101
|
Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infect Immun 2008; 77:694-8. [PMID: 19015247 DOI: 10.1128/iai.01004-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Treponema denticola is considered to be an agent strongly associated with periodontal disease. The lack of an animal infection model has hampered the understanding of T. denticola pathogenesis and the host's immune response to infection. In this study, we have established an oral infection model in mice, demonstrating that infection by oral inoculation is feasible. The presence of T. denticola in the oral cavities of the animals was confirmed by PCR. Mice given T. denticola developed a specific immune response to the bacterium. The antibodies generated from the infection were mainly of the immunoglobulin G1 subclass, indicating a Th2-tilted response. The antibodies recognized 11 T. denticola proteins, of which a 62-kDa and a 53-kDa protein were deemed immunodominant. The two proteins were identified, respectively, as dentilisin and the major outer sheath protein by mass spectrometry. Splenocytes cultured from the infected mice no longer produced interleukin-10 and produced markedly reduced levels of gamma interferon relative to those produced by naïve splenocytes upon stimulation with T. denticola. Mandibles of infected mice showed significantly greater bone resorption (P < 0.01) than those of mock-infected controls.
Collapse
|
102
|
Sakellari D, Menti S, Konstantinidis A. Free soluble receptor activator of nuclear factor-κb ligand in gingival crevicular fluid correlates with distinct pathogens in periodontitis patients. J Clin Periodontol 2008; 35:938-43. [DOI: 10.1111/j.1600-051x.2008.01314.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Development of a transposon mutagenesis system in the oral spirochete Treponema denticola. Appl Environ Microbiol 2008; 74:6461-4. [PMID: 18723655 DOI: 10.1128/aem.01424-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report successful transposon mutagenesis in the oral spirochete Treponema denticola. A modified Himar1 transposon, including a new antibiotic selection cassette for T. denticola, generated mutations affecting cell division, transport, and chemotaxis, among other processes. This random mutagenesis system should facilitate research on the biology and pathogenesis of this spirochete, which is associated with human periodontal diseases.
Collapse
|
104
|
Ruby JD, Lux R, Shi W, Charon NW, Dasanayake A. Effect of glucose on Treponema denticola cell behavior. ACTA ACUST UNITED AC 2008; 23:234-8. [PMID: 18402610 DOI: 10.1111/j.1399-302x.2007.00417.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Treponema denticola inhabits the oral subgingival environment and is part of a proteolytic benzoyl-dl-arginine-naphthylamide-positive 'red complex' associated with active periodontal disease. Spirochetes have a unique form of chemotactic motility that may contribute to their virulence. Chemotaxis is essential for efficient nutrient-directed translocation. METHODS We examined the effect of glucose on T. denticola cell velocity, expression of periplasmic flagella proteins, and chemotaxis, e.g. translocation into capillary tubes. RESULTS The presence of glucose did not significantly effect T. denticola cell velocity in high viscosity conditions nor did it alter periplasmic flagella protein expression. The addition of glucose to capillary tubes resulted in greater numbers of T. denticola cells in tubes containing glucose. A non-motile mutant did not migrate into capillary tubes containing glucose. CONCLUSION These results are consistent with a chemotactic response to glucose that is motility dependent.
Collapse
Affiliation(s)
- J D Ruby
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
105
|
Highly conserved surface proteins of oral spirochetes as adhesins and potent inducers of proinflammatory and osteoclastogenic factors. Infect Immun 2008; 76:2428-38. [PMID: 18390996 DOI: 10.1128/iai.01128-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oral spirochetes include enormously heterogeneous Treponema species, and some have been implicated in the etiology of periodontitis. In this study, we characterized highly conserved surface proteins in four representative oral spirochetes (Treponema denticola, T. lecithinolyticum, T. maltophilum, and T. socranskii subsp. socranskii) that are homologs of T. pallidum Tp92, with opsonophagocytic potential and protective capacity against syphilis. Tp92 homologs of oral spirochetes had predicted signal peptides (20 to 31 amino acids) and molecular masses of 88 to 92 kDa for mature proteins. They showed amino acid sequence identities of 37.9 to 49.3% and similarities of 54.5 to 66.9% to Tp92. The sequence identities and similarities of Tp92 homologs of oral treponemes to one another were 41.6 to 71.6% and 59.9 to 85.6%, respectively. The tp92 gene homologs were successfully expressed in Escherichia coli, and the recombinant proteins were capable of binding to KB cells, an epithelial cell line, and inhibited the binding of the whole bacteria to the cells. Antiserum (the immunoglobulin G fraction) raised against a recombinant form of the T. denticola Tp92 homolog cross-reacted with homologs from three other species of treponemes. The Tp92 homologs stimulated various factors involved in inflammation and osteoclastogenesis, like interleukin-1beta (IL-1beta), tumor necrosis factor alpha, IL-6, prostaglandin E(2), and matrix metalloproteinase 9, in host cells like monocytes and fibroblasts. Our results demonstrate that Tp92 homologs of oral spirochetes are highly conserved and may play an important role in cell attachment, inflammation, and tissue destruction. The coexistence of various Treponema species in a single periodontal pocket and, therefore, the accumulation of multiple Tp92 homologs may amplify the pathological effect in periodontitis.
