101
|
Zhang C, Win KT, Kim YC, Lee S. Two types of mutations in the HEUKCHEEM gene functioning in cucumber spine color development can be used as signatures for cucumber domestication. PLANTA 2019; 250:1491-1504. [PMID: 31332520 DOI: 10.1007/s00425-019-03244-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/18/2019] [Indexed: 05/25/2023]
Abstract
The HEUKCHEEM gene plays an important role in spine color formation. A white spine occurs due to two mutations in HEUKCHEEM and is closely related to the regional distribution of these mutants. Mapping analysis revealed that the HEUKCHEEM gene is co-segregated with the B locus in the regulation of black spine color development in cucumber fruit. HEUKCHEEM induced the expression of the genes involved in the anthocyanin biosynthetic pathway, leading to the accumulation of anthocyanins in black spines. The transiently over-expressed HEUKCHEEM in cucumber and tobacco plants enhanced the expression of anthocyanin biosynthesis-related genes, leading to anthocyanin accumulation. However, two mutations-insertion of the 6994 bp mutator-like transposable element (MULE) sequence into the second intron and one single-nucleotide polymorphism (SNP) of C to T in the second exon of HEUKCHEEM-were identified in white spines, leading to no accumulation of anthocyanin biosynthesis-related gene transcripts and anthocyanins. Furthermore, association analysis using 104 cucumber accessions with different geographical origins revealed that the types of mutations in HEUKCHEEM are strongly linked to geographical origins. The MULE insertion is found extensively in cucumbers with white spines in East Asia and Australia. However, cucumbers with white spines in other areas could be significantly influenced by a single SNP mutation. Our results provide fundamental information on spine color development in cucumber fruits and spine color-based cucumber breeding programs.
Collapse
Affiliation(s)
- Chunying Zhang
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Khin Thanda Win
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Young-Cheon Kim
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Sanghyeob Lee
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
102
|
A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci U S A 2019; 116:23345-23356. [PMID: 31662474 DOI: 10.1073/pnas.1911758116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical stimuli, such as wind, rain, and touch affect plant development, growth, pest resistance, and ultimately reproductive success. Using water spray to simulate rain, we demonstrate that jasmonic acid (JA) signaling plays a key role in early gene-expression changes, well before it leads to developmental changes in flowering and plant architecture. The JA-activated transcription factors MYC2/MYC3/MYC4 modulate transiently induced expression of 266 genes, most of which peak within 30 min, and control 52% of genes induced >100-fold. Chromatin immunoprecipitation-sequencing analysis indicates that MYC2 dynamically binds >1,300 promoters and trans-activation assays show that MYC2 activates these promoters. By mining our multiomic datasets, we identified a core MYC2/MYC3/MYC4-dependent "regulon" of 82 genes containing many previously unknown MYC2 targets, including transcription factors bHLH19 and ERF109 bHLH19 can in turn directly activate the ORA47 promoter, indicating that MYC2/MYC3/MYC4 initiate a hierarchical network of downstream transcription factors. Finally, we also reveal that rapid water spray-induced accumulation of JA and JA-isoleucine is directly controlled by MYC2/MYC3/MYC4 through a positive amplification loop that regulates JA-biosynthesis genes.
Collapse
|
103
|
Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla JM, Solano R. Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in Marchantia polymorpha. THE PLANT CELL 2019; 31:2491-2509. [PMID: 31391256 PMCID: PMC6790078 DOI: 10.1105/tpc.18.00974] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 05/20/2023]
Abstract
The lipid-derived phytohormone jasmonoyl-isoleucine regulates plant immunity, growth and development in vascular plants by activating genome-wide transcriptional reprogramming. In Arabidopsis (Arabidopsis thaliana), this process is largely orchestrated by the master regulator MYC2 and related transcription factors (TFs). However, the TFs activating this pathway in basal plant lineages are currently unknown. We report the functional conservation of MYC-related TFs between the eudicot Arabidopsis and the liverwort Marchantia polymorpha, a plant belonging to an early diverging lineage of land plants. Phylogenetic analysis suggests that MYC function first appeared in charophycean algae and therefore predates the evolutionary appearance of any other jasmonate pathway component. M. polymorpha possesses two functionally interchangeable MYC genes, one in females and one in males. Similar to AtMYC2, MpMYCs showed nuclear localization, interaction with JASMONATE-ZIM-DOMAIN PROTEIN repressors, and regulation by light. Phenotypic and molecular characterization of loss- and gain-of-function mutants demonstrated that MpMYCs are necessary and sufficient for activating the jasmonate pathway in M. polymorpha, but unlike their Arabidopsis orthologs, do not regulate fertility. Therefore, despite 450 million years of independent evolution, MYCs are functionally conserved between bryophytes and eudicots. Genetic conservation in an early diverging lineage suggests that MYC function existed in the common ancestor of land plants and evolved from a preexisting MYC function in charophycean algae.
Collapse
Affiliation(s)
- María Peñuelas
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Isabel Monte
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, Faculty of Sciences, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Jose M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
104
|
Li T, Yang S, Kang X, Lei W, Qiao K, Zhang D, Lin H. The bHLH transcription factor gene AtUPB1 regulates growth by mediating cell cycle progression in Arabidopsis. Biochem Biophys Res Commun 2019; 518:565-572. [PMID: 31445703 DOI: 10.1016/j.bbrc.2019.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
Plant growth, development and interaction with the environment involve the action of transcription factor. bHLH proteins play an essential and often conserved role in the plant kingdom. However, bHLH proteins that participate in the cell division process are less well known. Here, we report that the bHLH transcription factor gene AtUPB1 is involved in mediating cell cycle progression and root development. In yeast cells, AtUPB1 inhibits cells proliferation and the cells had increased numbers of nuclei. UPB1 overexpression decreased the expression of the cell division marker CYCB1-1, and CDKA1 expression could overcome the defect of UPB1 overexpression. Moreover, UPB1 could directly bind to the promoter region of the SIM and SMR1 genes to regulate cell cycle. These results support a new role for AtUPB1 regulating root meristem development by mediating the expression of SIM/SMR1 genes.
Collapse
Affiliation(s)
- Taotao Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shiyan Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Kang Qiao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
105
|
Kim DG, Bahmani R, Ko JH, Hwang S. A Convenient Plant-Based Detection System to Monitor Androgenic Compound in the Environment. PLANTS 2019; 8:plants8080266. [PMID: 31387207 PMCID: PMC6724103 DOI: 10.3390/plants8080266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Environmental androgen analogues act as endocrine disruptors, which inhibit the normal function of androgen in animals. In the present work, through the expression of a chimeric gene specified for the production of the anthocyanin in response to androgen DHT (dihydrotestosterone), we generated an indicator Arabidopsis that displays a red color in leaves in the presence of androgen compounds. This construct consists of a ligand-binding domain of the human androgen receptor gene and the poplar transcription factor gene PtrMYB119, which is involved in anthocyanin biosynthesis in poplar and Arabidopsis. The transgenic Arabidopsis XVA-PtrMYB119 displayed a red color in leaves in response to 10 ppm DHT, whereas it did not react in the presence of other androgenic compounds. The transcript level of PtrMYB119 peaked at day 13 of DHT exposure on agar media and then declined to its normal level at day 15. Expressions of anthocyanin biosynthesis genes including chalcone flavanone isomerase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, UFGT (UGT78D2), and anthocyanidin synthase were similar to that of PtrMYB119. It is assumed that this transgenic plant can be used by nonscientists for the detection of androgen DHT in the environment and samples such as food solution without any experimental procedures.
