101
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
102
|
GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:63-75. [PMID: 29987502 DOI: 10.1007/s11427-018-9307-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 10/28/2022]
Abstract
Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region. A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase (GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35S::GhKLCR1 lines after 300-mmol L-1 mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.
Collapse
|
103
|
Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomics 2018; 19:13-28. [PMID: 29931612 DOI: 10.1007/s10142-018-0623-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/17/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.
Collapse
Affiliation(s)
- Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Naghavi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, 31587-11167, Iran.
| | - Hoshang Alizadeh
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, 31587-11167, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and plant Breeding, College of Agriculture and Center of Excellence for Abiotic Stress in Cereal Crop, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Ahmad Mousavi
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
104
|
Yan Y, He X, Hu W, Liu G, Wang P, He C, Shi H. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis. PLANT CELL REPORTS 2018; 37:887-900. [PMID: 29523964 DOI: 10.1007/s00299-018-2276-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2023]
Abstract
KEY MESSAGE MeCIPK23 interacts with MeCBL1/9, and they confer improved defense response, providing potential genes for further genetic breeding in cassava. Cassava (Manihot esculenta) is an important food crop in tropical area, but its production is largely affected by cassava bacterial blight. However, the information of defense-related genes in cassava is very limited. Calcium ions play essential roles in plant development and stress signaling pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are crucial components of calcium signals. In this study, systematic expression profile of 25MeCIPKs in response to Xanthomonas axonopodis pv. manihotis (Xam) infection was examined, by which seven candidate MeCIPKs were chosen for functional investigation. Through transient expression in Nicotiana benthamiana leaves, we found that six MeCIPKs (MeCIPK5, MeCIPK8, MeCIPK12, MeCIPK22, MeCIPK23 and MeCIPK24) conferred improved defense response, via regulating the transcripts of several defense-related genes. Notably, we found that MeCIPK23 interacted with MeCBL1 and MeCBL9, and overexpression of these genes conferred improved defense response. On the contrary, virus-induced gene silencing of either MeCIPK23 or MeCBL1/9 or both genes resulted in disease sensitive in cassava. To our knowledge, this is the first study identifying MeCIPK23 as well as MeCBL1 and MeCBL9 that confer enhanced defense response against Xam.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xinyi He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, Hainan Province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
105
|
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, Muto J, Noguchi H, Yamauchi S, Tozawa Y, Ueda M, Hashimoto K, Köster P, Dong Q, Held K, Kudla J, Utsumi T, Uozumi N. N-myristoylation and S-acylation are common modifications of Ca 2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. THE NEW PHYTOLOGIST 2018; 218:1504-1521. [PMID: 29498046 DOI: 10.1111/nph.15053] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Aiko Matsuura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoko Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Jun Muto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Hiroto Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Seiji Yamauchi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aramaki-Aza Aoba 6-3, Aoba-ku, Sendai, 980-8579, Japan
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Katrin Held
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| |
Collapse
|
106
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018; 18:93. [PMID: 29801463 PMCID: PMC5970481 DOI: 10.1186/s12870-018-1306-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jin-dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048 China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
107
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018. [PMID: 29801463 DOI: 10.1186/s12870-018-1306-5research] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
108
|
Manishankar P, Wang N, Köster P, Alatar AA, Kudla J. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5003005. [PMID: 29800460 DOI: 10.1093/jxb/ery201] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Collapse
Affiliation(s)
- P Manishankar
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - N Wang
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
109
|
Shokri-Gharelo R, Noparvar PM. Molecular response of canola to salt stress: insights on tolerance mechanisms. PeerJ 2018; 6:e4822. [PMID: 29844974 PMCID: PMC5969047 DOI: 10.7717/peerj.4822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.
Collapse
Affiliation(s)
- Reza Shokri-Gharelo
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Pouya Motie Noparvar
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran.,Young Researchers and Elite Club, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
110
|
Hima Kumari P, Anil Kumar S, Ramesh K, Sudhakar Reddy P, Nagaraju M, Bhanu Prakash A, Shah T, Henderson A, Srivastava RK, Rajasheker G, Chitikineni A, Varshney RK, Rathnagiri P, Lakshmi Narasu M, Kavi Kishor PB. Genome-Wide Identification and Analysis of Arabidopsis Sodium Proton Antiporter (NHX) and Human Sodium Proton Exchanger (NHE) Homologs in Sorghum bicolor. Genes (Basel) 2018; 9:genes9050236. [PMID: 29751546 PMCID: PMC5977176 DOI: 10.3390/genes9050236] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Na⁺ transporters play an important role during salt stress and development. The present study is aimed at genome-wide identification, in silico analysis of sodium-proton antiporter (NHX) and sodium-proton exchanger (NHE)-type transporters in Sorghum bicolor and their expression patterns under varied abiotic stress conditions. In Sorghum, seven NHX and nine NHE homologs were identified. Amiloride (a known inhibitor of Na⁺/H⁺ exchanger activity) binding motif was noticed in both types of the transporters. Chromosome 2 was found to be a hotspot region with five sodium transporters. Phylogenetic analysis inferred six ortholog and three paralog groups. To gain an insight into functional divergence of SbNHX/NHE transporters, real-time gene expression was performed under salt, drought, heat, and cold stresses in embryo, root, stem, and leaf tissues. Expression patterns revealed that both SbNHXs and SbNHEs are responsive either to single or multiple abiotic stresses. The predicted protein⁻protein interaction networks revealed that only SbNHX7 is involved in the calcineurin B-like proteins (CBL)- CBL interacting protein kinases (CIPK) pathway. The study provides insights into the functional divergence of SbNHX/NHE transporter genes with tissue specific expressions in Sorghum under different abiotic stress conditions.
Collapse
Affiliation(s)
- P Hima Kumari
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
- Centre for Biotechnology, Institute of Science & Technology, JNT University, Hyderabad 500 085, India.
| | - S Anil Kumar
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
- Centre for Biotechnology, Institute of Science & Technology, JNT University, Hyderabad 500 085, India.
| | - Katam Ramesh
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | - Palakolanu Sudhakar Reddy
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - A Bhanu Prakash
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - Trushar Shah
- IITA-Kenya c/o International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya.
| | - Ashley Henderson
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
- Ottawa University, Ottawa, KS 66067, USA.
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - A Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - P Rathnagiri
- Genomix CARL Pvt. Ltd. Rayalapuram Road, Pulivendula, 516 390, Kadapa, Andhra Pradesh, India.
| | - M Lakshmi Narasu
- Centre for Biotechnology, Institute of Science & Technology, JNT University, Hyderabad 500 085, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
111
|
Chen F, Zhang L, Lin Z, Cheng ZMM. Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics 2018; 19:306. [PMID: 29703146 PMCID: PMC5924475 DOI: 10.1186/s12864-018-4685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK, comprises SnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions This report identified a novel gene fusion and dated its precise fusion time in Metakinetoplastina protists. This potential fourth eukaryotic calcium signal conversion pathway complements our current knowledge that convergent evolution occurs in eukaryotic calcium signaling. Electronic supplementary material The online version of this article (10.1186/s12864-018-4685-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, 63103-2010, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
112
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
113
|
Heyduk K, Ray JN, Ayyampalayam S, Leebens-Mack J. Shifts in gene expression profiles are associated with weak and strong Crassulacean acid metabolism. AMERICAN JOURNAL OF BOTANY 2018; 105:587-601. [PMID: 29746718 DOI: 10.1002/ajb2.1017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/19/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The relative ease of high throughput sequencing is facilitating comprehensive phylogenomic and gene expression studies, even for nonmodel groups. To date, however, these two approaches have not been merged; while phylogenomic methods might use transcriptome sequences to resolve relationships, assessment of gene expression patterns in a phylogenetic context is less common. Here we analyzed both carbon assimilation and gene expression patterns of closely related species within the Agavoideae (Asparagaceae) to elucidate changes in gene expression across weak and strong phenotypes for Crassulacean acid metabolism (CAM). METHODS Gene expression patterns were compared across four genera: Agave (CAM), which is paraphyletic with Polianthes (weak CAM) and Manfreda (CAM), and Beschorneria (weak CAM). RNA-sequencing was paired with measures of gas exchange and titratable acidity. Climate niche space was compared across the four lineages to examine abiotic factors and their correlation to CAM. KEY RESULTS Expression of homologous genes showed both shared and variable patterns in weak and strong CAM species. Network analysis highlights that despite shared expression patterns, highly connected genes differ between weak and strong CAM, implicating shifts in regulatory gene function as key for the evolution of CAM. Variation in carbohydrate metabolism between weak and strong CAM supports the importance of sugar turnovers for CAM physiology. CONCLUSIONS Integration of phylogenetics and RNA-sequencing provides a powerful tool to study the evolution of CAM photosynthesis across closely related but photosynthetically variable species. Our findings regarding shared or shifted gene expression and regulation of CAM via carbohydrate metabolism have important implications for efforts to engineer the CAM pathway into C3 food and biofuel crops.
