101
|
Wawra S, Trusch F, Matena A, Apostolakis K, Linne U, Zhukov I, Stanek J, Koźmiński W, Davidson I, Secombes CJ, Bayer P, van West P. The RxLR Motif of the Host Targeting Effector AVR3a of Phytophthora infestans Is Cleaved before Secretion. THE PLANT CELL 2017; 29:1184-1195. [PMID: 28522546 PMCID: PMC5502441 DOI: 10.1105/tpc.16.00552] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 05/17/2023]
Abstract
When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. However, the precise role of this motif in the host cell translocation process is unclear. Here, detailed biochemical studies of the RxLR effector AVR3a from the potato pathogen Phytophthora infestans are presented. Mass spectrometric analysis revealed that the RxLR sequence of native AVR3a is cleaved off prior to secretion by the pathogen and the N terminus of the mature effector was found likely to be acetylated. High-resolution NMR structure analysis of AVR3a indicates that the RxLR motif is well accessible to potential processing enzymes. Processing and modification of AVR3a is to some extent similar to events occurring with the export element (PEXEL) found in malaria effector proteins from Plasmodium falciparum These findings imply a role for the RxLR motif in the secretion of AVR3a by the pathogen, rather than a direct role in the host cell entry process itself.
Collapse
Affiliation(s)
- Stephan Wawra
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Anja Matena
- Structural and Medicinal Biochemistry, Centre of Medicinal Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Kostis Apostolakis
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Uwe Linne
- Core Facility for Mass Spectrometry and Chemistry, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jan Stanek
- Biological and Chemical Research Centre (CENT III), Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre (CENT III), Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Ian Davidson
- Proteomics Facility, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Centre of Medicinal Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
102
|
Chen Y, Halterman DA. Phytophthora infestans Effectors IPI-O1 and IPI-O4 Each Contribute to Pathogen Virulence. PHYTOPATHOLOGY 2017; 107:600-606. [PMID: 28350531 DOI: 10.1094/phyto-06-16-0240-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. Despite decades of intensive breeding efforts, it remains a threat to potato production worldwide, because newly evolved pathogen strains have overcome major resistance genes quickly. The RB protein, from the diploid wild potato species Solanum bulbocastanum, confers partial resistance to most P. infestans strains through its recognition of members of the corresponding pathogen effector protein family IPI-O. IPI-O comprises a multigene family and while some variants are recognized by RB to elicit host resistance (e.g., IPI-O1 and IPI-O2), others are able to elude detection (e.g., IPI-O4). IPI-O1 is almost ubiquitous in global P. infestans strains while IPI-O4 is more rare. No direct experimental evidence has been shown to demonstrate the effect of IPI-O on pathogen virulence in the P. infestans-potato pathosystem. Here, our work has demonstrated that in planta expression of both IPI-O1 and IPI-O4 increases P. infestans aggressiveness resulting in enlarged lesions in potato leaflets. We have previously shown that IPI-O4 has gained the ability to suppress the hypersensitive response induced by IPI-O1 in the presence of RB. In this study, our work has shown that this gain-of-function of IPI-O4 does not compromise its virulence effect, as IPI-O4 overexpression results in larger lesions than IPI-O1. We have also found that higher expression of IPI-O effectors correlates with enlarged lesions, indicating that IPI-O can contribute to virulence quantitatively. In summary, this study has provided accurate and valuable information on IPI-O's virulence effect on the potato host.
Collapse
Affiliation(s)
- Yu Chen
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| | - Dennis A Halterman
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| |
Collapse
|
103
|
Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, He Z, Xu L, Wang E. OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. MOLECULAR PLANT 2017; 10:619-633. [PMID: 28111288 DOI: 10.1016/j.molp.2017.01.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 05/06/2023]
Abstract
Conserved pathogen-associated molecular patterns (PAMPs), such as chitin, are perceived by pattern recognition receptors (PRRs) located at the host cell surface and trigger rapid activation of mitogen-activated protein kinase (MAPK) cascades, which are required for plant resistance to pathogens. However, the direct links from PAMP perception to MAPK activation in plants remain largely unknown. In this study, we found that the PRR-associated receptor-like cytoplasmic kinase Oryza sativa RLCK185 transmits immune signaling from the PAMP receptor OsCERK1 to an MAPK signaling cascade through interaction with an MAPK kinase kinase, OsMAPKKKε, which is the initial kinase of the MAPK cascade. OsRLCK185 interacts with and phosphorylates the C-terminal regulatory domain of OsMAPKKKε. Coexpression of phosphomimetic OsRLCK185 and OsMAPKKKε activates MAPK3/6 phosphorylation in Nicotiana benthamiana leaves. Moreover, OsMAPKKKε interacts with and phosphorylates OsMKK4, a key MAPK kinase that transduces the chitin signal. Overexpression of OsMAPKKKε increases chitin-induced MAPK3/6 activation, whereas OsMAPKKKε knockdown compromises chitin-induced MAPK3/6 activation and resistance to rice blast fungus. Taken together, our results suggest the existence of a phospho-signaling pathway from cell surface chitin perception to intracellular activation of an MAPK cascade in rice.
