101
|
Oxidative stress and immunosenescence: therapeutic effects of melatonin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:670294. [PMID: 23346283 PMCID: PMC3549369 DOI: 10.1155/2012/670294] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/13/2012] [Indexed: 02/02/2023]
Abstract
Age-associated deterioration in the immune system, which is referred to as immunosenescence, contributes to an increased susceptibility to infectious diseases, autoimmunity, and cancer in the elderly. A summary of major changes associated with aging in immune system is described in this paper. In general, immunosenescence is characterized by reduced levels of peripheral naïve T cells derived from thymus and the loss of immature B lineage cells in the bone marrow. As for macrophages and granulocytes, they show functional decline with advancing age as evidenced by their diminished phagocytic activity and impairment of superoxide generation. The indole melatonin is mainly secreted in the pineal gland although it has been also detected in many other tissues. As circulating melatonin decreases with age coinciding with the age-related decline of the immune system, much interest has been focused on melatonin's immunomodulatory effect in recent years. Here, we underlie the antioxidant and immunoenhancing actions displayed by melatonin, thereby providing evidence for the potential application of this indoleamine as a “replacement therapy” to limit or reverse some of the effects of the changes that occur during immunosenescence.
Collapse
|
102
|
Jiang T, Chang Q, Zhao Z, Yan S, Wang L, Cai J, Xu G. Melatonin-mediated cytoprotection against hyperglycemic injury in Müller cells. PLoS One 2012; 7:e50661. [PMID: 23226532 PMCID: PMC3514187 DOI: 10.1371/journal.pone.0050661] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF) that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.
Collapse
Affiliation(s)
- Tingting Jiang
- The Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Qing Chang
- The Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- * E-mail:
| | - Zhenyang Zhao
- The Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Saimei Yan
- The Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ling Wang
- The Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiyang Cai
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gezhi Xu
- The Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
103
|
Abstract
Melatonin has anti-oxidant activity and it exerts a neuroprotective effects during ischemic brain injury. Calcium-buffering proteins including parvalbumin and hippocalcin are involved in neuronal differentiation and maturation through calcium signaling. This study investigated whether melatonin moderates parvalbumin and hippocalcin expression in cerebral ischemia and glutamate toxicity-induced neuronal cell death. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO). Male Sprague-Dawley rats were treated with vehicle or melatonin (5 mg/kg) prior to MCAO, and cerebral cortical tissues were collected 24 hr after MCAO. Parvalbumin and hippocalcin levels were decreased in vehicle-treated animal with MCAO, whereas melatonin prevented the ischemic injury-induced reduction in these proteins. In cultured hippocampal cells, glutamate toxicity decreased parvalbumin and hippocalcin levels, while melatonin treatment prevented the glutamate exposure-induced diminished in these proteins levels. Melatonin also attenuated the glutamate toxicity-induced increase in intracellular Ca(2+) levels. These results suggest that the maintenance of parvalbumin and hippocalcin levels by melatonin in ischemic injury contributes to the neuroprotective effect of melatonin against neuronal cell damage.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
104
|
Song N, Kim AJ, Kim HJ, Jee HJ, Kim M, Yoo YH, Yun J. Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction. J Pineal Res 2012; 53:335-43. [PMID: 22536785 DOI: 10.1111/j.1600-079x.2012.01003.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin is an indolamine that is synthesized in the pineal gland and shows a wide range of physiological functions. Although the anti-aging properties of melatonin have been reported in a senescence-accelerated mouse model, whether melatonin modulates cellular senescence has not been determined. In this study, we examined the effect of melatonin on anticancer drug-induced cellular premature senescence. We found that the doxorubicin (DOX)-induced senescence of A549 human lung cancer cells and IMR90 normal lung cells was substantially inhibited by cotreatment with melatonin in a dose-dependent manner. Mechanistically, the DOX-induced G2/M phase cell cycle arrest and the decrease in cyclinB and cdc2 expression were not affected by melatonin. However, the DOX-induced increase in intracellular levels of ROS, which is necessary for premature senescence, was completely abolished upon melatonin cotreatment. In addition, the reduction in mitochondrial membrane potential that occurs upon DOX treatment was inhibited by melatonin. An aberrant increase in mitochondrial respiration was also significantly suppressed by melatonin, indicating that melatonin ameliorates the mitochondrial dysfunction induced by DOX treatment. The treatment of A549 cells with luzindole, a potent inhibitor of melatonin receptors, failed to prevent the effects of melatonin treatment on mitochondrial functions and premature senescence in cells also treated with DOX; this suggests that melatonin suppresses DOX-induced senescence in a melatonin receptor-independent manner. Together, these results reveal that melatonin has an inhibitory effect of melatonin on premature senescence at the cellular level and that melatonin protects A549 cells from DOX-induced senescence. Thus, melatonin might have the therapeutic potential to prevent the side effects of anticancer drug therapy.
Collapse
Affiliation(s)
- Naree Song
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
105
|
Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG, Chun YH, Choi BJ, Kim EC. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res 2012; 53:225-37. [PMID: 22507555 DOI: 10.1111/j.1600-079x.2012.00991.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin has potent antioxidant, analgesic, and antinociceptive properties. However, the effects of melatonin against oxidative stress-induced cytotoxicity and inflammatory mediators in human chondrocytes remain poorly understood. This study examined the effects and underlying mechanism of melatonin in hydrogen peroxide (H(2) O(2) )-stimulated human chondrocytes and rabbit osteoarthritis (OA) model. Melatonin markedly inhibited hydrogen peroxide (H(2) O(2) )-stimulated cytotoxicity, iNOS, and COX-2 protein and mRNA expression, as well as the downstream products, NO and PGE(2) . Incubation of cells with melatonin decreased H(2) O(2) -induced Sirtuin 1 (SIRT1) mRNA and protein expression. SIRT1 inhibition by sirtinol or Sirt1 siRNA reversed the effects of melatonin on H(2) O(2) -mediated induction of pro-inflammatory cytokines (NO, PGE(2) , TNF-α, IL-1β, and IL-8) and the expression of iNOS, COX-2, and cartilage destruction molecules. Melatonin blocked H(2) O(2) -induced phosphorylation of PI3K/Akt, p38, ERK, JNK, and MAPK, as well as activation of NF-κB, which was reversed by sirtinol and SIRT1 siRNA. In rabbit with OA, intra-articular injection of melatonin significantly reduced cartilage degradation, which was reversed by sirtinol. Taken together, this study shows that melatonin exerts cytoprotective and anti-inflammatory effects in an oxidative stress-stimulated chondrocyte model and rabbit OA model, and that the SIRT1 pathway is strongly involved in this effect.