Collapse
Affiliation(s)
- Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | - Ramin Bahmani
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Kyeonggi-do 17104, Korea
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
106
|
Zhai Q, Li C. The plant Mediator complex and its role in jasmonate signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3415-3424. [PMID: 31089685 PMCID: PMC6609880 DOI: 10.1093/jxb/erz233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/20/2023]
Abstract
The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
107
|
Wang J, Wu D, Wang Y, Xie D. Jasmonate action in plant defense against insects. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3391-3400. [PMID: 30976791 DOI: 10.1093/jxb/erz174] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/30/2019] [Indexed: 05/19/2023]
Abstract
Herbivorous insects represent one of the major threats to sessile plants. To cope with herbivore challenges, plants have evolved sophisticated defense systems, in which the lipid-derived phytohormone jasmonate plays a crucial role. Perception of insect attack locally and systemically elicits rapid synthesis of jasmonate, which is perceived by the F-box protein COI1 to further recruit JAZ repressors for ubiquitination and degradation, thereby releasing transcription factors that subsequently activate plant defense against insect attack. Here, we review recent progress in understanding the molecular basis of jasmonate action in plant defense against insects.
Collapse
Affiliation(s)
- Jiaojiao Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
108
|
Genome-Wide Identification and Characterization of JAZ Protein Family in Two Petunia Progenitors. PLANTS 2019; 8:plants8070203. [PMID: 31277246 PMCID: PMC6681285 DOI: 10.3390/plants8070203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Jasmonate ZIM-domain (JAZ) family proteins are the key repressors in the jasmonate signaling pathway and play crucial roles in plant development, defenses, and responses to stresses. However, our knowledge about the JAZ protein family in petunia is limited. This research respectively identified 12 and 16 JAZ proteins in two Petunia progenitors, Petunia axillaris and Petunia inflata. Phylogenetic analysis showed that the 28 proteins could be divided into four groups (Groups A–D) and further classified into six subgroups (A1, A2, B1, B3, C, and D1); members in the same subgroup shared some similarities in motif composition and sequence structure. The Ka/Ks ratios of seven paralogous pairs were less than one, suggesting the petunia JAZ family might have principally undergone purifying selection. Quantitative real-time PCR (qRT-PCR) analysis revealed that PaJAZ genes presented differential expression patterns during the development of flower bud and anther in petunia, and the expression of PaJAZ5, 9, 12 genes was generally up-regulated after MeJA treatment. Subcellular localization assays demonstrated that proteins PaJAZ5, 9, 12 were localized in nucleus. Yeast two hybrid (Y2H) elucidated most PaJAZ proteins (PaJAZ1-7, 9, 12) might interact with transcription factor MYC2. This study provides insights for further investigation of functional analysis in petunia JAZ family proteins.
Collapse
|
109
|
Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101210] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Ju L, Jing Y, Shi P, Liu J, Chen J, Yan J, Chu J, Chen KM, Sun J. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:246-260. [PMID: 30802963 DOI: 10.1111/nph.15757] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
Appropriate regulation of crop seed germination is of significance for agriculture production. In this study, we show that TaJAZ1, most closely related to Arabidopsis JAZ3, negatively modulates abscisic acid (ABA)-inhibited seed germination and ABA-responsive gene expression in bread wheat. Biochemical interaction assays demonstrate that the C-terminal part containing the Jas domain of TaJAZ1 physically interacts with TaABI5. Similarly, Arabidopsis jasmonate-ZIM domain (JAZ) proteins also negatively modulate ABA responses. Further we find that a subset of JAZ proteins could interact with ABI5 using the luciferase complementation imaging assays. Choosing JAZ3 as a representative, we demonstrate that JAZ3 interacts with ABI5 in vivo and represses the transcriptional activation activity of ABI5. ABA application could abolish the enrichment of JAZ proteins in the ABA-responsive gene promoter. Furthermore, we find that ABA application could induce the expression of jasmonate (JA) biosynthetic genes and then increase the JA concentrations partially dependent on the function of ABI5, consequently leading to the degradation of JAZ proteins. This study sheds new light on the crosstalk between JA and ABA in modulating seed germination in bread wheat and Arabidopsis.
Collapse
Affiliation(s)
- Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengtao Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Group of Quality Wheat Breeding in Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
111
|
Luo Y, Yu SS, Li J, Li Q, Wang KB, Huang JA, Liu ZH. Characterization of the transcriptional regulator CsbHLH62 that negatively regulates EGCG3"Me biosynthesis in Camellia sinensis. Gene 2019; 699:8-15. [DOI: 10.1016/j.gene.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
|
112
|
Kim D, Bahmani R, Ko JH, Hwang S. Development of bisphenol A (BPA)-sensing indicator Arabidopsis thaliana which synthesizes anthocyanin in response to BPA in leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:627-634. [PMID: 30579163 DOI: 10.1016/j.ecoenv.2018.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disruptor which disturbs a normal animal development. We generated an indicator plant that senses and provides a clear visual indicator of an estrogen-like compound BPA in the environment. We developed transgenic Arabidopsis lines expressing a construct designed to synthesize anthocyanin (thus showing a red color) in response to BPA. We transformed Arabidopsis with a recombinant vector containing the chimeric estrogen receptor (XVE region), LAP and coding region of PtrMYB119 (transcription factor involved in anthocyanin biosynthesis in poplar and Arabidopsis). Upon binding of the estrogen compound to the ligand-binding domain of E (estrogen receptor) in XVE, the XV domain binds to LAP promoter and triggering the transcription of PtrMYB119 with a subsequent enhancement of anthocyanin biosynthetic gene expression, resulting in anthocyanin synthesis. The leaves of the transgenic Arabidopsis line XVE-PtrMYB119 turned red in the presence of 10 ppm BPA. The transcript level of PtrMYB119 peaked at day 3 of BPA exposure, then decreased to its minimal level at day 5. Similar expression patterns to that of PtrMYB119 were detected for genes encoding the anthocyanin biosynthetic enzymes chalcone synthase, chalcone flavanone isomerase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, and UFGT (UGT78D2). The leaves of transgenic plants did not turn red in response to BPA at concentrations below 10 ppm, but PtrMYB119 expression was induced by BPA at concentrations as low as 1 ppt BPA. Since this transgenic plant turns red in the presence of BPA without any experimental procedures, this line can be easily used by non-scientists.
Collapse
Affiliation(s)
- DongGwan Kim
- Dept. of Bioindustry and Bioresource Engineering, Dept. of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea.
| | - Ramin Bahmani
- Dept. of Bioindustry and Bioresource Engineering, Dept. of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea.
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Gyeonggi-do, Republic of Korea.
| | - Seongbin Hwang
- Dept. of Bioindustry and Bioresource Engineering, Dept. of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea.
| |
Collapse
|
113
|
Wang X, Du Y, Yu D. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:509-527. [PMID: 30058771 DOI: 10.1111/jipb.12704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Despite the recent discovery that trehalose synthesis is important for plant development and abiotic stress tolerance, the effects of trehalose on biotic stress responses remain relatively unknown. In this study, we demonstrate that TREHALOSE PHOSPHATE SYNTHASE 5 (TPS5)-dependent trehalose metabolism regulates Arabidopsis thaliana defenses against pathogens (necrotrophic Botrytis cinerea and biotrophic Pseudomonas syringae). Pathogen infection increased trehalose levels and upregulated TPS5 expression. Application of exogenous trehalose significantly improved plant defenses against B. cinerea, but increased the susceptibility of plants to P. syringae. We demonstrate that elevated trehalose biosynthesis, in transgenic plants over-expressing TPS5, also increased the susceptibility to P. syringae, but decreased the disease symptoms caused by B. cinerea. The knockout of TPS5 prevented the accumulation of trehalose and enhanced defense responses against P. syringae. Additionally, we observed that a TPS5-interacting protein (multiprotein bridging factor 1c) was required for induced expression of TPS5 during pathogen infections. Furthermore, we show that trehalose promotes P. syringae growth and disease development, via a mechanism involving suppression of the plant defense gene, Pathogenesis-Related Protein 1. These findings provide insight into the function of TPS5-dependent trehalose metabolism in plant basal defense responses.
