101
|
Zhu JJ, Li YR, Liao JX. Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:427-33. [PMID: 23932150 DOI: 10.1016/j.plaphy.2013.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/17/2013] [Indexed: 05/06/2023]
Abstract
Whether anthocyanins elevate resistance to chilling-induced oxidative stress in Saccharum officinarum L. cv Badila seedlings is investigated. Plants with four fully expanded leaves were exposed to chilling stress (8 °C/4 °C, 11 h photoperiod) for 3 days and then transferred to rewarming condition (25 °C/20 °C, 11 h photoperiod) for another 2 days. At the end of the chilling period, H2O2 and superoxide radical (O2-) levels increased sharply and were near the same in the central (CL) and the final fully expanded leaves (FL). Moreover, the degree of chilling injury indicated by malonaldehyde concentration and percent of ion leakage also was near the same. Most of the tested parameters returned near to the control level after 2 days of rewarming. With further analyzing, we found that superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2) activities increased much higher and catalase (EC 1.11.1.6) activity and ascorbate/dehydroascorbate ratio decreased much more in FL than CL in response to chilling. However, anthocyanins concentration coupling with glutathione/oxidized glutathione increased much higher in CL than FL under chilling stress. These finds suggest that anthocyanins at least partially compensate the relative deficiency of antioxidants in CL compared with FL. α,α-Diphenyl-β-picrylhydrazyl assays further confirmed this idea. The relationships between anthocyanins and antioxidants were analyzed and the possible mechanisms of the affection of anthocyanins on antioxidant metabolism were discussed.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences Research, Nanning, Guangxi 530007, China; Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | | | | |
Collapse
|
102
|
Abstract
AbstractThis study examines the effect of irradiance level produced by solid-state light-emitting diodes (LEDs) on the growth, nutritional quality and antioxidant properties of Brassicaceae family microgreens. Kohlrabi (Brassica oleracea var. gongylodes, ‘Delicacy Purple’) mustard (Brassica juncea L., ‘Red Lion’), red pak choi (Brassica rapa var. chinensis, ‘Rubi F1’) and tatsoi (Brassica rapa var. rosularis) were grown using peat substrate in controlled-environment chambers until harvest time (10 days, 21/17°C, 16 h). A system of five lighting modules with 455, 638, 665 and 731 nm LEDs at a total photosynthetic photon flux densities (PPFD) of 545, 440, 330, 220 and 110 µmol m−2s−1 respectively were used. Insufficient levels of photosynthetically active photon flux (110 µmol m−2 s−1) suppressed normal growth and diminished the nutritional value of the Brassica microgreens studied. In general, the most suitable conditions for growth and nutritional quality of the microgreens was 330–440 µmol m−2 s−1 irradiation, which resulted in a larger leaf surface area, lower content of nitrates and higher total anthocyanins, total phenols and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. High light levels (545 µmol m−2 s−1), which was expected to induce mild photostress, had no significant positive impact for most of investigated parameters.
Collapse
|
103
|
Gao Z, Liu C, Zhang Y, Li Y, Yi K, Zhao X, Cui ML. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light. PLoS One 2013; 8:e77891. [PMID: 24205014 PMCID: PMC3812142 DOI: 10.1371/journal.pone.0077891] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022] Open
Abstract
The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.