Collapse
Affiliation(s)
- Karolina Heyduk
- Miller Plant Sciences, University of Georgia, 120 Carlton Street, 2502, Athens, Georgia, 30602, USA
| | - Jeremy N Ray
- Miller Plant Sciences, University of Georgia, 120 Carlton Street, 2502, Athens, Georgia, 30602, USA
| | | | - James Leebens-Mack
- Miller Plant Sciences, University of Georgia, 120 Carlton Street, 2502, Athens, Georgia, 30602, USA
| |
Collapse
|
114
|
Nishiyama S, Onoue N, Kono A, Sato A, Yonemori K, Tao R. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit. PLANTA 2018; 247:733-743. [PMID: 29188374 DOI: 10.1007/s00425-017-2819-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/22/2017] [Indexed: 05/09/2023]
Abstract
Transcriptome analysis of a persimmon population segregating for an astringency trait in fruit suggested central roles for a limited number of transcriptional regulators in the loss of proanthocyanidin accumulation. Persimmon (Diospyros kaki; 2n = 6x = 90) accumulates a large amount of proanthocyanidins (PAs) in its fruit, resulting in an astringent taste. Persimmon cultivars are classified into four types based on the nature of astringency loss and the amount of PAs at maturity. Pollination constant and non-astringent (PCNA)-type cultivars stop accumulating PAs in the early stages of fruit development and their fruit can be consumed when still firm without the need for artificial deastringency treatments. While the PCNA trait has been shown to be conferred by a recessive allele at a single locus (ASTRINGENCY; AST), the exact genetic determinant remains unidentified. Here, we conducted transcriptome analyses to elucidate the regulatory mechanism underlying this trait using developing fruits of an F1 population segregating for the PCNA trait. Comparisons of the transcriptomes of PCNA and non-PCNA individuals and hierarchical clustering revealed that genes related to the flavonoid pathway and to abiotic stress responses involving light stimulation were expressed coordinately with PA accumulation. Furthermore, coexpression network analyses suggested that three putative transcription factors were central to the PA regulatory network and that at least DkMYB4 and/or DkMYC1, which have been reported to form a protein complex with each other for PA regulation, may have a central role in the differential expression of PA biosynthetic pathway genes between PCNA and non-PCNA.
Collapse
Affiliation(s)
- Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Noriyuki Onoue
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Akihiko Sato
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Keizo Yonemori
- Faculty of Agriculture, Ryukoku University, Seta Oe-cho, Otsu, 520-2194, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
115
|
Huang KC, Lin WC, Cheng WH. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:40. [PMID: 29490615 PMCID: PMC5831739 DOI: 10.1186/s12870-018-1255-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/21/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the nucleolus involves two major functions: pre-rRNA processing and ribosome biogenesis/assembly, increasing evidence indicates that it also plays important roles in response to abiotic stress. However, the possible regulatory mechanisms underlying the nucleolar proteins responsive to abiotic stress are largely unknown. High salinity is one of the major abiotic stresses, which hinders plant growth and productivity. Here, genetic screening approach was used to identify a salt hypersensitive mutant 9 (sahy9) mutant, also known as apum23, in Arabidopsis thaliana. Functional characterization of SAHY9/APUM23 through analyses of gene/protein expression profiles and metabolites was performed to decipher the possible regulatory mechanisms of the nucleolar protein SAHY9/APUM23 in response to salt stress. RESULTS Seedlings of the sahy9/apum23 mutant displayed postgermination developmental arrest and then became bleached after prolonged culture under various salt stresses. Transcriptomic and proteomic analyses of salt-treated sahy9/apum23 and wild-type seedlings revealed differential expression of genes/proteins that have similar functional categories of biological processes, primarily those involved in cellular and metabolic processes as well as abiotic and biotic stress responses. However, the consistency of differential gene expression at both the transcript and protein levels was low (~ 12%), which suggests the involvement of posttranscriptional processing during the salt response. Furthermore, the altered expression of genes and proteins mediated by SAHY9/APUM23 regarding salt sensitivity involves abscisic acid (ABA) biosynthesis and signaling, abiotic stress responses, and ribosome biogenesis-related genes. Importantly, NCED3, ABI2, PP2CA, and major ABA-responsive marker genes, such as RD20 and RD29B, were down-regulated at both the transcript and protein levels in conjunction with lower contents of ABA and changes in the expression of a subset of LEA proteins in sahy9/apum23 mutants under salt stress. Moreover, the salt hypersensitivity of the sahy9/apum23 mutant was largely rescued by the exogenous application of ABA during salt stress. CONCLUSION Our results revealed that SAHY9/APUM23 regulated the expression of ribosome biogenesis-related genes and proteins, which further affected the ribosome composition and abundance, and potential posttranscriptional regulation. The salt hypersensitivity of sahy9/apum23 is associated with the ABA-mediated signaling pathway and the downstream stress-responsive network of this pathway.
Collapse
Affiliation(s)
- Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
116
|
Keisham M, Mukherjee S, Bhatla SC. Mechanisms of Sodium Transport in Plants-Progresses and Challenges. Int J Mol Sci 2018; 19:E647. [PMID: 29495332 PMCID: PMC5877508 DOI: 10.3390/ijms19030647] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding the mechanisms of sodium (Na⁺) influx, effective compartmentalization, and efflux in higher plants is crucial to manipulate Na⁺ accumulation and assure the maintenance of low Na⁺ concentration in the cytosol and, hence, plant tolerance to salt stress. Na⁺ influx across the plasma membrane in the roots occur mainly via nonselective cation channels (NSCCs). Na⁺ is compartmentalized into vacuoles by Na⁺/H⁺ exchangers (NHXs). Na⁺ efflux from the plant roots is mediated by the activity of Na⁺/H⁺ antiporters catalyzed by the salt overly sensitive 1 (SOS1) protein. In animals, ouabain (OU)-sensitive Na⁺, K⁺-ATPase (a P-type ATPase) mediates sodium efflux. The evolution of P-type ATPases in higher plants does not exclude the possibility of sodium efflux mechanisms similar to the Na⁺, K⁺-ATPase-dependent mechanisms characteristic of animal cells. Using novel fluorescence imaging and spectrofluorometric methodologies, an OU-sensitive sodium efflux system has recently been reported to be physiologically active in roots. This review summarizes and analyzes the current knowledge on Na⁺ influx, compartmentalization, and efflux in higher plants in response to salt stress.