Collapse
Affiliation(s)
- Xuelan Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
114
|
Xu Q, Wang S, Hong H, Zhou Y. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene. BMC Genomics 2019; 20:125. [PMID: 30744548 PMCID: PMC6371524 DOI: 10.1186/s12864-019-5501-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Cymbidium faberi, one of the most famous oriental orchids, has a distinct flower scent, which increases its economic value. However, the molecular mechanism of the flower scent biosynthesis was unclear prior to this study. Methyl jasmonate (MeJA) is one of the main volatile organic compounds (VOC) produced by the flowers of C. faberi. In this study, unigene 79,363 from comparative transcriptome analysis was selected for further investigation. Results A transcriptome comparison between blooming and withered flowers of C. faberi yielded a total of 9409 differentially expressed genes (DEGs), 558 of which were assigned to 258 pathways. The top ten pathways included α-linolenic acid metabolism, pyruvate metabolism and fatty acid degradation, which contributed to the conversion of α-linolenic acid to MeJA. One of the DEGs, jasmonic acid carboxyl methyltransferase (CfJMT, Unigene 79,363) was highly expressed in the blooming flower of C. faberi, but was barely detected in leaves and roots. Although the ectopic expression of CfJMT in tomato could not increase the MeJA content, the expression levels of endogenous MeJA biosynthesis genes were influenced, especially in the wound treatment, indicating that CfJMT may participate in the response to abiotic stresses. Conclusion This study provides a basis for elucidating the molecular mechanism of flower scent biosynthesis in C. faberi, which is beneficial for the genetically informed breeding of new cultivars of the economically valuable oriental orchids. Electronic supplementary material The online version of this article (10.1186/s12864-019-5501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,Present Address: Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, People's Republic of China
| | - Songtai Wang
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Huazhu Hong
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Yin Zhou
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China. .,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.
| |
Collapse
|
115
|
Wei X, Mao L, Lu W, Wei X, Han X, Guan W, Yang Y, Zha M, Xu C, Luo Z. Three Transcription Activators of ABA Signaling Positively Regulate Suberin Monomer Synthesis by Activating Cytochrome P450 CYP86A1 in Kiwifruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1650. [PMID: 31998339 PMCID: PMC6967411 DOI: 10.3389/fpls.2019.01650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/22/2019] [Indexed: 05/20/2023]
Abstract
Wound attack stimulates accumulation of abscisic acid (ABA) that activates a number of genes associated with wound suberization of plants. Cytochrome P450 fatty acid ω-hydroxylase CYP86A1 catalyzes ω-hydroxylation of fatty acids to form the ω-functionalized monomers that play a pivotal role in suberin synthesis. However, the transcriptional regulation of ABA signaling on AchnCYP86A1 has not been characterized in kiwifruit. In this study, AchnCYP86A1, a kiwifruit homolog of Arabidopsis AtCYP86A1, was isolated. AchnCYP86A1-overexpressed N. benthamiana leaves displayed that the AchnCYP86A1 functioned as a fatty acid ω-hydroxylase associated with synthesis of suberin monomer. The regulatory function of three transcription factors (TFs, including AchnMYC2, AchnMYB41 and AchnMYB107) on AchnCYP86A1 was identified. All the three TFs were localized in nucleus and could individually interact with AchnCYP86A1 promoter to activate gene expression in yeast one-hybrid and dual-luciferase assays. The findings were further demonstrated in transient overexpressed N. benthamiana, in which all TFs notably elevated the expression of aliphatic synthesis genes including CYP86A1 and the accumulation of ω-hydroxyacids, α, ω-diacids, fatty acids and primary alcohols. Moreover, exogenous ABA induced the expression of AchnMYC2, AchnMYB41 and AchnMYB107 that promoted AchnCYP86A1 involving in suberin monomer formation. Contrary to the inductive effects of ABA, however, fluridone (an inhibitor of ABA biosynthesis) inhibited the three TFs expression and suberin monomer formation. These results indicate that AchnMYC2, AchnMYB41 and AchnMYB107 positively regulate suberin monomer synthesis by activating AchnCYP86A1 promoter in response to ABA.
Collapse
Affiliation(s)
- Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- *Correspondence: Linchun Mao,
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaobo Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Xueyuan Han
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yajie Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Meng Zha
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
116
|
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q. MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. THE PLANT CELL 2019; 31:106-127. [PMID: 30610166 PMCID: PMC6391702 DOI: 10.1105/tpc.18.00405] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
In tomato (Solanum lycopersicum), as in other plants, the immunity hormone jasmonate (JA) triggers genome-wide transcriptional changes in response to pathogen and insect attack. These changes are largely regulated by the basic helix-loop-helix (bHLH) transcription factor MYC2. The function of MYC2 depends on its physical interaction with the MED25 subunit of the Mediator transcriptional coactivator complex. Although much has been learned about the MYC2-dependent transcriptional activation of JA-responsive genes, relatively less studied is the termination of JA-mediated transcriptional responses and the underlying mechanisms. Here, we report an unexpected function of MYC2 in regulating the termination of JA signaling through activating a small group of JA-inducible bHLH proteins, termed MYC2-TARGETED BHLH1 (MTB1), MTB2, and MTB3. MTB proteins negatively regulate JA-mediated transcriptional responses via their antagonistic effects on the functionality of the MYC2-MED25 transcriptional activation complex. MTB proteins impair the formation of the MYC2-MED25 complex and compete with MYC2 to bind to its target gene promoters. Therefore, MYC2 and MTB proteins form an autoregulatory negative feedback circuit to terminate JA signaling in a highly organized manner. We provide examples demonstrating that gene editing tools such as CRISPR/Cas9 open up new avenues to exploit MTB genes for crop protection.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiafang Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mingming Fang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanhui Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
117
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Koehl K, Lunn JE, Stitt M. Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4881-4895. [PMID: 30053131 PMCID: PMC6137998 DOI: 10.1093/jxb/ery276] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 05/18/2023]
Abstract
Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania ‘Luigi Vanvitelli’, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
118
|
Guo Q, Major IT, Howe GA. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:72-81. [PMID: 29555489 DOI: 10.1016/j.pbi.2018.02.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Induced plant resistance depends on the production of specialized metabolites that repel attack by biotic aggressors and is often associated with reduced growth of vegetative tissues. Despite progress in understanding the signal transduction networks that control growth-defense tradeoffs, much remains to be learned about how growth rate is coordinated with changes in metabolism during growth-to-defense transitions. Here, we highlight recent advances in jasmonate research to suggest how a major branch of plant immunity is dynamically regulated to calibrate growth-defense balance with shifts in carbon availability. We review evidence that diminished growth, as an integral facet of induced resistance, may optimize the temporal and spatial expression of defense compounds without compromising other critical roles of central metabolism. New insights into the evolution of jasmonate signaling further suggest that opposing selective pressures associated with too much or too little defense may have shaped the emergence of a modular jasmonate pathway that integrates primary and specialized metabolism through the control of repressor-transcription factor complexes. A better understanding of the mechanistic basis of growth-defense balance has important implications for boosting plant productivity, including insights into how these tradeoffs may be uncoupled for agricultural improvement.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
119
|
Huang H, Gao H, Liu B, Fan M, Wang J, Wang C, Tian H, Wang L, Xie C, Wu D, Liu L, Yan J, Qi T, Song S. bHLH13 Regulates Jasmonate-Mediated Defense Responses and Growth. Evol Bioinform Online 2018; 14:1176934318790265. [PMID: 30046236 PMCID: PMC6056788 DOI: 10.1177/1176934318790265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Jasmonates (JAs) regulate plant growth and defense responses. On perception of bioactive JAs, the JA receptor CORONATINE INSENSITIVE1 (COI1) recruits JA ZIM-domain (JAZ) proteins for degradation, and JAZ-targeted transcription factors are released to regulate JA responses. The subgroup IIId bHLH transcriptional factors, including bHLH17, bHLH13, bHLH3, and bHLH14, interact with JAZs and repress JA responses. In this study, we show that IIId bHLH factors form dimers via the C-terminus in yeast. N-terminus of bHLH13 is essential for its transcriptional repression function. bHLH13 overexpression inhibits Arabidopsis resistance to the necrotrophic fungi Botrytis cinerea and defense against the insect Spodoptera exigua. COI1 mutation disrupts the oversensitivity of the quadruple mutant bhlh3 bhlh13 bhlh14 bhlh17 in various JA responses, including anthocyanin accumulation, root growth inhibition, and defense against B cinerea and S exigua. Disruption of the TTG1/bHLH/MYB complex blocks anthocyanin accumulation of bhlh3 bhlh13 bhlh14 bhlh17, whereas abolishment of MYC2 attenuates JA-inhibitory root growth of bhlh3 bhlh13 bhlh14 bhlh17. These results genetically demonstrate that IIId bHLH factors function downstream of COI1 to inhibit distinctive JA responses via antagonizing different transcriptional activators.