Collapse
Affiliation(s)
- Chao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gang Wang
- Department of Biology, East China Normal University, Shanghai 200241, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pinkuan Zhu
- Department of Biology, East China Normal University, Shanghai 200241, China
| | - Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Xu
- Department of Biology, East China Normal University, Shanghai 200241, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
104
|
Rodriguez PA, Escudero-Martinez C, Bos JIB. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence. PLANT PHYSIOLOGY 2017; 173:1892-1903. [PMID: 28100451 PMCID: PMC5338666 DOI: 10.1104/pp.16.01458] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/16/2017] [Indexed: 05/20/2023]
Abstract
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to Mpersicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom (P.A.R., C.E.-M., J.I.B.B.); and
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (C.E.-M., J.I.B.B.)
| | - Carmen Escudero-Martinez
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom (P.A.R., C.E.-M., J.I.B.B.); and
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (C.E.-M., J.I.B.B.)
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom (P.A.R., C.E.-M., J.I.B.B.); and
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (C.E.-M., J.I.B.B.)
| |
Collapse
|
105
|
The Cell Death Triggered by the Nuclear Localized RxLR Effector PITG_22798 from Phytophthora infestans Is Suppressed by the Effector AVR3b. Int J Mol Sci 2017; 18:ijms18020409. [PMID: 28216607 PMCID: PMC5343943 DOI: 10.3390/ijms18020409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Phytopathogenic oomycetes, such as Phytophthora infestans, potentially secrete many RxLR effector proteins into plant cells to modulate plant immune responses and promote colonization. However, the molecular mechanisms by which these RxLR effectors suppress plant immune responses are largely unknown. Here we describe an RxLR effector PITG_22798 (Gene accession: XM_002998349) that was upregulated during early infection of potato by P. infestans. By employment of agroinfiltration, we observed that PITG_22798 triggers cell death in Nicotiana benthamiana. Confocal microscopic examination showed that PITG_22798-GFP (Green Fluorescent Protein) located in the host nucleus when expressed transiently in N. benthamiana leaves. A nuclear localization signal (NLS) domain of PITG_22798 is important for nuclear localization and cell death-inducing activity. Sequence alignment and transient expression showed that PITG_22798 from diverse P. infestans isolates are conserved, and transient expression of PITG_22798 enhances P. infestans colonization of N. benthamiana leaves, which suggests that PITG_22798 contributes to P. infestans infection. PITG_22798-triggered cell death is dependent on SGT1-mediated signaling and is suppressed by the P. infestans avirulence effector 3b (AVR3b). The present research provides a clue for further investigation of how P. infestans effector PITG_22798 associates with and modulates host immunity.
Collapse
|
106
|
Jwa NS, Hwang BK. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1687. [PMID: 29033963 PMCID: PMC5627460 DOI: 10.3389/fpls.2017.01687] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/13/2017] [Indexed: 05/03/2023]
Abstract
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- *Correspondence: Nam-Soo Jwa,
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
107
|
Mantelin S, Thorpe P, Jones JT. Translational biology of nematode effectors. Or, to put it another way, functional analysis of effectors – what’s the point? NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a huge amount of work put into identifying and characterising effectors from plant-parasitic nematodes in recent years. Although this work has provided insights into the mechanisms by which nematodes can infect plants, the potential translational outputs of much of this research are not always clear. This short article will summarise how developments in effector biology have allowed, or will allow, new control strategies to be developed, drawing on examples from nematology and from other pathosystems.
Collapse
Affiliation(s)
- Sophie Mantelin
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter Thorpe
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John T. Jones
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Biology Department, University of St Andrews, St Andrews, Fife KY16 9TZ, UK
| |
Collapse
|
108
|
Luan Y, Cui J, Wang W, Meng J. MiR1918 enhances tomato sensitivity to Phytophthora infestans infection. Sci Rep 2016; 6:35858. [PMID: 27779242 PMCID: PMC5078808 DOI: 10.1038/srep35858] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/06/2016] [Indexed: 12/03/2022] Open
Abstract
Late blight of tomato is caused by the oomycete pathogen Phytophthora infestans. In our previous work, we identified and characterized a miR1918 in P. infestans (pi-miR1918), and showed that its sequence is similar to the sequence of tomato miR1918 (sly-miR1918). In this study, we used Arabidopsis thaliana pre-miR159a as a backbone to synthesize pi-miR1918 via PCR and mutagenesis. The artificial pi-miR1918 was used to investigate the role of miR1918 in tomato-P. infestans interaction. Trangenic tomato plants that overexpressed the artificial pi-miR1918 displayed more serious disease symptoms than wild-type tomato plants after infection with P. infestans, as shown by increased number of necrotic cells, lesion sizes and number of sporangia per leaf. The target genes of pi-miR1918 and sly-miR1918 were also predicted for tomato and P. infestans, respectively. qPCR analysis of these targets also performed during tomato-P. infestans interaction. The expression of target gene, RING finger were negatively correlated with miR1918 in the all Lines of transgenic tomato plants. In addition, we used the 5′ RACE to determine the cleavage site of miR1918 to RING finger. These results suggested that miR1918 might be involved in the silencing of target genes, thereby enhancing the susceptibility of tomato to P. infestans infection.