Collapse
Affiliation(s)
- Monika Keisham
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Soumya Mukherjee
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
117
|
Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: Function and regulation. Semin Cell Dev Biol 2018; 74:133-141. [DOI: 10.1016/j.semcdb.2017.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
|
118
|
Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:103-113. [PMID: 29227949 DOI: 10.1016/j.plaphy.2017.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/22/2023]
Abstract
Drought is one of the major environmental stresses to plants. The calcium sensor, calcineurin B-like (CBL) proteins, and their interacting protein kinases (CIPK) play important roles in responding to abiotic stresses. In this study, we functionally characterized a CIPK gene from Triticum aestivum designated TaCIPK27. The transcriptional levels of TaCIPK27 were increased both in roots and leaves after treatment with polyethylene glycol 8000, abscisic acid and H2O2. Besides, TaCIPK27 interacted with AtCBL1, AtCBL3, AtCBL4, AtCBL5 and AtCBL9 in yeast two-hybrid assays. Ectopic overexpression of TaCIPK27 positively regulates drought tolerance in transgenic Arabidopsis compared with controls, which was demonstrated by seed germination and survival rates experiments, as well as the detection of physiological indices including ion leakage, malonic dialdehyde and H2O2 contents and antioxidant enzyme activities under normal and drought conditions. Moreover, higher concentration of endogenous abscisic acid was detected under drought in TaCIPK27 transgenic plants. In addition, TaCIPK27 transgenic plants were more sensitive to exogenous abscisic acid treatment at seed germination and seedling stage. The expression levels of somedrought stress and abscisic acid related genes were up-regulated in TaCIPK27 transgenic plants. The results suggest that TaCIPK27 functions as a positive regulator under drought partly in an ABA-dependent pathway.
Collapse
Affiliation(s)
- Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tingting Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shanita Judith John
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
119
|
Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Biochem J 2018; 475:207-223. [DOI: 10.1042/bcj20170022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) serves as a universal second messenger in eukaryotic signal transduction. Understanding the Ca2+ activation kinetics of Ca2+ sensors is critical to understanding the cellular signaling mechanisms involved. In this review, we discuss the regulatory properties of two sensor classes: the Ca2+-dependent protein kinases (CPKs/CDPKs) and the calcineurin B-like (CBL) proteins that control the activity of CBL-interacting protein kinases (CIPKs) and identify emerging topics and some foundational points that are not well established experimentally. Most plant CPKs are activated by physiologically relevant Ca2+ concentrations except for those with degenerate EF hands, and new results suggest that the Ca2+-dependence of kinase activation may be modulated by both protein–protein interactions and CPK autophosphorylation. Early results indicated that activation of plant CPKs by Ca2+ occurred by relief of autoinhibition. However, recent studies of protist CDPKs suggest that intramolecular interactions between CDPK domains contribute allosteric control to CDPK activation. Further studies are required to elucidate the mechanisms regulating plant CPKs. With CBL–CIPKs, the two major activation mechanisms are thought to be (i) binding of Ca2+-bound CBL to the CIPK and (ii) phosphorylation of residues in the CIPK activation loop. However, the relative importance of these two mechanisms in regulating CIPK activity is unclear. Furthermore, information detailing activation by physiologically relevant [Ca2+] is lacking, such that the paradigm of CBLs as Ca2+ sensors still requires critical, experimental validation. Developing models of CPK and CIPK regulation is essential to understand how these kinases mediate Ca2+ signaling and to the design of experiments to test function in vivo.
Collapse
|
120
|
Liu Z, Li X, Sun F, Zhou T, Zhou Y. Overexpression of OsCIPK30 Enhances Plant Tolerance to Rice stripe virus. Front Microbiol 2017; 8:2322. [PMID: 29225594 PMCID: PMC5705616 DOI: 10.3389/fmicb.2017.02322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Rice stripe virus (RSV) causes a severe disease in Oryza sativa (rice) in many Eastern Asian countries. The NS3 protein of RSV is a viral suppressor of RNA silencing, but plant host factors interacting with NS3 have not been reported yet. Here, we present evidence that expression of RSV NS3 in Arabidopsis thaliana causes developmental abnormalities. Through yeast two-hybrid screening and a luciferase complementation imaging assay, we demonstrate that RSV NS3 interacted with OsCIPK30, a CBL (calcineurin B-like proteins)-interaction protein kinase protein. Furthermore, OsCIPK30 was overexpressed to investigate the function of OsCIPK30 in rice. Our investigation showed that overexpression of OsCIPK30 in rice could delay the RSV symptoms and show milder RSV symptoms. In addition, the expression of pathogenesis-related genes was increased in OsCIPK30 transgenic rice. These results suggest that overexpression of OsCIPK30 positively regulates pathogenesis-related genes to enhance the tolerance to RSV in rice. Our findings provide new insight into the molecular mechanism underlying resistance to RSV disease.
Collapse
Affiliation(s)
- Zhiyang Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,Scientific Observation and Experimental Station of Crop Pests in Nanjing, Ministry of Agriculture, Nanjing, China
| | - Xuejuan Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,Scientific Observation and Experimental Station of Crop Pests in Nanjing, Ministry of Agriculture, Nanjing, China
| | - Feng Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,Scientific Observation and Experimental Station of Crop Pests in Nanjing, Ministry of Agriculture, Nanjing, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,Scientific Observation and Experimental Station of Crop Pests in Nanjing, Ministry of Agriculture, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,Scientific Observation and Experimental Station of Crop Pests in Nanjing, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
121
|
N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6. FEBS Lett 2017; 591:3745-3756. [DOI: 10.1002/1873-3468.12880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
122
|
Wu Q, Bai X, Zhao W, Xiang D, Wan Y, Yan J, Zou L, Zhao G. De Novo Assembly and Analysis of Tartary Buckwheat (Fagopyrum tataricum Garetn.) Transcriptome Discloses Key Regulators Involved in Salt-Stress Response. Genes (Basel) 2017; 8:genes8100255. [PMID: 28972562 PMCID: PMC5664105 DOI: 10.3390/genes8100255] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/24/2022] Open
Abstract
Soil salinization has been a tremendous obstacle for agriculture production. The regulatory networks underlying salinity adaption in model plants have been extensively explored. However, limited understanding of the salt response mechanisms has hindered the planting and production in Fagopyrum tataricum, an economic and health-beneficial plant mainly distributing in southwest China. In this study, we performed physiological analysis and found that salt stress of 200 mM NaCl solution significantly affected the relative water content (RWC), electrolyte leakage (EL), malondialdehyde (MDA) content, peroxidase (POD) and superoxide dismutase (SOD) activities in tartary buckwheat seedlings. Further, we conducted transcriptome comparison between control and salt treatment to identify potential regulatory components involved in F. tataricum salt responses. A total of 53.15 million clean reads from control and salt-treated libraries were produced via an Illumina sequencing approach. Then we de novo assembled these reads into a transcriptome dataset containing 57,921 unigenes with N50 length of 1400 bp and total length of 44.5 Mb. A total of 36,688 unigenes could find matches in public databases. GO, KEGG and KOG classification suggested the enrichment of these unigenes in 56 sub-categories, 25 KOG, and 273 pathways, respectively. Comparison of the transcriptome expression patterns between control and salt treatment unveiled 455 differentially expressed genes (DEGs). Further, we found the genes encoding for protein kinases, phosphatases, heat shock proteins (HSPs), ATP-binding cassette (ABC) transporters, glutathione S-transferases (GSTs), abiotic-related transcription factors and circadian clock might be relevant to the salinity adaption of this species. Thus, this study offers an insight into salt tolerance mechanisms, and will serve as useful genetic information for tolerant elite breeding programs in future.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Wei Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.