Collapse
Affiliation(s)
- Hyun-Dae Lim
- Department of Oral Medicine, School of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, Pariente JA. Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 2012; 53:91-8. [PMID: 22288984 DOI: 10.1111/j.1600-079x.2012.00974.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant action. Thus, melatonin has proven useful in the treatment of tumors in association with chemotherapeutic drugs. This study was performed to evaluate the effect of melatonin on the cytotoxicity and apoptosis induced by three different chemotherapeutic agents, namely 5-fluorouracil (5-FU), cisplatin, and doxorubicin in the rat pancreatic tumor cell line AR42J. We found that both melatonin and the three chemotherapeutic drugs induce a time-dependent decrease in AR42J cell viability, reaching the highest cytotoxic effect after 48 hr of incubation. Furthermore, melatonin significantly augmented the cytotoxicity of the chemotherapeutic agents. Consistently, cotreatment of AR42J cells with each of the chemotherapeutic agents in the presence of melatonin increased the population of apoptotic cells, elevated mitochondrial membrane depolarization, and augmented intracellular reactive oxygen species (ROS) production compared to treatment with each chemotherapeutic agent alone. These results provide evidence that in vitro melatonin enhances chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor AR42J cells and, therefore, melatonin may be potentially applied to pancreatic tumor treatment as a powerful synergistic agent in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Abdulhadi C Uguz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | | | | | | | | | | |
Collapse
|
107
|
Argüelles S, Muñoz MF, Cano M, Machado A, Ayala A. In vitro and in vivo protection by melatonin against the decline of elongation factor-2 caused by lipid peroxidation: preservation of protein synthesis. J Pineal Res 2012; 53:1-10. [PMID: 22462727 DOI: 10.1111/j.1600-079x.2011.00961.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As organisms age, a considerable decrease in protein synthesis takes place in all tissues. Among the possible causes of the decline of translation in old animals are the modifications of elongation factor-2 (eEF-2). eEF-2 occupies an essential role in protein synthesis where it catalyzes the ribosomal translocation reaction. eEF-2 is particularly sensitive to increased oxidative stress. However, all oxidants do not affect eEF-2, only compounds that increase lipid peroxidation. As peroxides are unstable compounds, they decompose and generate a series of highly reactive compounds, including aldehydes malondialdehyde (MDA) and 4-hydroxynoenal (HNE). We have previously reported that hepatic eEF-2 forms adducts with low-molecular weight aldehydes, MDA and HNE. Therefore, the protection of eEF-2 must be specifically carried out by a compound with lipoperoxyl radical-scavenging features such as melatonin. In this article, we show the ability of melatonin to protect against the changes that occur in the eEF-2 under conditions of lipid peroxidation induced by cumene hydroperoxide (CH), a compound used experimentally to induce lipid breakdown. As experimental models, we used cultured cells and rats treated with this oxidant compound. eEF-2 levels, adduct formation of this protein with MDA and HNE, and lipid peroxides were determined. In the cultured cells, protein synthesis rate was also measured. Our results show that melatonin prevented the molecular changes in eEF-2 and the decline in protein synthesis rate secondary to lipid peroxidation. The results also show that serum levels of several hormones were affected by CH-induced oxidative stress, which was partially or totally prevented by melatonin.
Collapse
Affiliation(s)
- Sandro Argüelles
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España, Spain
| | | | | | | | | |
Collapse
|
108
|
Min KJ, Kim HS, Park EJ, Kwon TK. Melatonin enhances thapsigargin-induced apoptosis through reactive oxygen species-mediated upregulation of CCAAT-enhancer-binding protein homologous protein in human renal cancer cells. J Pineal Res 2012; 53:99-106. [PMID: 22289049 DOI: 10.1111/j.1600-079x.2012.00975.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has differentiated the effects on apoptosis in normal and cancer cells. The mechanisms that account for the opposite effects on these cells are not adequately understood. In this study, we investigated the combined effect of melatonin and thapsigargin (TG) on apoptosis of renal cancer cells. Cotreatment with melatonin (1mm) and TG (50nm) induced approximately 10-fold expression levels of CCAAT-enhancer-binding proteins homologous protein (CHOP) compared with that of TG (50nm) alone. Downregulation of CHOP expression using small interfering RNAs markedly attenuated melatonin plus TG-mediated apoptosis. In addition, cotreatment with TG- and melatonin-induced CHOP upregulation likely relates to melatonin's antioxidant capacity because we proved that this CHOP upregulation is melatonin receptor independent. Our results collectively demonstrate that the upregulation of CHOP contributes to the enhancing effect of melatonin plus TG on apoptosis in cancer cells.
Collapse
Affiliation(s)
- Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | | | | | | |
Collapse
|
109
|
Boga JA, Coto-Montes A, Rosales-Corral SA, Tan DX, Reiter RJ. Beneficial actions of melatonin in the management of viral infections: a new use for this "molecular handyman"? Rev Med Virol 2012; 22:323-38. [PMID: 22511571 PMCID: PMC7169144 DOI: 10.1002/rmv.1714] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 12/24/2022]
Abstract
Melatonin (N‐acetyl‐5‐methoxytryptamine) is a multifunctional signaling molecule that has a variety of important functions. Numerous clinical trials have examined the therapeutic usefulness of melatonin in different fields of medicine. Clinical trials have shown that melatonin is efficient in preventing cell damage under acute (sepsis, asphyxia in newborns) and chronic states (metabolic and neurodegenerative diseases, cancer, inflammation, aging). The beneficial effects of melatonin can be explained by its properties as a potent antioxidant and antioxidant enzyme inducer, a regulator of apoptosis and a stimulator of immune functions. These effects support the use of melatonin in viral infections, which are often associated with inflammatory injury and increases in oxidative stress. In fact, melatonin has been used recently to treat several viral infections, which are summarized in this review. The role of melatonin in infections is also discussed herein. Copyright © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | | | | | | | | |
Collapse
|
110
|
Cheshchevik VT, Lapshina EA, Dremza IK, Zabrodskaya SV, Reiter RJ, Prokopchik NI, Zavodnik IB. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: protection by melatonin and cranberry flavonoids. Toxicol Appl Pharmacol 2012; 261:271-9. [PMID: 22521486 DOI: 10.1016/j.taap.2012.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 02/07/2023]
Abstract
In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride - induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p<0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl₄ displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl₄, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage.