Collapse
|
106
|
|
107
|
Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik‐Sobanska L, Leon MJ. Inflammation and Alzheimer's disease: Possible role of periodontal diseases. Alzheimers Dement 2007; 4:242-50. [DOI: 10.1016/j.jalz.2007.08.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/24/2007] [Accepted: 08/29/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Angela R. Kamer
- Department of Periodontology and Implant DentistryCollege of DentistryNew York UniversityNew YorkNYUSA
| | - Ronald G. Craig
- Department of Periodontology and Implant DentistryCollege of DentistryNew York UniversityNew YorkNYUSA
- Department of Basic Sciences and Craniofacial BiologyCollege of DentistryNew York UniversityNew YorkNYUSA
| | - Ananda P. Dasanayake
- Department of Epidemiology and Health PromotionCollege of DentistryNew York UniversityNew YorkNYUSA
| | - Miroslaw Brys
- Department of PsychiatrySchool of MedicineNew York UniversityNew YorkNYUSA
| | | | - Mony J. Leon
- Department of PsychiatrySchool of MedicineNew York UniversityNew YorkNYUSA
- Nathan Kline InstituteOrangeburgNYUSA
| |
Collapse
|
108
|
Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2. Infect Immun 2007; 75:5763-8. [PMID: 17923521 DOI: 10.1128/iai.01117-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.
Collapse
|
109
|
Magalhães MAO, Sun CX, Glogauer M, Ellen RP. The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cell Microbiol 2007; 10:344-54. [PMID: 17868382 DOI: 10.1111/j.1462-5822.2007.01045.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro, but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.
Collapse
Affiliation(s)
- Marco A O Magalhães
- CIHR Group in Matrix Dynamics and Dental Research Institute, University of Toronto, Faculty of Dentistry, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
110
|
Loesche W. Dental caries and periodontitis: contrasting two infections that have medical implications. Infect Dis Clin North Am 2007; 21:471-502, vii. [PMID: 17561079 DOI: 10.1016/j.idc.2007.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Both dental decay and periodontal disease are diagnosable and treatable bacterial infections. They are distinctly different infections, with dental decay occurring on the supragingival surfaces of the teeth and periodontal infections occurring in the gingival tissue approximating the subgingival plaque. The bacteria involved and the pathophysiology of these infections are distinctly different.
Collapse
Affiliation(s)
- Walter Loesche
- Department of Biological and Materials Science, School of Dentistry, University of Michigan, Room 3209, Ann Arbor, MI 48109, USA.
| |
Collapse
|
111
|
Bamford CV, Fenno JC, Jenkinson HF, Dymock D. The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect Immun 2007; 75:4364-72. [PMID: 17591786 PMCID: PMC1951159 DOI: 10.1128/iai.00258-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treponema denticola is an anaerobic spirochete strongly associated with human periodontal disease. T. denticola bacteria interact with a range of host tissue proteins, including fibronectin, laminin, and fibrinogen. The latter localizes in the extracellular matrix where tissue damage has occurred, and interactions with fibrinogen may play a key role in T. denticola colonization of the damaged sites. T. denticola ATCC 35405 showed saturable binding of fluid-phase fibrinogen to the cell surface and saturable adherence to immobilized fibrinogen. Levels of fibrinogen binding were enhanced in the presence of the serine protease inhibitor phenylmethylsulfonyl fluoride. The Aalpha and Bbeta chains of fibrinogen, but not the gamma chains, were specifically recognized by T. denticola. Following fibrinogen affinity chromatography analysis of cell surface extracts, a major fibrinogen-binding component (polypeptide molecular mass, approximately 100 kDa), which also degraded fibrinogen, was purified. Upon heating at 100 degrees C, the polypeptide was dissociated into three components (apparent molecular masses, 80, 48, and 45 kDa) that did not individually bind or degrade fibrinogen. The native 100-kDa polypeptide complex was identified as chymotrypsin-like protease (CTLP), or dentilisin. In an isogenic CTLP(-) mutant strain, CKE, chymotrypsin-like activity was reduced >90% compared to that in the wild type and fibrinogen binding and hydrolysis were ablated. Isogenic mutant strain MHE, deficient in the production of Msp (major surface protein), showed levels of CTLP reduced 40% relative to those in the wild type and exhibited correspondingly reduced levels of fibrinogen binding and proteolysis. Thrombin clotting times in the presence of wild-type T. denticola cells, but not strain CKE (CTLP(-)) cells, were extended. These results suggest that interactions of T. denticola with fibrinogen, which may promote colonization and modulate hemostasis, are mediated principally by CTLP.
