101
|
Luo H, Qian J, Xu Z, Liu W, Xu L, Li Y, Xu J, Zhang J, Xu X, Liu C, He L, Li J, Sun C, Martin F, Song J, Chen S. The Wolfiporia cocos Genome and Transcriptome Shed Light on the Formation of Its Edible and Medicinal Sclerotium. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:455-467. [PMID: 33359677 PMCID: PMC8242266 DOI: 10.1016/j.gpb.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/13/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022]
Abstract
Wolfiporia cocos (F. A. Wolf) has been praised as a food delicacy and medicine for centuries in China. Here, we present the genome and transcriptome of the Chinese strain CGMCC5.78 of W. cocos. High-confidence functional prediction was made for 9277 genes among the 10,908 total predicted gene models in the W. cocos genome. Up to 2838 differentially expressed genes (DEGs) were identified to be related to sclerotial development by comparing the transcriptomes of mycelial and sclerotial tissues. These DEGs are involved in mating processes, differentiation of fruiting body tissues, and metabolic pathways. A number of genes encoding enzymes and regulatory factors related to polysaccharide and triterpenoid production were strikingly regulated. A potential triterpenoid gene cluster including the signature lanosterol synthase (LSS) gene and its modified components were annotated. In addition, five nonribosomal peptide synthase (NRPS)-like gene clusters, eight polyketide synthase (PKS) gene clusters, and 15 terpene gene clusters were discovered in the genome. The differential expression of the velevt family proteins, transcription factors, carbohydrate-active enzymes, and signaling components indicated their essential roles in the regulation of fungal development and secondary metabolism in W. cocos. These genomic and transcriptomic resources will be valuable for further investigations of the molecular mechanisms controlling sclerotial formation and for its improved medicinal applications.
Collapse
Affiliation(s)
- Hongmei Luo
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jun Qian
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanjing Liu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lei Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ying Li
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianhong Zhang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaolan Xu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang Liu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liu He
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianqin Li
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chao Sun
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Francis Martin
- INRA, Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, 54280 Champenoux, France; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing 100083, China.
| | - Jingyuan Song
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
102
|
Song T, Shen Y, Jin Q, Feng W, Fan L, Cai W. Comparative phosphoproteome analysis to identify candidate phosphoproteins involved in blue light-induced brown film formation in Lentinula edodes. PeerJ 2020; 8:e9859. [PMID: 33384895 PMCID: PMC7751435 DOI: 10.7717/peerj.9859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes' brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
103
|
Khan I, Xie WL, Yu YC, Sheng H, Xu Y, Wang JQ, Debnath SC, Xu JZ, Zheng DQ, Ding WJ, Wang PM. Heteroexpression of Aspergillus nidulans laeA in Marine-Derived Fungi Triggers Upregulation of Secondary Metabolite Biosynthetic Genes. Mar Drugs 2020; 18:md18120652. [PMID: 33352941 PMCID: PMC7766385 DOI: 10.3390/md18120652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
Fungi are a prospective resource of bioactive compounds, but conventional methods of drug discovery are not effective enough to fully explore their metabolic potential. This study aimed to develop an easily attainable method to elicit the metabolic potential of fungi using Aspergillus nidulans laeA as a transcription regulation tool. In this study, functional analysis of Aspergillus nidulans laeA (AnLaeA) and Aspergillus sp. Z5 laeA (Az5LaeA) was done in the fungus Aspergillus sp. Z5. Heterologous AnLaeA-and native Az5LaeA-overexpression exhibited similar phenotypic effects and caused an increase in production of a bioactive compound diorcinol in Aspergillus sp. Z5, which proved the conserved function of this global regulator. In particular, heteroexpression of AnLaeA showed a significant impact on the expression of velvet complex genes, diorcinol synthesis-related genes, and different transcription factors (TFs). Moreover, heteroexpression of AnLaeA influenced the whole genome gene expression of Aspergillus sp. Z5 and triggered the upregulation of many genes. Overall, these findings suggest that heteroexpression of AnLaeA in fungi serves as a simple and easy method to explore their metabolic potential. In relation to this, AnLaeA was overexpressed in the fungus Penicillium sp. LC1-4, which resulted in increased production of quinolactacin A.
Collapse
|
104
|
El Hajj Assaf C, Zetina-Serrano C, Tahtah N, Khoury AE, Atoui A, Oswald IP, Puel O, Lorber S. Regulation of Secondary Metabolism in the Penicillium Genus. Int J Mol Sci 2020; 21:E9462. [PMID: 33322713 PMCID: PMC7763326 DOI: 10.3390/ijms21249462] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Chrystian Zetina-Serrano
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Nadia Tahtah
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - André El Khoury
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut 1104, Lebanon;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| |
Collapse
|
105
|
Genomics-directed activation of cryptic natural product pathways deciphers codes for biosynthesis and molecular function. J Nat Med 2020; 75:261-274. [PMID: 33274411 PMCID: PMC7902601 DOI: 10.1007/s11418-020-01466-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022]
Abstract
Natural products, which can be isolated from living organisms worldwide, have played a pivotal role in drug discovery since ancient times. However, it has become more challenging to identify a structurally novel molecule with promising biological activity for pharmaceutical development, mainly due to the limited methodologies for their acquisition. In this review, we summarize our recent studies that activate the biosynthetic potential of filamentous fungi by genetic engineering to harness the metabolic flow for the efficient production of unprecedented natural products. The recent revolution in genome sequencing technology enables the accumulation of vast amounts of information on biosynthetic genes, the blueprint of the molecular construction. Utilizing the established heterologous expression system, activation of the pathway-specific transcription factor coupled with a knockout strategy, and manipulating the global regulatory gene, the biosynthetic genes were exploited to activate biosynthetic pathways and decipher the encoded enzyme functions. We show that this methodology was beneficial for acquiring fungal treasures for drug discovery. These studies also enabled the investigation of the molecular function of natural products in fungal development.
Collapse
|
106
|
Zingales V, Fernández-Franzón M, Ruiz MJ. Sterigmatocystin: Occurrence, toxicity and molecular mechanisms of action – A review. Food Chem Toxicol 2020; 146:111802. [PMID: 33035632 DOI: 10.1016/j.fct.2020.111802] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
|
107
|
Badr AN, Ali HS, Abdel-Razek AG, Shehata MG, Albaridi NA. Bioactive Components of Pomegranate Oil and Their Influence on Mycotoxin Secretion. Toxins (Basel) 2020; 12:toxins12120748. [PMID: 33260849 PMCID: PMC7759867 DOI: 10.3390/toxins12120748] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pomegranate, similar to other fruits, has juice-extraction by-products. Pomegranate seed oil (PGO) is a non-traditional oil with health benefits, rich in bioactive components. This study was aimed to assess PGO phytochemicals and their influence as bioactive components to reduce mycotoxin secretion. The encapsulation was applied in micro and nanoforms to protect the quality and enhance the efficacy of the oil. The PGO was extracted using ultrasound-assisted methods. Carotenoids, tocochromanols, sterols, phenolic, flavonoid, antioxidant, and antimicrobial activity were determined. The fatty acid profile was analyzed by the GC-MS, while mycotoxin was determined utilizing the HPLC apparatus. The toxicity and protective action of oil were examined using the hepatocytes' cell line. The resultant oil acts as oleoresin that is rich in bioactive molecules. Phenolics and antioxidant potency recorded higher values compared to traditional vegetable oils, whereas polyunsaturated fatty acids were 87.51%. The major fatty acid was conjugated punicic acid (81.29%), which has high biological effects. Application of the PGO on fungal media reduced aflatoxins secretion up to 63%, and zearalenone up to 78.5%. These results confirm the bio-functionality of oil to regulate the fungal secondary metabolites process. The PGO is a unique prospective non-traditional oil and has several functionalities in food, which achieve nutritional, antioxidant, and anti-mycotoxigenic activities.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- National Research Centre, Department of Food Toxicology and Contaminants, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +2-01000-327-640 (A.N.B.); +966-56513-327-0841 (H.S.A.)