Collapse
Affiliation(s)
- Zhenrui Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chuanliang Liu
- State Key Laboratory of Cotton Biology, Anyang, China
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanzhao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Keke Yi
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Anyang, China
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Min-Long Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Cotton Biology, Anyang, China
| |
Collapse
|
104
|
Perrella G, Lopez-Vernaza MA, Carr C, Sani E, Gosselé V, Verduyn C, Kellermeier F, Hannah MA, Amtmann A. Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. THE PLANT CELL 2013; 25:3491-505. [PMID: 24058159 PMCID: PMC3809545 DOI: 10.1105/tpc.113.114835] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 05/19/2023]
Abstract
Histone deacetylation regulates gene expression during plant stress responses and is therefore an interesting target for epigenetic manipulation of stress sensitivity in plants. Unfortunately, overexpression of the core enzymes (histone deacetylases [HDACs]) has either been ineffective or has caused pleiotropic morphological abnormalities. In yeast and mammals, HDACs operate within multiprotein complexes. Searching for putative components of plant HDAC complexes, we identified a gene with partial homology to a functionally uncharacterized member of the yeast complex, which we called Histone Deacetylation Complex1 (HDC1). HDC1 is encoded by a single-copy gene in the genomes of model plants and crops and therefore presents an attractive target for biotechnology. Here, we present a functional characterization of HDC1 in Arabidopsis thaliana. We show that HDC1 is a ubiquitously expressed nuclear protein that interacts with at least two deacetylases (HDA6 and HDA19), promotes histone deacetylation, and attenuates derepression of genes under water stress. The fast-growing HDC1-overexpressing plants outperformed wild-type plants not only on well-watered soil but also when water supply was reduced. Our findings identify HDC1 as a rate-limiting component of the histone deacetylation machinery and as an attractive tool for increasing germination rate and biomass production of plants.
Collapse
Affiliation(s)
- Giorgio Perrella
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Manuel A. Lopez-Vernaza
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Craig Carr
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Emanuela Sani
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | | | | | - Fabian Kellermeier
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | | | - Anna Amtmann
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
- Address correspondence to
| |
Collapse
|
105
|
Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC PLANT BIOLOGY 2013; 13:104. [PMID: 23865417 PMCID: PMC3728233 DOI: 10.1186/1471-2229-13-104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m(-2) s(-1)) for 4 h and 14 d. RESULTS The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. CONCLUSION The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions.
Collapse
Affiliation(s)
- Elmien Heyneke
- Department of Lothar Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Golm, 14476, Germany
| | - Nora Luschin-Ebengreuth
- Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, Graz, 8010, Austria
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, Graz, 8010, Austria
| | - Iztok Krajcer
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, Graz, 8010, Austria
| | - Volker Wolkinger
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, Graz, 8010, Austria
| | - Maria Müller
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, Graz, 8010, Austria
| | - Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, Graz, 8010, Austria
| |
Collapse
|
106
|
Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2793-804. [PMID: 23749562 DOI: 10.1093/jxb/ert140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ascorbic acid (AsA) is present at high levels in plants and is a potent antioxidant and cellular reductant. The major plant AsA biosynthetic pathway is through the intermediates D-mannose and L-galactose. Although there is ample evidence that plants respond to fluctuating environmental conditions with changes in the pool size of AsA, it is unclear how this regulation occurs. The AsA-deficient Arabidopsis thaliana mutants vtc3-1 and vtc3-2 define a locus that has been identified by positional cloning as At2g40860. Confirmation of this identification was through the study of AsA-deficient At2g40860 insertion mutants and by transgenic complementation of the AsA deficiency in vtc3-1 and vtc3-2 with wild-type At2g40860 cDNA. The very unusual VTC3 gene is predicted to encode a novel polypeptide with an N-terminal protein kinase domain tethered covalently to a C-terminal protein phosphatase type 2C domain. Homologues of this gene exist only within the Viridiplantae/Chloroplastida and the gene may therefore have arisen along with the D-mannose/L-galactose AsA biosynthetic pathway. The vtc3 mutant plants are defective in the ability to elevate the AsA pool in response to light and heat, suggestive of an important role for VTC3 in the regulation of the AsA pool size.