- National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
123
|
Liao C, Zheng Y, Guo Y. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. THE NEW PHYTOLOGIST 2017; 216:163-177. [PMID: 28726305 DOI: 10.1111/nph.14679] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/27/2017] [Indexed: 05/07/2023]
Abstract
Cytosolic calcium signaling is critical for regulating downstream responses in plants encountering unfavorable environmental conditions. In a genetic screen for Arabidopsis thaliana mutants defective in stress-induced cytosolic free Ca2+ ([Ca2+ ]cyt ) elevations, we identified the R2R3-MYB transcription factor MYB30 as a regulator of [Ca2+ ]cyt in response to H2 O2 and heat stresses. Plants lacking MYB30 protein exhibited greater elevation of [Ca2+ ]cyt in response to oxidative and heat stimuli. Real-time reverse transcription-polymerase chain reaction (RT-PCR) results indicated that the expression of a number of ANNEXIN (ANN) genes, which encode Ca2+ -regulated membrane-binding proteins modulating cytosolic calcium signatures, were upregulated in myb30 mutants. Further analysis showed that MYB30 bound to the promoters of ANN1 and ANN4 and repressed their expression. myb30 mutants were sensitive to methyl viologen (MV) and heat stresses. The H2 O2 - and heat-induced abnormal [Ca2+ ]cyt in myb30 was dependent on the function of ANN proteins. Moreover, the MV and heat sensitivity of myb30 was suppressed in mutants lacking ANN function or by application of LaCl3 , a calcium channel blocker. These results indicate that MYB30 regulates oxidative and heat stress responses through calcium signaling, which is at least partially mediated by ANN1 and ANN4.
Collapse
Affiliation(s)
- Chancan Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Zheng
- School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
124
|
Ma QJ, Sun MH, Lu J, Liu YJ, You CX, Hao YJ. An apple CIPK protein kinase targets a novel residue of AREB transcription factor for ABA-dependent phosphorylation. PLANT, CELL & ENVIRONMENT 2017; 40:2207-2219. [PMID: 28667821 DOI: 10.1111/pce.13013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 05/17/2023]
Abstract
Phytohormone abscisic acid (ABA) regulates many important processes in plants. It is a major molecule facilitating signal transduction during the abiotic stress response. In this study, an ABA-inducible transcription factor gene, MdAREB2, was identified in apple. Transgenic analysis was performed to characterize its function in ABA sensitivity. Overexpression of the MdAREB2 gene increased ABA sensitivity in the transgenic apple compared with the wild-type (WT) control. In addition, it was found that the protein MdAREB2 was phosphorylated at a novel site Thr411 in response to ABA. A yeast two-hybridization screen of an apple cDNA library demonstrated that a protein kinase, MdCIPK22, interacted with MdAREB2. Their interaction was further verified with Pull Down and Co-IP assays. A series of transgenic analyses in apple calli and plantlets showed that MdCIPK22 was required for ABA-induced phosphorylation at Thr411 of the MdAREB2 protein and enhanced its stability and transcriptional activity. Finally, it was found that MdCIPK22 increased ABA sensitivity in an MdAREB2-dependent manner. Our findings indicate a novel phosphorylation site in CIPK-AREB regulatory module for the ABA signalling pathway, which would be helpful for researchers to identify the functions of uncharacterized homologs in the future.
Collapse
Affiliation(s)
- Qi-Jun Ma
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Mei-Hong Sun
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jing Lu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ya-Jing Liu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
125
|
Wu XN, Xi L, Pertl-Obermeyer H, Li Z, Chu LC, Schulze WX. Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations. FRONTIERS IN PLANT SCIENCE 2017; 8:1673. [PMID: 29042862 PMCID: PMC5632542 DOI: 10.3389/fpls.2017.01673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS)-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed "ShortPhos," an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins. The optimized workflow allows fast and efficient identification and quantification of phosphopeptides, even from small amounts of starting plant materials. "ShortPhos" can produce label-free datasets with a high quantitative reproducibility. In addition, the "ShortPhos" protocol recovered more phosphorylation sites from membrane proteins, especially plasma membrane and vacuolar proteins, when compared to our previous workflow and other membrane-based data in the PhosPhAt 4.0 database. We applied "ShortPhos" to study kinase-substrate relationships within a nitrate-induction experiment on Arabidopsis roots. The "ShortPhos" identified significantly more known kinase-substrate relationships compared to previous phosphoproteomics workflows, producing new insights into nitrate-induced signaling pathways.
Collapse
|
126
|
Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 2017; 114:E6361-E6370. [PMID: 28716924 DOI: 10.1073/pnas.1703088114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.
Collapse
|
127
|
The calmodulin fused kinase novel gene family is the major system in plants converting Ca 2+ signals to protein phosphorylation responses. Sci Rep 2017. [PMID: 28646145 PMCID: PMC5482843 DOI: 10.1038/s41598-017-03367-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Eukaryotes utilize Ca2+ as a universal second messenger to convert and multiply environmental and developmental signals to downstream protein phosphorylation responses. However, the phylogenetic relationships of the genes that convert Ca2+ signal (CS) to protein phosphorylation responses (PPRs) remain highly controversial, and their origin and evolutionary trajectory are unclear, which greatly hinders functional studies. Here we examined the deep phylogeny of eukaryotic CS converter gene families and identified a phylogenetically and structurally distinctive monophyly in Archaeplastida. This monophyly can be divided into four subfamilies, and each can be traced to ancestral members that contain a kinase domain and a calmodulin-like domain. This strongly indicates that the ancestor of this monophyly originated by a de novo fusion of a kinase gene and a calmodulin gene. This gene family, with a proposed new name, Calmodulin Fused Kinase (CFK), had expanded and diverged significantly both in sizes and in structures for efficient and accurate Ca2+ signalling, and was shown to play pivotal roles in all the six major plant adaptation events in evolution. Our findings elucidated the common origin of all CS-PPR converter genes except CBL-CIPK converter genes, and revealed that CFKs act as the main CS conversion system in plants.
Collapse
|
128
|
Expression and integrated network analyses revealed functional divergence of NHX-type Na +/H + exchanger genes in poplar. Sci Rep 2017; 7:2607. [PMID: 28572621 PMCID: PMC5453932 DOI: 10.1038/s41598-017-02894-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
The Na+/H+ antiporters (NHXs) are secondary ion transporters to exchange H+ and transfer the Na+ or K+ across membrane, they play crucial roles during plant development and stress responses. To gain insight into the functional divergence of NHX genes in poplar, eight PtNHX were identified from Populus trichocarpa genome. PtNHXs containing 10 transmembrane helices (TMH) and a hydrophilic C-terminal domain, the TMH compose a hollow cylinder to provide the channel for Na+ and H+ transport. The expression patterns and cis-acting elements showed that all the PtNHXs were response to single or multiple stresses including drought, heat, cold, salinity, MV, and ABA. Both the co-expression network and protein-protein interaction network of PtNHXs implying their functional divergence. Interestingly, although PtNHX7 and PtNHX8 were generated by whole genome duplication event, they showed significant differences in expression pattern, protein structure, co-expressed genes, and interacted proteins. Only PtNHX7 interact with CBL and CIPK, indicating PtNHX7 is the primary NHX involved in CBL-CIPK pathway during salt stress responses. Natural variation analysis based on 549 P. trichocarpa individuals indicated the frequency of SNPs in PtNHX7 was significantly higher than other PtNHXs. Our findings provide new insights into the functional divergence of NHX genes in poplar.
