101
|
Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol Microbiol 2014; 94:926-44. [PMID: 25257164 DOI: 10.1111/mmi.12808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Bacterial pathogens are exposed to toxic molecules inside the host and require efficient systems to form and maintain correct disulfide bonds for protein stability and function. The intracellular pathogen Francisella tularensis encodes a disulfide bond formation protein ortholog, DsbA, which previously was reported to be required for infection of macrophages and mice. However, the molecular mechanisms by which F. tularensis DsbA contributes to virulence are unknown. Here, we demonstrate that F. tularensis DsbA is a bifunctional protein that oxidizes and, more importantly, isomerizes complex disulfide connectivity in substrates. A single amino acid in the conserved cis-proline loop of the DsbA thioredoxin domain was shown to modulate both isomerase activity and F. tularensis virulence. Trapping experiments in F. tularensis identified over 50 F. tularensis DsbA substrates, including outer membrane proteins, virulence factors, and many hypothetical proteins. Six of these hypothetical proteins were randomly selected and deleted, revealing two novel proteins, FTL_1548 and FTL_1709, which are required for F. tularensis virulence. We propose that the extreme virulence of F. tularensis is partially due to the bifunctional nature of DsbA, that many of the newly identified substrates are required for virulence, and that the development of future DsbA inhibitors could have broad anti-bacterial implications.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | | | | |
Collapse
|
102
|
Voronin D, Guimarães AF, Molyneux GR, Johnston KL, Ford L, Taylor MJ. Wolbachia lipoproteins: abundance, localisation and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus. Parasit Vectors 2014; 7:462. [PMID: 25287420 PMCID: PMC4197220 DOI: 10.1186/s13071-014-0462-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoproteins are the major agonists of Wolbachia-dependent inflammatory pathogenesis in filariasis and a validated target for drug discovery. Here we characterise the abundance, localisation and serology of the Wolbachia lipoproteins: Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6. METHODS We used proteomics to confirm lipoprotein presence and relative abundance; fractionation, immunoblotting and confocal and electron immuno-microscopy for localisation and ELISA for serological analysis. RESULTS Proteomic analysis of Brugia malayi adult female protein extracts confirmed the presence of two lipoproteins, previously predicted through bioinformatics: Wolbachia peptidoglycan associated lipoprotein (wBmPAL) and the Type IV Secretion System component, VirB6 (wBmVirB6). wBmPAL was among the most abundant Wolbachia proteins present in an extract of adult female worms with wBmVirB6 only detected at a much lower abundance. This differential abundance was reflected in the immunogold-labelling, which showed wBmPAL localised at numerous sites within the bacterial membranes, whereas wBmVirB6 was present as a single cluster on each bacterial cell and also located within the bacterial membranes. Immunoblotting of fractionated extracts confirmed the localisation of wBmPAL to membranes and its absence from cytosolic fractions of C6/36 mosquito cells infected with wAlbB. In whole worm mounts, antibody labelling of both lipoproteins were associated with Wolbachia. Serological analysis showed that both proteins were immunogenic and raised antibody responses in the majority of individuals infected with Wuchereria bancrofti. CONCLUSIONS Two Wolbachia lipoproteins, wBmPAL and wBmVirB6, are present in extracts of Brugia malayi with wBmPAL among the most abundant of Wolbachia proteins. Both lipoproteins localised to bacterial membranes with wBmVirB6 present as a single cluster suggesting a single Type IV Secretory System on each Wolbachia cell.
Collapse
Affiliation(s)
- Denis Voronin
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Ana F Guimarães
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Gemma R Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Kelly L Johnston
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
103
|
Orfanoudaki G, Economou A. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cell Proteomics 2014; 13:3674-87. [PMID: 25210196 DOI: 10.1074/mcp.o114.041137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell compartmentalization serves both the isolation and the specialization of cell functions. After synthesis in the cytoplasm, over a third of all proteins are targeted to other subcellular compartments. Knowing how proteins are distributed within the cell and how they interact is a prerequisite for understanding it as a whole. Surface and secreted proteins are important pathogenicity determinants. Here we present the STEP database (STEPdb) that contains a comprehensive characterization of subcellular localization and topology of the complete proteome of Escherichia coli. Two widely used E. coli proteomes (K-12 and BL21) are presented organized into thirteen subcellular classes. STEPdb exploits the wealth of genetic, proteomic, biochemical, and functional information on protein localization, secretion, and targeting in E. coli, one of the best understood model organisms. Subcellular annotations were derived from a combination of bioinformatics prediction, proteomic, biochemical, functional, topological data and extensive literature re-examination that were refined through manual curation. Strong experimental support for the location of 1553 out of 4303 proteins was based on 426 articles and some experimental indications for another 526. Annotations were provided for another 320 proteins based on firm bioinformatic predictions. STEPdb is the first database that contains an extensive set of peripheral IM proteins (PIM proteins) and includes their graphical visualization into complexes, cellular functions, and interactions. It also summarizes all currently known protein export machineries of E. coli K-12 and pairs them, where available, with the secretory proteins that use them. It catalogs the Sec- and TAT-utilizing secretomes and summarizes their topological features such as signal peptides and transmembrane regions, transmembrane topologies and orientations. It also catalogs physicochemical and structural features that influence topology such as abundance, solubility, disorder, heat resistance, and structural domain families. Finally, STEPdb incorporates prediction tools for topology (TMHMM, SignalP, and Phobius) and disorder (IUPred) and implements the BLAST2STEP that performs protein homology searches against the STEPdb.