Collapse
Affiliation(s)
- Patricia L Conklin
- Biological Sciences Department, State University of New York at Cortland, Bowers Hall, Cortland, NY 13045, USA.
| | | | | | | | | |
Collapse
|
107
|
Doerfler H, Lyon D, Nägele T, Sun X, Fragner L, Hadacek F, Egelhofer V, Weckwerth W. Granger causality in integrated GC-MS and LC-MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 2013; 9:564-574. [PMID: 23678342 PMCID: PMC3651536 DOI: 10.1007/s11306-012-0470-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022]
Abstract
Metabolomics has emerged as a key technique of modern life sciences in recent years. Two major techniques for metabolomics in the last 10 years are gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled to mass spectrometry (LC-MS). Each platform has a specific performance detecting subsets of metabolites. GC-MS in combination with derivatisation has a preference for small polar metabolites covering primary metabolism. In contrast, reversed phase LC-MS covers large hydrophobic metabolites predominant in secondary metabolism. Here, we present an integrative metabolomics platform providing a mean to reveal the interaction of primary and secondary metabolism in plants and other organisms. The strategy combines GC-MS and LC-MS analysis of the same sample, a novel alignment tool MetMAX and a statistical toolbox COVAIN for data integration and linkage of Granger Causality with metabolic modelling. For metabolic modelling we have implemented the combined GC-LC-MS metabolomics data covariance matrix and a stoichiometric matrix of the underlying biochemical reaction network. The changes in biochemical regulation are expressed as differential Jacobian matrices. Applying the Granger causality, a subset of secondary metabolites was detected with significant correlations to primary metabolites such as sugars and amino acids. These metabolic subsets were compiled into a stoichiometric matrix N. Using N the inverse calculation of a differential Jacobian J from metabolomics data was possible. Key points of regulation at the interface of primary and secondary metabolism were identified.
Collapse
Affiliation(s)
- Hannes Doerfler
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - David Lyon
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas Nägele
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Xiaoliang Sun
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Lena Fragner
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Franz Hadacek
- Department of Chemical Ecology and Ecosystem Research, University of Vienna, Vienna, Austria
| | - Volker Egelhofer
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
108
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
109
|
Lundquist PK, Poliakov A, Giacomelli L, Friso G, Appel M, McQuinn RP, Krasnoff SB, Rowland E, Ponnala L, Sun Q, van Wijk KJ. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. THE PLANT CELL 2013; 25:1818-39. [PMID: 23673981 PMCID: PMC3694708 DOI: 10.1105/tpc.113.111120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 05/04/2023]
Abstract
Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the double mutant (k1 k3) displayed rapid chlorosis upon high light stress. Also, k1 k3 showed a slower, but irreversible, senescence-like phenotype during moderate light stress that was phenocopied by drought and nitrogen limitation, but not cold stress. This senescence-like phenotype involved degradation of the photosystem II core and upregulation of chlorophyll degradation. The senescence-like phenotype was independent of the EXECUTER pathway that mediates genetically controlled cell death from the chloroplast and correlated with increased levels of the singlet oxygen-derived carotenoid β-cyclocitral, a retrograde plastid signal. Total PG volume increased during light stress in wild type and k1 k3 plants, but with different size distributions. Isolated PGs from k1 k3 showed a modified prenyl-lipid composition, suggesting reduced activity of PG-localized tocopherol cyclase (VTE1), and was consistent with loss of carotenoid cleavage dioxygenase 4. Plastid jasmonate biosynthesis enzymes were recruited to the k1 k3 PGs but not wild-type PGs, while pheophytinase, which is involved in chlorophyll degradation, was induced in k1 k3 and not wild-type plants and was localized to PGs. Thus, the ABC1K1/3 complex contributes to PG function in prenyl-lipid metabolism, stress response, and thylakoid remodeling.