Collapse
Affiliation(s)
- V T Cheshchevik
- Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. 50, 230017 Grodno, Belarus
| | | | | | | | | | | | | |
Collapse
|
111
|
Gao C, Han HB, Tian XZ, Tan DX, Wang L, Zhou GB, Zhu SE, Liu GS. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res 2012; 52:305-11. [PMID: 22225541 DOI: 10.1111/j.1600-079x.2011.00944.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two-cell embryos of mouse were vitrified by the open-pulled straw (OPS) method. The vitrified embryos were warmed and introduced into M16 medium for culture that contains melatonin at different concentrations (10(-3), 10(-5), 10(-7), 10(-9), 10(-11) m). This process caused reactive oxygen species (ROS) formation and jeopardized the development of the embryos. Melatonin, at different concentrations, significantly suppresses ROS production and promotes embryonic development in vitrified embryos compared with untreated ones. The mechanistic studies indicated that the beneficial effects of melatonin on vitrified 2-cell embryos of mouse were melatonin receptor (MT1 and MT2) independent. The direct free radical scavenging activity, the enhancement of endogenous glutathione levels, and the anti-apoptotic capacity of melatonin may account for its protective effects on vitrified embryonic development.
Collapse
Affiliation(s)
- Chao Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ. Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 2012; 52:167-202. [PMID: 22107053 DOI: 10.1111/j.1600-079x.2011.00937.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a highly complex neurodegenerative disorder of the aged that has multiple factors which contribute to its etiology in terms of initiation and progression. This review summarizes these diverse aspects of this form of dementia. Several hypotheses, often with overlapping features, have been formulated to explain this debilitating condition. Perhaps the best-known hypothesis to explain AD is that which involves the role of the accumulation of amyloid-β peptide in the brain. Other theories that have been invoked to explain AD and summarized in this review include the cholinergic hypothesis, the role of neuroinflammation, the calcium hypothesis, the insulin resistance hypothesis, and the association of AD with peroxidation of brain lipids. In addition to summarizing each of the theories that have been used to explain the structural neural changes and the pathophysiology of AD, the potential role of melatonin in influencing each of the theoretical processes involved is discussed. Melatonin is an endogenously produced and multifunctioning molecule that could theoretically intervene at any of a number of sites to abate the changes associated with the development of AD. Production of this indoleamine diminishes with increasing age, coincident with the onset of AD. In addition to its potent antioxidant and anti-inflammatory activities, melatonin has a multitude of other functions that could assist in explaining each of the hypotheses summarized above. The intent of this review is to stimulate interest in melatonin as a potentially useful agent in attenuating and/or delaying AD.
Collapse
Affiliation(s)
- Sergio A Rosales-Corral
- Centro de Investigación Biomédica de Occidente del Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Peng TI, Hsiao CW, Reiter RJ, Tanaka M, Lai YK, Jou MJ. mtDNA T8993G mutation-induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca(2+), and lipid insults in NARP cybrids: a potential therapeutic target for melatonin. J Pineal Res 2012; 52:93-106. [PMID: 21812817 DOI: 10.1111/j.1600-079x.2011.00923.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial dynamics including morphological fission and mitochondrial movement are essential to normal mitochondrial and cellular physiology. This study investigated how mtDNA T8993G (NARP)-induced inhibition of mitochondrial complex V altered mitochondrial dynamics in association with a protective mitochondrial phospholipid, cardiolipin (CL), as a potential therapeutic target. NARP cybrids harboring 98% of mtDNA T8993G genes and its parental osteosarcoma 143B cells were studied for comparison, and protection provided by melatonin, a potent mitochondrial protector, was explored. We demonstrate for the first time that NARP mutation significantly enhances apoptotic death as a result of three distinct lethal mitochondrial apoptotic insults including oxidative, Ca(2+), and lipid stress. In addition, NARP significantly augmented pathological depletion of CL. NARP-augmented depletion of CL results in enhanced retardation of mitochondrial movement and fission and later swelling of mitochondria during all insults. These results suggest that CL is a common and crucial pathological target for mitochondrial apoptotic insults. Furthermore, CL possibly plays a central role in regulating mitochondrial dynamics that are associated with NARP-augmented mitochondrial pathologies. Intriguingly, melatonin, by differentially preserving CL during various stresses (oxidation > Ca(2+) > lipid), rescues differentially CL-altered mitochondrial dynamics and cell death (oxidation > Ca(2+) > lipid). Thus, melatonin, in addition to being a mitochondrial antioxidant to antagonize mitochondrial oxidative stress, a mitochondrial permeability transition modulator to antagonize mitochondrial Ca(2+) stress, may stabilize directly CL to prevent its oxidization and/or depletion and, therefore, exerts great potential in rescuing CL-dependent mitochondrial dynamics-associated mitochondrial pathologies for treatment of NARP-induced pathologies and diseases.
Collapse
Affiliation(s)
- Tsung-I Peng
- Department of Neurology, Kee-Lung Medical Center, Chang Gung Memorial Hospital, Kee-Lung, Taiwan
| | | | | | | | | | | |
Collapse
|
114
|
Liu Y, Zhang L, Zhang H, Liu B, Wu Z, Zhao W, Wang Z. Exogenous melatonin modulates apoptosis in the mouse brain induced by high-LET carbon ion irradiation. J Pineal Res 2012; 52:47-56. [PMID: 21812816 DOI: 10.1111/j.1600-079x.2011.00917.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate whether melatonin, a free radical scavenger and a general antioxidant, regulates the brain cell apoptosis caused by carbon ions in mice at the level of signal transduction pathway. Young Kun-Ming mice were divided into five groups: control group, irradiation group and three melatonin (1, 5, and 10 mg/kg daily for 5 days i.p.) plus irradiation-treated groups. An acute study was carried out to determine oxidative status, apoptotic cells, and mitochondrial membrane potential (ΔΨm) as well as pro- and anti-apoptotic protein levels in a mouse brain 12 hr after irradiation with a single dose of 4 Gy. In irradiated mice, a significant rise in oxidative stress and apoptosis (TUNEL positive) was accompanied by activated expression of Bax, cytochrome c, caspase-3, and decreased ΔΨm level. Melatonin supplementation was better able to reduce irradiation-induced oxidative damage marked by carbonyl or malondialdehyde content, and stimulate the antioxidant enzyme activities (superoxide dismutase and catalase) together with total antioxidant capacity. Moreover, administration with melatonin pronouncedly elevated the expression of Nrf2 which regulates redox balance and stress. Furthermore, melatonin treatment mitigated apoptotic rate, maintained ΔΨm, diminished cytochrome c release from mitochondria, down-regulated Bax/Bcl-2 ratio and caspase-3 levels, and consequently inhibited the important steps of irradiation-induced activation of mitochondrial pathway of apoptosis. Thus, we propose that the anti-apoptotic action with the alterations in apoptosis regulator provided by melatonin may be responsible at least in part for its antioxidant effect by the abolishing of carbon ion-induced oxidative stress along with increasing Nrf2 expression and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | |
Collapse
|
115
|
da Silva CMB, Macías-García B, Miró-Morán A, González-Fernández L, Morillo-Rodriguez A, Ortega-Ferrusola C, Gallardo-Bolaños JM, Stilwell G, Tapia JA, Peña FJ. Melatonin reduces lipid peroxidation and apoptotic-like changes in stallion spermatozoa. J Pineal Res 2011; 51:172-9. [PMID: 21486367 DOI: 10.1111/j.1600-079x.2011.00873.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation (LPO) has been claimed as a major factor involved in stallion damage during storage or cryopreservation. Because melatonin is a well-known potent antioxidant, the aim of the present study was to investigate the effect of melatonin during in vitro incubation. Furthermore, we investigated the presence of specific melatonin receptors (MT1 and MT2) using specific polyclonal antibodies and western blotting. Stallion spermatozoa were incubated up to 3 hr at 37°C in the presence of different concentrations of melatonin (0, 50 pm, 100 pm, 200 pm, or 1 μm). At the beginning and at the end of the incubation period, sperm motility (using computer-assisted sperm analysis), membrane integrity and permeability, fluidity of the sperm membrane, LPO, and mitochondrial membrane potential (Δψm) were flow cytometrically evaluated. Melatonin reduced changes in the spermatozoa related to apoptosis (increased sperm membrane permeability and lowered Δψm) (P < 0.05). Furthermore, LPO was dramatically reduced (P < 0.01) while no effect was observed on sperm motility or kinematics. Interestingly, melatonin helped maintain a more fluid sperm plasmalemma (P < 0.05). Our results clearly show the absence of MT1 and MT2 receptors in the stallion spermatozoa. It is concluded that melatonin is a useful tool to improve the quality of stored stallion sperm, increasing their life span and reducing premature aging, this likely relates to melatonin's antioxidant properties.
