream Pi starvation-induced genes in roots; they also exhibited defective Pi uptake in roots and overaccumulation of anthocyanin in shoots. The induction of lateral root formation in response to low Pi and to exogenous auxin was decreased in the phr1 mutant, whereas the expression of LATERAL ORGAN BOUNDARIES-DOMAIN16 (LBD16) and LBD29 was not changed significantly. PHR1 acted independently of LBD16 and LBD29 in the regulation of lateral root formation in response to low Pi. Under low-Pi conditions, lateral root impairment in the arf7 arf19 mutant was partially rescued by constitutive expression of PHR1, demonstrating that reduced PHR1 expression contributed to the arf7 arf19 phenotype. In addition to PHR1, other genes encoding MYB-CC members also were targets of ARF7 and ARF19. Our work thus reveals a mechanism coordinating auxin signaling and the PHR1 regulon in Arabidopsis responses to Pi deficiency.
Collapse
Affiliation(s)
- Ke-Lin Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Guang-Jing Ma
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mei-Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Huan Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Huan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Cai-Zhi Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Chun-Sen Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Han-Xin Jia
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | | | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
140
|
Chen Y, Xie Y, Song C, Zheng L, Rong X, Jia L, Luo L, Zhang C, Qu X, Xuan W. A comparison of lateral root patterning among dicot and monocot plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:201-211. [PMID: 30080605 DOI: 10.1016/j.plantsci.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Lateral root branching along the primary root involves complex gene regulatory networks in model plant Arabidopsis. However, it is largely unclarified whether different plant species share a common mechanism to pattern the lateral root along the primary axis. In this study, we assessed the development pattern of lateral root among several dicot and monocot plants, including Arabidopsis, tomato, Medicago, Nicotiana, rice, and ryegrass by using an agar-gel culture system. Our results reveal a regular-spaced distribution pattern of lateral roots along the primary root axis of both dicot and monocot plants. Meanwhile, the root patterning is tightly controlled by root bending and the plant hormone auxin. However, nitrogen and phosphate starvations trigger distinguished root growth patterns among different plant species. Our studies strongly suggest a partially shared signaling pathway underlying root patterning of various plant species, and also provide a foundation for further identification of genes associated with root development.
Collapse
Affiliation(s)
- Yuqin Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuanming Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Caihong Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lulu Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiong Rong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Long Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoxiao Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
141
|
OsPIN1b is Involved in Rice Seminal Root Elongation by Regulating Root Apical Meristem Activity in Response to Low Nitrogen and Phosphate. Sci Rep 2018; 8:13014. [PMID: 30158652 PMCID: PMC6115472 DOI: 10.1038/s41598-018-29784-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2018] [Indexed: 01/03/2023] Open
Abstract
The response of plant root development to nutrient deficiencies is critical for crop production. Auxin, nitric oxide (NO), and strigolactones (SLs) are important regulators of root growth under low-nitrogen and -phosphate (LN and LP) conditions. Polar auxin transport in plants, which is mainly dependent on auxin efflux protein PINs, creates local auxin maxima to form the basis for root initiation and elongation; however, the PIN genes that play an important role in LN- and LP-modulated root growth remain unclear. qRT-PCR analysis of OsPIN family genes showed that the expression of OsPIN1b is most abundant in root tip and is significantly downregulated by LN, LP, sodium nitroprusside (SNP, NO donor), and GR24 (analogue of SLs) treatments. Seminal roots in ospin1b mutants were shorter than those of the wild type; and the seminal root, [3H]IAA transport, and IAA concentration responses to LN, LP, SNP, and GR24 application were attenuated in ospin1b-1 mutants. pCYCB1;1::GUS expression was upregulated by LN, LP, SNP, and GR24 treatments in wild type, but not in the ospin1b-1 mutant, suggesting that OsPIN1b is involved in auxin transport and acts as a downstream mediator of NO and SLs to induce meristem activity in root tip in rice under LN and LP.