| | - Hatem Salama Ali
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
- National Research Centre, Department of Food Technology, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +2-01000-327-640 (A.N.B.); +966-56513-327-0841 (H.S.A.)
| | | | - Mohamed Gamal Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Application (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt;
| | - Najla A. Albaridi
- Department of Physical Sport Science, Nutrition and Food Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
108
|
Map-based cloning identifies velvet A as a critical component of virulence in Fusarium pseudograminearum during infection of wheat heads. Fungal Biol 2020; 125:191-200. [PMID: 33622535 DOI: 10.1016/j.funbio.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
Although better known as a pathogen of wheat stem bases, Fusarium pseudograminearum also causes Fusarium head blight. A natural isolate of F. pseudograminearum was identified that showed severely reduced virulence towards wheat heads and a map-based cloning approach was undertaken to identify the genetic basis of this phenotype. Using a population of 95 individuals, a single locus on chromosome 1 was shown to be responsible for the low virulence. Fine mapping narrowed the region to just five possible SNPs of which one was in the F. pseudograminearum homologue of velvet A. Knockout mutants of velvet A, which were non-pathogenic towards wheat, confirmed that velvet A regulates virulence in this pathogen. The mutation in velvet A was only found in a single field isolate and the origin of the mutation is unknown.
Collapse
|
109
|
Bisceglie F, Degola F, Rogolino D, Giannelli G, Orsoni N, Spadola G, Pioli M, Restivo FM, Carcelli M, Pelosi G. Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially tune Aspergillus flavus secondary metabolism. Sci Rep 2020; 10:17686. [PMID: 33077881 PMCID: PMC7572373 DOI: 10.1038/s41598-020-74574-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Great are the expectations for a new generation of antimicrobials, and strenuous are the research efforts towards the exploration of diverse molecular scaffolds-possibly of natural origin - aimed at the synthesis of new compounds against the spread of hazardous fungi. Also high but winding are the paths leading to the definition of biological targets specifically fitting the drug's structural characteristics. The present study is addressed to inspect differential biological behaviours of cinnamaldehyde and benzaldehyde thiosemicarbazone scaffolds, exploiting the secondary metabolism of the mycotoxigenic phytopathogen Aspergillus flavus. Interestingly, owing to modifications on the parent chemical scaffold, some thiosemicarbazones displayed an increased specificity against one or more developmental processes (conidia germination, aflatoxin biosynthesis, sclerotia production) of A. flavus biology. Through the comparative analysis of results, the ligand-based screening strategy here described has allowed us to delineate which modifications are more promising for distinct purposes: from the control of mycotoxins contamination in food and feed commodities, to the environmental management of microbial pathogens, to the investigation of specific structure-activity features for new generation drug discovery.
Collapse
Affiliation(s)
- Franco Bisceglie
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesca Degola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Dominga Rogolino
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Gianluigi Giannelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nicolò Orsoni
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Spadola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marianna Pioli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco M. Restivo
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mauro Carcelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
110
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
111
|
Wang B, Yu H, Jia Y, Dong Q, Steinberg C, Alabouvette C, Edel-Hermann V, Kistler HC, Ye K, Ma LJ, Guo L. Chromosome-Scale Genome Assembly of Fusarium oxysporum Strain Fo47, a Fungal Endophyte and Biocontrol Agent. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1108-1111. [PMID: 32552518 DOI: 10.1094/mpmi-05-20-0116-a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we report a chromosome-level genome assembly of Fusarium oxysporum Fo47 (12 pseudomolecules; contig N50: 4.52 Mb), generated using a combination of PacBio long-read, Illumina paired end, and high-throughput chromosome conformation capture sequencing data. Although F. oxysporum causes vascular wilt to over 100 plant species, the strain Fo47 is classified as an endophyte and is widely used as a biocontrol agent for plant disease control. The Fo47 genome carries a single accessory chromosome of 4.23 Mb, compared with the reference genome of F. oxysporum f. sp. lycopersici Fol4287. The high-quality assembly and annotation of the Fo47 genome will be a valuable resource for studying the mechanisms underlying the endophytic interactions between F. oxysporum and plants as well as for deciphering the genome evolution of the F. oxysporum species complex.
Collapse
Affiliation(s)
- Bo Wang
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Houlin Yu
- Graduate Program of Plant Biology, University of Massachusetts Amherst, Amherst, MA 01003, U.S.A
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, U.S.A
| | - Yanyan Jia
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Quanbin Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 China
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claude Alabouvette
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Veronique Edel-Hermann
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - H Corby Kistler
- USDA ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Kai Ye
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 China
| | - Li-Jun Ma
- Graduate Program of Plant Biology, University of Massachusetts Amherst, Amherst, MA 01003, U.S.A
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, U.S.A
| | - Li Guo
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 China
| |
Collapse
|
112
|
Son YE, Park HS. Genome Wide Analysis Reveals the Role of VadA in Stress Response, Germination, and Sterigmatocystin Production in Aspergillus nidulans Conidia. Microorganisms 2020; 8:microorganisms8091319. [PMID: 32872591 PMCID: PMC7565415 DOI: 10.3390/microorganisms8091319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023] Open
Abstract
In the Aspergillus species, conidia are asexual spores that are infectious particles responsible for propagation. Conidia contain various mycotoxins that can have detrimental effects in humans. Previous study demonstrated that VadA is required for fungal development and spore viability in the model fungus Aspergillus nidulans. In the present study, vadA transcriptomic analysis revealed that VadA affects the mRNA expression of a variety of genes in A. nidulans conidia. The genes that were primarily affected in conidia were associated with trehalose biosynthesis, cell-wall integrity, stress response, and secondary metabolism. Genetic changes caused by deletion of vadA were related to phenotypes of the vadA deletion mutant conidia. The deletion of vadA resulted in increased conidial sensitivity against ultraviolet stress and induced germ tube formation in the presence and absence of glucose. In addition, most genes in the secondary metabolism gene clusters of sterigmatocystin, asperfuranone, monodictyphenone, and asperthecin were upregulated in the mutant conidia with vadA deletion. The deletion of vadA led to an increase in the amount of sterigmatocystin in the conidia, suggesting that VadA is essential for the repression of sterigmatocystin production in conidia. These results suggest that VadA coordinates conidia maturation, stress response, and secondary metabolism in A. nidulans conidia.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5751
| |
Collapse
|
113
|
Abstract
Histoplasma capsulatum is a member of a group of fungal pathogens called thermally dimorphic fungi, all of which respond to mammalian body temperature by converting from an environmental mold form into a parasitic host form that causes disease. Histoplasma is a primary fungal pathogen, meaning it is able to cause disease in healthy individuals. We are beginning to understand how host temperature is utilized as a key signal to facilitate growth in the parasitic yeast form and promote production of virulence factors. In recent years, multiple regulators of morphology and virulence have been identified in Histoplasma. Mutations in these regulators render the pathogen unable to convert to the parasitic yeast form. Additionally, several virulence factors have been characterized for their importance in in vivo survival and pathogenesis. These virulence factors and regulators can serve as molecular handles for the development of effective drugs and therapeutics to counter Histoplasma infection.