Collapse
Affiliation(s)
- Carolina M Balao da Silva
- Laboratory of Equine Reproduction, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Taketani T, Tamura H, Takasaki A, Lee L, Kizuka F, Tamura I, Taniguchi K, Maekawa R, Asada H, Shimamura K, Reiter RJ, Sugino N. Protective role of melatonin in progesterone production by human luteal cells. J Pineal Res 2011; 51:207-13. [PMID: 21585519 DOI: 10.1111/j.1600-079x.2011.00878.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated whether melatonin protects luteinized granulosa cells from reactive oxygen species (ROS) as an antioxidant to enhance progesterone production in the follicle during ovulation. Follicular fluid was sampled at the time of oocyte retrieval in women undergoing in vitro fertilization and embryo transfer (IVF-ET). Melatonin concentrations in the follicular fluid were positively correlated with progesterone concentrations (r = 0.342, P < 0.05) and negatively correlated with the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative stress marker (r = -0.342, P < 0.05). The progesterone and 8-OHdG concentrations were negatively correlated (r = -0.246, P < 0.05). Luteinized granulosa cells were obtained at the time of oocyte retrieval in women undergoing IVF-ET. Cells were incubated with H(2)O(2) (30, 50, 100 μm) in the presence or absence of melatonin (1, 10, 100 μg/mL). Progesterone production by luteinized granulosa cells was significantly inhibited by H(2)O(2). Melatonin treatment overcame the inhibitory effect of H(2) O(2) . Twenty-five patients who had luteal phase defect (serum progesterone concentrations <10 ng/mL during the mid-luteal phase) were divided into two groups during the next treatment cycle: 14 women were given melatonin (3 mg/day at 22:00 hr) throughout the luteal phase and 11 women were given no medication as a control. Melatonin treatment improved serum progesterone concentrations (>10 ng/mL during the mid-luteal phase) in nine of 14 women (64.3%), whereas only two of 11 women (18.1%) showed normal serum progesterone levels in the control group. In conclusion, melatonin protects granulosa cells undergoing luteinization from ROS in the follicle and contributes to luteinization for progesterone production during ovulation.
Collapse
Affiliation(s)
- Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Li XX, Yang XG, Lu YQ, Lu SS, Zhang M, Yao HI, Meng LJ, Lu KH. Protective effects of melatonin against oxidative stress in flow cytometry-sorted buffalo sperm. Reprod Domest Anim 2011; 47:299-307. [PMID: 21790800 DOI: 10.1111/j.1439-0531.2011.01858.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous reports of the ability of melatonin to scavenge a variety of toxic oxygen and nitrogen-based reactants suggest that melatonin could be an effective antioxidant for protecting sperm. In this study, flow cytometry and laser tweezers Raman spectroscopy were used to evaluate the effect of melatonin on buffalo sperm quality to optimize sperm sex-sorting procedures. In fresh sperm incubated in the presence or absence of melatonin (10(-4) m) for 1, 24, 48 h or 72 h at 27°C, the mitochondrial activity was significantly higher than in a non-melatonin control (p < 0.05). Also, during the flow-sorting process, sperm in melatonin-supplemented groups had higher (p < 0.05) mitochondrial activity than the control. The intensity of Raman spectra from sperm frozen in media supplemented with melatonin was significantly weaker than that for non-melatonin-treated groups, except for a band at 1302 per cm. Thus, melatonin helps to protect buffalo sperm from reactive oxygen species induced by staining, sorting and freezing and increases semen quality after the freezing-thawing processes. Furthermore, the results indicate the high potential of the laser tweezers Raman spectroscopy technique for rapid, effective and non-invasive assessment of the quality of sperm cells.
Collapse
Affiliation(s)
- X X Li
- Animal Reproduction Institute, Guangxi University, Nanning, China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC. The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 2011; 8:182-93. [PMID: 21358969 PMCID: PMC3001212 DOI: 10.2174/157015910792246245] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/24/2010] [Accepted: 05/05/2010] [Indexed: 12/14/2022] Open
Abstract
Melatonin is an endogenous indoleamine present in different tissues, cellular compartments and organelles including mitochondria. When melatonin is administered orally, it is readily available to the brain where it counteracts different processes that occur during aging and age-related neurodegenerative disorders. These aging processes include oxidative stress and oxidative damage, chronic and acute inflammation, mitochondrial dysfunction and loss of neural regeneration. This review summarizes age related changes in the brain and the importance of oxidative/nitrosative stress and mitochondrial dysfunction in brain aging. The data and mechanisms of action of melatonin in relation to aging of the brain are reviewed as well.