Collapse
Affiliation(s)
- Yushi Luan
- School of Life science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Life science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Weichen Wang
- School of Life science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
109
|
Whisson SC, Boevink PC, Wang S, Birch PR. The cell biology of late blight disease. Curr Opin Microbiol 2016; 34:127-135. [PMID: 27723513 PMCID: PMC5340842 DOI: 10.1016/j.mib.2016.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 11/12/2022]
Abstract
The Phytophthora haustorium is a major site of secretion during infection. The host endocytic cycle contributes to biogenesis of the Extra-Haustorial Membrane. RXLR effectors manipulate host processes at diverse subcellular locations. They directly manipulate the activity or location of immune proteins. They also promote the activity of endogenous negative regulators of immunity.
Late blight, caused by the oomycete Phytophthora infestans, is a major global disease of potato and tomato. Cell biology is teaching us much about the developmental stages associated with infection, especially the haustorium, which is a site of intimate interaction and molecular exchange between pathogen and host. Recent observations suggest a role for the plant endocytic cycle in specific recruitment of host proteins to the Extra-Haustorial Membrane, emphasising the unique nature of this membrane compartment. In addition, there has been a strong focus on the activities of RXLR effectors, which are delivered into plant cells to modulate and manipulate host processes. RXLR effectors interact directly with diverse plant proteins at a range of subcellular locations to promote disease.
Collapse
Affiliation(s)
- Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Shumei Wang
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul Rj Birch
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
110
|
Maqbool A, Hughes RK, Dagdas YF, Tregidgo N, Zess E, Belhaj K, Round A, Bozkurt TO, Kamoun S, Banfield MJ. Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. J Biol Chem 2016; 291:20270-20282. [PMID: 27458016 PMCID: PMC5025708 DOI: 10.1074/jbc.m116.744995] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Filamentous plant pathogens deliver effector proteins to host cells to promote infection. The Phytophthora infestans RXLR-type effector PexRD54 binds potato ATG8 via its ATG8 family-interacting motif (AIM) and perturbs host-selective autophagy. However, the structural basis of this interaction remains unknown. Here, we define the crystal structure of PexRD54, which includes a modular architecture, including five tandem repeat domains, with the AIM sequence presented at the disordered C terminus. To determine the interface between PexRD54 and ATG8, we solved the crystal structure of potato ATG8CL in complex with a peptide comprising the effector's AIM sequence, and we established a model of the full-length PexRD54-ATG8CL complex using small angle x-ray scattering. Structure-informed deletion of the PexRD54 tandem domains reveals retention of ATG8CL binding in vitro and in planta This study offers new insights into structure/function relationships of oomycete RXLR effectors and how these proteins engage with host cell targets to promote disease.
Collapse
Affiliation(s)
- Abbas Maqbool
- From the Department of Biological Chemistry, John Innes Centre, and
| | - Richard K Hughes
- From the Department of Biological Chemistry, John Innes Centre, and
| | - Yasin F Dagdas
- the Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Erin Zess
- the Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Khaoula Belhaj
- the Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Adam Round
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France, and.,EPSAM, Keele University, Keele ST5 5GB, United Kingdom
| | - Tolga O Bozkurt
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Sophien Kamoun
- the Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mark J Banfield
- From the Department of Biological Chemistry, John Innes Centre, and
| |
Collapse
|
111
|
Kulkarni KS, Zala HN, Bosamia TC, Shukla YM, Kumar S, Fougat RS, Patel MS, Narayanan S, Joshi CG. De novo Transcriptome Sequencing to Dissect Candidate Genes Associated with Pearl Millet-Downy Mildew (Sclerospora graminicola Sacc.) Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:847. [PMID: 27446100 PMCID: PMC4916200 DOI: 10.3389/fpls.2016.00847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 05/21/2023]
Abstract
Understanding the plant-pathogen interactions is of utmost importance to design strategies for minimizing the economic deficits caused by pathogens in crops. With an aim to identify genes underlying resistance to downy mildew, a major disease responsible for productivity loss in pearl millet, transcriptome analysis was performed in downy mildew resistant and susceptible genotypes upon infection and control on 454 Roche NGS platform. A total of ~685 Mb data was obtained with 1 575 290 raw reads. The raw reads were pre-processed into high-quality (HQ) reads making to ~82% with an average of 427 bases. The assembly was optimized using four assemblers viz. Newbler, MIRA, CLC and Trinity, out of which MIRA with a total of 14.10 Mb and 90118 transcripts proved to be the best for assembling reads. Differential expression analysis depicted 1396 and 936 and 1000 and 1591 transcripts up and down regulated in resistant inoculated/resistant control and susceptible inoculated/susceptible control respectively with a common of 3644 transcripts. The pathways for secondary metabolism, specifically the phenylpropanoid pathway was up-regulated in resistant genotype. Transcripts up-regulated as a part of defense response included classes of R genes, PR proteins, HR induced proteins and plant hormonal signaling transduction proteins. The transcripts for skp1 protein, purothionin, V type proton ATPase were found to have the highest expression in resistant genotype. Ten transcripts, selected on the basis of their involvement in defense mechanism were validated with qRT-PCR and showed positive co-relation with transcriptome data. Transcriptome analysis evoked potentials of hypersensitive response and systemic acquired resistance as possible mechanism operating in defense mechanism in pearl millet against downy mildew infection.