Collapse
Affiliation(s)
- Sinem Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute , La Jolla , CA , USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California , San Francisco , CA , USA
| |
Collapse
|
114
|
McCorison CB, Goodwin SB. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light. BMC Genomics 2020; 21:513. [PMID: 32711450 PMCID: PMC7382159 DOI: 10.1186/s12864-020-06899-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. Results There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. Conclusions This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.
Collapse
Affiliation(s)
- Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
115
|
Ciesielska A, Stączek P. A new molecular marker for species-specific identification of Microsporum canis. Braz J Microbiol 2020; 51:1505-1508. [PMID: 32696419 PMCID: PMC7688866 DOI: 10.1007/s42770-020-00340-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022] Open
Abstract
Species identification of dermatophytes by conventional mycological methods based on macro- and microscopy analysis is time-consuming and has a lot of limitations such as slow fungal growth or low specificity. Thus, there is a need for the development of molecular methods that would provide reliable and prompt identification of this group of medically important fungi. The are many reports in the literature concerning PCR identification of dermatophyte species, but still, there are not many PCR assays for the separate detection of members of the genera Microsporum, especially Microsporum canis (zoophilic species) and Microsporum audouinii (anthropophilic species). The correct distinction of these species is important to determine the source of infection to implement the appropriate action to eliminate the path of infection transmission. In this paper, we present such a PCR-based method targeting velB gene that uses a set of two primers—Mc-VelB-F (5′-CTTCCCCACCCGCAACATC-3′) and Mc-VelB-R (5′-TGTGGCTGCACCTGAGAGTGG-3′). The amplified fragment is specific due to the presence of (CAGCAC)8 microsatellite sequence only in the velB gene of M. canis. DNA from 153 fungal samples was used in PCR assay followed by electrophoretic analysis. The specificity of the designed set of primers was also confirmed using the online BLAST-Primer tool. The positive results were observed only in the case of M. canis isolates, and no positive results were obtained neither for other dermatophytes and non-dermatophyte fungi nor for other Eukaryotes, including the human genome sequence, as well as the representatives of bacterial and viral taxa. The developed PCR assay using the proposed Mc-VelB-F and Mc-velB-R primers can be included in the algorithm of M. canis detection in animals and humans.
Collapse
Affiliation(s)
- Anita Ciesielska
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Paweł Stączek
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
116
|
Xie Y, Chang J, Kwan HS. Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Fungal Genet Biol 2020; 143:103432. [PMID: 32681999 DOI: 10.1016/j.fgb.2020.103432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The balance and interplay between sexual and asexual reproduction is one of the most intriguing mysteries in the study of fungi. The choice of developmental strategy reflects the ability of fungi to adapt to the changing environment. However, the evolution of developmental paths and the metabolic regulation during differentiation and morphogenesis are poorly understood. Here, an analysis was performed of carbohydrate metabolism and gene expression regulation during the early differentiation process from the vegetative mycelium, to the differentiated structures, fruiting body, oidia and sclerotia, of a homokaryotic fruiting Coprinopsis cinerea strain A43mutB43mut pab1-1 #326. Changes during morphogenesis and the evolution of developmental strategies were followed. Conversion between glucose and glycogen and between glucose and beta-glucan were the main carbon flows in the differentiation processes. Genes related to carbohydrate transport and metabolism were significantly differentially expressed among paths. Sclerotia displayed a set of specifically up-regulated genes that were enriched in the carbon metabolism and energy production and conversion processes. Evolutionary transcriptomic analysis of four developmental paths showed that all transcriptomes were under the purifying selection, and the more stressful the environment, the younger the transcriptome age. Oidiation has the lowest value of transcriptome age index (TAI) and transcriptome divergence index (TDI), while the fruiting process has the highest of both indexes. These findings provide new insights into the regulations of carbon metabolism and gene expressions during the early stages of fungal developmental paths differentiation, and improve our understanding of the evolutionary process of life history and reproductive strategy in fungi.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
117
|
The putative C2H2 transcription factor RocA is a novel regulator of development and secondary metabolism in Aspergillus nidulans. J Microbiol 2020; 58:574-587. [DOI: 10.1007/s12275-020-0083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 11/27/2022]
|
118
|
García-Estrada C, Martín JF, Cueto L, Barreiro C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes (Basel) 2020; 11:E712. [PMID: 32604893 PMCID: PMC7348727 DOI: 10.3390/genes11060712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Penicillin biosynthesis by Penicillium chrysogenum is one of the best-characterized biological processes from the genetic, molecular, biochemical, and subcellular points of view. Several omics studies have been carried out in this filamentous fungus during the last decade, which have contributed to gathering a deep knowledge about the molecular mechanisms underlying improved productivity in industrial strains. The information provided by these studies is extremely useful for enhancing the production of penicillin or other bioactive secondary metabolites by means of Biotechnology or Synthetic Biology.