Collapse
Affiliation(s)
- Germaine Escames
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
119
|
Melatonin combats molecular terrorism at the mitochondrial level. Interdiscip Toxicol 2011; 1:137-49. [PMID: 21218104 PMCID: PMC2993480 DOI: 10.2478/v10102-010-0030-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 12/15/2022] Open
Abstract
The intracellular environmental is a hostile one. Free radicals and related oxygen and nitrogen-based oxidizing agents persistently pulverize and damage molecules in the vicinity of where they are formed. The mitochondria especially are subjected to frequent and abundant oxidative abuse. The carnage that is left in the wake of these oxygen and nitrogen-related reactants is referred to as oxidative damage or oxidative stress. When mitochondrial electron transport complex inhibitors are used, e.g., rotenone, 1-methyl-1-phenyl-1,2,3,6-tetrahydropyridine, 3-nitropropionic acid or cyanide, pandemonium breaks loose within mitochondria as electron leakage leads to the generation of massive amounts of free radicals and related toxicants. The resulting oxidative stress initiates a series of events that leads to cellular apoptosis. To alleviate mitochondrial destruction and the associated cellular implosion, the cell has at its disposal a variety of free radical scavengers and antioxidants. Among these are melatonin and its metabolites. While melatonin stimulates several antioxidative enzymes it, as well as its metabolites (cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and N1-acetyl-5-methoxykynuramine), likewise effectively neutralize free radicals. The resulting cascade of reactions greatly magnifies melatonin's efficacy in reducing oxidative stress and apoptosis even in the presence of mitochondrial electron transport inhibitors. The actions of melatonin at the mitochondrial level are a consequence of melatonin and/or any of its metabolites. Thus, the molecular terrorism meted out by reactive oxygen and nitrogen species is held in check by melatonin and its derivatives.
Collapse
|
120
|
Vašková J, Kassayová M, Vaško L. Potential role of melatonin in DNA damage caused by nitrosourea-induced mammary carcinogenesis. Acta Histochem 2011; 113:423-7. [PMID: 20546865 DOI: 10.1016/j.acthis.2010.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 11/29/2022]
Abstract
Mammary carcinogenesis was induced in female Sprague-Dawley rats by exposure to N-methyl-N-nitrosourea (NMU). Animals were kept under constant light conditions to arrest endogenous melatonin synthesis and were fed the same melatonin dosage, since nitrosourea exposure may also induce cellular injury, especially with extensive proliferative activity. The pro-apoptotic effects of the biogenic amine, melatonin, on rat whole blood leukocytes were assessed by alkaline single cell gel electrophoresis (comet) assay. Potential induction of stress due to animal immobilization and its additional effect on DNA damage was studied. The parameters relevant to the degree of DNA damage in groups with chemocarcinogen treatment demonstrated no significant effects as a result of the immobilization. A significant increase in DNA damage after melatonin treatment in NMU-induced carcinogenesis confirms its involvement in the activation of apoptosis.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Tr. SNP 1, 040 11 Košice, Slovak Republic.
| | | | | |
Collapse
|
121
|
Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med 2011; 25:207-21. [PMID: 21557691 DOI: 10.3109/14767058.2011.573827] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) play a critical role in the pathogenesis of various diseases during pregnancy and the perinatal period. Newborns are more prone to oxidative stress than individuals later in life. During pregnancy, increased oxygen demand augments the rate of production of ROS and women, even during normal pregnancies, experience elevated oxidative stress compared with non-pregnant women. ROS generation is also increased in the placenta during preeclampsia. Melatonin is a highly effective direct free-radical scavenger, indirect antioxidant, and cytoprotective agent in human pregnancy and it appears to be essential for successful pregnancy. This suggests a role for melatonin in human reproduction and in neonatal pathologies (asphyxia, respiratory distress syndrome, sepsis, etc.). This review summarizes current knowledge concerning the role for melatonin in human pregnancy and in the newborn. Numerous studies agree that short-term melatonin therapy is highly effective in reducing complications during pregnancy and in the neonatal period. No significant toxicity or treatment-related side effects with long-term melatonin therapy in children and adults have been reported. Treatment with melatonin might result in a wide range of health benefits, including improved quality of life and reduced healthcare costs.
Collapse
Affiliation(s)
- Salvatore Aversa
- Neonatal Intensive Care Unit, Department of Pediatrics, University of Messina, Italy
| | | | | | | | | |
Collapse
|
122
|
Jou MJ. Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca(2+) stress in astrocyte. J Pineal Res 2011; 50:427-35. [PMID: 21362033 DOI: 10.1111/j.1600-079x.2011.00861.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells have two modes of mitochondrial permeability transition (MPT) which produce virtually opposite pathophysiological outcomes of survival or death when responding to apoptotic insults. The transient-MPT (t-MPT) protects mitochondria, whereas the prolonged-MPT (p-MPT), once activated, triggers the 'point of no return' for apoptosis or necrosis. Our previous studies show that in addition to scavenging mitochondrial reactive oxygen species, melatonin targets mitochondrial Ca(2+) (mCa(2+))-mediated MPT for protection during mCa(2+)-mediated apoptosis in astrocytes. The precise mechanism for how melatonin modulates the MPT during mCa(2+) stress, however, remains unelucidated. With the application of fluorescence laser scanning imaging microscopy, this study demonstrated for the first time that melatonin does not inhibit the MPT pore, rather it crucially preserves the pore in its protective mode of t-MPT during mCa(2+) stress. Melatonin-preserved t-MPT importantly maintained mitochondrial membrane potential (ΔΨ(m)) which not only prevented depolarized ΔΨ(m)-induced p-MPT but also retained ΔΨ(m)-dependent ATP formation during disturbed Ca(2+) homeostasis. Additionally, the melatonin-preserved t-MPT allowed mitochondria to release the toxic overload of mCa(2+) to sublethal levels, which prevented mCa(2+)-mediated fission and mCa(2+)-dependent p-MPT and possibly also improved mCa(2+)-dependent ATP synthesis. Melatonin's effect in reducing the Ca(2+) load greatly diminished when the MPT was inhibited by cyclosporine A, suggesting its pore dependency as well as that a preserved t-MPT may be superior to a MPT inhibition in protecting mCa(2+)-mediated apoptosis. The unique modulation on the MPT provided by melatonin may have extraordinary therapeutic potential in the treatment of mCa(2+)-mediated astrocyte-associated neurodegenerative pathologies and diseases.
Collapse
Affiliation(s)
- Mei-Jie Jou
- Department of Physiology and Pharmacology School of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
123
|
Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol Cell Biochem 2011; 353:167-76. [PMID: 21431366 DOI: 10.1007/s11010-011-0783-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/07/2011] [Indexed: 01/06/2023]
Abstract
Melatonin is an indoleamine secreted by the pineal gland that shows multiple tasks. This ubiquitously acting free radical scavenger has recently been shown to stimulate the production of reactive oxygen species (ROS) in tumour cells, making them undergo apoptosis, whilst it prevents apoptosis in healthy cells. The mechanisms by which melatonin exerts these dual actions are, however, not yet clearly understood. Thus, the aim of this study was to further investigate how melatonin can enhance oxidative stress-induced apoptosis in a leukaemia cell line. The results show that melatonin increased the apoptotic effects of H(2)O(2) in human myeloid HL-60 cells as assessed by cellular viability, mitochondrial permeability transition induction, mitochondrial membrane depolarization, ROS generation, caspases 3, 8 and 9 activity, phosphatidylserine externalization, and DNA fragmentation techniques. When healthy leucocytes were exposed to H(2)O(2), melatonin increased the viability of the cells. Taken together, the findings indicate that melatonin is a potential physiological tool capable of protecting healthy cells from chemotherapy-induced ROS production as well as inducing tumour cell death. Because cancer cells manifest increased oxidative stress as a result of their elevated metabolism, the use of melatonin may be useful in impairing their ROS buffering capacity.