Collapse
Affiliation(s)
- Caroline V Bamford
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin St., Bristol BS1 2LY, United Kingdom
| | | | | | | |
Collapse
|
112
|
Jobin MC, Virdee I, McCulloch CA, Ellen RP. Activation of MAPK in fibroblasts by Treponema denticola major outer sheath protein. Biochem Biophys Res Commun 2007; 356:213-8. [PMID: 17346673 DOI: 10.1016/j.bbrc.2007.02.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/18/2022]
Abstract
The major outer sheath protein (Msp) of Treponema denticola induces Ca(2+) entry and actin reorganization in cultured fibroblasts, but the pathways by which Msp mediates these responses are not yet defined. We considered that Msp may activate protein kinases as a stress response that precedes actin remodelling. Phospho-kinase screens showed that Msp induced phosphorylation of multiple kinases in pathways that respond to extracellular agonists and regulate actin assembly. 34 kinases were significantly activated, including p38 and ERK 1/2. Accordingly, the expression and phosphorylation of p38 and ERK 1/2 in whole cell lysates were measured by immunoblotting and densitometry. Both kinases responded in a dose- and time-dependent manner to Msp exposure, were inhibited by SB202190 and U1026, respectively, and were unaffected by extracellular Ca(2+). These data indicate that T. denticola Msp may exert transient stress on fibroblasts through activation of MAP kinase pathways.
Collapse
Affiliation(s)
- Marie-Claude Jobin
- CIHR Group in Matrix Dynamics, Dental Research Institute, University of Toronto, Toronto, Ont., Canada.
| | | | | | | |
Collapse
|
113
|
Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, Ebersole JL. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun 2007; 75:1704-12. [PMID: 17210663 PMCID: PMC1865722 DOI: 10.1128/iai.00733-06] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the predominant polymicrobial infections of humans is expressed clinically as periodontal disease. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia have been strongly implicated as members of a pathogenic consortium in the etiology of adult periodontitis. In this study we hypothesized that P. gingivalis, T. denticola, and T. forsythia are synergistic in terms of virulence potential and induce chronic periodontal inflammation that leads to alveolar bone resorption in a polymicrobial infection in rats. Groups of rats were infected with either P. gingivalis, T. denticola, or T. forsythia in monomicrobial infections or with all three species in polymicrobial oral infections with or without Fusobacterium nucleatum. PCR analyses of oral microbial samples demonstrated that rats infected with one bacterium were orally colonized by each of the bacteria during the study interval, and increased serum immunoglobulin G (IgG) antibody levels substantiated the interaction of the host with the infecting bacteria. PCR analyses of the rats with polymicrobial infections demonstrated that most rats were infected with P. gingivalis, T. denticola, and T. forsythia as a consortium. Furthermore, all rats exhibited a significant increase in the level of IgG antibody to the polymicrobial consortium. Radiographic measurement of alveolar bone resorption showed that rats infected with the polymicrobial consortium with or without F. nucleatum exhibited significantly increased alveolar bone resorption compared to the resorption in uninfected control rats, as well as the resorption in rats infected with one of the microbes. These results documented that P. gingivalis, T. denticola, and T. forsythia not only exist as a consortium that is associated with chronic periodontitis but also exhibit synergistic virulence resulting in the immunoinflammatory bone resorption characteristic of periodontitis.