Collapse
Affiliation(s)
- Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Juan F. Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain;
| | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain
| |
Collapse
|
119
|
Jørgensen TR, Burggraaf AM, Arentshorst M, Schutze T, Lamers G, Niu J, Kwon MJ, Park J, Frisvad JC, Nielsen KF, Meyer V, van den Hondel CA, Dyer PS, Ram AF. Identification of SclB, a Zn(II)2Cys6 transcription factor involved in sclerotium formation in Aspergillus niger. Fungal Genet Biol 2020; 139:103377. [DOI: 10.1016/j.fgb.2020.103377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
120
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
121
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 PMCID: PMC7438019 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
122
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
123
|
Abstract
Fungi are rich sources of secondary metabolites of pharmaceutical importance, such as antibiotics, antitumor agents, and immunosuppressants, as well as of harmful toxins. Secondary metabolites play important roles in the development and pathogenesis of fungi. LaeA is a global regulator of secondary metabolism and was originally reported in Aspergillus nidulans; however, its role in secondary metabolism in Magnaporthe oryzae has not yet been reported. Here, we investigated the role of a gene homologous to LAEA (loss of AflR expression) of Aspergillus spp. in Magnaporthe oryzae, named M. oryzaeLAEA (MoLAEA). Studies on MoLAEA overexpression and knockdown strains have suggested that this gene acts as a negative regulator of sporulation and melanin synthesis. However, it is not involved in the growth and pathogenesis of M. oryzae Transcriptomic data indicated that MoLAEA regulated genes involved in secondary metabolism. Interestingly, we observed (for the first time, to our knowledge) that this gene is involved in benzylpenicillin (penicillin G) synthesis in M. oryzae Overexpression of MoLAEA increased penicillin G production, whereas the silenced strain showed a complete absence of penicillin G compared to its presence in the wild type. We also observed that MoLaeA interacted with MoVeA, a velvet family protein involved in fungal development and secondary metabolism, in the nucleus. This study showed that though MoLAEA may not make any contribution in rice blast fungal pathogenesis, it regulates secondary metabolism in M. oryzae and thus can be further studied for identifying other new uncharacterized metabolites in this fungus.IMPORTANCEM. oryzae causes blast disease, the most serious disease of cultivated rice affecting global rice production. The genome of M. oryzae has been shown to have a number of genes involved in secondary metabolism, but most of them are uncharacterized. In fact, compared to studies of other filamentous fungi, hardly any work has been done on secondary metabolism in M. oryzae It is shown here (for the first time, to our knowledge) that penicillin G is being synthesized in M. oryzae and that MoLAEA is involved in this process. This is the first step in understanding the penicillin G biosynthesis pathway in M. oryzae This study also unraveled the details of how MoLaeA works by forming a nuclear complex with MoVeA in M. oryzae, thus indicating functional conservation of such a gene across filamentous fungi. All these findings open up avenues for more relevant investigations on the genetic regulation of secondary metabolism in M. oryzae.
Collapse
|
124
|
Lim JY, Kang EH, Park YH, Kook JH, Park HM. Survival factor SvfA plays multiple roles in differentiation and is essential for completion of sexual development in Aspergillus nidulans. Sci Rep 2020; 10:5586. [PMID: 32221392 PMCID: PMC7101369 DOI: 10.1038/s41598-020-62455-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/13/2020] [Indexed: 01/28/2023] Open
Abstract
The first member of the velvet family of proteins, VeA, regulates sexual development and secondary metabolism in the filamentous fungus Aspergillus nidulans. In our study, through comparative proteome analysis using wild type and veA-deletion strains, new putative regulators of sexual development were identified and functionally analyzed. Among these, SvfA, containing a yeast survival factor 1 domain, plays multiple roles in the growth and differentiation of A. nidulans. Deletion of the svfA gene resulted in increased sensitivity to oxidative and cold stress as in yeast. The svfA-deletion strain showed an increase in bi-polar germination and a decrease in radial growth rate. The deletion strain formed structurally abnormal conidiophores and thus produced lower amounts of conidiospores during asexual development. The svfA-deletion strain produced few Hülle cells and small cleistothecia with no ascospores, indicating the requirement of svfA for the completion of sexual development. Transcription and genetic analyses indicated that SvfA modulates the expression of key development regulatory genes. Western blot analysis revealed two forms of SvfA. The larger form showed sexual-specific and VeA-dependent production. Also, the deletion of svfA caused decreased ST (sterigmatocystin) production. We propose that SvfA is a novel central regulator of growth, differentiation and secondary metabolism in A. nidulans.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Eun-Hye Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Yun-Hee Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Jun-Ho Kook
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
125
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
126
|
Perlatti B, Lan N, Jiang Y, An Z, Bills G. Identification of Secondary Metabolites from Aspergillus pachycristatus by Untargeted UPLC-ESI-HRMS/MS and Genome Mining. Molecules 2020; 25:molecules25040913. [PMID: 32085602 PMCID: PMC7071103 DOI: 10.3390/molecules25040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
Aspergillus pachycristatus is an industrially important fungus for the production of the antifungal echinocandin B and is closely related to model organism A. nidulans. Its secondary metabolism is largely unknown except for the production of echinocandin B and sterigmatocystin. We constructed mutants for three genes that regulate secondary metabolism in A. pachycristatus NRRL 11440, and evaluated the secondary metabolites produced by wild type and mutants strains. The secondary metabolism was explored by metabolic networking of UPLC-HRMS/MS data. The genes and metabolites of A. pachycristatus were compared to those of A.nidulans FGSC A4 as a reference to identify compounds and link them to their encoding genes. Major differences in chromatographic profiles were observable among the mutants. At least 28 molecules were identified in crude extracts that corresponded to nine characterized gene clusters. Moreover, metabolic networking revealed the presence of a yet unexplored array of secondary metabolites, including several undescribed fellutamides derivatives. Comparative reference to its sister species, A. nidulans, was an efficient way to dereplicate known compounds, whereas metabolic networking provided information that allowed prioritization of unknown compounds for further metabolic exploration. The mutation of global regulator genes proved to be a useful tool for expanding the expression of metabolic diversity in A. pachycristatus.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
- Correspondence:
| | - Nan Lan
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
| | - Yongying Jiang
- Institute for Applied Cancer Science, M.D. Anderson Cancer Center, Houston, TX 77054, USA;
| | - Zhiqiang An
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
| | - Gerald Bills
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
| |
Collapse
|
127
|
LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2020; 86:AEM.01950-19. [PMID: 31862728 DOI: 10.1128/aem.01950-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The putative methyltransferase LaeA is a global regulator of metabolic and development processes in filamentous fungi. We characterized the homologous laeA genes of the white koji fungus Aspergillus luchuensis mut. kawachii (A. kawachii) to determine their role in citric acid hyperproduction. The ΔlaeA strain exhibited a significant reduction in citric acid production. Cap analysis gene expression (CAGE) revealed that laeA is required for the expression of a putative citrate exporter-encoding cexA gene, which is critical for citric acid production. Deficient citric acid production by a ΔlaeA strain was rescued by the overexpression of cexA to a level comparable with that of a cexA-overexpressing ΔcexA strain. In addition, chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis indicated that LaeA regulates the expression of cexA via methylation levels of the histones H3K4 and H3K9. These results indicate that LaeA is involved in citric acid production through epigenetic regulation of cexA in A. kawachii IMPORTANCE A. kawachii has been traditionally used for production of the distilled spirit shochu in Japan. Citric acid produced by A. kawachii plays an important role in preventing microbial contamination during the shochu fermentation process. This study characterized homologous laeA genes; using CAGE, complementation tests, and ChIP-qPCR, it was found that laeA is required for citric acid production through the regulation of cexA in A. kawachii The epigenetic regulation of citric acid production elucidated in this study will be useful for controlling the fermentation processes of shochu.