Collapse
Affiliation(s)
- Georgia Orfanoudaki
- From the ‡Institute of Molecular Biology and Biotechnology-FoRTH and §Department of Biology-University of Crete, P.O. Box 1385, Iraklio, Crete, Greece
| | - Anastassios Economou
- From the ‡Institute of Molecular Biology and Biotechnology-FoRTH and §Department of Biology-University of Crete, P.O. Box 1385, Iraklio, Crete, Greece; ¶Laboratory of Molecular Bacteriology; Rega Institute, Department of Microbiology and Immunology, KU Leuven, Herrestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
104
|
Structural Features of a Highly Conserved Omp16 Protein of Pasteurella multocida Strains and Comparison with Related Peptidoglycan-associated Lipoproteins (PAL). Indian J Microbiol 2014. [DOI: 10.1007/s12088-014-0489-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
105
|
Nunoura T, Takaki Y, Kazama H, Kakuta J, Shimamura S, Makita H, Hirai M, Miyazaki M, Takai K. Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent. PLoS One 2014; 9:e104959. [PMID: 25133584 PMCID: PMC4136832 DOI: 10.1371/journal.pone.0104959] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 12/04/2022] Open
Abstract
Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
- * E-mail:
| | - Yoshihiro Takaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiromi Kazama
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Jungo Kakuta
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroko Makita
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Masayuki Miyazaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
106
|
Lo Sciuto A, Fernández-Piñar R, Bertuccini L, Iosi F, Superti F, Imperi F. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa. PLoS One 2014; 9:e103784. [PMID: 25093328 PMCID: PMC4122361 DOI: 10.1371/journal.pone.0103784] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/05/2014] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.
Collapse
Affiliation(s)
- Alessandra Lo Sciuto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Regina Fernández-Piñar
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Lucia Bertuccini
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Francesca Iosi
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Fabiana Superti
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
107
|
Escherichia coli genes and pathways involved in surviving extreme exposure to ionizing radiation. J Bacteriol 2014; 196:3534-45. [PMID: 25049088 DOI: 10.1128/jb.01589-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further an improved understanding of the mechanisms used by bacterial cells to survive extreme exposure to ionizing radiation (IR), we broadly screened nonessential Escherichia coli genes for those involved in IR resistance by using transposon-directed insertion sequencing (TraDIS). Forty-six genes were identified, most of which become essential upon heavy IR exposure. Most of these were subjected to direct validation. The results reinforced the notion that survival after high doses of ionizing radiation does not depend on a single mechanism or process, but instead is multifaceted. Many identified genes affect either DNA repair or the cellular response to oxidative damage. However, contributions by genes involved in cell wall structure/function, cell division, and intermediary metabolism were also evident. About half of the identified genes have not previously been associated with IR resistance or recovery from IR exposure, including eight genes of unknown function.
Collapse
|
108
|
Watson E, Sherry A, Inglis NF, Lainson A, Jyothi D, Yaga R, Manson E, Imrie L, Everest P, Smith DGE. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity. EUPA OPEN PROTEOMICS 2014; 4:184-194. [PMID: 27525220 PMCID: PMC4975774 DOI: 10.1016/j.euprot.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 12/24/2022]
Abstract
Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Aileen Sherry
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil F Inglis
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Alex Lainson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | | | - Raja Yaga
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Erin Manson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Lisa Imrie
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Paul Everest
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David G E Smith
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
109
|
Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:641-50. [PMID: 24599530 DOI: 10.1128/cvi.00665-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.
Collapse
|
110
|
Repetto O, Zanussi S, Casarotto M, Canzonieri V, De Paoli P, Cannizzaro R, De Re V. Differential proteomics of Helicobacter pylori associated with autoimmune atrophic gastritis. Mol Med 2014; 20:57-71. [PMID: 24395566 DOI: 10.2119/molmed.2013.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
Atrophic autoimmune gastritis (AAG) is a condition of chronic inflammation and atrophy of stomach mucosa, for which development can be partially triggered by the bacterial pathogen Helicobacter pylori (HP). HP can cause a variety of gastric diseases, such as duodenal ulcer (DU) or gastric cancer (GC). In this study, a comparative proteomic approach was used by two-dimensional fluorescence difference gel electrophoresis (DIGE) to identify differentially expressed proteins of HP strains isolated from patients with AAG, to identify markers of HP strain associated with AAG. Proteome profiles of HP isolated from GC or DU were used as a reference to compare proteomic levels. Proteomics analyses revealed 27 differentially expressed spots in AAG-associated HP in comparison with GC, whereas only 9 differential spots were found in AAG-associated HP profiles compared with DU. Proteins were identified after matrix-assisted laser desorption ionization (MALDI)-TOF and peptide mass fingerprinting. Some AAG-HP differential proteins were common between DU- and GC-HP (peroxiredoxin, heat shock protein 70 [HSP70], adenosine 5'-triphosphate [ATP] synthase subunit α, flagellin A). Our results presented here may suggest that comparative proteomes of HP isolated from AAG and DU share more common protein expression than GC and provide subsets of putative AAG-specific upregulated or downregulated proteins that could be proposed as putative markers of AAG-associated HP. Other comparative studies by two-dimensional maps integrated with functional genomics of candidate proteins will undoubtedly contribute to better decipher the biology of AAG-associated HP strains.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Stefania Zanussi
- Microbiology-Immunology and Virology, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Mariateresa Casarotto
- Microbiology-Immunology and Virology, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Paolo De Paoli
- Facility of Bio-Proteomics, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Renato Cannizzaro