Collapse
Affiliation(s)
- Kalyani S. Kulkarni
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
- Department of Biotechnology, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Harshvardhan N. Zala
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Tejas C. Bosamia
- Department of Biotechnology, Junagadh Agriculture UniversityJunagadh, India
| | - Yogesh M. Shukla
- Department of Biochemistry, Anand Agricultural UniversityAnand, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Ranbir S. Fougat
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Mruduka S. Patel
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | | | - Chaitanya G. Joshi
- Department of Animal Biotechnology, Anand Agricultural UniversityAnand, India
| |
Collapse
|
112
|
Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W, Dong S, Qiao Y, Tyler BM, Ma W, Wang Y. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat Commun 2016; 7:11685. [PMID: 27256489 PMCID: PMC4895818 DOI: 10.1038/ncomms11685] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 11/15/2022] Open
Abstract
Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes.
Collapse
Affiliation(s)
- Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yongli Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| |
Collapse
|
113
|
|
114
|
Boevink PC, McLellan H, Gilroy EM, Naqvi S, He Q, Yang L, Wang X, Turnbull D, Armstrong MR, Tian Z, Birch PRJ. Oomycetes Seek Help from the Plant: Phytophthora infestans Effectors Target Host Susceptibility Factors. MOLECULAR PLANT 2016; 9:636-638. [PMID: 27095376 DOI: 10.1016/j.molp.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 05/20/2023]
Affiliation(s)
- Petra C Boevink
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M Gilroy
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Shaista Naqvi
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Qin He
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK; Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lina Yang
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK; Fujian Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodan Wang
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK; Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin 150086, China
| | - Dionne Turnbull
- Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Miles R Armstrong
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Paul R J Birch
- Cell and Molecular Science, James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Division of Plant Science, College of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
115
|
Yang L, McLellan H, Naqvi S, He Q, Boevink PC, Armstrong M, Giuliani LM, Zhang W, Tian Z, Zhan J, Gilroy EM, Birch PRJ. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a Phytophthora infestans RXLR Effector, Is a Susceptibility Factor. PLANT PHYSIOLOGY 2016; 171:645-57. [PMID: 26966171 PMCID: PMC4854710 DOI: 10.1104/pp.16.00178] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/09/2016] [Indexed: 05/20/2023]
Abstract
Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease.
Collapse
Affiliation(s)
- Lina Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Hazel McLellan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Shaista Naqvi
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Qin He
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Petra C Boevink
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Miles Armstrong
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Licida M Giuliani
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Wei Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Zhendong Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Eleanor M Gilroy
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| | - Paul R J Birch
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y., J.Z.);Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., S.N., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., S.N., Q.H., P.C.B., M.A., L.M.G., E.M.G., P.R.J.B.);Division of Plant Science, School of Life Science, University of Dundee, Invergowrie, Dundee DD2 5DA, United Kingdom (L.Y., H.M., Q.H., M.A., P.R.J.B.); andKey Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China (Q.H., W.Z., Z.T.)
| |
Collapse
|
116
|
Sun Y, Guo H, Ge F. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior. FRONTIERS IN PLANT SCIENCE 2016; 7:502. [PMID: 27148325 PMCID: PMC4829579 DOI: 10.3389/fpls.2016.00502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/29/2016] [Indexed: 05/18/2023]
Abstract
Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.
Collapse
Affiliation(s)
| | | | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
117
|
Ramirez-Garcés D, Camborde L, Pel MJC, Jauneau A, Martinez Y, Néant I, Leclerc C, Moreau M, Dumas B, Gaulin E. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response. THE NEW PHYTOLOGIST 2016; 210:602-17. [PMID: 26700936 DOI: 10.1111/nph.13774] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/21/2015] [Indexed: 05/20/2023]
Abstract
To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR.