Collapse
|
142
|
Shireen F, Nawaz MA, Chen C, Zhang Q, Zheng Z, Sohail H, Sun J, Cao H, Huang Y, Bie Z. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture. Int J Mol Sci 2018; 19:E1856. [PMID: 29937514 PMCID: PMC6073895 DOI: 10.3390/ijms19071856] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Boron (B) is an essential trace element required for the physiological functioning of higher plants. B deficiency is considered as a nutritional disorder that adversely affects the metabolism and growth of plants. B is involved in the structural and functional integrity of the cell wall and membranes, ion fluxes (H⁺, K⁺, PO₄3−, Rb⁺, Ca2+) across the membranes, cell division and elongation, nitrogen and carbohydrate metabolism, sugar transport, cytoskeletal proteins, and plasmalemma-bound enzymes, nucleic acid, indoleacetic acid, polyamines, ascorbic acid, and phenol metabolism and transport. This review critically examines the functions of B in plants, deficiency symptoms, and the mechanism of B uptake and transport under limited B conditions. B deficiency can be mitigated by inorganic fertilizer supplementation, but the deleterious impact of frequent fertilizer application disrupts soil fertility and creates environmental pollution. Considering this, we have summarized the available information regarding alternative approaches, such as root structural modification, grafting, application of biostimulators (mycorrhizal fungi (MF) and rhizobacteria), and nanotechnology, that can be effectively utilized for B acquisition, leading to resource conservation. Additionally, we have discussed several new aspects, such as the combination of grafting or MF with nanotechnology, combined inoculation of arbuscular MF and rhizobacteria, melatonin application, and the use of natural and synthetic chelators, that possibly play a role in B uptake and translocation under B stress conditions.
Collapse
Affiliation(s)
- Fareeha Shireen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Muhammad Azher Nawaz
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
- Department of Horticulture, University College of Agriculture, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Qikai Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Zuhua Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Jingyu Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
143
|
Wakeel A, Ali I, Upreti S, Azizullah A, Liu B, Khan AR, Huang L, Wu M, Gan Y. Ethylene mediates dichromate-induced inhibition of primary root growth by altering AUX1 expression and auxin accumulation in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2018; 41:1453-1467. [PMID: 29499078 DOI: 10.1111/pce.13174] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 02/20/2018] [Indexed: 05/03/2023]
Abstract
The hexavalent form of chromium [Cr(VI)] causes a major reduction in yield and quality of crops worldwide. The root is the first plant organ that interacts with Cr(VI) toxicity, which inhibits primary root elongation, but the underlying mechanisms of this inhibition remain elusive. In this study, we investigate the possibility that Cr(VI) reduces primary root growth of Arabidopsis by modulating the cell cycle-related genes and that ethylene signalling contributes to this process. We show that Cr(VI)-mediated inhibition of primary root elongation was alleviated by the ethylene perception and biosynthesis antagonists silver and cobalt, respectively. Furthermore, the ethylene signalling defective mutants (ein2-1 and etr1-3) were insensitive, whereas the overproducer mutant (eto1-1) was hypersensitive to Cr(VI). We also report that high levels of Cr(VI) significantly induce the distribution and accumulation of auxin in the primary root tips, but this increase was significantly suppressed in seedlings exposed to silver or cobalt. In addition, genetic and physiological investigations show that AUXIN-RESISTANT1 (AUX1) participates in Cr(VI)-induced inhibition of primary root growth. Taken together, our results indicate that ethylene mediates Cr(VI)-induced inhibition of primary root elongation by increasing auxin accumulation and polar transport by stimulating the expression of AUX1.