Collapse
|
124
|
Liu H, Xu L, Wei JE, Xie MR, Wang SE, Zhou RX. Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat Rec (Hoboken) 2011; 294:781-8. [PMID: 21416626 DOI: 10.1002/ar.21361] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/27/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022]
Abstract
Melatonin is an important immune modulator with antitumor functions, and increased CD4(+) CD25(+) regulatory T cells (Tregs) have been observed in tumor tissues of patients and animal models with gastric cancer. However, the relationship between melatonin and Tregs remains unclear. To explore this potential connection, we performed an in vivo study by inoculating the murine foregastric carcinoma (MFC) cell line in mice and then treated them with different doses of melatonin (0, 25, 50, and 100 mg/kg, i.p.) for 1 week. The results showed that melatonin could reduce the tumor tissue and decrease Tregs numbers and Forkhead box p3 (Foxp3) expression in the tumor tissue. An in vitro study was also performed to test the effects of purified Tregs on melatonin-mediated inhibition of MFC cells. The cell cultures were divided into three groups: 1) MFC+ Tregs; 2) MFC only; and 3) MFC+CD4(+) CD25(-) T cells. After treatment with different concentrations of melatonin (0, 2, 4, 6, 8, and 10 mM) for 24 h, a dose-dependent apoptosis and cell cycle arrest at the G2/M phase was detected in melatonin-treated MFC at melatonin concentration higher than 4 mM. There were no significant differences in the rates of apoptosis and cell cycle distributions of MFC among the three groups. In conclusion, the antigastric cancer effect of melatonin is associated with downregulation of CD4(+) CD25(+) Tregs and its Foxp3 expression in the tumor tissue.
Collapse
Affiliation(s)
- Hui Liu
- Department of Human Anatomy, Histology and Embryology, Neurobiology Research Center, Fujian Medical University, Fuzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
125
|
El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, Sosa GA, El-Roos MEAA, Nagai T. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev 2011; 78:250-62. [PMID: 21381146 DOI: 10.1002/mrd.21295] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/24/2011] [Indexed: 12/15/2022]
Abstract
Melatonin is a multifunctional molecule that mediates several circadian and seasonal reproductive processes. The exact role of melatonin in modulating reproduction, however, is not fully understood-especially its effects on the ovarian follicles and oocytes. This study was conducted to investigate the expressions of the ASMT and melatonin-receptor MTNR1A and MTNR1B genes in bovine oocytes and their cumulus cells, as well as the effects of melatonin on oocyte nuclear and cytoplasmic maturation in vitro. Cumulus-oocyte complexes (COCs) from abattoir ovaries were cultured in TCM-199 supplemented with melatonin at concentrations of 0, 10, 50, and 100 ng/ml. The expression of ASMT, MTNR1A, and MTNR1B genes was evaluated by RT-PCR. Moreover, the effects of melatonin on cumulus cell expansion, nuclear maturation, mitochondrial characteristics and COCs steroidogenesis were investigated. Furthermore, the level of reactive oxygen species (ROS) was evaluated in denuded oocytes. Our study revealed that ASMT and MTNR1A genes were expressed in COCs, while the MTNR1B gene was expressed only in oocytes. Additionally, melatonin supplementation at 10 and 50 ng/ml to in vitro maturation medium significantly enhanced oocyte nuclear maturation, cumulus cell expansion and altered the mitochondrial distribution patterns, but had no effects on oocyte mitochondrial activity and COCs steroidogenesis. Melatonin-treated oocytes had a significantly lower level of ROS than controls. The presence of melatonin receptors in COCs and its promoting effects on oocyte nuclear and cytoplasmic events, indicate the potentially important roles of this hormone in regulating bovine oocyte maturation. Moreover, the presence of ASMT transcript in COCs suggests the possible involvement of these cells in melatonin biosynthesis.
Collapse
Affiliation(s)
- Mohamed El-Raey
- Reproductive Biology and Technology Research Team, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Pro-Oxidant Effect of Melatonin in Tumour Leucocytes: Relation with its Cytotoxic and Pro-Apoptotic Effects. Basic Clin Pharmacol Toxicol 2010; 108:14-20. [DOI: 10.1111/j.1742-7843.2010.00619.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
127
|
Um HJ, Kwon TK. Protective effect of melatonin on oxaliplatin-induced apoptosis through sustained Mcl-1 expression and anti-oxidant action in renal carcinoma Caki cells. J Pineal Res 2010; 49:283-90. [PMID: 20626587 DOI: 10.1111/j.1600-079x.2010.00793.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Melatonin is an indolamine initially found to be produced in the pineal gland but now known to be synthesized in a variety of other tissues as well. The mechanisms whereby melatonin regulates the apoptotic program remain only partially understood. Anti-/pro-apoptotic effects of exogenous melatonin on various stimuli-mediated apoptosis were investigated in this report. We investigated the combined effect of melatonin and death receptor-mediated ligands (TNF-α, TRAIL, and anti-Fas antibody) or endoplasmic reticulum (ER) stress-inducing agents (thapsigargin, brefeldin A, and tunicamycin) on apoptosis of cancer cells. Death receptor- or ER stress-induced apoptosis was not significantly influenced by melatonin treatment. However, pretreatment with melatonin significantly inhibited DNA damage-induced apoptosis and glutathione (GSH) depletion, suggesting the reactive oxygen species mediate oxaliplatin/etoposide-induced apoptosis. Interestingly, we also found the involvement of myeloid cell leukemia-1 (Mcl-1) downregulation in oxaliplatin-induced apoptosis; thus, pretreatment with melatonin inhibited Mcl-1 downregulation, and ectopic expression of Mcl-1 attenuated oxaliplatin-induced apoptosis. Taken together, the results demonstrate that melatonin attenuates oxaliplatin-induced apoptosis in cancer cells by inhibition of GSH depletion and Mcl-1 downregulation.