Collapse
|
128
|
Son YE, Cho HJ, Chen W, Son SH, Lee MK, Yu JH, Park HS. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Curr Genet 2020; 66:621-633. [PMID: 32060628 DOI: 10.1007/s00294-020-01058-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
The DnaJ family of proteins (or J-proteins) are molecular chaperones that govern protein folding, degradation, and translocation in many organisms. Although J-proteins play key roles in eukaryotic and prokaryotic biology, the role of J-proteins in Aspergillus species is currently unknown. In this study, we characterized the dnjA gene, which encodes a putative DnaJ protein, in two Aspergillus species: Aspergillus nidulans and Aspergillus flavus. Expression of the dnjA gene is inhibited by the velvet regulator VosA, which plays a pivotal role in spore survival and metabolism in Aspergillus. The deletion of dnjA decreased the number of asexual spores (conidia), produced abnormal conidiophores, and reduced sexual fruiting bodies (cleistothecia) or sclerotia. In addition, the absence of dnjA caused increased sterigmatocystin or aflatoxin production in A. nidulans and A. flavus, respectively. These results suggest that DnjA plays a conserved role in asexual and sexual development and mycotoxin production in Aspergillus species. However, DnjA also plays a species-specific role; AniDnjA but not AflDnjA, affects conidial viability, trehalose contents, and thermal tolerance of conidia. In plant virulence assay, the infection ability of the ΔAfldnjA mutant decreased in the kernels, suggesting that DnjA plays a crucial role in the pathogenicity of A. flavus. Taken together, these results demonstrate that DnjA is multifunctional in Aspergillus species; it is involved in diverse biological processes, including fungal differentiation and secondary metabolism.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Gottingen, Göttingen, Germany
| | - Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Mi-Kyung Lee
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Systems Biotechnology, Konkuk University, Seoul, 05030, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
129
|
Marcos AT, Ramos MS, Schinko T, Strauss J, Cánovas D. Nitric oxide homeostasis is required for light-dependent regulation of conidiation in Aspergillus. Fungal Genet Biol 2020; 137:103337. [PMID: 31991229 DOI: 10.1016/j.fgb.2020.103337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) can be biologically synthesized from nitrite or from arginine. Although NO is involved as a signal in many biological processes in bacteria, plants, and mammals, still little is known about the role of NO in fungi. Here we show that NO levels are regulated by light as an environmental signal in Aspergillus nidulans. The flavohaemoglobin-encoding fhbB gene involved in NO oxidation to nitrate, and the arginine-regulated arginase encoded by agaA, which controls the intracellular concentration of arginine, are both up-regulated by light. The phytochrome fphA is required for the light-dependent induction of fhbB and agaA, while the white-collar gene lreA acts as a repressor when arginine is present in the media. The intracellular arginine pools increase upon induction of both developmental programs (conidiation and sexual development), and the increase is higher under conditions promoting sexual development. The presence of low concentrations of arginine does not affect the light-dependent regulation of conidiation, but high concentrations of arginine overrun the light signal. Deletion of fhbB results in the partial loss of the light regulation of conidiation on arginine and on nitrate media, while deletion of fhbA only affects the light regulation of conidiation on nitrate media. Our working model considers a cross-talk between environmental cues and intracellular signals to regulate fungal reproduction.
Collapse
Affiliation(s)
- Ana T Marcos
- Department of Genetics, Faculty of Biology, University of Seville, Spain
| | - María S Ramos
- Department of Genetics, Faculty of Biology, University of Seville, Spain
| | - Thorsten Schinko
- Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Spain; Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria.
| |
Collapse
|
130
|
The Transcriptional Regulator HbxA Governs Development, Secondary Metabolism, and Virulence in Aspergillus fumigatus. Appl Environ Microbiol 2020; 86:AEM.01779-19. [PMID: 31757831 DOI: 10.1128/aem.01779-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Aspergillus fumigatus is the leading cause of invasive aspergillosis, which in immunocompromised patients results in a mortality rate as high as 90%. Earlier studies showed that HbxA is a global regulator in Aspergillus flavus affecting morphological development and secondary metabolism. Here, we determined its role in A. fumigatus, examining whether HbxA influences the regulation of asexual development, natural product biosynthesis, and virulence of this fungus. Our analysis demonstrated that removal of the hbxA gene caused a near-complete loss of conidial production in the mutant strain, as well as a slight reduction in colony growth. Other aspects of asexual development are affected, such as size and germination of conidia. Furthermore, we showed that in A. fumigatus, the loss of hbxA decreased the expression of the brlA central regulatory pathway involved in asexual development, as well as the expression of the "fluffy" genes flbB, flbD, and fluG HbxA was also found to regulate secondary metabolism, affecting the biosynthesis of multiple natural products, including fumigaclavines, fumiquinazolines, and chaetominine. In addition, using a neutropenic mouse infection model, hbxA was found to negatively impact the virulence of A. fumigatus IMPORTANCE The number of immunodepressed individuals is increasing, mainly due to the greater life expectancy in immunodepressed patients due to improvements in modern medical treatments. However, this population group is highly susceptible to invasive aspergillosis. This devastating illness, mainly caused by the fungus Aspergillus fumigatus, is associated with mortality rates reaching 90%. Treatment options for this disease are currently limited, and a better understanding of A. fumigatus genetic regulatory mechanisms is paramount for the design of new strategies to prevent or combat this infection. Our work provides new insight into the regulation of the development, metabolism, and virulence of this important opportunistic pathogen. The transcriptional regulatory gene hbxA has a profound effect on A. fumigatus biology, governing multiple aspects of conidial development. This is relevant since conidia are the main source of inoculum in Aspergillus infections. Importantly, hbxA also regulates the biosynthesis of secondary metabolites and the pathogenicity of this fungus.
Collapse
|
131
|
The velvet Regulator VosA Governs Survival and Secondary Metabolism of Sexual Spores in Aspergillus nidulans. Genes (Basel) 2020; 11:genes11010103. [PMID: 31963266 PMCID: PMC7016683 DOI: 10.3390/genes11010103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
The velvet regulator VosA plays a pivotal role in asexual sporulation in the model filamentous fungus Aspergillus nidulans. In the present study, we characterize the roles of VosA in sexual spores (ascospores) in A. nidulans. During ascospore maturation, the deletion of vosA causes a rapid decrease in spore viability. The absence of vosA also results in a lack of trehalose biogenesis and decreased tolerance of ascospores to thermal and oxidative stresses. RNA-seq-based genome-wide expression analysis demonstrated that the loss of vosA leads to elevated expression of sterigmatocystin (ST) biosynthetic genes and a slight increase in ST production in ascospores. Moreover, the deletion of vosA causes upregulation of additional gene clusters associated with the biosynthesis of other secondary metabolites, including asperthecin, microperfuranone, and monodictyphenone. On the other hand, the lack of vosA results in the downregulation of various genes involved in primary metabolism. In addition, vosA deletion alters mRNA levels of genes associated with the cell wall integrity and trehalose biosynthesis. Overall, these results demonstrate that the velvet regulator VosA plays a key role in the maturation and the cellular and metabolic integrity of sexual spores in A. nidulans.