Collapse
Affiliation(s)
- Abdul Wakeel
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sakila Upreti
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology, Kohat, Pakistan
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
144
|
AUX1-mediated root hair auxin influx governs SCF TIR1/AFB-type Ca 2+ signaling. Nat Commun 2018; 9:1174. [PMID: 29563504 PMCID: PMC5862985 DOI: 10.1038/s41467-018-03582-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/26/2018] [Indexed: 01/01/2023] Open
Abstract
Auxin is a key regulator of plant growth and development, but the causal relationship between hormone transport and root responses remains unresolved. Here we describe auxin uptake, together with early steps in signaling, in Arabidopsis root hairs. Using intracellular microelectrodes we show membrane depolarization, in response to IAA in a concentration- and pH-dependent manner. This depolarization is strongly impaired in aux1 mutants, indicating that AUX1 is the major transporter for auxin uptake in root hairs. Local intracellular auxin application triggers Ca2+ signals that propagate as long-distance waves between root cells and modulate their auxin responses. AUX1-mediated IAA transport, as well as IAA- triggered calcium signals, are blocked by treatment with the SCFTIR1/AFB - inhibitor auxinole. Further, they are strongly reduced in the tir1afb2afb3 and the cngc14 mutant. Our study reveals that the AUX1 transporter, the SCFTIR1/AFB receptor and the CNGC14 Ca2+ channel, mediate fast auxin signaling in roots. Auxin regulates multiple aspects of plant growth and development. Here Dindas et al. show that in root-hair cells, the AUX1 auxin influx carrier mediates proton-driven auxin import that is perceived by auxin receptors and coupled to Ca2+ waves that may modulate adaptive responses in the root.
Collapse
|
145
|
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol Res 2018; 209:21-32. [PMID: 29580619 DOI: 10.1016/j.micres.2018.02.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/31/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman.
| | - Samina Bashir
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Yasmin Khan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Roqayya Mumtaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Zabta Khan Shinwari
- Qarshi Research International and Vice Chancellor of Qarshi University, Lahore, Pakistan.
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman
| | - Ajmal Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman.
| | - Ahmed Al-Harrasi
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman.
| |
Collapse
|
146
|
Mroue S, Simeunovic A, Robert HS. Auxin production as an integrator of environmental cues for developmental growth regulation. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:201-212. [PMID: 28992278 DOI: 10.1093/jxb/erx259] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Being sessile organisms, plants have evolved mechanisms allowing them to control their growth and development in response to environmental changes. This occurs by means of complex interacting signalling networks that integrate diverse environmental cues into co-ordinated and highly regulated responses. Auxin is an essential phytohormone that functions as a signalling molecule, driving both growth and developmental processes. It is involved in numerous biological processes ranging from control of cell expansion and cell division to tissue specification, embryogenesis, and organ development. All these processes require the formation of auxin gradients established and maintained through the combined processes of biosynthesis, metabolism, and inter- and intracellular directional transport. Environmental conditions can profoundly affect the plant developmental programme, and the co-ordinated shoot and root growth ought to be fine-tuned to environmental challenges such as temperature, light, and nutrient and water content. The key role of auxin as an integrator of environmental signals has become clear in recent years, and emerging evidence implicates auxin biosynthesis as an essential component of the overall mechanisms of plants tolerance to stress. In this review, we provide an account of auxin's role as an integrator of environmental signals and, in particular, we highlight the effect of these signals on the control of auxin production.
Collapse
Affiliation(s)
- Souad Mroue
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Andrea Simeunovic
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Hélène S Robert
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| |
Collapse
|
147
|
Jia H, Zhang S, Wang L, Yang Y, Zhang H, Cui H, Shao H, Xu G. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5057-5068. [PMID: 29036625 DOI: 10.1093/jxb/erx317] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The responses of plants to auxin and phosphate (Pi) starvation are closely linked. However, the underlying mechanisms connecting the Pi starvation (-Pi) responses to auxin are largely unclear. Here, we show that OsPht1;8 (OsPT8), a phosphate transporter, functions in both the auxin and -Pi responses in rice (Oryza sativa L.) and tobacco (Nicotiana tabacum). The overexpression of OsPT8 (OsPT8-Oe) led to the loss of sensitivity to auxin and -Pi in adventitious roots, lateral roots, and root hairs in rice. The expression levels of OsPT8 and pOsPT8::GUS staining in roots, root-shoot junctions and leaves of rice were induced by IAA treatments. The number of young lateral roots in the OsPT8-Oe transgenic rice, which had higher auxin concentrations, was distinctly more than that in the wild-type, possibly as a result of increased expression of auxin-related genes under normal Pi condition. Moreover, tobacco overexpressing OsPT8 had a similar root phenotype to OsPT8-Oe rice. These data reveal a novel biological function of OsPT8 in the cross-talk between Pi and auxin signaling, and provide new evidence for the linkage between auxin and -Pi responses.