Collapse
Affiliation(s)
- Hee Jung Um
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | | |
Collapse
|
128
|
Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8:228-42. [PMID: 21358973 PMCID: PMC3001216 DOI: 10.2174/157015910792246155] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/25/2010] [Accepted: 05/08/2010] [Indexed: 12/15/2022] Open
Abstract
Melatonin is mainly produced in the mammalian pineal gland during the dark phase. Its secretion from the pineal gland has been classically associated with circadian and circanual rhythm regulation. However, melatonin production is not confined exclusively to the pineal gland, but other tissues including retina, Harderian glands, gut, ovary, testes, bone marrow and lens also produce it. Several studies have shown that melatonin reduces chronic and acute inflammation. The immunomodulatory properties of melatonin are well known; it acts on the immune system by regulating cytokine production of immunocompetent cells. Experimental and clinical data showing that melatonin reduces adhesion molecules and pro-inflammatory cytokines and modifies serum inflammatory parameters. As a consequence, melatonin improves the clinical course of illnesses which have an inflammatory etiology. Moreover, experimental evidence supports its actions as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes, enhancing the activities of other antioxidants or protecting other antioxidant enzymes from oxidative damage. Several encouraging clinical studies suggest that melatonin is a neuroprotective molecule in neurodegenerative disorders where brain oxidative damage has been implicated as a common link. In this review, the authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries (traumatic brain and spinal cord injury).
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
129
|
Milczarek R, Hallmann A, Sokołowska E, Kaletha K, Klimek J. Melatonin enhances antioxidant action of alpha-tocopherol and ascorbate against NADPH- and iron-dependent lipid peroxidation in human placental mitochondria. J Pineal Res 2010; 49:149-55. [PMID: 20524970 DOI: 10.1111/j.1600-079x.2010.00779.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human placental mitochondria might be a significant source of NADPH- and iron-dependent production of reactive oxygen species (ROS). Preeclampsia is believed to be a consequence of overproduction of ROS in human placenta. The experimental results presented here show that melatonin inhibits NADPH- and iron-dependent lipid peroxidation of human placental mitochondria in a concentration-dependent manner. At 1.5 mm concentration, melatonin suppressed this process nearly completely. Melatonin does not influence significantly the iron oxidation at this conditions, indicating that free radical scavenging rather than metal-chelating phenomenon is the basis of its antioxidant action. The fact of inhibition of lipid peroxidation by melatonin at conditions excluding iron participation also supports this hypothesis. Elucidation of the nature of common interaction among melatonin, ascorbate, and alpha-tocopherol in human placental mitochondria was the main aim of this study. In presence of 90 mum ascorbate, the inhibition of lipid peroxidation by melatonin was strong and had a feature of synergistic interaction. At presence of 30 mum ascorbate, which stimulated lipid peroxidation, melatonin caused a loss of pro-oxidant effect of ascorbate. While the interaction of melatonin with ascorbate indicated synergism, the joint action of melatonin and alpha-tocopherol was additive. When all three antioxidants were applied together, the strongest inhibition of lipid peroxidation was observed. The experimental results presented here indicated that melatonin could be considered as an effective component of antioxidant treatment of preeclampsia, allowing the use of reduced doses of vitamin C and E owing to elevated efficiency of their antioxidant activity in placenta when used in combination.
Collapse
Affiliation(s)
- Ryszard Milczarek
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | | | | | | | | |
Collapse
|
130
|
Reiter RJ, Manchester LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 2010; 8:194-210. [PMID: 21358970 PMCID: PMC3001213 DOI: 10.2174/157015910792246236] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/21/2010] [Accepted: 05/30/2010] [Indexed: 12/15/2022] Open
Abstract
Toxins that pass through the blood-brain barrier put neurons and glia in peril. The damage inflicted is usually a consequence of the ability of these toxic agents to induce free radical generation within cells but especially at the level of the mitochondria. The elevated production of oxygen and nitrogen-based radicals and related non-radical products leads to the oxidation of essential macromolecules including lipids, proteins and DNA. The resultant damage is referred to as oxidative and nitrosative stress and, when the molecular destruction is sufficiently severe, it causes apoptosis or necrosis of neurons and glia. Loss of brain cells compromises the functions of the central nervous system expressed as motor, sensory and cognitive deficits and psychological alterations. In this survey we summarize the publications related to the following neurotoxins and the protective actions of melatonin: aminolevulinic acid, cyanide, domoic acid, kainic acid, metals, methamphetamine, polychlorinated biphenyls, rotenone, toluene and 6-hydroxydopamine. Given the potent direct free radical scavenging activities of melatonin and its metabolites, their ability to indirectly stimulate antioxidative enzymes and their efficacy in reducing electron leakage from mitochondria, it would be expected that these molecules would protect the brain from oxidative and nitrosative molecular mutilation. The studies summarized in this review indicate that this is indeed the case, an action that is obviously assisted by the fact that melatonin readily crosses the blood brain barrier.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | | | | |
Collapse
|
131
|
Dominguez-Rodriguez A, Abreu-Gonzalez P. Myocardial ischemia-reperfusion injury: Possible role of melatonin. World J Cardiol 2010; 2:233-6. [PMID: 21160589 PMCID: PMC2999058 DOI: 10.4330/wjc.v2.i8.233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/15/2010] [Accepted: 07/22/2010] [Indexed: 02/06/2023] Open
Abstract
Our knowledge and understanding of the pathophysiology of coronary atherosclerosis has increased enormously over the last 20 years. Reperfusion through thrombolysis or percutaneous coronary angioplasty is the standard treatment for preventing acute myocardial infarction. Early reperfusion is an absolute prerequisite for survival of the ischemic myocardium, but reperfusion itself may lead to accelerated and additional myocardial injury beyond that generated by ischemia alone. These outcomes, in a range of reperfusion-associated pathologies, are collectively termed "reperfusion injuries". Reactive oxygen species are known to be produced in large quantities in the first few minutes of the post-ischemia reperfusion process. Similarly, scientific evidence from the last 15 years has suggested that melatonin has beneficial effects on the cardiovascular system. The presence of vascular melatoninergic receptor binding sites has been demonstrated; these receptors are functionally linked to vasoconstrictor or vasodilatory effects of melatonin. It has been shown that patients with coronary heart disease have a low melatonin production rate, especially those with higher risk of cardiac infarction and/or sudden death. Melatonin attenuates molecular and cellular damage resulting from cardiac ischemia-reperfusion in which destructive free radicals are involved.