Collapse
|
129
|
Costa A, Luoni L, Marrano CA, Hashimoto K, Köster P, Giacometti S, De Michelis MI, Kudla J, Bonza MC. Ca2+-dependent phosphoregulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3215-3230. [PMID: 28531251 PMCID: PMC5853299 DOI: 10.1093/jxb/erx162] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/26/2017] [Indexed: 05/19/2023]
Abstract
Ca2+ signals are transient, hence, upon a stimulus-induced increase in cytosolic Ca2+ concentration, cells have to re-establish resting Ca2+ levels. Ca2+ extrusion is operated by a wealth of transporters, such as Ca2+ pumps and Ca2+/H+ antiporters, which often require a rise in Ca2+ concentration to be activated. Here, we report a regulatory fine-tuning mechanism of the Arabidopsis thaliana plasma membrane-localized Ca2+-ATPase isoform ACA8 that is mediated by calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) complexes. We show that two CIPKs (CIPK9 and CIPK14) are able to interact with ACA8 in vivo and phosphorylate it in vitro. Transient co-overexpression of ACA8 with CIPK9 and the plasma membrane Ca2+ sensor CBL1 in tobacco leaf cells influences nuclear Ca2+ dynamics, specifically reducing the height of the second peak of the wound-induced Ca2+ transient. Stimulus-induced Ca2+ transients in mature leaves and seedlings of an aca8 T-DNA insertion line exhibit altered dynamics when compared with the wild type. Altogether our results identify ACA8 as a prominent in vivo regulator of cellular Ca2+ dynamics and reveal the existence of a Ca2+-dependent CBL-CIPK-mediated regulatory feedback mechanism, which crucially functions in the termination of Ca2+ signals.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Laura Luoni
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | | - Maria Ida De Michelis
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | |
Collapse
|
130
|
Xiong G, Liu X, Qiu P, Wu X, Du Z, Zhang J, Yang L, Wu Z. Rice grassy stunt virus p5 interacts with two protein components of the plant-specific CBL-CIPK Ca +2 signaling network of rice. Virus Genes 2017; 53:446-453. [PMID: 28213698 DOI: 10.1007/s11262-017-1437-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Rice grassy stunt virus (RGSV) is a tenuivirus posing a threat to rice production in many South, Southeast, and East Asian countries. To date, no host factor interacting with RGSV has been reported. In this study, we screened a rice cDNA library with the GAL4-based yeast two-hybrid system using RGSV p5 as the bait. One of the candidate host factors interacting with RGSV p5 was found to be CBL-interacting protein kinase 25 (OsCIPK25), a member of the plant-specific CBL-CIPK Ca2+ signaling network. The interaction between RGSV p5 and OsCIPK25, as well as OsCIPK5, which is closely related to OsCIPK25, was confirmed by their cellular co-localization and by a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Given the importance of CIPKs in the regulation of ion homeostasis and the resemblance of RGSV symptoms to potassium deficiency in rice, we evaluated potassium content of RGSV-infected rice and found it to be much lower than that in the healthy rice.
Collapse
Affiliation(s)
- Guihong Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaojuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoyong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Liang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
131
|
Zeng H, Zhang Y, Zhang X, Pi E, Zhu Y. Analysis of EF-Hand Proteins in Soybean Genome Suggests Their Potential Roles in Environmental and Nutritional Stress Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:877. [PMID: 28596783 PMCID: PMC5443154 DOI: 10.3389/fpls.2017.00877] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/10/2017] [Indexed: 05/23/2023]
Abstract
Calcium ion (Ca2+) is a universal second messenger that plays a critical role in plant responses to diverse physiological and environmental stimuli. The stimulus-specific signals are perceived and decoded by a series of Ca2+ binding proteins serving as Ca2+ sensors. The majority of Ca2+ sensors possess the EF-hand motif, a helix-loop-helix structure which forms a turn-loop structure. Although EF-hand proteins in model plant such as Arabidopsis have been well described, the identification, classification, and the physiological functions of EF-hand-containing proteins from soybean are not systemically reported. In this study, a total of at least 262 genes possibly encoding proteins containing one to six EF-hand motifs were identified in soybean genome. These genes include 6 calmodulins (CaMs), 144 calmodulin-like proteins (CMLs), 15 calcineurin B-like proteins, 50 calcium-dependent protein kinases (CDPKs), 13 CDPK-related protein kinases, 2 Ca2+- and CaM-dependent protein kinases, 17 respiratory burst oxidase homologs, and 15 unclassified EF-hand proteins. Most of these genes (87.8%) contain at least one kind of hormonal signaling- and/or stress response-related cis-elements in their -1500 bp promoter regions. Expression analyses by exploring the published microarray and Illumina transcriptome sequencing data revealed that the expression of these EF-hand genes were widely detected in different organs of soybean, and nearly half of the total EF-hand genes were responsive to various environmental or nutritional stresses. Quantitative RT-PCR was used to confirm their responsiveness to several stress treatments. To confirm the Ca2+-binding ability of these EF-hand proteins, four CMLs (CML1, CML13, CML39, and CML95) were randomly selected for SDS-PAGE mobility-shift assay in the presence and absence of Ca2+. Results showed that all of them have the ability to bind Ca2+. This study provided the first comprehensive analyses of genes encoding for EF-hand proteins in soybean. Information on the classification, phylogenetic relationships and expression profiles of soybean EF-hand genes in different tissues and under various environmental and nutritional stresses will be helpful for identifying candidates with potential roles in Ca2+ signal-mediated physiological processes including growth and development, plant-microbe interactions and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yaxian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xiajun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
132
|
Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J. Arabidopsis CBL-Interacting Protein Kinases Regulate Carbon/Nitrogen-Nutrient Response by Phosphorylating Ubiquitin Ligase ATL31. MOLECULAR PLANT 2017; 10:605-618. [PMID: 28111287 DOI: 10.1016/j.molp.2017.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
In response to the ratio of available carbon (C) and nitrogen (N) nutrients, plants regulate their metabolism, growth, and development, a process called the C/N-nutrient response. However, the molecular basis of C/N-nutrient signaling remains largely unclear. In this study, we identified three CALCINEURIN B-LIKE (CBL)-INTERACTING PROTEIN KINASES (CIPKs), CIPK7, CIPK12, and CIPK14, as key regulators of the C/N-nutrient response during the post-germination growth in Arabidopsis. Single-knockout mutants of CIPK7, CIPK12, and CIPK14 showed hypersensitivity to high C/low N conditions, which was enhanced in their triple-knockout mutant, indicating that they play a negative role and at least partly function redundantly in the C/N-nutrient response. Moreover, these CIPKs were found to regulate the function of ATL31, a ubiquitin ligase involved in the C/N-nutrient response via the phosphorylation-dependent ubiquitination and proteasomal degradation of 14-3-3 proteins. CIPK7, CIPK12, and CIPK14 physically interacted with ATL31, and CIPK14, acting with CBL8, directly phosphorylated ATL31 in a Ca2+-dependent manner. Further analyses showed that these CIPKs are required for ATL31 phosphorylation and stabilization, which mediates the degradation of 14-3-3 proteins in response to C/N-nutrient conditions. These findings provide new insights into C/N-nutrient signaling mediated by protein phosphorylation.