Collapse
|
132
|
Rahnama M, Maclean P, Fleetwood DJ, Johnson RD. VelA and LaeA are Key Regulators of Epichloë festucae Transcriptomic Response during Symbiosis with Perennial Ryegrass. Microorganisms 2019; 8:microorganisms8010033. [PMID: 31878026 PMCID: PMC7023048 DOI: 10.3390/microorganisms8010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
VelA (or VeA) is a key global regulator in fungal secondary metabolism and development which we previously showed is required during the symbiotic interaction of Epichloë festucae with perennial ryegrass. In this study, comparative transcriptomic analyses of ∆velA mutant compared to wild-type E. festucae, under three different conditions (in culture, infected seedlings, and infected mature plants), were performed to investigate the impact of VelA on E. festucae transcriptome. These comparative transcriptomic studies showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with a number of small secreted proteins and a large number of proteins with no predictable functions. In addition, these results were compared with previous transcriptomic experiments that studied the impact of LaeA, another key global regulator of secondary metabolism and development that we have shown is important for E. festucae–perennial ryegrass interaction. The results showed that although VelA and LaeA regulate a subset of E. festucae genes in a similar manner, they also regulated many other genes independently of each other suggesting specialised roles.
Collapse
Affiliation(s)
- Mostafa Rahnama
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Correspondence: (M.R.); (R.D.J.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
| | - Damien J. Fleetwood
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
- Biotelliga Ltd, Auckland 1052, New Zealand
| | - Richard D. Johnson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; (P.M.); (D.J.F.)
- Correspondence: (M.R.); (R.D.J.)
| |
Collapse
|
133
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
134
|
Abstract
Aspergilli produce conidia for reproduction or to survive hostile conditions, and they are highly effective in the distribution of conidia through the environment. In immunocompromised individuals, inhaled conidia can germinate inside the respiratory tract, which may result in invasive pulmonary aspergillosis. The management of invasive aspergillosis has become more complex, with new risk groups being identified and the emergence of antifungal resistance. Patient survival is threatened by these developments, stressing the need for alternative therapeutic strategies. As germination is crucial for infection, prevention of this process might be a feasible approach. A broader understanding of conidial germination is important to identify novel antigermination targets. In this review, we describe conidial resistance against various stresses, transition from dormant conidia to hyphal growth, the underlying molecular mechanisms involved in germination of the most common Aspergillus species, and promising antigermination targets. Germination of Aspergillus is characterized by three morphotypes: dormancy, isotropic growth, and polarized growth. Intra- and extracellular proteins play an important role in the protection against unfavorable environmental conditions. Isotropically expanding conidia remodel the cell wall, and biosynthetic machineries are needed for cellular growth. These biosynthetic machineries are also important during polarized growth, together with tip formation and the cell cycle machinery. Genes involved in isotropic and polarized growth could be effective antigermination targets. Transcriptomic and proteomic studies on specific Aspergillus morphotypes will improve our understanding of the germination process and allow discovery of novel antigermination targets and biomarkers for early diagnosis and therapy.
Collapse
|
135
|
Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu Rev Genet 2019; 53:149-170. [DOI: 10.1146/annurev-genet-120417-031415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.
Collapse
Affiliation(s)
- Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
136
|
Sil A. Molecular regulation of Histoplasma dimorphism. Curr Opin Microbiol 2019; 52:151-157. [PMID: 31739263 PMCID: PMC6910920 DOI: 10.1016/j.mib.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/06/2023]
Abstract
Temperature serves as a fundamental signal in biological systems. In some microbial pathogens of humans, mammalian body temperature triggers establishment and maintenance of a developmental program that allows the microbe to survive and thrive in the host. Histoplasma capsulatum is one of a group of fungal pathogens called thermally dimorphic fungi, all of which respond to mammalian body temperature by converting from an environmental mold form that inhabits the soil into a parasitic form that causes disease in the host. It has been known for decades that temperature is a key signal that is sufficient to trigger the switch from the soil to host form (and vice versa) in the laboratory. Recent molecular studies have identified a number of key regulators that are required to specify each of the developmental forms in response to temperature. Here we review the regulatory circuits that govern temperature-dependent dimorphism in Histoplasma.
Collapse
Affiliation(s)
- Anita Sil
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
137
|
Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the echinocandin-producing fungus Aspergillus pachycristatus. J Ind Microbiol Biotechnol 2019; 47:155-168. [PMID: 31758414 DOI: 10.1007/s10295-019-02250-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
The impact of the global secondary metabolite regulators LaeA and VeA on echinocandin B production and morphological development was evaluated in the industrial production strain Aspergillus pachycristatus NRRL 11440. Other representative secondary metabolites were examined as well to determine if the velvet complex functions as in A. nidulans and other species of fungi. Genetic methods used for gene manipulations in A. nidulans were applied to A. pachycristatus. Separate deletions of genes Apc.laeA and Apc.veA resulted in similar yet differing phenotypes in strain NRRL 11440. Disruption of Apc.laeA and Apc.veA significantly reduced, but did not eliminate, the production of echinocandin B. Similar to what has been observed in A. nidulans, the production of sterigmatocystin was nearly eliminated in both mutants. Quantitative reverse transcription PCR analyses confirmed that selected genes of both the echinocandin B and sterigmatocystin gene clusters were down-regulated in both mutant types. The two mutants differed with respect to growth of aerial hyphae, pigmentation, development of conidiophores, conidial germination rate, and ascospore maturation. Further functional annotation of key regulatory genes in A. pachycristatus and related Aspergillus species will improve our understanding of regulation of echinocandin production and co-produced metabolites.
Collapse
|
138
|
Piontelli E, Vieille P, Peterson SW. Aspergillus incahuasiensis sp. nov., isolated from soil in the semi-arid region of northern Chile. Int J Syst Evol Microbiol 2019; 69:3350-3355. [PMID: 31592755 DOI: 10.1099/ijsem.0.003361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a study of the fungi from a semi-arid region of northern Chile, a novel species of Aspergillus was encountered in the soil from an area where pepper trees (Schinusmolle) were growing. Marker genes were sequenced to identify these isolates. The β-tubulin, calmodulin and DNA-dependent RNA polymerase loci all indicated that this was a novel species in Aspergillus section Nidulantes and in the Aspergillus multicolorclade. The new species was studied morphologically and differences between it and the other members of the A. multicolor clade are described. We provide a name and description for these isolates as Aspergillus incahuasiensis sp. nov.