- Gastroenterology Unit, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| |
Collapse
|
111
|
Łaniewski P, Kuczkowski M, Chrząstek K, Woźniak A, Wyszyńska A, Wieliczko A, Jagusztyn-Krynicka EK. Evaluation of the immunogenicity of Campylobacter jejuni CjaA protein delivered by Salmonella enterica sv. Typhimurium strain with regulated delayed attenuation in chickens. World J Microbiol Biotechnol 2014; 30:281-92. [PMID: 23913025 PMCID: PMC3880472 DOI: 10.1007/s11274-013-1447-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
Abstract
Campylobacter spp. are regarded as the most common bacterial cause of gastroenteritis worldwide, and consumption of chicken meat contaminated by Campylobacter is considered to be one of the most frequent sources of human infection in developed countries. Here we evaluated the immunogenicity and protective efficacy of Salmonella Typhimurium χ9718 producing the Campylobacter jejuni CjaA protein as a chicken anti-Campylobacter vaccine. In this study chickens were orally immunized with a new generation S. Typhimurium strain χ9718 with regulated delayed attenuation in vivo and displaying delayed antigen expression. The immunization with the S. Typhimurium χ9718 strain producing C. jejuni CjaA antigen induced strong immune responses against CjaA in both serum IgY and intestinal IgA, however, it did not result in the significant reduction of intestinal colonization by Campylobacter strain. The low level of protection might arise due to a lack of T cell response. Our results demonstrated that a Salmonella strain with regulated delayed attenuation and displaying regulated delayed antigen expression might be an efficient vector to induce immune response against Campylobacter. It seems that an efficient anti-Campylobacter subunit vaccine should be multicomponent. Since S. Typhimurium χ9718 contains two compatible balanced-lethal plasmids, it can provide the opportunity of cloning several Campylobacter genes encoding immunodominant proteins. It may also be used as a delivery vector of eukaryotic genes encoding immunostimulatory molecules to enhance or modulate functioning of chicken immune system.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Klaudia Chrząstek
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Anna Woźniak
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | | |
Collapse
|
112
|
Outer membrane vesicles reflect environmental cues in Gallibacterium anatis. Vet Microbiol 2013; 167:565-72. [DOI: 10.1016/j.vetmic.2013.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/20/2022]
|
113
|
Overexpression of AaPal, a peptidoglycan-associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana. Biotechnol Lett 2013; 36:601-7. [PMID: 24249101 DOI: 10.1007/s10529-013-1398-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
The outer membrane lipoprotein, Pal, plays a major role maintaining the integrity of outer membrane and cell morphology in Gram-negative bacteria. Here, we represent A novel role of AaPal in tolerance to salt and alkaline stresses. The cell density of Escherichia coli expressing AaPal was approx. three times as that of control strain when grown in the presence of 1 M NaCl or at pH 9.0 for 14 h, and transgenic Arabidopsis thaliana grew taller and stronger than wild-type plants when subjected to 200 mM NaCl or pH 9.0 stress. This tolerance was attributed to higher concentrations of K(+) and lower concentrations of Na(+) in the transgenic organism. Our study provides a potential use of AaPal in the improvement of salt and alkaline tolerance in bacteria and plants.
Collapse
|
114
|
Bullman S, Lucid A, Corcoran D, Sleator RD, Lucey B. Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One 2013; 8:e71515. [PMID: 24023611 PMCID: PMC3758288 DOI: 10.1371/journal.pone.0071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022] Open
Abstract
The recent detection and isolation of C. ureolyticus from patients with diarrhoeal illness and inflammatory bowel diseases warrants further investigation into its role as an emerging pathogen of the human gastrointestinal tract. Regarding the pathogenic mechanisms employed by this species we provide the first whole genome analysis of two C. ureolyticus isolates including the type strain. Comparative analysis, subtractive hybridisation and gene ontology searches against other Campylobacter species identifies the high degree of heterogenicity between C. ureolyticus isolates, in addition to the identification of 106 putative virulence associated factors, 52 of which are predicted to be secreted. Such factors encompass each of the known virulence tactics of pathogenic Campylobacter spp. including adhesion and colonisation (CadF, PEB1, IcmF and FlpA), invasion (ciaB and 16 virB-virD4 genes) and toxin production (S-layer RTX and ZOT). Herein, we provide the first virulence catalogue for C. ureolyticus, the components of which theoretically provide this emerging species with sufficient arsenal to establish pathology.
Collapse
Affiliation(s)
- Susan Bullman
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Daniel Corcoran
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail:
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| |
Collapse
|
115
|
Zeng X, Xu F, Lin J. Specific TonB-ExbB-ExbD energy transduction systems required for ferric enterobactin acquisition in Campylobacter. FEMS Microbiol Lett 2013; 347:83-91. [PMID: 23905838 DOI: 10.1111/1574-6968.12221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 01/28/2023] Open
Abstract
Ferric enterobactin (FeEnt) acquisition plays a critical role in the pathophysiology of Campylobacter, the leading bacterial cause of human gastroenteritis in industrialized countries. In Campylobacter, the surface-exposed receptor, CfrA or CfrB, functions as a 'gatekeeper' for initial binding of FeEnt. Subsequent transport across the outer membrane is energized by TonB-ExbB-ExbD energy transduction systems. Although there are up to three TonB-ExbB-ExbD systems in Campylobacter, the cognate components of TonB-ExbB-ExbD for FeEnt acquisition are still largely unknown. In this study, we addressed this issue using complementary molecular approaches: comparative genomic analysis, random transposon mutagenesis and site-directed mutagenesis in two representative C. jejuni strains, NCTC 11168 and 81-176. We demonstrated that CfrB could interact with either TonB2 or TonB3 for efficient Ent-mediated iron acquisition. However, TonB3 is a dominant player in the CfrA-dependent pathway. The ExbB2 and ExbD2 components were essential for both CfrA- and CfrB-dependent FeEnt acquisition. Sequences analysis identified potential TonB boxes in CfrA and CfrB, and the corresponding binding sites in TonB. In conclusion, these findings identify specific TonB-ExbB-ExbD energy transduction components required for FeEnt acquisition, and provide insights into the complex molecular interactions of FeEnt acquisition systems in Campylobacter.