Collapse
Affiliation(s)
- Huang Huang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences and Engineering, Beijing University of Agriculture, Beijing, China
| | - Hua Gao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Meng Fan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaojiao Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Cuili Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haixia Tian
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lanxiang Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chengyuan Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Jianbin Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
120
|
Salem MA, Li Y, Bajdzienko K, Fisahn J, Watanabe M, Hoefgen R, Schöttler MA, Giavalisco P. RAPTOR Controls Developmental Growth Transitions by Altering the Hormonal and Metabolic Balance. PLANT PHYSIOLOGY 2018; 177:565-593. [PMID: 29686055 PMCID: PMC6001337 DOI: 10.1104/pp.17.01711] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/06/2018] [Indexed: 05/18/2023]
Abstract
Vegetative growth requires the systemic coordination of numerous cellular processes, which are controlled by regulatory proteins that monitor extracellular and intracellular cues and translate them into growth decisions. In eukaryotes, one of the central factors regulating growth is the serine/threonine protein kinase Target of Rapamycin (TOR), which forms complexes with regulatory proteins. To understand the function of one such regulatory protein, Regulatory-Associated Protein of TOR 1B (RAPTOR1B), in plants, we analyzed the effect of raptor1b mutations on growth and physiology in Arabidopsis (Arabidopsis thaliana) by detailed phenotyping, metabolomic, lipidomic, and proteomic analyses. Mutation of RAPTOR1B resulted in a strong reduction of TOR kinase activity, leading to massive changes in central carbon and nitrogen metabolism, accumulation of excess starch, and induction of autophagy. These shifts led to a significant reduction of plant growth that occurred nonlinearly during developmental stage transitions. This phenotype was accompanied by changes in cell morphology and tissue anatomy. In contrast to previous studies in rice (Oryza sativa), we found that the Arabidopsis raptor1b mutation did not affect chloroplast development or photosynthetic electron transport efficiency; however, it resulted in decreased CO2 assimilation rate and increased stomatal conductance. The raptor1b mutants also had reduced abscisic acid levels. Surprisingly, abscisic acid feeding experiments resulted in partial complementation of the growth phenotypes, indicating the tight interaction between TOR function and hormone synthesis and signaling in plants.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Yan Li
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
121
|
Garrido-Bigotes A, Figueroa NE, Figueroa PM, Figueroa CR. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening. PLoS One 2018; 13:e0197118. [PMID: 29746533 PMCID: PMC5944998 DOI: 10.1371/journal.pone.0197118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process.
Collapse
Affiliation(s)
- Adrián Garrido-Bigotes
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca, Chile
- Doctorate Program in Forest Sciences, Faculty of Forest Sciences, Universidad de Concepción, Concepción, Chile
| | - Nicolás E. Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca, Chile
| | - Pablo M. Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca, Chile
| | - Carlos R. Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca, Chile
- * E-mail:
| |
Collapse
|
122
|
Howe GA, Major IT, Koo AJ. Modularity in Jasmonate Signaling for Multistress Resilience. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:387-415. [PMID: 29539269 DOI: 10.1146/annurev-arplant-042817-040047] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate coordinates immune and growth responses to increase plant survival in unpredictable environments. The core jasmonate signaling pathway comprises several functional modules, including a repertoire of COI1-JAZ (CORONATINE INSENSITIVE1-JASMONATE-ZIM DOMAIN) coreceptors that couple jasmonoyl-l-isoleucine perception to the degradation of JAZ repressors, JAZ-interacting transcription factors that execute physiological responses, and multiple negative feedback loops to ensure timely termination of these responses. Here, we review the jasmonate signaling pathway with an emphasis on understanding how transcriptional responses are specific, tunable, and evolvable. We explore emerging evidence that JAZ proteins integrate multiple informational cues and mediate crosstalk by propagating changes in protein-protein interaction networks. We also discuss recent insights into the evolution of jasmonate signaling and highlight how plant-associated organisms manipulate the pathway to subvert host immunity. Finally, we consider how this mechanistic foundation can accelerate the rational design of jasmonate signaling for improving crop resilience and harnessing the wellspring of specialized plant metabolites.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
- Department of Biochemistry and Molecular Biology, and Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
123
|
Cheng Q, Dong L, Gao T, Liu T, Li N, Wang L, Chang X, Wu J, Xu P, Zhang S. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2527-2541. [PMID: 29579245 PMCID: PMC5920285 DOI: 10.1093/jxb/ery103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/16/2018] [Indexed: 05/07/2023]
Abstract
Phytophthora sojae Kaufmann and Gerdemann causes Phytophthora root rot, a destructive soybean disease worldwide. A basic helix-loop-helix (bHLH) transcription factor is thought to be involved in the response to P. sojae infection in soybean, as revealed by RNA sequencing (RNA-seq). However, the molecular mechanism underlying this response is currently unclear. Here, we explored the function and underlying mechanisms of a bHLH transcription factor in soybean, designated GmPIB1 (P. sojae-inducible bHLH transcription factor), during host responses to P. sojae. GmPIB1 was significantly induced by P. sojae in the resistant soybean cultivar 'L77-1863'. Analysis of transgenic soybean hairy roots with elevated or reduced expression of GmPIB1 demonstrated that GmPIB1 enhances resistance to P. sojae and reduces reactive oxygen species (ROS) accumulation. Quantitative reverse transcription PCR and chromatin immunoprecipitation-quantitative PCR assays revealed that GmPIB1 binds directly to the promoter of GmSPOD1 and represses its expression; this gene encodes a key enzyme in ROS production. Moreover, transgenic soybean hairy roots with GmSPOD1 silencing through RNA interference exhibited improved resistance to P. sojae and reduced ROS generation. These findings suggest that GmPIB1 enhances resistance to P. sojae by repressing the expression of GmSPOD1.