Collapse
Affiliation(s)
- Diana Ramirez-Garcés
- Laboratoire de Recherche en Sciences Végétales, UPS, Université Toulouse 3, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales, UPS, Université Toulouse 3, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Michiel J C Pel
- Laboratoire de Recherche en Sciences Végétales, UPS, Université Toulouse 3, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Alain Jauneau
- CNRS, Plateforme Imagerie-Microscopie Plateforme Imagerie-Microscopie, F-31326, Castanet-Tolosan, France
| | - Yves Martinez
- CNRS, Plateforme Imagerie-Microscopie Plateforme Imagerie-Microscopie, F-31326, Castanet-Tolosan, France
| | - Isabelle Néant
- Centre de Biologie du Développement, Université Toulouse 3, Toulouse, F31062, France
- CNRS UMR5547, Toulouse, F31062, France
| | - Catherine Leclerc
- Centre de Biologie du Développement, Université Toulouse 3, Toulouse, F31062, France
- CNRS UMR5547, Toulouse, F31062, France
| | - Marc Moreau
- Centre de Biologie du Développement, Université Toulouse 3, Toulouse, F31062, France
- CNRS UMR5547, Toulouse, F31062, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, UPS, Université Toulouse 3, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, UPS, Université Toulouse 3, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| |
Collapse
|
118
|
Kunjeti SG, Iyer G, Johnson E, Li E, Broglie KE, Rauscher G, Rairdan GJ. Identification of Phakopsora pachyrhizi Candidate Effectors with Virulence Activity in a Distantly Related Pathosystem. FRONTIERS IN PLANT SCIENCE 2016; 7:269. [PMID: 27014295 PMCID: PMC4781881 DOI: 10.3389/fpls.2016.00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/21/2016] [Indexed: 05/26/2023]
Abstract
Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, a disease that causes enormous economic losses, most markedly in South America. P. pachyrhizi is a biotrophic pathogen that utilizes specialized feeding structures called haustoria to colonize its hosts. In rusts and other filamentous plant pathogens, haustoria have been shown to secrete effector proteins into their hosts to permit successful completion of their life cycle. We have constructed a cDNA library from P. pachyrhizi haustoria using paramagnetic bead-based methodology and have identified 35 P. pachyrhizi candidate effector (CE) genes from this library which are described here. In addition, we quantified the transcript expression pattern of six of these genes and show that two of these CEs are able to greatly increase the susceptibility of Nicotiana benthamiana to Phytophthora infestans. This strongly suggests that these genes play an important role in P. pachyrhizi virulence on its hosts.
Collapse
|
119
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|
120
|
Boevink PC, Wang X, McLellan H, He Q, Naqvi S, Armstrong MR, Zhang W, Hein I, Gilroy EM, Tian Z, Birch PRJ. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nat Commun 2016; 7:10311. [PMID: 26822079 PMCID: PMC4740116 DOI: 10.1038/ncomms10311] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/26/2015] [Indexed: 01/17/2023] Open
Abstract
Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease.
Collapse
Affiliation(s)
- Petra C. Boevink
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Xiaodan Wang
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin 150086, China
| | - Hazel McLellan
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Qin He
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (at HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaista Naqvi
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Miles R. Armstrong
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Wei Zhang
- Key Laboratory of Horticultural Plant Biology (at HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ingo Hein
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (at HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Paul R. J. Birch
- Department of Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
121
|
Liu H, Ma X, Yu H, Fang D, Li Y, Wang X, Wang W, Dong Y, Xiao B. Genomes and virulence difference between two physiological races of Phytophthora nicotianae. Gigascience 2016; 5:3. [PMID: 26823972 PMCID: PMC4730604 DOI: 10.1186/s13742-016-0108-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive. FINDINGS We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome. CONCLUSIONS These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races.
Collapse
Affiliation(s)
- Hui Liu
- />CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiao Ma
- />Yunnan Agricultural University, Kunming, 650100 China
| | - Haiqin Yu
- />Yunnan Academy of Tobacco Agricultural Sciences, Yuantong Street No.33, Kunming, Yunnan 650021 China
| | - Dunhuang Fang
- />Yunnan Academy of Tobacco Agricultural Sciences, Yuantong Street No.33, Kunming, Yunnan 650021 China
| | - Yongping Li
- />Yunnan Academy of Tobacco Agricultural Sciences, Yuantong Street No.33, Kunming, Yunnan 650021 China
| | - Xiao Wang
- />CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wen Wang
- />CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Yang Dong
- />Yunnan Agricultural University, Kunming, 650100 China
- />Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bingguang Xiao
- />Yunnan Academy of Tobacco Agricultural Sciences, Yuantong Street No.33, Kunming, Yunnan 650021 China
| |
Collapse
|
122
|
Mithoe SC, Ludwig C, Pel MJC, Cucinotta M, Casartelli A, Mbengue M, Sklenar J, Derbyshire P, Robatzek S, Pieterse CMJ, Aebersold R, Menke FLH. Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep 2016; 17:441-54. [PMID: 26769563 DOI: 10.15252/embr.201540806] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the activation of mitogen-activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin-triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7-mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.