Collapse
Affiliation(s)
- Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
116
|
Michel LV, Snyder J, Schmidt R, Milillo J, Grimaldi K, Kalmeta B, Khan MN, Sharma S, Wright LK, Pichichero ME. Dual orientation of the outer membrane lipoprotein P6 of nontypeable haemophilus influenzae. J Bacteriol 2013; 195:3252-9. [PMID: 23687267 PMCID: PMC3697637 DOI: 10.1128/jb.00185-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/12/2013] [Indexed: 11/20/2022] Open
Abstract
The majority of outer membrane (OM) lipoproteins in Gram-negative bacteria are tethered to the membrane via an attached lipid moiety and oriented facing in toward the periplasmic space; a few lipoproteins have been shown to be surface exposed. The outer membrane lipoprotein P6 from the Gram-negative pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a leading vaccine candidate for prevention of NTHi infections. However, we recently found that P6 is not a transmembrane protein as previously thought (L. V. Michel, B. Kalmeta, M. McCreary, J. Snyder, P. Craig, M. E. Pichichero, Vaccine 29:1624-1627, 2011). Here we pursued studies to show that P6 has a dual orientation, existing infrequently as surface exposed and predominantly as internally oriented toward the periplasmic space. Flow cytometry using three monoclonal antibodies with specificity for P6 showed surface staining of whole NTHi cells. Confocal microscopy imaging confirmed that antibodies targeted surface-exposed P6 of intact NTHi cells and not internal P6 in membrane-compromised or dead cells. Western blots of two wild-type NTHi strains and a mutant NTHi strain that does not express P6 showed that P6 antibodies do not detect a promiscuous epitope on NTHi. Depletion of targets to nonlipidated P6 significantly decreased bactericidal activity of human serum. Protease digestion of surface-exposed P6 demonstrated that P6 is predominantly internally localized in a manner similar to its homologue Pal in Escherichia coli. We conclude that P6 of NTHi is likely inserted into the OM in two distinct orientations, with the predominant orientation facing in toward the periplasm.
Collapse
Affiliation(s)
- Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Cai X, Lu J, Wu Z, Yang C, Xu H, Lin Z, Shen Y. Structure of Neisseria meningitidis lipoprotein GNA1162. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:362-8. [PMID: 23545639 PMCID: PMC3614158 DOI: 10.1107/s1744309113004417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/14/2013] [Indexed: 12/15/2022]
Abstract
GNA1162, a predicted lipoprotein from Neisseria meningitidis, is a potential candidate for a universal vaccine against meningococcal disease caused by N. meningitidis serogroup B. Here, the crystal structure of GNA1162 at 1.89 Å resolution determined by single-wavelength anomalous dispersion (SAD) is reported. The structure of GNA1162 appears to be a dimer in the crystallographic asymmetric unit as well as in solution. The overall structure of the dimer indicates that each monomer inserts its C-terminal α5 helix into the hydrophobic groove of the other molecule. Moreover, the β4 strands of each monomer lie antiparallel to each other and interact through multiple main-chain hydrogen bonds. Through structural comparisons and operon predictions, it is hypothesized that GNA1162 is part of a transport system and assists in transport and reassembly. The crystal structure of GNA1162 sheds light on its possible function and provides potentially valuable information for the design of a vaccine against meningococcal disease.
Collapse
Affiliation(s)
- Xiangyu Cai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- School of Medicine, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Zhenhua Wu
- Laboratory of Virology, National Vaccine and Serum Institute, No. 4 San Jian Fang Nan Li, Beijing 100024, People’s Republic of China
| | - Chunting Yang
- Laboratory of Virology, National Vaccine and Serum Institute, No. 4 San Jian Fang Nan Li, Beijing 100024, People’s Republic of China
| | - Honglin Xu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
- Laboratory of Virology, National Vaccine and Serum Institute, No. 4 San Jian Fang Nan Li, Beijing 100024, People’s Republic of China
| | - Zhijie Lin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| |
Collapse
|
118
|
Vollmer J, Schiefer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ, Sahl HG, Hoerauf A, Pfarr K. Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 2013; 303:140-9. [PMID: 23517690 DOI: 10.1016/j.ijmm.2013.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022] Open
Abstract
Obligate Wolbachia endobacteria have a reduced genome and retained genes are hypothesized to be crucial for survival. Although intracellular bacteria do not need a stress-bearing peptidoglycan cell wall, Wolbachia encode proteins necessary to synthesize the peptidoglycan precursor lipid II. The activity of the enzymes catalyzing the last two steps of this pathway was previously shown, and Wolbachia are sensitive to inhibition of lipid II synthesis. A puzzling characteristic of Wolbachia is the lack of genes for l-amino acid racemases essential for lipid II synthesis. Transcription analysis showed the expression of a possible alternative racemase metC, and recombinant Wolbachia MetC indeed had racemase activity that may substitute for the absent l-Ala racemase. However, enzymes needed to form mature peptidoglycan are absent and the function of Wolbachia lipid II is unknown. Inhibition of lipid II biosynthesis resulted in enlargement of Wolbachia cells and redistribution of Wolbachia peptidoglycan-associated lipoprotein, demonstrating that lipid II is required for coordinated cell division and may interact with the lipoprotein. We conclude that lipid II is essential for Wolbachia cell division and that this function is potentially conserved in the Gram-negative bacteria.
Collapse
Affiliation(s)
- Jennifer Vollmer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Gallo G, Baldi F, Renzone G, Gallo M, Cordaro A, Scaloni A, Puglia AM. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microb Cell Fact 2012; 11:152. [PMID: 23176641 PMCID: PMC3539929 DOI: 10.1186/1475-2859-11-152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as Klebsiella oxytoca. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO2 coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant. RESULTS Further phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to K. oxytoca species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production. CONCLUSION Differential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo Viale delle Scienze, ed, 16, Parco d'Orleans II, Palermo, 90128, Italy.
| | | | | | | | | | | | | |
Collapse
|
120
|
Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, VieBrock L, Thomas RJ, Borjesson DL, Fikrig E, Carlyon JA. Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun 2012; 80:3748-60. [PMID: 22907813 PMCID: PMC3486060 DOI: 10.1128/iai.00654-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/25/2012] [Indexed: 01/14/2023] Open
Abstract
Anaplasma phagocytophilum is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA). A. phagocytophilum binding to sialyl Lewis x (sLe(x)) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance of A. phagocytophilum outer membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding of A. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment of A. phagocytophilum organisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. Glutathione S-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA(19-74)) but not OmpA(75-205) bind to, and competitively inhibit A. phagocytophilum infection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the first A. phagocytophilum adhesin-receptor pair and delineates the region of OmpA that is critical for infection.