Collapse
Affiliation(s)
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lisa Giacomelli
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Mason Appel
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Ryan P. McQuinn
- Boyce Thompson Institute for Plant Science Research, Ithaca, New York 14853
| | - Stuart B. Krasnoff
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
110
|
Munné-Bosch S, Queval G, Foyer CH. The impact of global change factors on redox signaling underpinning stress tolerance. PLANT PHYSIOLOGY 2013; 161:5-19. [PMID: 23151347 PMCID: PMC3532280 DOI: 10.1104/pp.112.205690] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/13/2012] [Indexed: 05/18/2023]
|
111
|
Gest N, Gautier H, Stevens R. Ascorbate as seen through plant evolution: the rise of a successful molecule? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:33-53. [PMID: 23109712 DOI: 10.1093/jxb/ers297] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ascorbate is a widespread and efficient antioxidant that has multiple functions in plants, traditionally associated with the reactions of photosynthesis. This review aims to look at ascorbate from an evolutionary perspective. Cyanobacteria, algae, and bryophytes contain lower concentrations of ascorbate than higher plants, where the molecule accumulates in high concentrations in both photosynthetic and non-photosynthetic organs and tissues. This increase in ascorbate concentration is paralleled by an increase in the number of isoforms of ascorbate peroxidase and the ascorbate regenerating enzymes mono- and dehydroascorbate reductase. One way of understanding the rise in ascorbate concentrations is to consider ascorbate as a molecule among others that has been subject to selection pressures during evolution, due to its cost or benefit for the cell and the organism. Ascorbate has a low cost in terms of synthesis and toxicity, and its benefits include protection of the glutathione pool and proper functioning of a range of enzymes. The hypothesis presented here is that these features would have favoured increasing roles for the molecule in the development and growth of multicellular organisms. This review then focuses on this diversity of roles for ascorbate in both photosynthetic and non-photosynthetic tissues of higher plants, including fruits and seeds, as well as further functions the molecule may possess by looking at other species. The review also highlights one of the trade-offs of domestication, which has often reduced or diluted ascorbate content in the quest for increased fruit growth and yield, with unknown consequences for the corresponding functional diversity, particularly in terms of stress resistance and adaptive responses to the environment.
Collapse
Affiliation(s)
- Noé Gest
- INRA, UR1052, Génétique et amélioration des fruits et légumes, Domaine St Maurice, 84143 Montfavet, France
| | | | | |
Collapse
|
112
|
Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. PLANT PHYSIOLOGY 2012; 160:1613-29. [PMID: 23001142 PMCID: PMC3490610 DOI: 10.1104/pp.112.203786] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/19/2012] [Indexed: 05/18/2023]
Abstract
To identify the genetic factors underlying the regulation of fruit vitamin C (L-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-L-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - David Chagné
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - William A. Laing
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - Johan Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - Mark W. Davey
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| |
Collapse
|
113
|
Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park YII. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 2012; 34:93-101. [PMID: 22699753 PMCID: PMC3887782 DOI: 10.1007/s10059-012-0114-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022] Open
Abstract
In higher plants, the regulation of anthocyanin synthesis by various factors including light, sugars and hormones is mediated by numerous regulatory factors acting at the transcriptional level. Here, the association between sucrose and the plant hormone, cytokinin, in the presence of light was investigated to elucidate cytokinin signaling cascades leading to the transcriptional activation of anthocyanin biosynthesis genes in Arabidopsis seedlings. We showed that cytokinin enhances anthocyanin content and transcript levels of sugar inducible structural gene UDPglucose: flavonoid 3-O-glucosyl transferase (UF3GT) and regulatory gene PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1). Genetic analysis showed that cytokinin signaling modulates sugar-induced anthocyanin biosynthesis through a two-component signaling cascade involving the type-B response regulators ARR1, ARR10 and ARR12 in a redundant manner. Genetic, physiological and molecular biological approaches demonstrated that cytokinin enhancement is partially dependent on phytochrome and cryptochrome downstream component HY5, but mainly on photosynthetic electron transport. Taken together, we suggest that cytokinin acts down-stream of the photosynthetic electron transport chain in which the plastoquinone redox poise is modulated by sugars in a photoreceptor independent manner.