Collapse
Affiliation(s)
- Qun Cheng
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tianjiao Gao
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Tengfei Liu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Ninghui Li
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xin Chang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, China
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
124
|
Endophyte-Mediated Modulation of Defense-Related Genes and Systemic Resistance in Withania somnifera (L.) Dunal under Alternaria alternata Stress. Appl Environ Microbiol 2018; 84:AEM.02845-17. [PMID: 29453255 DOI: 10.1128/aem.02845-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/30/2018] [Indexed: 01/13/2023] Open
Abstract
Endophytes have been explored and found to perform an important role in plant health. However, their effects on the host physiological function and disease management remain elusive. The present study aimed to assess the potential effects of endophytes, singly as well as in combination, in Withania somnifera (L.) Dunal, on various physiological parameters and systemic defense mechanisms against Alternaria alternata Seeds primed with the endophytic bacteria Bacillus amyloliquefaciens and Pseudomonas fluorescens individually and in combination demonstrated an enhanced vigor index and germination rate. Interestingly, plants treated with the two-microbe combination showed the lowest plant mortality rate (28%) under A. alternata stress. Physiological profiling of treated plants showed improved photosynthesis, respiration, transpiration, and stomatal conductance under pathogenic stress. Additionally, these endophytes not only augmented defense enzymes and antioxidant activity in treated plants but also enhanced the expression of salicylic acid- and jasmonic acid-responsive genes in the stressed plants. Reductions in reactive oxygen species (ROS) and reactive nitrogen species (RNS) along with enhanced callose deposition in host plant leaves corroborated well with the above findings. Altogether, the study provides novel insights into the underlying mechanisms behind the tripartite interaction of endophyte-A. alternata-W. somnifera and underscores their ability to boost plant health under pathogen stress.IMPORTANCEW. somnifera is well known for producing several medicinally important secondary metabolites. These secondary metabolites are required by various pharmaceutical sectors to produce life-saving drugs. However, the cultivation of W. somnifera faces severe challenge from leaf spot disease caused by A. alternata To keep pace with the rising demand for this plant and considering its capacity for cultivation under field conditions, the present study was undertaken to develop approaches to enhance production of W. somnifera through intervention using endophytes. Application of bacterial endophytes not only suppresses the pathogenicity of A. alternata but also mitigates excessive ROS/RNS generation via enhanced physiological processes and antioxidant machinery. Expression profiling of plant defense-related genes further validates the efficacy of bacterial endophytes against leaf spot disease.
Collapse
|
125
|
He X, Zhu L, Wassan GM, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. MOLECULAR PLANT PATHOLOGY 2018; 19:896-908. [PMID: 28665036 PMCID: PMC6638010 DOI: 10.1111/mpp.12575] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/29/2017] [Accepted: 06/26/2017] [Indexed: 05/19/2023]
Abstract
Plants have evolved effective mechanisms to protect themselves against multiple stresses, and employ jasmonates (JAs) as vital defence signals to defend against pathogen infection. The accumulation of JA, induced by signals from biotic and abiotic stresses, results in the degradation of Jasmonate-ZIM-domain (JAZ) proteins, followed by the de-repression of JAZ-repressed transcription factors (such as MYC2) to activate defence responses and developmental processes. Here, we characterized a JAZ family protein, GhJAZ2, from cotton (Gossypium hirsutum) which was induced by methyl jasmonate (MeJA) and inoculation of Verticillium dahliae. The overexpression of GhJAZ2 in cotton impairs the sensitivity to JA, decreases the expression level of JA-response genes (GhPDF1.2 and GhVSP) and enhances the susceptibility to V. dahliae and insect herbivory. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that GhJAZ2 may be involved in the regulation of cotton disease resistance by interaction with further disease-response proteins, such as pathogenesis-related protein GhPR10, dirigent-like protein GhD2, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease-resistant protein GhR1 and a basic helix-loop-helix transcription factor GhbHLH171. Unlike MYC2, overexpression of GhbHLH171 in cotton activates the JA synthesis and signalling pathway, and improves plant tolerance to the fungus V. dahliae. Molecular and genetic evidence shows that GhJAZ2 can interact with GhbHLH171 and inhibit its transcriptional activity and, as a result, can restrain the JA-mediated defence response. This study provides new insights into the molecular mechanisms of GhJAZ2 in the regulation of the cotton defence response.
Collapse
Affiliation(s)
- Xin He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Ghulam Mustafa Wassan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yujing Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Heng Sun
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
126
|
Yamamoto T, Yoshida Y, Nakajima K, Tominaga M, Gyohda A, Suzuki H, Okamoto T, Nishimura T, Yokotani N, Minami E, Nishizawa Y, Miyamoto K, Yamane H, Okada K, Koshiba T. Expression of RSOsPR10 in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. PLANT DIRECT 2018; 2:e00049. [PMID: 31245715 PMCID: PMC6508531 DOI: 10.1002/pld3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 05/08/2023]
Abstract
Plant roots play important roles in absorbing water and nutrients, and in tolerance against environmental stresses. Previously, we identified a rice root-specific pathogenesis-related protein (RSOsPR10) induced by drought, salt, and wounding. RSOsPR10 expression is strongly induced by jasmonate (JA)/ethylene (ET), but suppressed by salicylic acid (SA). Here, we analyzed the promoter activity of RSOsPR10. Analyses of transgenic rice lines harboring different-length promoter::β-glucuronidase (GUS) constructs showed that the 3-kb promoter region is indispensable for JA/ET induction, SA repression, and root-specific expression. In the JA-treated 3K-promoter::GUS line, GUS activity was mainly observed at lateral root primordia. Transient expression in roots using a dual luciferase (LUC) assay with different-length promoter::LUC constructs demonstrated that the novel transcription factor OsERF87 induced 3K-promoter::LUC expression through binding to GCC-cis elements. In contrast, the SA-inducible OsWRKY76 transcription factor strongly repressed the JA-inducible and OsERF87-dependent expression of RSOsPR10. RSOsPR10 was expressed at lower levels in OsWRKY76-overexpressing rice, but at higher levels in OsWRKY76-knockout rice, compared with wild type. These results show that two transcription factors, OsERF87 and OsWRKY76, antagonistically regulate RSOsPR10 expression through binding to the same promoter. This mechanism represents a fine-tuning system to sense the balance between JA/ET and SA signaling in plants under environmental stress.
Collapse
Affiliation(s)
- Takahiro Yamamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Yuri Yoshida
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Kazunari Nakajima
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Makiko Tominaga
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Atsuko Gyohda
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Hiromi Suzuki
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takeshi Nishimura
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Bioagric SciNagoya UniversityNagoyaAichiJapan
| | - Naoki Yokotani
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Kazusa DNA Research InstituteKisarazuChibaJapan
| | - Eiichi Minami
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Yoko Nishizawa
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Koji Miyamoto
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Hisakazu Yamane
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Kazunori Okada
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Tomokazu Koshiba
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| |
Collapse
|
127
|
Patra B, Pattanaik S, Schluttenhofer C, Yuan L. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. THE NEW PHYTOLOGIST 2018; 217:1566-1581. [PMID: 29178476 DOI: 10.1111/nph.14910] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/21/2017] [Indexed: 05/07/2023]
Abstract
The pharmaceutically valuable monoterpene indole alkaloids (MIAs) in Catharanthus roseus are derived from the indole and iridoid pathways that respond to jasmonate (JA) signaling. Two classes of JA-responsive bHLH transcription factor (TF), CrMYC2 and BIS1/BIS2, are known to regulate the indole and iridoid pathways, respectively. However, upregulation of either one of the TF genes does not lead to increased MIA accumulation. Moreover, little is known about the interconnection between the CrMYC2 and BIS transcriptional cascades and the hierarchical position of BIS1/BIS2 in JA signaling. Here, we report that a newly identified bHLH factor, Repressor of MYC2 Targets 1 (RMT1), is activated by CrMYC2 and BIS1, and acts as a repressor of the CrMYC2 targets. In addition, we isolated and functionally characterized the core C. roseus JA signaling components, including CORONATINE INSENSITIVE 1 (COI1) and JASMONATE ZIM domain (JAZ) proteins. CrMYC2 and BIS1 are repressed by the JAZ proteins in the absence of JA, but de-repressed by the SCFCOI1 complex on perception of JA. Our findings suggest that the repressors, JAZs and RMT1, mediate crosstalk between the CrMYC2 and BIS regulatory cascades to balance the metabolic flux in MIA biosynthesis.