Collapse
Affiliation(s)
- Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Amandeep Kahlon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Stephanie A. Ragland
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Matthew J. Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Juliana E. Mastronunzio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naomi J. Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rachael J. Thomas
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
121
|
Song JH, Lee WC, Park JS, Kim SI, Lee JC, Cheong C, Kim HY. Cloning, purification and preliminary X-ray crystallographic analysis of the OmpA-like domain of peptidoglycan-associated lipoprotein from Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1351-3. [PMID: 23143247 DOI: 10.1107/s1744309112038924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/11/2012] [Indexed: 11/10/2022]
Abstract
Peptidoglycan-associated lipoprotein (Pal) is one component of the Tol-Pal system that is involved in maintaining the integrity and stability of the outer membrane. The C-terminal OmpA-like domain of Pal interacts noncovalently with peptidoglycan. In this study, the OmpA-like domain of Pal from Acinetobacter baumannii was overexpressed in Escherichia coli strain BL21 (DE3), purified and crystallized using the vapour-diffusion method. A native crystal diffracted to 1.4 Å resolution and belonged to space group P6(1) or P6(5), with unit-cell parameters a=b=72.58, c=44.65 Å, a calculated Matthews coefficient of 2.64 Å3 Da(-1) and one molecule per asymmetric unit.
Collapse
Affiliation(s)
- Jung Hyun Song
- Division of Magnetic Resonance Research, Korea Basic Science Institute, 804-1 Yangcheong-ri, Ochang, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
122
|
Huang Y, Kittichotirat W, Mayer MPA, Hall R, Bumgarner R, Chen C. Comparative genomic hybridization and transcriptome analysis with a pan-genome microarray reveal distinctions between JP2 and non-JP2 genotypes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2012. [PMID: 23194436 DOI: 10.1111/omi.12005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It was postulated that the highly virulent JP2 genotype of Aggregatibacter actinomycetemcomitans may possess a constellation of distinct virulence determinants not found in non-JP2 genotypes. This study compared the genome content and the transcriptome of the serotype b JP2 genotype and the closely related serotype b non-JP2 genotype of A. actinomycetemcomitans. A custom-designed pan-genomic microarray of A. actinomycetemcomitans was constructed and validated against a panel of 11 sequenced reference strains. The microarray was subsequently used for comparative genomic hybridization of serotype b strains of JP2 (six strains) and non-JP2 (six strains) genotypes, and for transcriptome analysis of strains of JP2 (three strains) and non-JP2 (two strains). Two JP2-specific and two non-JP2-specific genomic islands were identified. In one instance, distinct genomic islands were found to be inserted into the same locus among strains of different genotypes. Transcriptome analysis identified five operons, including the leukotoxin operon, to have at least two genes with an expression ratio of 2 or greater between genotypes. Two of the differentially expressed operons were members of the membrane-bound nitrate reductase system (nap operon) and the Tol-Pal system of gram-negative bacterial species. This study is the first to demonstrate the differences in the full genome content and gene expression between A. actinomycetemcomitans strains of JP2 and non-JP2 genotypes. The information is essential for designing hypothesis-driven experiments to examine the pathogenic mechanisms of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Y Huang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
123
|
Vonkavaara M, Pavel STI, Hölzl K, Nordfelth R, Sjöstedt A, Stöven S. Francisella is sensitive to insect antimicrobial peptides. J Innate Immun 2012; 5:50-9. [PMID: 23037919 DOI: 10.1159/000342468] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/01/2012] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis causes the zoonotic disease tularemia. Arthropod vectors are important transmission routes for the disease, although it is not known how Francisella survives the efficient arthropod immune response. Here, we used Drosophila melanogaster as a model host for Francisella infections and investigated whether the bacteria are resistant to insect humoral immune responses, in particular to the antimicrobial peptides (AMPs) secreted into the insect hemolymph. Moreover, we asked to what extent such resistance might depend on lipopolysaccharide (LPS) structure and surface characteristics of the bacteria. We analyzed Francisella novicida mutant strains in genes, directly or indirectly involved in specific steps of LPS biosynthesis, for virulence in wild-type and Relish(E20) immune-deficient flies, and tested selected mutants for sensitivity to AMPs in vitro. We demonstrate that Francisella is sensitive to specific fly AMPs, i.e. Attacin, Cecropin, Drosocin and Drosomycin. Furthermore, six bacterial genes, kpsF, manB, lpxF, slt, tolA and pal, were found to be required for resistance to Relish-dependent immune responses, illustrating the importance of structural details of Francisella lipid A and Kdo core for interactions with AMPs. Interestingly, a more negative surface charge and lack of O-antigen did not render mutant bacteria more sensitive to cationic AMPs and did not attenuate virulence in flies.
Collapse
Affiliation(s)
- Malin Vonkavaara
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
124
|
Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun 2012; 80:3399-409. [PMID: 22825444 DOI: 10.1128/iai.00321-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is a common Gram-negative organism that causes bacteremia. Prc, a bacterial periplasmic protease, and its homologues are known to be involved in the pathogenesis of Gram-negative bacterial infections. The present study examined the role of Prc in E. coli bacteremia and characterized the ability of the prc mutant of the pathogenic E. coli strain RS218 to cause bacteremia and survive in human serum. The prc mutant of RS218 exhibited a decreased ability to cause a high level of bacteremia and was more sensitive to serum killing than strain RS218. This sensitivity was due to the mutant's decreased ability to avoid the activation of the antibody-dependent and -independent classical complement cascades as well as its decreased resistance to killing mediated by the membrane attack complex, the end product of complement system activation. The demonstration of Prc in the evasion of classical complement-mediated serum killing of pathogenic E. coli makes this factor a potential target for the development of therapeutic and preventive measures against E. coli bacteremia.
Collapse
|
125
|
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012; 8:e1002760. [PMID: 22719254 PMCID: PMC3375315 DOI: 10.1371/journal.ppat.1002760] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational "scars" in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.