Collapse
Affiliation(s)
- Prasanta Kumar Das
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Dong Ho Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Sang-Bong Choi
- Division of Biosciences and Bioinformatics, Myongji University, Yongin 449-728,
Korea
| | - Sang-Dong Yoo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-764,
Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Youn-II Park
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
114
|
Henry A, Chopra S, Clark DG, Lynch JP. Responses to low phosphorus in high and low foliar anthocyanin coleus (Solenostemon scutellarioides) and maize (Zea mays). FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:255-265. [PMID: 32480779 DOI: 10.1071/fp11256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/21/2012] [Indexed: 05/29/2023]
Abstract
Foliar anthocyanin production is frequently induced by phosphorus deficiency, but the adaptive significance of increased anthocyanin production under P stress, if any, remains unknown. In this study we hypothesised that if anthocyanin expression is an adaptive response to mitigate the stress effects of P deficiency, genotypes with constitutive anthocyanin expression would have greater tolerance to P stress than low anthocyanin-producing genotypes. Four studies were conducted in greenhouse, outdoor chamber and field conditions to compare genetically similar maize and coleus plants with contrasting anthocyanin accumulation (i.e. 'red-leafed' vs 'green-leafed'). In low-P treatments, anthocyanin production did not consistently result in greater photosynthesis or biomass. In coleus, red-leafed phenotypes showed lower chlorophyll a/b ratios suggesting photoprotection by anthocyanins against degradation of light harvesting complex proteins. However, the opposite trend was observed in maize, where red-leafed phenotypes showed greater chlorophyll a/b ratios and lower qP (oxidation state of PSII). Based on results from the various treatments and growth conditions of this study, it could not be concluded that high foliar anthocyanin production confers a general functional advantage under low-P stress. More research comparing inducible vs constitutive production may help elucidate the role of anthocyanin biosynthesis in P deficiency responses.
Collapse
Affiliation(s)
- Amelia Henry
- Intercollege Program in Plant Biology, The Pennsylvania State University, 102 Tyson Building, University Park, PA 16802, USA
| | - Surinder Chopra
- Intercollege Program in Plant Biology, The Pennsylvania State University, 102 Tyson Building, University Park, PA 16802, USA
| | - David G Clark
- IFAS, Environmental Horticulture Department, University of Florida, 1545 Fifield Hall, Gainesville, Florida 32611, USA
| | - Jonathan P Lynch
- Intercollege Program in Plant Biology, The Pennsylvania State University, 102 Tyson Building, University Park, PA 16802, USA
| |
Collapse
|
115
|
Tohge T, Kusano M, Fukushima A, Saito K, Fernie AR. Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. PLANT SIGNALING & BEHAVIOR 2011; 6:1987-92. [PMID: 22112450 PMCID: PMC3337192 DOI: 10.4161/psb.6.12.18240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In order to adapt to environmental changes of light species and intensity, higher plants furnish complicate signaling systems such as the UVR/COP/HY5 cascade which links several diverse classes of photoreceptors. In addition UV-B light provokes accelerated production of UV-B protectants such as flavonoids and vitamins. Following intensive research efforts, genes in the UV-B signaling cascade have been characterized via forward genetics approaches following mutant screens relying on sensitivity to UV-B irradiation. However detailed processes of the linkage between light signaling and the upregulation of metabolite accumulation remain unclear. Here we review both the light signal cascades and metabolite pathways responding to UV-B exposure. Finally we generate co-expression network analysis using published data in order to find novel candidate genes which link light signaling and transcriptional regulation to metabolic biosynthesis in attempt to describe how these processes are interlinked.
Collapse
Affiliation(s)
- Takayuki Tohge
- RIKEN Plant Science Center; Yokohama, Japan
- Max-Planck Institute for Molecular Plant Physiology; Potsdam-Golm, Germany
- Correspondence to: Takayuki Tohge, or Alisdair R. Fernie,
| | | | | | - Kazuki Saito
- RIKEN Plant Science Center; Yokohama, Japan
- Graduate School of Pharmaceutical Sciences; Chiba University; Chiba, Japan
| | - Alisdair R. Fernie
- Max-Planck Institute for Molecular Plant Physiology; Potsdam-Golm, Germany
- Correspondence to: Takayuki Tohge, or Alisdair R. Fernie,
| |
Collapse
|