Collapse
Affiliation(s)
- Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
114
|
Haffajee AD, Socransky SS. Introduction to microbial aspects of periodontal biofilm communities, development and treatment. Periodontol 2000 2006; 42:7-12. [PMID: 16930302 DOI: 10.1111/j.1600-0757.2006.00190.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anne D Haffajee
- Department of Periodontology, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
115
|
Moter A, Riep B, Haban V, Heuner K, Siebert G, Berning M, Wyss C, Ehmke B, Flemmig TF, Göbel UB. Molecular epidemiology of oral treponemes in patients with periodontitis and in periodontitis-resistant subjects. J Clin Microbiol 2006; 44:3078-85. [PMID: 16954230 PMCID: PMC1594669 DOI: 10.1128/jcm.00322-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/23/2006] [Accepted: 06/17/2006] [Indexed: 12/13/2022] Open
Abstract
The etiologic role of oral treponemes in human periodontitis is still under debate. Although seen by dark-field microscopy in large numbers, their possible role is still unclear since they comprise some 60 different phylotypes, most of which are still uncultured. To determine their status as mere commensals or opportunistic pathogens, molecular epidemiological studies are required that include both cultured and as-yet-uncultured organisms. Here we present such data, comparing treponemal populations from chronic periodontitis (CP) or generalized aggressive periodontitis (GAP) patients. As a periodontitis-resistant (PR) control group, we included elderly volunteers with more than 20 natural teeth and no history of periodontal treatment and no or minimal clinical signs of periodontitis. Almost every treponemal phylotype was present in all three groups. For most treponemes, the proportion of subjects positive for a certain species or phylotype was higher in both periodontitis groups than in the PR group. This difference was pronounced for treponemes of the phylogenetic groups II and IV and for Treponema socranskii and Treponema lecithinolyticum. Between the periodontitis groups the only significant differences were seen for T. socranskii and T. lecithinolyticum, which were found more often in periodontal pockets of GAP patients than of CP patients. In contrast, no difference was found for Treponema denticola. Our findings, however, strengthen the hypothesis of treponemes being opportunistic pathogens. It appears that T. socranskii, T. lecithinolyticum and group II and IV treponemes may represent good indicators for periodontitis and suggest the value of the respective probes for microbiological diagnosis in periodontitis subjects.
Collapse
Affiliation(s)
- Annette Moter
- Institut für Mikrobiologie und Hygiene, Charité-Universitätsmedizin Berlin, Dorotheen-Str. 96, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
BACKGROUND Periodontal disease is an inflammatory reaction to the bacteria in dental plaque. The present study compared the prevalence of periodontal disease in patients using as a diagnostic either probing depth measurements, an inflammatory marker such as numbers of white blood cells in plaque samples, or microbiological markers such as the microscopic count and the benzoyl-DL-arginine naphthylamide (BANA) test. METHODS Teeth with the most inflammation and/or deepest pockets in each quadrant were probed and subgingival plaque was sampled from 1,043 consecutive new patients enrolled in a private practice. Multivariate "diagnostic" models were developed based upon the probing depth (general linear models), percentage of white blood cell-positive and percentage of BANA-positive plaques (logistic regression models) to determine the prevalence of patients with periodontal disease. RESULTS Plaque samples were removed from 3,694 sites. Fifty-two percent of sampled pockets were >4 mm; 49% of sites were inflamed, using the presence of white blood cells, and 28% were infected using the BANA test. Diagnostic models were highly significant at P<0.0001. The white blood cell model was the most parsimonious as demonstrated by the lowest Akaike information criteria statistic and had the highest receiver operator characteristic (ROC) curve relative to the probing depth and BANA models. CONCLUSIONS Periodontal disease can be diagnosed chairside by the presence of white blood cells in plaque samples, a finding that reflects the inflammatory nature of the disease process. This approach would reduce the misclassification of subjects as having periodontal disease (130 patients in the present study who had pockets) but minimal evidence of an inflammatory response.
Collapse
Affiliation(s)
- D J Apsey
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
117
|
Puthengady Thomas B, Sun CX, Bajenova E, Ellen RP, Glogauer M. Modulation of human neutrophil functions in vitro by Treponema denticola major outer sheath protein. Infect Immun 2006; 74:1954-7. [PMID: 16495573 PMCID: PMC1418645 DOI: 10.1128/iai.74.3.1954-1957.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study of human polymorphonuclear leukocytes (PMNs), pretreatment with Treponema denticola major outer sheath protein (Msp) inhibited formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis, phagocytosis of immunoglobulin G-coated microspheres, fMLP-stimulated calcium transients, and actin assembly. Msp neither altered oxidative responses to phorbol myristate or fMLP nor induced apoptosis. Msp selectively impairs chemotaxis and phagocytosis by impacting the PMN cytoskeleton.