Collapse
|
126
|
Santos CA, Beloti LL, Toledo MAS, Crucello A, Favaro MTP, Mendes JS, Santiago AS, Azzoni AR, Souza AP. A novel protein refolding protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif 2012; 82:284-9. [PMID: 22306742 DOI: 10.1016/j.pep.2012.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Rigel NW, Silhavy TJ. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr Opin Microbiol 2012; 15:189-93. [PMID: 22221898 DOI: 10.1016/j.mib.2011.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/06/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that serves as a selective permeability barrier by keeping toxic compounds out of the cell while allowing vital nutrients in. How the OM and its constituent lipid and protein components are assembled remains an area of active research. In this review, we describe our current understanding of how outer membrane proteins (OMPs) are delivered to and then assembled in the OM of the model Gram-negative organism Escherichia coli.
Collapse
Affiliation(s)
- Nathan W Rigel
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | | |
Collapse
|
128
|
Müller FD, Schink CW, Hoiczyk E, Cserti E, Higgs PI. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 2011; 83:486-505. [PMID: 22188356 DOI: 10.1111/j.1365-2958.2011.07944.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo or two other genetic loci encoding homologues of polysaccharide synthesis enzymes fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel Gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition.
Collapse
Affiliation(s)
- Frank D Müller
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | | | |
Collapse
|
129
|
O'Grady EP, Sokol PA. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment. Front Cell Infect Microbiol 2011; 1:15. [PMID: 22919581 PMCID: PMC3417382 DOI: 10.3389/fcimb.2011.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
130
|
Varying dependency of periplasmic peptidylprolyl cis–trans isomerases in promoting Yersinia pseudotuberculosis stress tolerance and pathogenicity. Biochem J 2011; 439:321-32. [DOI: 10.1042/bj20110767] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periplasmic PPIases (peptidylprolyl cis–trans isomerases) catalyse the cis–trans isomerization of peptidyl-prolyl bonds, which is a rate-limiting step during protein folding. We demonstrate that the surA, ppiA, ppiD, fkpA and fklB alleles each encode a periplasmic PPIase in the bacterial pathogen Yersinia pseudotuberculosis. Of these, four were purified to homogeneity. Purified SurA, FkpA and FklB, but not PpiD, displayed detectable PPIase activity in vitro. Significantly, only Y. pseudotuberculosis lacking surA caused drastic alterations to the outer membrane protein profile and FA (fatty acid) composition. They also exhibited aberrant cellular morphology, leaking LPS (lipopolysaccharide) into the extracellular environment. The SurA PPIase is therefore most critical for maintaining Y. pseudotuberculosis envelope integrity during routine culturing. On the other hand, bacteria lacking either surA or all of the genes ppiA, ppiD, fkpA and fklB were sensitive to hydrogen peroxide and were attenuated in mice infections. Thus Y. pseudotuberculosis exhibits both SurA-dependent and -independent requirements for periplasmic PPIase activity to ensure in vivo survival and a full virulence effect in a mammalian host.
Collapse
|
131
|
An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus. J Bacteriol 2011; 193:4361-70. [PMID: 21705597 DOI: 10.1128/jb.00185-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although reversible phosphorylation on tyrosine residues regulates the activity of many eukaryotic proteins, there are few examples of this type of regulation in bacteria. We have identified the first essential tyrosine phosphatase homolog in a bacterium, Caulobacter crescentus CtpA. ctpA mutants with altered active-site residues are nonviable, and depletion of CtpA yields chains of cells with blebbed outer membranes, linked by unresolved peptidoglycan. CtpA overexpression reduces cell curvature in a manner similar to deleting the intermediate filament protein crescentin, but it does not disrupt crescentin localization or membrane attachment. Although it has no obvious signal sequence or transmembrane-spanning domains, CtpA associates with the Caulobacter inner membrane. Immunolocalization experiments suggest that CtpA accumulates at the division site during the last quarter of the cell cycle. We propose that CtpA dephosphorylates one or more proteins involved in peptidoglycan biosynthesis or remodeling, which in turn affect cell separation, cell envelope integrity, and vibrioid morphology.
Collapse
|
132
|
Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation. J Bacteriol 2011; 193:3863-70. [PMID: 21642461 DOI: 10.1128/jb.05021-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bacterial flagellar motor is driven by an ion flux through a channel called MotAB in Escherichia coli or Salmonella and PomAB in Vibrio alginolyticus. PomAB is composed of two transmembrane (TM) components, PomA and PomB, and converts a sodium ion flux to rotation of the flagellum. Its homolog, MotAB, utilizes protons instead of sodium ions. PomB/MotB has a peptidoglycan (PG)-binding motif in the periplasmic domain, allowing it to function as the stator by being anchored to the PG layer. To generate torque, PomAB/MotAB is thought to undergo a conformational change triggered by the ion flux and to interact directly with FliG, a component of the rotor. Here, we present the first three-dimensional structure of this torque-generating stator unit analyzed by electron microscopy. The structure of PomAB revealed two arm domains, which contain the PG-binding site, connected to a large base made of the TM and cytoplasmic domains. The arms lean downward to the membrane surface, likely representing a "plugged" conformation, which would prevent ions leaking through the channel. We propose a model for how PomAB units are placed around the flagellar basal body to function as torque generators.