Collapse
Affiliation(s)
- Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
| | - Craig Schluttenhofer
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
128
|
Identification of JAZ-interacting MYC transcription factors involved in latex drainage in Hevea brasiliensis. Sci Rep 2018; 8:909. [PMID: 29343866 PMCID: PMC5772448 DOI: 10.1038/s41598-018-19206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022] Open
Abstract
Hevea brasiliensis Müll. Arg. is one of the most frequently wounded plants worldwide. Expelling latex upon mechanical injury is a wound response of rubber trees. However, JA-mediated wound responses in rubber trees are not well documented. In this work, three JAZ-interacting MYC transcription factors of H. brasiliensis (termed HbMYC2/3/4) were identified by yeast two-hybrid screening. HbMYC2/3/4 each showed specific interaction profiles with HbJAZs. HbMYC2/3/4 each localized in the nucleus and exhibited strong transcriptional activity. To identify the target genes potentially regulated by HbMYC2/3/4, cis-elements interacting with HbMYC2/3/4 were first screened by yeast one-hybrid assays; the results indicated that HbMYC2/3/4 each could bind G-box elements. Additional analysis confirmed that HbMYC2/3/4 bound the HbPIP2;1 promoter, which contains five G-box cis-elements, and regulated the expression of reporter genes in yeast cells and in planta. HbMYC2/3/4 were induced by exogenous JA treatment but suppressed by ethylene (ET) treatment; in contrast, HbPIP2;1 was positively regulated by ET but negatively regulated by JA treatment. Given that HbPIP2;1 is involved in latex drainage, it could be proposed that HbMYC2/3/4 are involved in the regulation of HbPIP2;1 expression as well as latex drainage, both of which are coordinated by the JA and ET signalling pathways.
Collapse
|
129
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
130
|
Du T, Niu J, Su J, Li S, Guo X, Li L, Cao X, Kang J. SmbHLH37 Functions Antagonistically With SmMYC2 in Regulating Jasmonate-Mediated Biosynthesis of Phenolic Acids in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2018; 9:1720. [PMID: 30524467 PMCID: PMC6262058 DOI: 10.3389/fpls.2018.01720] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
Jasmonates (JAs) are integral to various defense responses and induce biosynthesis of many secondary metabolites. MYC2, a basic helix-loop-helix (bHLH) transcription factor (TF), acts as a transcriptional activator of JA signaling. MYC2 is repressed by the JASMONATE ZIM-domain (JAZ) proteins in the absence of JA, but de-repressed by the protein complex SCFCOI1 on perception of JA. We previously reported that overexpression of SmMYC2 promotes the production of salvianolic acid B (Sal B) in Salvia miltiorrhiza. However, the responsible molecular mechanism is unclear. Here, we showed that SmMYC2 binds to and activates the promoters of its target genes SmTAT1, SmPAL1, and SmCYP98A14 to activate Sal B accumulations. SmbHLH37, a novel bHLH gene significantly up-regulated by constitutive expression of SmMYC2, was isolated from S. miltiorrhiza for detailed functional characterization. SmbHLH37 forms a homodimer and interacts with SmJAZ3/8. Overexpression of SmbHLH37 substantially decreased yields of Sal B. SmbHLH37 binds to the promoters of its target genes SmTAT1 and SmPAL1 and blocks their expression to suppress the pathway for Sal B biosynthesis. These results indicate that SmbHLH37 negatively regulates JA signaling and functions antagonistically with SmMYC2 in regulating Sal B biosynthesis in S. miltiorrhiza.
Collapse
|
131
|
Jiang P, Rausher M. Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. NATURE PLANTS 2018; 4:14-22. [PMID: 29298993 DOI: 10.1038/s41477-017-0085-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
A major premise in evolutionary developmental biology is that regulatory changes, often involving cis-regulatory elements, are responsible for much morphological evolution. This premise is supported by recent investigations of animal development, but information is just beginning to accumulate regarding whether it also applies to the evolution of plant morphology1-4. Here, we identify the genetic differences between species in the genus Clarkia that are responsible for evolutionary change in an ecologically important element of floral colour patterns: spot position. The evolutionary shift in spot position was due to two simple genetic changes that resulted in the appearance of a transcription factor binding site mutation in the R2R3 Myb gene that changes spot formation. These genetic changes caused R2R3 Myb to be activated by a different transcription factor that is expressed in a different position in the petal. These results suggest that the regulatory rewiring paradigm is as applicable to plants as it is to animals, and support the hypothesis that cis-regulatory changes may often play a role in plant morphological evolution.
Collapse
Affiliation(s)
- Peng Jiang
- Biology Department, Duke University, Durham, NC, USA.
| | - Mark Rausher
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
132
|
Zhang M, Jin X, Chen Y, Wei M, Liao W, Zhao S, Fu C, Yu L. TcMYC2a, a Basic Helix-Loop-Helix Transcription Factor, Transduces JA-Signals and Regulates Taxol Biosynthesis in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2018; 9:863. [PMID: 29977250 PMCID: PMC6021540 DOI: 10.3389/fpls.2018.00863] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/04/2018] [Indexed: 05/07/2023]
Abstract
The multitherapeutic taxol, which can be obtained from Taxus spp., is the most widely used anticancer drug. Taxol biosynthesis is significantly regulated by jasmonate acid (JA), one of the most important endogenous hormones in land plants. Nevertheless, the JA-inducing mechanism remains poorly understood. MYC2 is one of the key regulators of JA signal transfer and the biosynthesis of various secondary metabolites. Here, TcMYC2a was identified to contain a basic helix-loop-helix (bHLH)-leucine zipper domain, a bHLH-MYC_N domain, and a BIF/ACT-like domain. TcMYC2a was also found to bind with TcJAZ3 in yeast, which was a homolog of Arabidopsis JASMONATE ZIM-domain JAZ proteins, indicating that TcMYC2a had a similar function to AtMYC2 of JA signal transduction. TcMYC2a was able to affect the expression of GUS reporter gene by binding with the T/G-box, G-box, and E-box, which were the key cis-elements of TASY and TcERF12/15 promoter. TcMYC2a overexpression also led to significantly increased expression of TASY, tat, dbtnbt, t13h, and t5h genes. Additionally, TcERF15, which played the positive role to regulate tasy gene, was up-regulated by TcMYC2a. All these results revealed that TcMYC2a can regulate taxol biosynthesis either directly or via ERF regulators depending on JA signaling transduction.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Jin
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wei
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shengying Zhao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunhua Fu, Longjiang Yu,
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunhua Fu, Longjiang Yu,
| |
Collapse
|
133
|
Kim JA, Bhatnagar N, Kwon SJ, Min MK, Moon SJ, Yoon IS, Kwon TR, Kim ST, Kim BG. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root. Curr Genomics 2017; 19:4-11. [PMID: 29491728 PMCID: PMC5817876 DOI: 10.2174/1389202918666170228134205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
Abstract: The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.