Collapse
Affiliation(s)
- Sharon C Mithoe
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Christina Ludwig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Michiel J C Pel
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mara Cucinotta
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alberto Casartelli
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Corné M J Pieterse
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Frank L H Menke
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| |
Collapse
|
123
|
Zuluaga AP, Vega-Arreguín JC, Fei Z, Ponnala L, Lee SJ, Matas AJ, Patev S, Fry WE, Rose JKC. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. MOLECULAR PLANT PATHOLOGY 2016; 17:29-41. [PMID: 25845484 PMCID: PMC6638332 DOI: 10.1111/mpp.12263] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hemibiotrophic plant pathogens, such as the oomycete Phytophthora infestans, employ a biphasic infection strategy, initially behaving as biotrophs, where minimal symptoms are exhibited by the plant, and subsequently as necrotrophs, feeding on dead plant tissue. The regulation of this transition and the breadth of molecular mechanisms that modulate plant defences are not well understood, although effector proteins secreted by the pathogen are thought to play a key role. We examined the transcriptional dynamics of P. infestans in a compatible interaction with its host tomato (Solanum lycopersicum) at three infection stages: biotrophy; the transition from biotrophy to necrotrophy; and necrotrophy. The expression data suggest a tight temporal regulation of many pathways associated with the suppression of plant defence mechanisms and pathogenicity, including the induction of putative cytoplasmic and apoplastic effectors. Twelve of these were experimentally evaluated to determine their ability to suppress necrosis caused by the P. infestans necrosis-inducing protein PiNPP1.1 in Nicotiana benthamiana. Four effectors suppressed necrosis, suggesting that they might prolong the biotrophic phase. This study suggests that a complex regulation of effector expression modulates the outcome of the interaction.
Collapse
Affiliation(s)
- Andrea P Zuluaga
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio C Vega-Arreguín
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Laboratory of Agrigenomics, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, Guanajuato, Mexico
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holly Center for Agriculture and Health, USDA-ARS, Tower Road, Ithaca, NY, 14853, USA
| | - Lalit Ponnala
- Institute for Biotechnology and Life Science Technologies, Cornell University, Ithaca, NY, 14853, USA
| | - Sang Jik Lee
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Biotechnology Institute, Nongwoo Bio Co., Ltd, Gyeonggi, South Korea
| | - Antonio J Matas
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Departamento de Biología Vegetal, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain
| | - Sean Patev
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William E Fry
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
124
|
Du Y, Mpina MH, Birch PRJ, Bouwmeester K, Govers F. Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity. PLANT PHYSIOLOGY 2015; 169:1975-90. [PMID: 26336092 PMCID: PMC4634092 DOI: 10.1104/pp.15.01169] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/30/2015] [Indexed: 05/24/2023]
Abstract
Phytophthora infestans secretes numerous RXLR effectors that modulate host defense and thereby pave the way for successful invasion. Here, we show that the RXLR effector AVR1 is a virulence factor that promotes colonization and suppresses callose deposition, a hallmark of basal defense. To identify host targets of AVR1, we performed yeast two-hybrid screens and selected Sec5 as a candidate. Sec5 is a subunit of the exocyst, a protein complex that is involved in vesicle trafficking. AVR1-like (A-L), a close homolog of AVR1, also acts as a virulence factor, but unlike AVR1, A-L does not suppress CRINKLER2 (CRN2)-induced cell death or interact with Sec5. Compared with AVR1, A-L is shorter and lacks the carboxyl-terminal tail, the T-region that is crucial for CRN2-induced cell death suppression and Sec5 interaction. In planta analyses revealed that AVR1 and Sec5 are in close proximity, and coimmunoprecipitation confirmed the interaction. Sec5 is required for secretion of the pathogenesis-related protein PR-1 and callose deposition and also plays a role in CRN2-induced cell death. Our findings show that P. infestans manipulates an exocyst subunit and thereby potentially disturbs vesicle trafficking, a cellular process that is important for basal defense. This is a novel strategy that oomycete pathogens exploit to modulate host defense.