Collapse
|
133
|
Lahiri A, Ananthalakshmi TK, Nagarajan AG, Ray S, Chakravortty D. TolA mediates the differential detergent resistance pattern between the Salmonella enterica subsp. enterica serovars Typhi and Typhimurium. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1402-1415. [PMID: 21252278 DOI: 10.1099/mic.0.046565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The tol-pal genes are essential for maintaining the outer membrane integrity and detergent resistance in various Gram-negative bacteria, including Salmonella. The role of TolA has been well established for the bile resistance of Salmonella enterica subsp. enterica serovar Typhimurium. We compared the bile resistance pattern between the S. enterica serovars Typhi and Typhimurium and observed that Typhi is more resistant to bile-mediated damage. A closer look revealed a significant difference in the TolA sequence between the two serovars which contributes to the differential detergent resistance. The tolA knockout of both the serovars behaves completely differently in terms of membrane organization and morphology. The role of the Pal proteins and difference in LPS organization between the two serovars were verified and were found to have no direct connection with the altered bile resistance. In normal Luria broth (LB), S. Typhi ΔtolA is filamentous while S. Typhimurium ΔtolA grows as single cells, similar to the wild-type. In low osmolarity LB, however, S. Typhimurium ΔtolA started chaining and S. Typhi ΔtolA showed no growth. Further investigation revealed that the chaining phenomenon observed was the result of failure of the outer membrane to separate in the dividing cells. Taken together, the results substantiate the evolution of a shorter TolA in S. Typhi to counteract high bile concentrations, at the cost of lower osmotic tolerance.
Collapse
Affiliation(s)
- Amit Lahiri
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - T K Ananthalakshmi
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Arvindhan G Nagarajan
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Seemun Ray
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Dipshikha Chakravortty
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
134
|
Martínez V, García P, García JL, Prieto MA. Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 2011; 4:533-47. [PMID: 21418544 PMCID: PMC3815265 DOI: 10.1111/j.1751-7915.2011.00257.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The development of efficient recovery processes is essential to reduce the cost of polyhydroxyalkanoates (PHAs) production. In this work, a programmed self‐disruptive Pseudomonas putida BXHL strain, derived from the prototype medium‐chain‐length PHA producer bacterium P. putida KT2440, was constructed as a proof of concept for exploring the possibility to control and facilitate the release of PHA granules to the extracellular medium. The new autolytic cell disruption system is based on two simultaneous strategies: the coordinated action of two proteins from the pneumococcal bacteriophage EJ‐1, an endolysin (Ejl) and a holin (Ejh), and the mutation of the tolB gene, which exhibits alterations in outer membrane integrity that induce lysis hypersensitivity. The ejl and ejh coding genes were expressed under a XylS/Pm monocopy expression system inserted into the chromosome of the tolB mutant strain, in the presence of 3‐methylbenzoate as inducer molecule. Our results demonstrate that the intracellular presence of PHA granules confers resistance to cell envelope. Conditions to control the cell autolysis in P. putida BXHL in terms of optimal fermentation, PHA content and PHA recovery have been set up by exploring the sensitivity to detergents, chelating agents and wet biomass solubility in organic solvents such as ethyl acetate.
Collapse
Affiliation(s)
- Virginia Martínez
- Environmental Biology Department, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | |
Collapse
|
135
|
Cadaverine covalently linked to the peptidoglycan serves as the correct constituent for the anchoring mechanism between the outer membrane and peptidoglycan in Selenomonas ruminantium. J Bacteriol 2011; 193:2347-50. [PMID: 21398553 DOI: 10.1128/jb.00106-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Selenomonas ruminantium, a strictly anaerobic and gram-negative bacterium, cadaverine covalently linked to the peptidoglycan is required for the interaction between the peptidoglycan and the S-layer homologous (SLH) domain of the major outer membrane protein Mep45. Here, using a series of diamines with a general structure of NH(3)(+)(CH(2))(n)NH(3)(+) (n = 3 to 6), we found that cadaverine (n = 5) specifically serves as the most efficient constituent of the peptidoglycan in acquiring the high resistance of the cell to external damage agents and is required for effective interaction between the SLH domain of Mep45 and the peptidoglycan, facilitating the correct anchoring of the outer membrane to the peptidoglycan.
Collapse
|
136
|
Karlsen C, Espelid S, Willassen NP, Paulsen SM. Identification and cloning of immunogenic Aliivibrio salmonicida Pal-like protein present in profiled outer membrane and secreted subproteome. DISEASES OF AQUATIC ORGANISMS 2011; 93:215-223. [PMID: 21516974 DOI: 10.3354/dao02302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aliivibrio salmonicida is the aetiological agent of cold water vibriosis affecting farmed fish species, a disease that today is fully controlled by vaccination. However, the molecular mechanisms behind the successful vaccine are largely unknown. In order to gain insight into the possible mechanisms of A. salmonicida vaccines, we report here the profiles of both the outer membrane and secreted subproteomes of A. salmonicida LFI315. The 2 subproteomes were resolved by 2-dimensional electrophoresis that identified a total of 82 protein entries. Monoclonal antibodies specific to an unidentified protein antigen were utilized in the immunoproteomic analysis of both outer membrane proteins and extracellular proteins. The immunogenic protein was located in both subproteomes and identified as a 20 kDa peptidoglycan-associated lipoprotein (Pal). The identity of the antigen was verified by heterologous expression of the cloned A. salmonicida pal gene (VSAL_I1899). It is likely that the immunogenic Pal-like protein is among the constituents that act as a protective antigen in the successful vaccine used today. In view of this, it may be considered a potentially useful component in future vaccine development and pathogenicity studies.
Collapse
Affiliation(s)
- Christian Karlsen
- Department of Molecular Biotechnology, Institute of Medical Biology, Faculty of Medicine, University of Tromso, 9037 Tromse, Norway
| | | | | | | |
Collapse
|
137
|
Vaccine candidate P6 of nontypable Haemophilus influenzae is not a transmembrane protein based on protein structural analysis. Vaccine 2011; 29:1624-7. [PMID: 21215345 DOI: 10.1016/j.vaccine.2010.12.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/06/2010] [Accepted: 12/17/2010] [Indexed: 11/21/2022]
Abstract
P6 has been a vaccine candidate for nontypable Haemophilus influenzae (NTHi) based on its location on the outer membrane and immunogenicity. Because P6 is attached to the inner peptidoglycan layer of NTHi, and is putatively surface exposed, it must be a transmembrane protein. We examined the P6 structure using computational modeling, site-directed mutagenesis, and nuclear magnetic resonance spectroscopy. We found that P6 cannot be a transmembrane protein, and therefore may not be surface exposed. We conclude that there may be another protein on the surface of NTHi that has epitopes similar if not identical to P6.