Collapse
Affiliation(s)
- Jin-Ae Kim
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Nikita Bhatnagar
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea.,Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 466-701, Republic of Korea
| | - Soon Jae Kwon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Myung Ki Min
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Seok-Jun Moon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Taek-Ryoun Kwon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| |
Collapse
|
134
|
Liu Y, Li J, Wei G, Sun Y, Lu Y, Lan H, Li C, Zhang S, Cao M. Cloning, molecular evolution and functional characterization of ZmbHLH16, the maize ortholog of OsTIP2 (OsbHLH142). Biol Open 2017; 6:1654-1663. [PMID: 28970232 PMCID: PMC5703606 DOI: 10.1242/bio.026393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023] Open
Abstract
The transcription factor ZmbHLH16, the maize ortholog of OsTIP2 (OsbHLH142), was isolated in the present study. Tissue expression analysis showed that ZmbHLH16 is preferentially expressed in male reproductive organs. Subcellular location analysis of ZmbHLH16 via rice protoplast indicated that it is located in the nucleus. Through nucleotide variation analysis, 36 polymorphic sites in ZmbHLH16, including 23 single nucleotide polymorphisms and 13 InDels, were detected among 78 maize inbred lines. Neutrality tests and linkage disequilibrium analysis showed that ZmbHLH16 experienced no significant evolutionary pressure. Yeast one-hybrid experiment showed that the first 80 residues in the N-terminus of ZmbHLH16 had transactivation activity, whereas the full length did not. Genome-wide coexpression analysis showed that 395 genes were coexpressed with ZmbHLH16. Among these genes, the transcription factor ZmbHLH51 had similar expression pattern and identical subcellular localization to those of ZmbHLH16. Subsequently, the interaction between ZmbHLH51 and ZmbHLH16 was verified by yeast two-hybrid experiment. Through yeast two-hybrid analysis of series truncated ZmbHLH16 fragments, we found not only the typical bHLH domain [175-221 amino acids (a.a.)], but also that the 81-160 a.a. and 241-365 a.a. of ZmbHLH16 could interact with ZmbHLH51. All these results lay the foundation for further understanding the functions of ZmbHLH16.
Collapse
Affiliation(s)
- Yongming Liu
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Jia Li
- Tropical Crops Genetic Resources Institute, Chinese Academic of Tropical Agricultural Sciences, 571737 Danzhou, China
| | - Gui Wei
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Yonghao Sun
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Chuan Li
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Suzhi Zhang
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| |
Collapse
|
135
|
Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ, Grolimund D, Begerow D, Neumann U, Haydon MJ, Krämer U. Etiolated Seedling Development Requires Repression of Photomorphogenesis by a Small Cell-Wall-Derived Dark Signal. Curr Biol 2017; 27:3403-3418.e7. [PMID: 29103938 DOI: 10.1016/j.cub.2017.09.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 11/27/2022]
Abstract
Etiolated growth in darkness or the irreversible transition to photomorphogenesis in the light engages alternative developmental programs operating across all organs of a plant seedling. Dark-grown Arabidopsis de-etiolated by zinc (dez) mutants exhibit morphological, cellular, metabolic, and transcriptional characteristics of light-grown seedlings. We identify the causal mutation in TRICHOME BIREFRINGENCE encoding a putative acyl transferase. Pectin acetylation is decreased in dez, as previously found in the reduced wall acetylation2-3 mutant, shown here to phenocopy dez. Moreover, pectin of dez is excessively methylesterified. The addition of very short fragments of homogalacturonan, tri-galacturonate, and tetra-galacturonate, restores skotomorphogenesis in dark-grown dez and similar mutants, suggesting that the mutants are unable to generate these de-methylesterified pectin fragments. In combination with genetic data, we propose a model of spatiotemporally separated photoreceptive and signal-responsive cell types, which contain overlapping subsets of the regulatory network of light-dependent seedling development and communicate via a pectin-derived dark signal.
Collapse
Affiliation(s)
- Scott A Sinclair
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Camille Larue
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Laura Bonk
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany; Geobotany, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Asif Khan
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Hiram Castillo-Michel
- ID21 Beamline, European Synchrotron Radiation Facility, Avenue des Martyrs, 38043 Grenoble, France
| | - Ricardo J Stein
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Dominik Begerow
- Geobotany, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, 50829 Cologne, Germany
| | - Michael J Haydon
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany.
| |
Collapse
|
136
|
Hickman R, Van Verk MC, Van Dijken AJH, Mendes MP, Vroegop-Vos IA, Caarls L, Steenbergen M, Van der Nagel I, Wesselink GJ, Jironkin A, Talbot A, Rhodes J, De Vries M, Schuurink RC, Denby K, Pieterse CMJ, Van Wees SCM. Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. THE PLANT CELL 2017; 29:2086-2105. [PMID: 28827376 PMCID: PMC5635973 DOI: 10.1105/tpc.16.00958] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development.
Collapse
Affiliation(s)
- Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Marciel Pereira Mendes
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Irene A Vroegop-Vos
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Lotte Caarls
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Merel Steenbergen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Ivo Van der Nagel
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Gert Jan Wesselink
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Aleksey Jironkin
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Adam Talbot
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Johanna Rhodes
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Michel De Vries
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Katherine Denby
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
137
|
Major IT, Yoshida Y, Campos ML, Kapali G, Xin X, Sugimoto K, de Oliveira Ferreira D, He SY, Howe GA. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. THE NEW PHYTOLOGIST 2017; 215. [PMID: 28649719 PMCID: PMC5542871 DOI: 10.1111/nph.14638] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ-TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and a jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation, and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Our study highlights the utility of genetic epistasis to unravel the complexities of JAZ-TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth-defense balance.
Collapse
Affiliation(s)
- Ian T. Major
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Yuki Yoshida
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Marcelo L. Campos
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - George Kapali
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Xiu‐Fang Xin
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Koichi Sugimoto
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | | | - Sheng Yang He
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Howard Hughes Medical InstituteMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
| | - Gregg A. Howe
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
138
|
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A 2017; 114:E7205-E7214. [PMID: 28784761 PMCID: PMC5576791 DOI: 10.1073/pnas.1703463114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
139
|
Niu X, Guan Y, Chen S, Li H. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon. BMC Genomics 2017; 18:619. [PMID: 28810832 PMCID: PMC5558667 DOI: 10.1186/s12864-017-4044-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/09/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND As a superfamily of transcription factors (TFs), the basic helix-loop-helix (bHLH) proteins have been characterized functionally in many plants with a vital role in the regulation of diverse biological processes including growth, development, response to various stresses, and so on. However, no systemic analysis of the bHLH TFs has been reported in Brachypodium distachyon, an emerging model plant in Poaceae. RESULTS A total of 146 bHLH TFs were identified in the Brachypodium distachyon genome and classified into 24 subfamilies. BdbHLHs in the same subfamily share similar protein motifs and gene structures. Gene duplication events showed a close relationship to rice, maize and sorghum, and segment duplications might play a key role in the expansion of this gene family. The amino acid sequence of the bHLH domains were quite conservative, especially Leu-27 and Leu-54. Based on the predicted binding activities, the BdbHLHs were divided into DNA binding and non-DNA binding types. According to the gene ontology (GO) analysis, BdbHLHs were speculated to function in homodimer or heterodimer manner. By integrating the available high throughput data in public database and results of quantitative RT-PCR, we found the expression profiles of BdbHLHs were different, implying their differentiated functions. CONCLUSION One hundred fourty-six BdbHLHs were identified and their conserved domains, sequence features, phylogenetic relationship, chromosomal distribution, GO annotations, gene structures, gene duplication and expression profiles were investigated. Our findings lay a foundation for further evolutionary and functional elucidation of BdbHLH genes.
Collapse
Affiliation(s)
- Xin Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuxiang Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Xinjiang Agricultural Vocational Technical College, Changji, China
| |
Collapse
|
140
|
Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 160:312-327. [PMID: 28369972 DOI: 10.1111/ppl.12549] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 05/22/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are involved in a wide range of developmental processes and in response to biotic and abiotic stresses. They represent one of the biggest families of transcription factors but only few of them have been functionally characterized. Here we report the characterization of AtbHLH68 and show that, although the knock out mutant did not have an obvious development phenotype, it was slightly more sensitive to drought stress than the Col-0, and AtbHLH68 overexpressing lines displayed defects in lateral root (LR) formation and a significant increased tolerance to drought stress, likely related to an enhanced sensitivity to abscisic acid (ABA) and/or increased ABA content. AtbHLH68 was expressed in the vascular system of Arabidopsis and its expression was modulated by exogenously applied ABA in an organ-specific manner. We showed that the expression of genes involved in ABA metabolism [AtAAO3 (AtALDEHYDE OXIDASE 3) and AtCYP707A3 (AtABSCISIC ACID 8'HYDROXYLASE 3)], in ABA-related response to drought-stress (AtMYC2, AtbHLH122 and AtRD29A) or during LRs development (AtMYC2 and AtABI3) was de-regulated in the overexpressing lines. We propose that AtbHLH68 has a function in the regulation of LR elongation, and in the response to drought stress, likely through an ABA-dependent pathway by regulating directly or indirectly components of ABA signaling and/or metabolism.