Collapse
Affiliation(s)
- Shigetaka Yasuda
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shoki Aoyama
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoko Hasegawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
133
|
Ligaba-Osena A, Fei Z, Liu J, Xu Y, Shaff J, Lee SC, Luan S, Kudla J, Kochian L, Piñeros M. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:830-841. [PMID: 28150888 DOI: 10.1111/nph.14420] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 05/11/2023]
Abstract
Despite the physiological importance of aluminum (Al) phytotoxicity for plants, it remained unknown if, and how, calcineurin B-like calcium sensors (CBLs) and CBL-interacting protein kinases (CIPKs) are involved in Al resistance. We performed a comparative physiological and whole transcriptome investigation of an Arabidopsis CBL1 mutant (cbl1) and the wild-type (WT). cbl1 plants exudated less Al-chelating malate, accumulated more Al, and displayed a severe root growth reduction in response to Al. Genes involved in metabolism, transport, cell wall modification, transcription and oxidative stress were differentially regulated between the two lines, under both control and Al stress treatments. Exposure to Al resulted in up-regulation of a large set of genes only in WT and not cbl1 shoots, while a different set of genes were down-regulated in cbl1 but not in WT roots. These differences allowed us, for the first time, to define a calcium-regulated/dependent transcriptomic network for Al stress responses. Our analyses reveal not only the fundamental role of CBL1 in the adjustment of central transcriptomic networks involved in maintaining adequate physiological homeostasis processes, but also that a high shoot-root dynamics is required for the proper deployment of Al resistance responses in the root.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Sung-Chul Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jörg Kudla
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 7, 48149, Münster, Germany
| | - Leon Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
134
|
Zheng Y, Liao C, Zhao S, Wang C, Guo Y. The Glycosyltransferase QUA1 Regulates Chloroplast-Associated Calcium Signaling During Salt and Drought Stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:329-341. [PMID: 28007965 DOI: 10.1093/pcp/pcw192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/06/2016] [Indexed: 05/18/2023]
Abstract
Cytoplasmic Ca2+ ([Ca2+]cyt) elevation induced by various signals is responsible for appropriate downstream responses. Through a genetic screen of Arabidopsis thaliana mutants defective in stress-induced [Ca2+]cyt elevation, the glycosyltransferase QUASIMODO1 (QUA1) was identified as a regulator of [Ca2+]cyt in response to salt stress. Compared with the wild type, the qua1-4 mutant exhibited a dramatically greater increase in [Ca2+]cyt under NaCl treatment. Functional analysis showed that QUA1 is a novel chloroplast protein that regulates cytoplasmic Ca2+ signaling. QUA1 was detected in chloroplast thylakoids, and the qua1-4 mutant exhibited irregularly stacked grana. The observed greater increase in [Ca2+]cyt was inhibited upon recovery of chloroplast function in the qua1-4 mutant. Further analysis showed that CAS, a thylakoid-localized calcium sensor, also displayed irregularly stacked grana, and the chloroplasts of the qua1-4 cas-1 double mutant were similar to those of cas-1 plants. In QUA1-overexpressing plants, the protein level of CAS was decreased, and CAS was readily degraded under osmotic stress. When CAS was silenced in the qua1-4 mutant, the large [Ca2+]cyt increase was blocked, and the higher expression of PLC3 and PLC4 was suppressed. Under osmotic stress, the qua1-4 mutant showed an even greater elevation in [Ca2+]cyt and was hypersensitive to drought stress. However, this sensitivity was inhibited when the increase in [Ca2+]cyt was repressed in the qua1-4 mutant. Collectively, our data indicate that QUA1 may function in chloroplast-dependent calcium signaling under salt and drought stresses. Additionally, CAS may function downstream of QUA1 to mediate these processes.
Collapse
Affiliation(s)
- Yuan Zheng
- School of Agricultural Engineering, Nanyang Normal University, China
| | - Chancan Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, China
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| |
Collapse
|
135
|
Xi Y, Liu J, Dong C, Cheng ZM(M. The CBL and CIPK Gene Family in Grapevine ( Vitis vinifera): Genome-Wide Analysis and Expression Profiles in Response to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:978. [PMID: 28649259 PMCID: PMC5465270 DOI: 10.3389/fpls.2017.00978] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/23/2017] [Indexed: 05/20/2023]
Abstract
Calcium plays a central role in regulating signal transduction pathways. Calcineurin B-like proteins (CBLs), which harbor a crucial region consisting of EF hands that capture Ca2+, interact in a specific manner with CBL-interacting protein kinases (CIPKs). This two gene families or their interacting-complex widely respond to various environment stimuli and development processes. The genome-wide annotation and specific expression patterns of CBLs and CIPKs, however, in grapevine remain unclear. In the present study, eight CBL and 20 CIPK genes were identified in grapevine genome, and divided into four and five subfamilies, respectively, based on phylogenetic analysis, and validated by gene structure and the distribution of conserved protein motifs. Four (50%) out of eight VvCBLs and eight (40%) out of 20 VvCIPKs were found to be derived from tandem duplication, and five (25%) out of 20 VvCIPKs were derived from segmental duplication, indicating that the expansion of grapevine CBL and CIPK gene families were mainly contributed by gene duplication, and all duplication events between VvCIPK genes only detected in intron poor clade. Estimating of synonymous and non-synonymous substitution rates of both gene families suggested that VvCBL genes seems more conserved than VvCIPK genes, and were derived by positive selection pressure, whereas VvCIPK genes were mainly derived by purifying selection pressure. Expressional analyses of VvCBL and VvCIPK genes based on microarray and qRT-PCR data performed diverse expression patterns of VvCBLs and VvCIPKs in response to both various abiotic stimuli and at different development stages. Furthermore, the co-expression analysis of grapevine CBLs and CIPKs suggested that CBL-CIPK complex seems to be more responsive to abiotic stimuli than during different development stages. VvCBLs may play an important and special role in regulating low temperature stress. The protein interaction analysis suggested divergent mechanisms might exist between Arabidopsis and grapevine. Our results will facilitate the future functional characterization of individual VvCBLs and VvCIPKs.
Collapse
Affiliation(s)
- Yue Xi
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jinyi Liu
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Chao Dong
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zong-Ming (Max) Cheng
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Department of Plant Sciences, University of TennesseeKnoxville, TN, United States
- *Correspondence: Zong-Ming (Max) Cheng ;
| |
Collapse
|
136
|
Yin X, Wang Q, Chen Q, Xiang N, Yang Y, Yang Y. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Turnip ( Brassica rapa var. rapa). FRONTIERS IN PLANT SCIENCE 2017; 8:1191. [PMID: 28736570 PMCID: PMC5500646 DOI: 10.3389/fpls.2017.01191] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/22/2017] [Indexed: 05/22/2023]
Abstract
The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complex has been identified as a primary component in calcium sensors that perceives various stress signals. Turnip (Brassica rapa var. rapa) has been widely cultivated in the Qinghai-Tibet Plateau for a century as a food crop of worldwide economic significance. These CBL-CIPK complexes have been demonstrated to play crucial roles in plant response to various environmental stresses. However, no report is available on the genome-wide characterization of these two gene families in turnip. In the present study, 19 and 51 members of the BrrCBL and BrrCIPK genes, respectively, are first identified in turnip and phylogenetically grouped into three and two distinct clusters, respectively. The expansion of these two gene families is mainly attributable to segmental duplication. Moreover, the differences in expression patterns in quantitative real-time PCR, as well as interaction profiles in the yeast two-hybrid assay, suggest the functional divergence of paralog genes during long-term evolution in turnip. Overexpressing and complement lines in Arabidopsis reveal that BrrCBL9.2 improves, but BrrCBL9.1 does not affect, salt tolerance in Arabidopsis. Thus, the expansion of the BrrCBL and BrrCIPK gene families enables the functional differentiation and evolution of some new gene functions of paralog genes. These paralog genes then play prominent roles in turnip's adaptation to the adverse environment of the Qinghai-Tibet Plateau. Overall, the study results contribute to our understanding of the functions of the CBL-CIPK complex and provide basis for selecting appropriate genes for the in-depth functional studies of BrrCBL-BrrCIPK in turnip.
Collapse
Affiliation(s)
- Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Qiuli Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- School of Life Sciences, Yunnan UniversityKunming, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Nan Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Yunqiang Yang
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yongping Yang
| |
Collapse
|
137
|
Wang Y, Sun T, Li T, Wang M, Yang G, He G. A CBL-Interacting Protein Kinase TaCIPK2 Confers Drought Tolerance in Transgenic Tobacco Plants through Regulating the Stomatal Movement. PLoS One 2016; 11:e0167962. [PMID: 27936160 PMCID: PMC5148042 DOI: 10.1371/journal.pone.0167962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
In plants, the CBL-CIPK signaling pathways play key roles in the response to abiotic stresses. However, functional studies of CIPKs in the important staple crop wheat are very rare. In this study, we identified a CIPK gene from wheat, designated TaCIPK2. Expression analysis results showed that TaCIPK2 could be up-regulated in wheat leaves by polyethylene glycol, abscisic acid and H2O2 treatments. Subcellular localization analyses revealed that TaCIPK2 was present in whole wheat epidermal cells. A yeast two-hybrid assay indicated that TaCIPK2 interacted with TaCBL1, 2, 3 and 4 in vitro. Transgenic tobacco plants over-expressing TaCIPK2 exhibited increased drought tolerance, indicated by a larger proportion of green cotyledons and higher survival rates under the osmotic and drought stress conditions compared with control plants. Additionally, physiological index analyses revealed that the transgenic tobacco plants had lower water loss rates and ion leakage, accumulated less malondialdehyde and H2O2, and had higher catalase and superoxide dismutase activities than the control plants. The transgenic plants also exhibited faster stomatal closure following exposure to osmotic stress conditions. The seed germination rates and stomatal aperture of TaCIPK2-overexpressing tobacco plants decreased after exogenous abscisic acid treatment was applied, implying that the transgenic tobacco plants were more sensitive to exogenous abscisic acid than the control plants. Our results indicate that TaCIPK2 plays a positive regulatory role in drought stress responses in transgenic tobacco plants.