Collapse
Affiliation(s)
- Eduardo Piontelli
- Laboratorio de Micologia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Peggy Vieille
- Laboratorio de Micologia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Stephen W Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| |
Collapse
|
139
|
Lwin HP, Choi YH, Lee MW, Yu JH, Shin KS. RgsA Attenuates the PKA Signaling, Stress Response, and Virulence in the Human Opportunistic Pathogen Aspergillus fumigatus. Int J Mol Sci 2019; 20:ijms20225628. [PMID: 31717953 PMCID: PMC6888639 DOI: 10.3390/ijms20225628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
The regulator of G-protein signaling (RGS) proteins play an important role in upstream control of heterotrimeric G-protein signaling pathways. In the genome of the human opportunistic pathogenic fungus Aspergillus fumigatus, six RGS protein-encoding genes are present. To characterize the rgsA gene predicted to encode a protein with an RGS domain, we generated an rgsA null mutant and observed the phenotypes of the mutant. The deletion (Δ) of rgsA resulted in increased radial growth and enhanced asexual sporulation in both solid and liquid culture conditions. Accordingly, transcripts levels of the key asexual developmental regulators abaA, brlA, and wetA are elevated in the ΔrgsA mutant. Moreover, ΔrgsA resulted in elevated spore germination rates in the absence of a carbon source. The activity of cAMP-dependent protein kinase A (PKA) and mRNA levels of genes encoding PKA signaling elements are elevated by ΔrgsA. In addition, mRNA levels of genes associated with stress-response signaling increased with the lack of rgsA, and the ΔrgsA spores showed enhanced tolerance against oxidative stressors. Comparative transcriptomic analyses revealed that the ΔrgsA mutant showed higher mRNA levels of gliotoxin (GT) biosynthetic genes. Accordingly, the rgsA null mutant exhibited increased production of GT and elevated virulence in the mouse. Conversely, the majority of genes encoding glucan degrading enzymes were down-regulated by ΔrgsA, and endoglucanase activities were reduced. In summary, RgsA plays multiple roles, governing growth, development, stress responses, virulence, and external polymer degradation-likely by attenuating PKA signaling.
Collapse
Affiliation(s)
- Hnin Phyu Lwin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (H.P.L.); (Y.-H.C.)
| | - Yong-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (H.P.L.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Chungcheongnam-do 31151, Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (J.-H.Y.); (K.-S.S.); Tel.: +1-608-262-4696 (J.-H.Y.); +82-42-280-2439 (K.-S.S.); Fax: +1-608-262-2976 (J.-H.Y.); +82-42-280-2608 (K.-S.S.)
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (H.P.L.); (Y.-H.C.)
- Correspondence: (J.-H.Y.); (K.-S.S.); Tel.: +1-608-262-4696 (J.-H.Y.); +82-42-280-2439 (K.-S.S.); Fax: +1-608-262-2976 (J.-H.Y.); +82-42-280-2608 (K.-S.S.)
| |
Collapse
|
140
|
Álvarez-Escribano I, Sasse C, Bok JW, Na H, Amirebrahimi M, Lipzen A, Schackwitz W, Martin J, Barry K, Gutiérrez G, Cea-Sánchez S, Marcos AT, Grigoriev IV, Keller NP, Braus GH, Cánovas D. Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants. BMC Biol 2019; 17:88. [PMID: 31711484 PMCID: PMC6844060 DOI: 10.1186/s12915-019-0702-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
Background Aspergillus spp. comprises a very diverse group of lower eukaryotes with a high relevance for industrial applications and clinical implications. These multinucleate species are often cultured for many generations in the laboratory, which can unknowingly propagate hidden genetic mutations. To assess the likelihood of such events, we studied the genome stability of aspergilli by using a combination of mutation accumulation (MA) lines and whole genome sequencing. Results We sequenced the whole genomes of 30 asexual and 10 sexual MA lines of three Aspergillus species (A. flavus, A. fumigatus and A. nidulans) and estimated that each MA line accumulated mutations for over 4000 mitoses during asexual cycles. We estimated mutation rates of 4.2 × 10−11 (A. flavus), 1.1 × 10−11 (A. fumigatus) and 4.1 × 10−11 (A. nidulans) per site per mitosis, suggesting that the genomes are very robust. Unexpectedly, we found a very high rate of GC → TA transversions only in A. flavus. In parallel, 30 asexual lines of the non-homologous end-joining (NHEJ) mutants of the three species were also allowed to accumulate mutations for the same number of mitoses. Sequencing of these NHEJ MA lines gave an estimated mutation rate of 5.1 × 10−11 (A. flavus), 2.2 × 10−11 (A. fumigatus) and 4.5 × 10−11 (A. nidulans) per base per mitosis, which is slightly higher than in the wild-type strains and some ~ 5–6 times lower than in the yeasts. Additionally, in A. nidulans, we found a NHEJ-dependent interference of the sexual cycle that is independent of the accumulation of mutations. Conclusions We present for the first time direct counts of the mutation rate of filamentous fungal species and find that Aspergillus genomes are very robust. Deletion of the NHEJ machinery results in a slight increase in the mutation rate, but at a rate we suggest is still safe to use for biotechnology purposes. Unexpectedly, we found GC→TA transversions predominated only in the species A. flavus, which could be generated by the hepatocarcinogen secondary metabolite aflatoxin. Lastly, a strong effect of the NHEJ mutation in self-crossing was observed and an increase in the mutations of the asexual lines was quantified.
Collapse
Affiliation(s)
- Isidro Álvarez-Escribano
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain.,Present Address: Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Wendy Schackwitz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Joel Martin
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Gabriel Gutiérrez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Sara Cea-Sánchez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Ana T Marcos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain.,Present Address: Instituto para el Estudio de la Reproducción Humana (Inebir), Avda de la Cruz Roja 1, 41009, Sevilla, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain.
| |
Collapse
|
141
|
A newly constructed Agrobacterium-mediated transformation system revealed the influence of nitrogen sources on the function of the LaeA regulator in Penicillium chrysogenum. Fungal Biol 2019; 123:830-842. [DOI: 10.1016/j.funbio.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023]
|
142
|
Horta MAC, Thieme N, Gao Y, Burnum-Johnson KE, Nicora CD, Gritsenko MA, Lipton MS, Mohanraj K, de Assis LJ, Lin L, Tian C, Braus GH, Borkovich KA, Schmoll M, Larrondo LF, Samal A, Goldman GH, Benz JP. Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa. Front Microbiol 2019; 10:2317. [PMID: 31736884 PMCID: PMC6838226 DOI: 10.3389/fmicb.2019.02317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unknown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition. To elucidate how changes in the initial substrate recognition phase of Neurospora crassa affect the global phosphorylation pattern, phospho-proteomics was performed after a short (2 min) induction period with several plant cell wall-related mono- and disaccharides. The MS/MS-based peptide analysis revealed large-scale substrate-specific protein phosphorylation and de-phosphorylations. Using the proteins identified by MS/MS, a protein-protein-interaction (PPI) network was constructed. The variance in phosphorylation of a large number of kinases, phosphatases and transcription factors indicate the participation of many known signaling pathways, including circadian responses, two-component regulatory systems, MAP kinases as well as the cAMP-dependent and heterotrimeric G-protein pathways. Adenylate cyclase, a key component of the cAMP pathway, was identified as a potential hub for carbon source-specific differential protein interactions. In addition, four phosphorylated F-Box proteins were identified, two of which, Fbx-19 and Fbx-22, were found to be involved in carbon catabolite repression responses. Overall, these results provide unprecedented and detailed insights into a so far less well known stage of the fungal response to environmental cues and allow to better elucidate the molecular mechanisms of sensory perception and signal transduction during plant cell wall degradation.