Collapse
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Mohamed H Mpina
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Paul R J Birch
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| |
Collapse
|
125
|
Wang X, Boevink P, McLellan H, Armstrong M, Bukharova T, Qin Z, Birch PRJ. A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease. MOLECULAR PLANT 2015; 8:1385-95. [PMID: 25936676 PMCID: PMC4560694 DOI: 10.1016/j.molp.2015.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 05/18/2023]
Abstract
Plant pathogens deliver effector proteins that alter host processes to create an environment conducive to colonization. Attention has focused on identifying the targets of effectors and how their manipulation facilitates disease. RXLR effector Pi04089 from the potato blight pathogen Phytophthora infestans accumulates in the host nucleus and enhances colonization when transiently expressed in planta. Its nuclear localization is required for enhanced P. infestans colonization. Pi04089 interacts in yeast and in planta with a putative potato K-homology (KH) RNA-binding protein, StKRBP1. Co-localization of Pi04089 and StKRBP1, and bimolecular fluorescence complementation between them, indicate they associate at nuclear speckles. StKRBP1 protein levels increased when it was co-expressed with Pi04089. Indeed, such accumulation of StKRBP1 was observed also on the first day of leaf colonization by the pathogen. Remarkably, overexpression of StKRBP1 significantly enhances P. infestans infection. Mutation of the nucleotide-binding motif GxxG to GDDG in all three KH domains of StKRBP1 abolishes its interaction with Pi04089, its localization to nuclear speckles, and its increased accumulation when co-expressed with the effector. Moreover, the mutant StKRBP1 protein no longer enhances leaf colonization by P. infestans, implying that nucleotide binding is likely required for this activity. We thus argue that StKRBP1 can be regarded as a susceptibility factor, as its activity is beneficial to the pathogen.
Collapse
Affiliation(s)
- Xiaodan Wang
- Horticultural College, Northeast Agricultural University, No. 59 Mucai Road, Harbin 150030, China; Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK; Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Petra Boevink
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Miles Armstrong
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Tatyana Bukharova
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Zhiwei Qin
- Horticultural College, Northeast Agricultural University, No. 59 Mucai Road, Harbin 150030, China.
| | - Paul R J Birch
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
126
|
Teper D, Sunitha S, Martin GB, Sessa G. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. PLANT SIGNALING & BEHAVIOR 2015; 10:e1064573. [PMID: 26237448 PMCID: PMC4883825 DOI: 10.1080/15592324.2015.1064573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 05/13/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kε. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades.
Collapse
Affiliation(s)
- Doron Teper
- Department of Molecular Biology and Ecology of Plants; Tel-Aviv University; Tel-Aviv, Israel
| | - Sukumaran Sunitha
- Department of Molecular Biology and Ecology of Plants; Tel-Aviv University; Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research; Ithaca, NY USA
- Department of Plant Pathology and Plant-Microbe Biology; Cornell University; Ithaca, NY USA
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants; Tel-Aviv University; Tel-Aviv, Israel
| |
Collapse
|
127
|
Kong G, Zhao Y, Jing M, Huang J, Yang J, Xia Y, Kong L, Ye W, Xiong Q, Qiao Y, Dong S, Ma W, Wang Y. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. PLoS Pathog 2015; 11:e1005139. [PMID: 26317500 PMCID: PMC4552650 DOI: 10.1371/journal.ppat.1005139] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.
Collapse
Affiliation(s)
- Guanghui Kong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yao Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yeqiang Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liang Kong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Xiong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yongli Qiao
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, United States of America
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, United States of America
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
128
|
Virk N, Li D, Tian L, Huang L, Hong Y, Li X, Zhang Y, Liu B, Zhang H, Song F. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses. PLoS One 2015. [PMID: 26222830 PMCID: PMC4519275 DOI: 10.1371/journal.pone.0133975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV) while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.
Collapse
Affiliation(s)
- Nasar Virk
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- * E-mail:
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
129
|
Coll A, Wilson ML, Gruden K, Peccoud J. Rule-Based Design of Plant Expression Vectors Using GenoCAD. PLoS One 2015; 10:e0132502. [PMID: 26148190 PMCID: PMC4492961 DOI: 10.1371/journal.pone.0132502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/15/2015] [Indexed: 01/28/2023] Open
Abstract
Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.
Collapse
Affiliation(s)
- Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Mandy L. Wilson
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Jean Peccoud
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
130
|
Fry WE, Birch PRJ, Judelson HS, Grünwald NJ, Danies G, Everts KL, Gevens AJ, Gugino BK, Johnson DA, Johnson SB, McGrath MT, Myers KL, Ristaino JB, Roberts PD, Secor G, Smart CD. Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen. PHYTOPATHOLOGY 2015; 105:966-81. [PMID: 25760519 DOI: 10.1094/phyto-01-15-0005-fi] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytophthora infestans has been a named pathogen for well over 150 years and yet it continues to "emerge", with thousands of articles published each year on it and the late blight disease that it causes. This review explores five attributes of this oomycete pathogen that maintain this constant attention. First, the historical tragedy associated with this disease (Irish potato famine) causes many people to be fascinated with the pathogen. Current technology now enables investigators to answer some questions of historical significance. Second, the devastation caused by the pathogen continues to appear in surprising new locations or with surprising new intensity. Third, populations of P. infestans worldwide are in flux, with changes that have major implications to disease management. Fourth, the genomics revolution has enabled investigators to make tremendous progress in terms of understanding the molecular biology (especially the pathogenicity) of P. infestans. Fifth, there remain many compelling unanswered questions.