Collapse
Affiliation(s)
- Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
138
|
Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1787. [PMID: 27965692 PMCID: PMC5126725 DOI: 10.3389/fpls.2016.01787] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/14/2016] [Indexed: 05/18/2023]
Abstract
Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields.
Collapse
Affiliation(s)
- Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Chantal Ebel
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Mariama Ngom
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
| | - Laurent Laplaze
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche, Diversité, Adaptation, Développement des Plantes (DIADE), MontpellierFrance
| | - Khaled Masmoudi
- Department of Aridland, College of Food and Agriculture, United Arab Emirates UniversityAl Ain, UAE
| |
Collapse
|
139
|
Xu L, Zhang D, Xu Z, Huang Y, He X, Wang J, Gu M, Li J, Shao H. Comparative expression analysis of Calcineurin B-like family gene CBL10A between salt-tolerant and salt-sensitive cultivars in B. oleracea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1-10. [PMID: 27449606 DOI: 10.1016/j.scitotenv.2016.07.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Calcineurin B-like proteins (CBLs) are plant calcium sensors that play a critical role in the regulation of plant growth and response to stress. Many CBLs have been identified in the calcium signaling pathway in both Arabidopsis and rice. However, information about BoCBLs genes from Brassica oleracea has not been reported. In the present study, we identified 13 candidate CBL genes in the B. oleracea genome based on the conserved domain of the Calcineurin B-like family, and we carried out a phylogenetic analysis of CBLs among Arabidopsis, rice, maize, cabbage and B. oleracea. For B. oleracea, the distribution of the predicted BoCBL genes was uneven among the five chromosomes. Sequence analysis showed that the nucleotide sequences and corresponding protein structure of BoCBLs were highly conserved, i.e., all of the putative BoCBLs contained 6-8 introns, and most of the exons of those genes contained the same number of nucleotides and had high sequence identities. All BoCBLs consisted of four EF-Hand functional domains, and the distance between the EF-hand motifs was conserved. Evolutionary analysis revealed that the CBLs were classified into two subgroups. Additionally, the CBL10A gene was cloned from salt-tolerant (CB6) and salt-sensitive (CB3) cultivars using RT-PCR. The results indicated that the cloned gene had a substantial difference in length (741bp in CB3 and 829bp in CB6) between these two cultivars. The deduced CBL10A protein in CB6 had four EF-hand structural domains, which have an irreplaceable role in calcium-binding and have calcineurin A subunit binding sites, while the BoCBL10A protein in CB3 had only two EF-hand structural domains and lacked calcineurin A subunit binding sites. The expression level of the BoCBL10A gene between salt tolerance (CB6)and sensitive varieties(CB3) under salt stress was significantly different (P<0.01 and P<0.05). The expression of BoCBL10A gene was relatively higher in salt-tolerant (CB6) cultivar under salt stress, with a longer period of up-regulation expression and a shorter time responding to salt, compared with the salt-sensitive (CB3) cultivar. We speculate that these differences in the coding region of BoCBL10A may lead to the different salt responses between these two cultivars.
Collapse
Affiliation(s)
- Ling Xu
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dayong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhaolong Xu
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yihong Huang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolan He
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Minfeng Gu
- Xinyang Agricultural Experimental Station, Jiangsu Academy of Agricultural Sciences, Yancheng 224000, China.
| | - Jianbin Li
- Vegetable Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hongbo Shao
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
140
|
Guo W, Chen T, Hussain N, Zhang G, Jiang L. Characterization of Salinity Tolerance of Transgenic Rice Lines Harboring HsCBL8 of Wild Barley ( Hordeum spontanum) Line from Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2016; 7:1678. [PMID: 27891136 PMCID: PMC5102885 DOI: 10.3389/fpls.2016.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2016] [Indexed: 05/08/2023]
Abstract
Rice is more sensitive to salinity, particularly at its early vegetative and later productive stages. Wild plants growing in harsh environments such as wild barley from Qinghai-Tibet Plateau adapt to the adverse environment with allelic variations at the loci responsible for stressful environment, which could be used for rice genetic improvement. In this study, we overexpressed HsCBL8 encoding a calcium-sensor calcineurin B-like (CBL) protein in rice. The gene was isolated from XZ166, a wild-barley (Hordeum spontanum) line originated from Qinghai-Tibet Plateau. We found that XZ166 responded to high NaCl concentration (200 mM) with more HsCBL8 transcripts than CM72, a cultivated barley line known for salinity tolerance. XZ166 is significantly different from CM72 with nucleotide sequences at HsCBL8. The overexpression of HsCBL8 in rice resulted in significant improvement of water protection in vivo and plasma membrane, more proline accumulation, and a reduction of overall Na+ uptake but little change in K+ concentration in the plant tissues. Notably, HsCBL8 did not act on some genes downstream of the rice CBL family genes, suggesting an interesting interaction between HsCBL8 and unknown factors to be further investigated.
Collapse
Affiliation(s)
- Wanli Guo
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Biotechnology, College of Life Science, Zhejiang Sci-Tech UniversityHangzhou, China
| | - Tianlong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Nazim Hussain
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
141
|
Tan T, Cai J, Zhan E, Yang Y, Zhao J, Guo Y, Zhou H. Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2016; 92:391-400. [PMID: 27503471 DOI: 10.1007/s11103-016-0520-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/31/2016] [Indexed: 05/17/2023]
Abstract
Salt stress induces the degradation of 14-3-3 proteins, and affects the localization of 14-3-3 λ. Both the modulation of 14-3-3 protein stability and the subcellular localization of these proteins are involved in salt tolerance in plants. Salt tolerance in plants is regulated by multiple signaling pathways, including the salt overly sensitive (SOS) pathway, of which the SOS2 protein is a key component. SOS2 is activated under salt stress to enhance salt tolerance in plants. We previously identified 14-3-3 λ and κ as important regulators of salt tolerance. Both proteins interact with SOS2 to inhibit its kinase activity under normal growth conditions. In response to salt stress, 14-3-3 proteins dissociate from SOS2, releasing its activity and activating the SOS pathway to confer salt tolerance (Zhou et al. Plant Cell 26:1166-1182, 2014). Here we report that salt stress promotes the degradation of 14-3-3 λ and κ, at least in part via the actions of SOS3-like calcium binding protein 8/calcineurin-B-like10, and also decreases the plasma membrane (PM) localization of 14-3-3 λ. Salt stress also partially represses the interaction of SOS2 and 14-3-3 λ at the PM, but activates PM-localized SOS2. Together, these results suggest that, in plants, both the modulation of 14-3-3 stability and the subcellular localization of these proteins in response to salt stress are important for SOS2 activation and salt tolerance. These data provide new insights into the biological roles of 14-3-3 proteins in modulating salt tolerance.
Collapse
Affiliation(s)
- Tinghong Tan
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, Sichuan University, Chengdu, 610064, China
| | - Jingqing Cai
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, Sichuan University, Chengdu, 610064, China
| | - Erbao Zhan
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, Sichuan University, Chengdu, 610064, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huapeng Zhou
- College of Life Sciences, Sichuan University, Chengdu, 610064, China.