Collapse
Affiliation(s)
- Maria Augusta C. Horta
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Nils Thieme
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Marina A. Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Mary S. Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Liangcai Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Katherine A. Borkovich
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Monika Schmoll
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Luis F. Larrondo
- Millennium Institute for Integrative Biology (iBio), Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - J. Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
143
|
GPCR-mediated glucose sensing system regulates light-dependent fungal development and mycotoxin production. PLoS Genet 2019; 15:e1008419. [PMID: 31609971 PMCID: PMC6812930 DOI: 10.1371/journal.pgen.1008419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/24/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.
Collapse
|
144
|
Zhang X, Hindra, Elliot MA. Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol 2019; 51:9-15. [DOI: 10.1016/j.mib.2019.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
|
145
|
Reus E, Nielsen MR, Frandsen RJN. Metabolic and regulatory insights from the experimental horizontal gene transfer of the aurofusarin and bikaverin gene clusters to
Aspergillus nidulans. Mol Microbiol 2019; 112:1684-1700. [DOI: 10.1111/mmi.14376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Elise Reus
- Department of Biotechnology and Bioengineering Technical University of Denmark Kongens Lyngby Denmark
| | | | | |
Collapse
|
146
|
Tsunematsu Y, Takanishi J, Asai S, Masuya T, Nakazawa T, Watanabe K. Genomic Mushroom Hunting Decrypts Coprinoferrin, A Siderophore Secondary Metabolite Vital to Fungal Cell Development. Org Lett 2019; 21:7582-7586. [PMID: 31496254 DOI: 10.1021/acs.orglett.9b02861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LaeA is a positive global regulator of secondary metabolism in Ascomycetes, but its role in Basidiomycetes, including medicinal mushrooms, remains uncharacterized. Here, knockout of laeA in the model mushroom Coprinopsis cinerea unexpectedly upregulated the biosynthesis of a novel siderophore, coprinoferrin. Furthermore, knockout of the nonribosomal peptide synthetase-encoding cpf1 responsible for coprinoferrin biosynthesis resulted in growth defect and loss of fruiting body formation, indicating the complex role that this natural product plays in fungal cell development.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Jun Takanishi
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Shihori Asai
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Takahiro Masuya
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| |
Collapse
|
147
|
Zhi QQ, He L, Li JY, Li J, Wang ZL, He GY, He ZM. The Kinetochore Protein Spc105, a Novel Interaction Partner of LaeA, Regulates Development and Secondary Metabolism in Aspergillus flavus. Front Microbiol 2019; 10:1881. [PMID: 31456789 PMCID: PMC6700525 DOI: 10.3389/fmicb.2019.01881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
Nuclear protein LaeA is known as the global regulator of secondary metabolism in Aspergillus. LaeA connects with VeA and VelB to form a heterotrimeric complex, which coordinates fungal development and secondary metabolism. Here, we describe a new interaction partner of LaeA, the kinetochore protein Spc105, from the aflatoxin-producing fungus Aspergillus flavus. We showed that in addition to involvement in nuclear division, Spc105 is required for normal conidiophore development and sclerotia production of A. flavus. Moreover, Spc105 positively regulates the production of secondary metabolites such as aflatoxin and kojic acid, and negatively regulates the production of cyclopiazonic acid. Transcriptome analysis of the Δspc105 strain revealed that 23 backbone genes were differentially expressed, corresponding to 19 of the predicted 56 secondary metabolite gene clusters, suggesting a broad regulatory role of Spc105 in secondary metabolism. Notably, the reduced expression of laeA in our transcriptome data led to the discovery of the correlation between Spc105 and LaeA, and double mutant analysis indicated a functional interdependence between Spc105 and LaeA. Further, in vitro and in vivo protein interaction assays revealed that Spc105 interacts directly with the S-adenosylmethionine (SAM)-binding domain of LaeA, and that the leucine zipper motif in Spc105 is required for this interaction. The Spc105-LaeA interaction identified in our study indicates a cooperative interplay of distinct regulators in A. flavus, providing new insights into fungal secondary metabolism regulation networks.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei He
- Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie-Ying Li
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Long Wang
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guang-Yao He
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhu-Mei He
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
148
|
The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J Microbiol 2019; 57:893-899. [DOI: 10.1007/s12275-019-9214-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
|
149
|
Zhang G, Zheng Y, Ma Y, Yang L, Xie M, Zhou D, Niu X, Zhang KQ, Yang J. The Velvet Proteins VosA and VelB Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol 2019; 10:1917. [PMID: 31481946 PMCID: PMC6710351 DOI: 10.3389/fmicb.2019.01917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022] Open
Abstract
The velvet family proteins VosA and VelB are involved in growth regulation and differentiation in the model fungus Aspergillus nidulans and other filamentous fungi. In this study, the orthologs of VosA and VelB, AoVosA, and AoVelB, respectively, were characterized in the nematode-trapping fungus Arthrobotrys oligospora, which captures nematodes by producing trapping devices (traps). Deletion of the AovelB gene resulted in growth defects in different media, and the aerial hyphae from the ΔAovelB mutant lines were fewer in number and their colonies were less dense than those from the wild-type (WT) strain. The ΔAovelB mutants each displayed serious sporulation defects, and the transcripts of several sporulation-related genes (e.g., abaA, flbC, rodA, and vosA) were significantly down-regulated compared to those from the WT strain. Furthermore, the ΔAovelB mutant strains became more sensitive to chemical reagents, including sodium dodecyl sulfate and H2O2. Importantly, the ΔAovelB mutants were unable to produce nematode-capturing traps. Similarly, extracellular proteolytic activity was also lower in the ΔAovelB mutants than in the WT strain. In contrast, the ΔAovosA mutants displayed no obvious differences from the WT strain in these phenotypic traits, whereas conidial germination was lower in the ΔAovosA mutants, which became more sensitive to heat shock stress. Our results demonstrate that the velvet protein AoVelB is essential for conidiation, trap formation, and pathogenicity in A. oligospora, while AoVosA plays a role in the regulation of conidial germination and heat shock stress.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yaqing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
150
|
Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nat Commun 2019; 10:3579. [PMID: 31395863 PMCID: PMC6687722 DOI: 10.1038/s41467-019-11377-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
It is thought that fungi protect themselves from predation by the production of compounds that are toxic to soil-dwelling animals. Here, we show that a nontoxic pigment, the bis-naphthopyrone aurofusarin, protects Fusarium fungi from a wide range of animal predators. We find that springtails (primitive hexapods), woodlice (crustaceans), and mealworms (insects) prefer feeding on fungi with disrupted aurofusarin synthesis, and mealworms and springtails are repelled by wheat flour amended with the fungal bis-naphthopyrones aurofusarin, viomellein, or xanthomegnin. Predation stimulates aurofusarin synthesis in several Fusarium species and viomellein synthesis in Aspergillus ochraceus. Aurofusarin displays low toxicity in mealworms, springtails, isopods, Drosophila, and insect cells, contradicting the common view that fungal defence metabolites are toxic. Our results indicate that bis-naphthopyrones are defence compounds that protect filamentous ascomycetes from predators through a mechanism that does not involve toxicity.
Collapse
|