Collapse
|
138
|
Evaluation of Salmonella-vectored Campylobacter peptide epitopes for reduction of Campylobacter jejuni in broiler chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:449-54. [PMID: 21177910 DOI: 10.1128/cvi.00379-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Campylobacter is a leading cause of bacterial gastroenteritis in humans and is often linked to contaminated poultry products. Live Salmonella vectors expressing three linear peptide epitopes from Campylobacter proteins Cj0113 (Omp18/CjaD), Cj0982c (CjaA), and Cj0420 (ACE393) were administered to chicks by oral gavage on the day of hatch, and the chicks were challenged with Campylobacter jejuni on day 21. All three candidate vaccines produced consistent humoral immune responses with high levels of serum IgG and mucosal secretory IgA (sIgA), with the best response from the Cj0113 peptide-expressing vector. Campylobacter challenge following vaccination of three candidate vaccine groups decreased Campylobacter recovery from the ileum compared to that for controls on day 32. The Cj0113 peptide-expressing vector reduced Campylobacter to below detectable levels. The Salmonella-vectored Cj0113 subunit vaccine appears to be an excellent candidate for further evaluation as a tool for the reduction of Campylobacter in poultry for improved food safety.
Collapse
|
139
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
140
|
Cadaverine covalently linked to peptidoglycan is required for interaction between the peptidoglycan and the periplasm-exposed S-layer-homologous domain of major outer membrane protein Mep45 in Selenomonas ruminantium. J Bacteriol 2010; 192:5953-61. [PMID: 20851903 DOI: 10.1128/jb.00417-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidoglycan of Selenomonas ruminantium is covalently bound to cadaverine (PG-cadaverine), which likely plays a significant role in maintaining the integrity of the cell surface structure. The outer membrane of this bacterium contains a 45-kDa major protein (Mep45) that is a putative peptidoglycan-associated protein. In this report, we determined the nucleotide sequence of the mep45 gene and investigated the relationship between PG-cadaverine, Mep45, and the cell surface structure. Amino acid sequence analysis showed that Mep45 is comprised of an N-terminal S-layer-homologous (SLH) domain followed by α-helical coiled-coil region and a C-terminal β-strand-rich region. The N-terminal SLH domain was found to be protruding into the periplasmic space and was responsible for binding to peptidoglycan. It was determined that Mep45 binds to the peptidoglycan in a manner dependent on the presence of PG-cadaverine. Electron microscopy revealed that defective PG-cadaverine decreased the structural interactions between peptidoglycan and the outer membrane, consistent with the proposed role for PG-cadaverine. The C-terminal β-strand-rich region of Mep45 was predicted to be a membrane-bound unit of the 14-stranded β-barrel structure. Here we propose that PG-cadaverine possesses functional importance to facilitate the structural linkage between peptidoglycan and the outer membrane via specific interaction with the SLH domain of Mep45.
Collapse
|
141
|
Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J Bacteriol 2010; 192:2852-60. [PMID: 20348250 DOI: 10.1128/jb.01628-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular chlamydial infectious particle, or elementary body (EB), is enveloped by an intra- and intermolecular cysteine cross-linked protein shell called the chlamydial outer membrane complex (COMC). A few abundant proteins, including the major outer membrane protein and cysteine-rich proteins (OmcA and OmcB), constitute the overwhelming majority of COMC proteins. The identification of less-abundant COMC proteins has been complicated by limitations of proteomic methodologies and the contamination of COMC fractions with abundant EB proteins. Here, we used parallel liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses of Chlamydia trachomatis serovar L2 434/Bu EB, COMC, and Sarkosyl-soluble EB fractions to identify proteins enriched or depleted from COMC. All well-described COMC proteins were specifically enriched in the COMC fraction. In contrast, multiple COMC-associated proteins found in previous studies were strongly enriched in the Sarkosyl-soluble fraction, suggesting that these proteins are not COMC components or are not stably associated with COMC. Importantly, we also identified novel proteins enriched in COMC. The list of COMC proteins identified in this study has provided reliable information for further understanding chlamydial protein secretion systems and modeling COMC and EB structures.
Collapse
|
142
|
Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 2010; 6:e1000804. [PMID: 20300602 PMCID: PMC2837407 DOI: 10.1371/journal.ppat.1000804] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/03/2010] [Indexed: 11/29/2022] Open
Abstract
During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections. During long-term chronic infections of cystic fibrosis patients, Pseudomonas aeruginosa adapts to the lung environment, generating various different morphotypes including small colony variants (SCVs), small, strongly adherent colonies whose appearance correlates with persistence of infection. The SCV morphology is strongly associated with increased levels of the signaling molecule cyclic di-GMP. In this study we investigated the connection between cyclic di-GMP, SCV and persistence of infection. Following a genetic screen for mutants that displayed SCV morphologies, we identified and characterized the YfiBNR system. YfiN is a membrane-bound cyclic di-GMP producing enzyme, whose activity is tightly controlled by YfiR and YfiB. Cyclic di-GMP produced by YfiN boosts exopolysaccharide synthesis, generating an SCV morphotype upon YfiR-mediated release of YfiN repression. The resulting YfiN-mediated SCV morphotype is highly resistant to macrophage phagocytosis in vitro, suggesting a role for the SCV phenotype in immune system evasion. Consistent with this, YfiN de-repression increased the persistence of P. aeruginosa in long-term infections in a mouse model. The observation that the addition of antibiotics decreased the number of suppressors, and the relative fitness disadvantage of the YfiN-mediated SCV morphotype in liquid culture, suggested that SCV-mediated persistence might be favored during antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Jacob G. Malone
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (JGM); (UJ)
| | - Tina Jaeger
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Ritz
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Regine Landmann
- Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (JGM); (UJ)
| |
Collapse
|