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
142
|
Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes 2016; 40:31-64. [PMID: 27776782 DOI: 10.1016/bs.enz.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At any given time and location, plants encounter a flood of environmental stimuli. Diverse signal transduction pathways sense these stimuli and generate a diverse array of responses. Calcium (Ca2+) is generated as a second messenger due to these stimuli and is responsible for transducing the signals downstream in the pathway. A large number of Ca2+ sensor-responder components are responsible for Ca2+ signaling in plants. The sensor-responder complexes calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) are pivotal players in Ca2+-mediated signaling. The CIPKs are the protein kinases and hence mediate signal transduction mainly by the process of protein phosphorylation. Elaborate studies conducted in Arabidopsis have shown the involvement of CBL-CIPK complexes in abiotic and biotic stresses, and nutrient deficiency. Additionally, studies in crop plants have also indicated their role in the similar responses. In this chapter, we review the current literature on the CBL and CIPK network, shedding light into the enzymatic property and mechanism of action of CBL-CIPK complexes. We also summarize various reports on the functional modulation of the downstream targets by the CBL-CIPK modules across all plant species.
Collapse
Affiliation(s)
- S K Sanyal
- University of Delhi South Campus, New Delhi, India
| | - S Rao
- University of Delhi South Campus, New Delhi, India
| | - L K Mishra
- University of Delhi South Campus, New Delhi, India
| | - M Sharma
- University of Delhi South Campus, New Delhi, India
| | - G K Pandey
- University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
143
|
Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding. PLoS Genet 2016; 12:e1006255. [PMID: 27684709 PMCID: PMC5042403 DOI: 10.1371/journal.pgen.1006255] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/23/2016] [Indexed: 12/19/2022] Open
Abstract
Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals.
Collapse
Affiliation(s)
- Shuo Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Lixiu Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Hongye Chu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Dan Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xuan Peng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Jiaojiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Junfeng Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Kunming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Liqun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
144
|
Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Genes (Basel) 2016; 7:genes7090062. [PMID: 27618104 PMCID: PMC5042392 DOI: 10.3390/genes7090062] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) network is one of the vital regulatory mechanisms which decode calcium signals triggered by environmental stresses. Although the complicated regulation mechanisms and some novel functions of CBL-CIPK signaling network in plants need to be further elucidated, numerous advances have been made in its roles involved in the abiotic stresses. This review chiefly introduces the progresses about protein interaction, classification and expression pattern of different CBLs and CIPKs in Arabidopsis thaliana, summarizes the physiological roles of CBL-CIPK pathway while pointing out some new research ideas in the future, and finally presents some unique perspectives for the further study. The review might provide new insights into the functional characterization of CBL-CIPK pathway in Arabidopsis, and contribute to a deeper understanding of CBL-CIPK network in other plants or stresses.
Collapse
|
145
|
Tang J, Lin J, Li H, Li X, Yang Q, Cheng ZM, Chang Y. Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Rehd) and Co-expression Analysis Related to Salt and Osmotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1361. [PMID: 27656193 PMCID: PMC5013074 DOI: 10.3389/fpls.2016.01361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/26/2016] [Indexed: 05/24/2023]
Abstract
Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca(2+)-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear.
Collapse
Affiliation(s)
- Jun Tang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
- Department of Plant Sciences, University of Tennessee at Knoxville, KnoxvilleTN, USA
| | - Jing Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zong-Ming Cheng
- Department of Plant Sciences, University of Tennessee at Knoxville, KnoxvilleTN, USA
| | - Youhong Chang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|
146
|
Beckmann L, Edel KH, Batistič O, Kudla J. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Sci Rep 2016; 6:31645. [PMID: 27538881 PMCID: PMC4990929 DOI: 10.1038/srep31645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity.
Collapse
Affiliation(s)
- Linda Beckmann
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany.,College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
147
|
Amarasinghe S, Watson-Haigh NS, Gilliham M, Roy S, Baumann U. The evolutionary origin of CIPK16: A gene involved in enhanced salt tolerance. Mol Phylogenet Evol 2016; 100:135-147. [DOI: 10.1016/j.ympev.2016.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
|
148
|
Wang YJ, Wei XY, Jing XQ, Chang YL, Hu CH, Wang X, Chen KM. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. Int J Mol Sci 2016; 17:ijms17060805. [PMID: 27240354 PMCID: PMC4926339 DOI: 10.3390/ijms17060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are the major source of reactive oxygen species (ROS), and are involved in many important processes in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing evidence shows that NOXs play crucial roles in plant immunity and their functions in plant immune responses are not as separate individuals but with other signal molecules such as kinases, Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized here the complex role and regulation mechanism of NOXs in mediating plant immune response, and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is also proposed.
Collapse
Affiliation(s)
- Ya-Jing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Yong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Yan-Li Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
149
|
Dong L, Wang Q, Manik SMN, Song Y, Shi S, Su Y, Liu G, Liu H. Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2015; 34:2053-63. [PMID: 26318216 DOI: 10.1007/s00299-015-1851-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Nicotiana sylvestris calcineurin B-like protein NsylCBL10 improves tolerance to high-salt stress through better maintenance of Na (+) balance. The calcineurin B-like (CBL) proteins represent a unique group of plant calcium sensors and play an important role in regulating the response of a plant cell to the stress. Although many studies have been made in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and poplar (Populus trichocarpa), the characterization and elucidation of the functions of CBLs in tobacco have not yet been reported. In this study, NsylCBL10, a CBL gene showing higher similarities to other CBL10 genes, was cloned from Nicotiana sylvestris. NsylCBL10 is expressed in most of the tobacco tissues, and the protein targets to the plasma membrane specifically. Over-expression of NsylCBL10 enhanced the salt tolerance of Arabidopsis wild type plants greatly, and rescued the high-salt-sensitive phenotype of Arabidopsis cbl10 mutant. The analysis of ion content indicated that over-expressing NsylCBL10 in plants is able to maintain a lower Na(+)/K(+) ratio in roots and higher Na(+)/K(+) ratio in shoots, compared with cbl10 mutant. The results suggest that NsylCBL10 might play an important role in response to high salinity stress in N. sylvestris, by keeping a better ionic homeostasis to reduce the damage of toxic ion to the plant cell.
Collapse
Affiliation(s)
- Lianhong Dong
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Wang
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - S M Nuruzzaman Manik
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yufeng Song
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sujuan Shi
- College of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yulong Su
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanshan Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China.
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao, 266101, China.
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
150
|
Liu WZ, Deng M, Li L, Yang B, Li H, Deng H, Jiang YQ. Rapeseed calcineurin B-like protein CBL4, interacting with CBL-interacting protein kinase CIPK24, modulates salt tolerance in plants. Biochem Biophys Res Commun 2015; 467:467-71. [PMID: 26462466 DOI: 10.1016/j.bbrc.2015.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
Abstract
Calcium is a ubiquitous intracellular secondary messenger in eukaryotes. Upon stress challenge, cytosolic Ca(2+) fluctuation could be sensed and bound by calcineurin B-like proteins (CBLs), which further regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs) to relay the signal and induce cellular responses. Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in rapeseed. In the present study, we characterized CBL4 gene from rapeseed. We found that CBL4 is localized at the plasma membrane and it interacted with CIPK24 in both yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Unlike the orthologs in Arabidopsis, rapeseed CIPK24 did not interact with CBL10. Furthermore, expression of rapeseed CBL4 rescued the salt-sensitive phenotype of sos3-1 mutant and overexpression of rapeseed CBL4 in Arabidopsis showed enhanced tolerance of salt stress than wild-type. Overall, the results clarified the function of CBL4 in rapeseed.
Collapse
Affiliation(s)
- Wu-Zhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Min Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Liang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Hongwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Hanqing Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|