Collapse
Affiliation(s)
- Bina Puthengady Thomas
- CIHR Group in Matrix Dynamics and Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | | | | | | | | |
Collapse
|
118
|
Holzhausen M, Spolidorio LC, Ellen RP, Jobin MC, Steinhoff M, Andrade-Gordon P, Vergnolle N. Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1189-99. [PMID: 16565494 PMCID: PMC1606564 DOI: 10.2353/ajpath.2006.050658] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have investigated the specific contribution of protease-activated receptor-2 (PAR(2)) to host defense during Porphyromonas gingivalis infection. Culture supernatants from P. gingivalis strains 33277 and W50 provoked Ca(2+) mobilization in cells transfected with PAR(2) (PAR(2)-KNRK) and desensitized the subsequent responses to PAR(2)-selective agonist. In addition, culture supernatants of P. gingivalis E8 (RgpA/RgpB double knockout) did not cause calcium response in PAR(2)-KNRK cells, evidencing the involvement of the arginine-specific cysteine proteases RgpA and RgpB in PAR(2) activation by P. gingivalis. Injection of P. gingivalis into mouse subcutaneous chambers provoked an increased proteolytic activity, which was inhibited by serine protease inhibitors. Fluids collected from chambers of P. gingivalis-injected mice were able to activate PAR(2) and this activation was inhibited by serine protease inhibitors. P. gingivalis inoculation into subcutaneous chambers of wild-type mice induced an inflammatory response that was inhibited by a serine protease inhibitor and was significantly reduced in PAR(2)-deficient mice. Finally, mice orally challenged with P. gingivalis developed alveolar bone loss, which was significantly reduced in PAR(2)-deficient mice at 42 and 60 days after P. gingivalis infection. We conclude that PAR(2) is activated on P. gingivalis infection, in which it plays an important role in the host inflammatory response.
Collapse
Affiliation(s)
- Marinella Holzhausen
- Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Dr., NW Calgary, T2N 4N1 Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
119
|
Lee SH, Kim KK, Rhyu IC, Koh S, Lee DS, Choi BK. Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology (Reading) 2006; 152:535-546. [PMID: 16436441 DOI: 10.1099/mic.0.28470-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Treponema socranskii is one of the most frequently found oral spirochaetes in periodontitis and endodontic infections. LPS or glycolipids from bacteria are potent stimulators of innate immune and inflammatory systems. In this study the bioactivity of a phenol/water extract from T. socranskii subsp. socranskii (TSS-P) was analysed. TSS-P showed minimal endotoxicity and no inducing potential for proinflammatory cytokines (TNF-α and IL-8) or for intercellular adhesion molecule-1 (ICAM-1) in human monocyte cell line THP-1 cells and primary cultured human gingival fibroblasts. Rather, it inhibited ICAM-1 expression and IL-8 secretion from cells stimulated by the LPS of Escherichia coli and Actinobacillus actinomycetemcomitans, which are known to be Toll-like receptor 4 (TLR4) agonists. However, this antagonistic activity was not shown in cells stimulated by peptidoglycan or IL-1β. As its antagonistic mechanism, TSS-P blocked the binding of E. coli LPS to LPS-binding protein (LBP) and CD14, which are molecules involved in the recruitment of LPS to the cell membrane receptor complex TLR4–MD-2 for the intracellular signalling of LPS. TSS-P itself did not bind to MD-2 or THP-1 cells, but inhibited the binding of E. coli LPS to MD-2 or to the cells in the presence of serum (which could be replaced by recombinant human LBP and recombinant human CD14). The results suggest that TSS-P acts as an antagonist of TLR4 signalling by interfering with the functioning of LBP/CD14.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Oromaxillofacial Infection and Immunity, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Kack-Kyun Kim
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Oromaxillofacial Infection and Immunity, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - In-Chul Rhyu
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sukhoon Koh
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dae-Sil Lee
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Bong-Kyu Choi
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Oromaxillofacial Infection and Immunity, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
120
|
Affiliation(s)
- Anne D Haffajee
- Department of Periodontology, The Forsyth Institute, Boston, MA, USA
| | | |
Collapse
|
121
|
|