Collapse
Affiliation(s)
- W E Fry
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - P R J Birch
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - H S Judelson
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - N J Grünwald
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - G Danies
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - K L Everts
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - A J Gevens
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - B K Gugino
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - D A Johnson
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - S B Johnson
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - M T McGrath
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - K L Myers
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - J B Ristaino
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - P D Roberts
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - G Secor
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - C D Smart
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| |
Collapse
|
131
|
He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PRJ, Tian Z. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3189-99. [PMID: 25873665 PMCID: PMC4449539 DOI: 10.1093/jxb/erv128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Ari Sadanandom
- Durham Centre for Crop Improvement Technology School of Biological and Biomedical Sciences, Durham University, Durham DH1 3HP, UK
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China;
| |
Collapse
|
132
|
Pathogen-secreted proteases activate a novel plant immune pathway. Nature 2015; 521:213-6. [PMID: 25731164 PMCID: PMC4433409 DOI: 10.1038/nature14243] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.
Collapse
|
133
|
Niks RE, Qi X, Marcel TC. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:445-70. [PMID: 26047563 DOI: 10.1146/annurev-phyto-080614-115928] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Quantitative resistance (QR) refers to a resistance that is phenotypically incomplete and is based on the joined effect of several genes, each contributing quantitatively to the level of plant defense. Often, QR remains durably effective, which is the primary driver behind the interest in it. The various terms that are used to refer to QR, such as field resistance, adult plant resistance, and basal resistance, reflect the many properties attributed to it. In this article, we discuss aspects connected to those attributions, in particular the hypothesis that much of the QR to biotrophic filamentous pathogens is basal resistance, i.e., poor suppression of PAMP-triggered defense by effectors. We discuss what role effectors play in suppressing defense or improving access to nutrients. Based on the functions of the few plant proteins identified as involved in QR, vesicle trafficking and protein/metabolite transportation are likely to be common physiological processes relevant to QR.
Collapse
Affiliation(s)
- Rients E Niks
- Laboratory of Plant Breeding, Wageningen University and Research Centre, 6700 AJ Wageningen, The Netherlands;
| | | | | |
Collapse
|
134
|
Xiong Q, Ye W, Choi D, Wong J, Qiao Y, Tao K, Wang Y, Ma W. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1379-89. [PMID: 25387135 DOI: 10.1094/mpmi-06-14-0190-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.
Collapse
|
135
|
Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PRJ, Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. FRONTIERS IN PLANT SCIENCE 2014; 5:655. [PMID: 25484886 PMCID: PMC4240061 DOI: 10.3389/fpls.2014.00655] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as "defense elicitors." In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.
Collapse
Affiliation(s)
- Lea Wiesel
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Adrian C. Newton
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | | | | | - Paul R. J. Birch
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- The Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton InstituteDundee, UK
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
136
|
Rovenich H, Boshoven JC, Thomma BPHJ. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:96-103. [PMID: 24879450 DOI: 10.1016/j.pbi.2014.05.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/21/2014] [Accepted: 05/01/2014] [Indexed: 05/23/2023]
Abstract
Microorganisms play essential roles in almost every environment on earth. For instance, microbes decompose organic material, or establish symbiotic relationships that range from pathogenic to mutualistic. Symbiotic relationships have been particularly well studied for microbial plant pathogens and have emphasized the role of effectors; secreted molecules that support host colonization. Most effectors characterized thus far play roles in deregulation of host immunity. Arguably, however, pathogens not only deal with immune responses during host colonization, but also encounter other microbes including competitors, (myco)parasites and even potential co-operators. Thus, part of the effector catalog may target microbiome co-inhabitants rather than host physiology.
Collapse
Affiliation(s)
- Hanna Rovenich
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jordi C Boshoven
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
137
|
Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R, Escudero-Martinez C, Bos JI. Plant immunity in plant-aphid interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:663. [PMID: 25520727 PMCID: PMC4249712 DOI: 10.3389/fpls.2014.00663] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/07/2014] [Indexed: 05/06/2023]
Abstract
Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and - aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients.
Collapse
Affiliation(s)
- Maëlle Jaouannet
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Peter Thorpe
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Camille J. G. Lenoir
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Ruari MacLeod
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Jorunn I.B. Bos
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
- *Correspondence: Jorunn I. B. Bos, Division of Plant Sciences, College of Life Sciences, University of Dundee, Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK e-mail:
| |
Collapse
|