Collapse
Affiliation(s)
- Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathieu Castelain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Dipankar Chakraborti
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 90183, Sweden
| |
Collapse
|
141
|
Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K. Analysis of plant hormone profiles in response to moderate dehydration stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:17-36. [PMID: 27995695 DOI: 10.1111/tpj.13460] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 05/19/2023]
Abstract
Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses.
Collapse
Affiliation(s)
- Kaoru Urano
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kyonoshin Maruyama
- Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
142
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
143
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
144
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
145
|
Caarls L, Van der Does D, Hickman R, Jansen W, Verk MCV, Proietti S, Lorenzo O, Solano R, Pieterse CMJ, Van Wees SCM. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. PLANT & CELL PHYSIOLOGY 2017; 58:266-278. [PMID: 27837094 DOI: 10.1093/pcp/pcw187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/27/2016] [Indexed: 05/28/2023]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription.
Collapse
Affiliation(s)
- Lotte Caarls
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Dieuwertje Van der Does
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Wouter Jansen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Silvia Proietti
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Oscar Lorenzo
- Departamento de Fisiologia Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biologia, Universidad de Salamanca, Salamanca, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| |
Collapse
|
146
|
Wasternack C. The Trojan horse coronatine: the COI1-JAZ2-MYC2,3,4-ANAC019,055,072 module in stomata dynamics upon bacterial infection. THE NEW PHYTOLOGIST 2017; 213:972-975. [PMID: 28079932 DOI: 10.1111/nph.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
147
|
OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci Rep 2017; 7:40175. [PMID: 28067270 PMCID: PMC5220304 DOI: 10.1038/srep40175] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/02/2016] [Indexed: 11/08/2022] Open
Abstract
Biosynthesis of sakuranetin, a flavonoid anti-fungal phytoalexin that occurs in rice, is highly dependent on jasmonic acid (JA) signalling and induced by a variety of environmental stimuli. We previously identified OsNOMT, which encodes naringenin 7-O-methyltransferase (NOMT); NOMT is a key enzyme for sakuranetin production. Although OsNOMT expression is induced by JA treatment, the regulation mechanism that activates the biosynthetic pathway of sakuranetin has not yet been elucidated. In this study, we show that JA-inducible basic helix-loop-helix transcriptional factor OsMYC2 drastically enhances the activity of the OsNOMT promoter and is essential for JA-inducible sakuranetin production. In addition, we identified 2 collaborators of OsMYC2, OsMYC2-like protein 1 and 2 (OsMYL1 and OsMYL2) that further activated the OsNOMT promoter in synergy with OsMYC2. Physical interaction of OsMYC2 with OsMYL1 and OsMYL2 further supported the idea that these interactions lead to the enhancement of the transactivation activity of OsMYC2. Our results indicate that JA signalling via OsMYC2 is reinforced by OsMYL1 and OsMYL2, resulting in the inductive production of sakuranetin during defence responses in rice.
Collapse
|
148
|
Huang H, Gao H, Liu B, Qi T, Tong J, Xiao L, Xie D, Song S. Arabidopsis MYB24 Regulates Jasmonate-Mediated Stamen Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1525. [PMID: 28928760 PMCID: PMC5591944 DOI: 10.3389/fpls.2017.01525] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 05/04/2023]
Abstract
The phytohormone jasmonates (JAs) regulate various defense responses and diverse developmental processes including stamen development and fertility. Previous studies showed that JA induces CORONATINE INSENSITIVE 1-mediated degradation of JA ZIM-domain (JAZ) proteins, and activates the MYB transcription factors (such as MYB21 and MYB24) to regulate stamen development. In this study, we further uncover the mechanism underlying how MYB24 interacts with JAZs to control JA-regulated stamen development. We show that N-terminus of MYB21/24 interacts with 10 out of 12 JAZ proteins while both N-terminus and C-terminus of MYB24 are involved in dimerization of MYB21 and MYB24. Interestingly, male sterility of the JA-deficient mutant opr3 can be rescued by suitable level of the MYB24 overexpression but not by excessive high level of MYB24. Surprisingly, overexpression of MYB24NT, but not MYB24CT, could cause male sterility. These results provide new insights on MYB factors in JA-regulated stamen development.
Collapse
Affiliation(s)
- Huang Huang
- School of Life Sciences, Tsinghua UniversityBeijing, China
- College of Biological Science and Engineering, Beijing University of AgricultureBeijing, China
| | - Hua Gao
- School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Jianhua Tong
- College of Bioscience and Biotechnology, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural UniversityChangsha, China
| | - Langtao Xiao
- College of Bioscience and Biotechnology, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural UniversityChangsha, China
| | - Daoxin Xie
- School of Life Sciences, Tsinghua UniversityBeijing, China
- *Correspondence: Daoxin Xie, Susheng Song,
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal UniversityBeijing, China
- *Correspondence: Daoxin Xie, Susheng Song,
| |
Collapse
|
149
|
Chen SP, Kuo CH, Lu HH, Lo HS, Yeh KW. The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding. PLoS Genet 2016; 12:e1006397. [PMID: 27780204 PMCID: PMC5079590 DOI: 10.1371/journal.pgen.1006397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022] Open
Abstract
IbNAC1 is known to activate the defense system by reprogramming a genetic network against herbivory in sweet potato. This regulatory activity elevates plant defense potential but relatively weakens plants by IbNAC1-mediated JA response. The mechanism controlling IbNAC1 expression to balance plant vitality and survival remains unclear. In this study, a wound-responsive G-box cis-element in the IbNAC1 promoter from -1484 to -1479 bp was identified. From a screen of wound-activated transcriptomic data, one transcriptional activator, IbbHLH3, and one repressor, IbbHLH4, were selected that bind to and activate or repress, respectively, the G-box motif in the IbNAC1 promoter to modulate the IbNAC1-mediated response. In the early wound response, the IbbHLH3-IbbHLH3 protein complex binds to the G-box motif to activate IbNAC1 expression. Thus, an elegant defense network is activated against wounding stress. Until the late stages of wounding, IbbHLH4 interacts with IbbHLH3, and the IbbHLH3-IbbHLH4 heterodimer competes with the IbbHLH3-IbbHLH3 complex to bind the G-box and suppress IbNAC1 expression and timely terminates the defense network. Moreover, the JAZs and IbEIL1 proteins interact with IbbHLH3 to repress the transactivation function of IbbHLH3 in non-wounded condition, but their transcription is immediately inhibited upon early wounding. Our work provides a genetic model that accurately switches the regulatory mechanism of IbNAC1 expression to adjust wounding physiology and represents a delicate defense regulatory network in plants.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Kuo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
150
|
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:147-156. [PMID: 27490895 DOI: 10.1016/j.pbi.2016.07.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are essential phytohormones regulating plant development and environmental adaptation. Many components of the JA-signalling pathway have been identified. However, our insight into the mechanisms by which a single bioactive JA hormone can regulate a myriad of physiological processes and provide specificity in the response remains limited. Recent findings on molecular components suggest that, despite apparent redundancy, specificity is achieved by (1) distinct protein-protein interactions forming unique JAZ/transcription factor complexes, (2) discrete spatiotemporal expression of specific components, (3) variable hormone thresholds for the formation of multiple JA receptor complexes and (4) integration of several signals by JA-pathway components. The molecular modularity that is thereby created enables a single bioactive hormone to specifically modulate multiple JA-outputs in response to different environmental and developmental cues.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|