Collapse
Affiliation(s)
- Hongfang Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Songtao Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Lizhi Wang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongxia Yang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongying Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Shao
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
148
|
Ceasar SA, Baker A, Ignacimuthu S. Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep 2017; 7:14064. [PMID: 29070807 PMCID: PMC5656669 DOI: 10.1038/s41598-017-14447-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 11/15/2022] Open
Abstract
Phosphate is an essential nutrient for plant growth and is acquired from the environment and distributed within the plant in part through the action of phosphate transporters of the PHT1 family. Foxtail millet (Setaria italica) is an orphan crop essential to the food security of many small farmers in Asia and Africa and is a model system for other millets. A novel Agrobacterium-mediated transformation and direct plant regeneration procedure was developed from shoot apex explants and used to downregulate expression of 3 members of the PHT1 phosphate transporter family SiPHT1;2 SiPHT1;3 and SiPHT1;4. Transformants were recovered with close to 10% efficiency. The downregulation of individual transporters was confirmed by RT-PCR. Downregulation of individual transporters significantly reduced the total and inorganic P contents in shoot and root tissues and increased the number of lateral roots and root hairs showing they have non-redundant roles. Downregulation of SiPHT1;2 had the strongest effect on total and inorganic P in shoot and root tissues. Complementation experiments in S. cerevisiae provide evidence for the ability of SiPHT1;1, 1;2, 1;3, 1;7 and 1;8 to function as high affinity Pi transporters. This work will aid development of improved millet varieties for global food security.
Collapse
Affiliation(s)
- S Antony Ceasar
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, 600034, India.
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - S Ignacimuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, 600034, India
| |
Collapse
|
149
|
Puga MI, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, Paz-Ares J. Novel signals in the regulation of Pi starvation responses in plants: facts and promises. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:40-49. [PMID: 28587933 DOI: 10.1016/j.pbi.2017.05.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 05/10/2023]
Abstract
Plants have evolved numerous adaptive developmental and metabolic responses to cope with growth in conditions of limited phosphate (Pi). Regulation of these Pi starvation responses (PSR) at the organism level involves not only cellular Pi perception in different organs, but also inter-organ communication of Pi levels via systemic signaling. Here we summarize recent discoveries on Pi starvation sensing and signaling, with special emphasis on structure-function studies that showed a role for inositol polyphosphates (InsP) as intracellular Pi signals, and on genomic studies that identified a large number of mRNAs with inter-organ mobility, which provide an immense source of potential systemic signals in the control of PSR and other responses.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mónica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Vicente Rubio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
150
|
Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Curr Opin Biotechnol 2017; 49:156-162. [PMID: 28889038 DOI: 10.1016/j.copbio.2017.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
Proteins containing a SPX domain are involved in phosphate (Pi) homeostasis, including Pi transport and adaptation to Pi deficiency. The SPX domain harbors a basic surface binding Pi at low affinity and inositol pyrophosphates (PP-InsPs) at high affinity. Genetic and biochemical studies revealed that PP-InsPs serve as ligands for the SPX domain. Residues in the PHO1 SPX domain involved in PP-InsPs binding are critical for its Pi export activity, and the interaction between SPX proteins and the PHR1 transcription factor, which results in PHR1 inactivation, is promoted by PP-InsPs. Changes in PP-InsPs levels in response to Pi deficiency may thus contribute to the adaptation of plants to stress via the modulation of the activity of SPX-containing proteins and their interactors. Modulating PP-InsP levels or the affinity/specificity of the SPX domain for PP-InsP could potentially be used to engineer crops to maintain high yield under reduced Pi fertilizer input.
Collapse
|