Collapse
Affiliation(s)
- Alberto Dominguez-Rodriguez
- Alberto Dominguez-Rodriguez, Department of Cardiology, Hospital Universitario de Canarias, Tenerife E-38320, Spain
| | | |
Collapse
|
132
|
Abstract
Mitochondrial oxidative stress has been reported as the result of respiratory complex anomalies, genetic defects, or insufficient oxygen or glucose supply. Although Ca(2+) has no direct effect on respiratory chain function or oxidation/reduction process, mitochondrial Ca(2+) overload can lead to reactive oxygen species (ROS) increase. Even though Ca(2+) is well known for its role as crucial second messenger in modulating many cellular physiological functions, Ca(2+) overload is detrimental to mitochondrial function and may present as an important cause of mitochondrial ROS generation. Possible mechanisms include Ca(2+) stimulated increase of metabolic rate, Ca(2+) stimulated nitric oxide production, Ca(2+) induced cytochrome c dissociation, Ca(2+) induced cardiolipin peroxidation, Ca(2+) induced mitochondrial permeability transition pore opening with release of cytochrome c and GSH-antioxidative enzymes, and Ca(2+)-calmodulin dependent protein kinases activation. Different mechanisms may exist under different mitochondrial preparations (isolated mitochondria vs. mitochondria in intact cells), tissue sources, animal species, or inhibitors used. Furthermore, mitochondrial ROS rise can modulate Ca(2+) dynamics and augment Ca(2+) surge. The reciprocal interactions between Ca(2+) induced ROS increase and ROS modulated Ca(2+) upsurge may cause a feedforward, self-amplified loop createing cellular damage far beyond direct Ca(2+) induced damage.
Collapse
Affiliation(s)
- Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan
| | | |
Collapse
|
133
|
Chang JC, Kou SJ, Lin WT, Liu CS. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2010; 2:150-9. [PMID: 21160733 PMCID: PMC2999054 DOI: 10.4330/wjc.v2.i6.150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial physiology and biogenesis play a crucial role in the initiation and progression of cardiovascular disease following oxidative stress-induced damage such as atherosclerosis (AST). Dysfunctional mitochondria caused by an increase in mitochondrial reactive oxygen species (ROS) production, accumulation of mitochondrial DNA damage, and respiratory chain deficiency induces death of endothelial/smooth muscle cells and favors plaque formation/rupture via the regulation of mitochondrial biogenesis-related genes such as peroxisome proliferator-activated receptor γ coactivator (PGC-1), although more detailed mechanisms still need further study. Based on the effect of healthy mitochondria produced by mitochondrial biogenesis on decreasing ROS-mediated cell death and the recent finding that the regulation of PGC-1 involves mitochondrial fusion-related protein (mitofusin), we thus infer the regulatory role of mitochondrial fusion/fission balance in AST pathophysiology. In this review, the first section discusses the possible association between AST-inducing factors and the molecular regulatory mechanisms of mitochondrial biogenesis and dynamics, and explains the role of mitochondria-dependent regulation in cell apoptosis during AST development. Furthermore, nitric oxide has the Janus-faced effect by protecting vascular damage caused by AST while being a reactive nitrogen species (RNS) which act together with ROS to damage cells. Therefore, in the second section we discuss mitochondrial ATP-sensitive K(+) channels, which regulate mitochondrial ion transport to maintain mitochondrial physiology, involved in the regulation of ROS/RNS production and their influence on AST/cardiovascular diseases (CVD). Through this review, we can further appreciate the multi-regulatory functions of the mitochondria involved in AST development. The understanding of these related mechanisms will benefit drug development in treating AST/CVD through targeted biofunctions of mitochondria.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Jui-Chih Chang, Wei-Ting Lin, Chin-San Liu, Department of Neurology, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan, China
| | | | | | | |
Collapse
|
134
|
Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F. Melatonin signaling and cell protection function. FASEB J 2010; 24:3603-24. [PMID: 20534884 DOI: 10.1096/fj.10-154450] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Besides its well-known regulatory role on circadian rhythm, the pineal gland hormone melatonin has other biological functions and a distinct metabolism in various cell types and peripheral tissues. In different tissues and organs, melatonin has been described to act as a paracrine and also as an intracrine and autocrine agent with overall homeostatic functions and pleiotropic effects that include cell protection and prosurvival factor. These latter effects, documented in a number of in vitro and in vivo studies, are sustained through both receptor-dependent and -independent mechanisms that control detoxification and stress response genes, thus conferring protection against a number of xenobiotics and endobiotics produced by acute and chronic noxious stimuli. Redox-sensitive components are included in the cell protection signaling of melatonin and in the resulting transcriptional response that involves the control of NF-κB, AP-1, and Nrf2. By these pathways, melatonin stimulates the expression of antioxidant and detoxification genes, acting in turn as a glutathione system enhancer. A further and converging mechanism of cell protection by this indoleamine described in different models seems to lie in the control of damage and signaling function of mitochondria that involves decreased production of reactive oxygen species and activation of the antiapoptotic and redox-sensitive element Bcl2. Recent evidence suggests that upstream components in this mitochondrial route include the calmodulin pathway with its central role in melatonin signaling and the survival-promoting component of MAPKs, ERK1/2. In this review article, we will discuss these and other molecular aspects of melatonin signaling relevant to cell protection and survival mechanisms.
Collapse
Affiliation(s)
- Francesca Luchetti
- Dipartimento di Scienze Dell’Uomo dell’Ambiente e della Natura, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med 2010; 42:276-85. [PMID: 20455793 DOI: 10.3109/07853890903485748] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The experimental data obtained from both human and rodent studies suggest that melatonin may have utility in the treatment of several cardiovascular conditions. In particular, melatonin's use in reducing the severity of essential hypertension should be more widely considered. In rodent studies melatonin has been shown to be highly effective in limiting abnormal cardiac physiology and the loss of critical heart tissue resulting from ischemia/reperfusion injury. Melatonin may also be useful in reducing cardiac hypertrophy in some situations and thereby limiting the frequency of heart failure. Finally, some conventional drugs currently in use have cardiotoxicity as a side-effect. Based on studies in rodents, melatonin, due to its multiple anti-oxidative actions, is highly effective in abrogating drug-mediated damage to the heart. Taken together, the findings from human and animal studies support the consideration of melatonin as a cardioprotective agent.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
136
|
Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J Pineal Res 2010; 48:340-6. [PMID: 20345745 DOI: 10.1111/j.1600-079x.2010.00758.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aging is associated with a decline of cardiac function. The mitochondrial permeability transition (MPT) may be a factor in cardiac dysfunction associated with aging. We investigated the effect of aging and long-term treatment with melatonin (approximately 10 mg/kg b.w./day for 2 months), a known natural antioxidant, on the susceptibility to Ca(2+)-induced MPT opening and cytochrome c release in rat heart mitochondria. The mitochondrial content of normal and oxidized cardiolipin as a function of aging and melatonin treatment was also analyzed. Mitochondria from aged rats (24 month old) displayed an increased susceptibility to Ca(2+)-induced MPT opening, associated with an elevated release of cytochrome c, when compared with young control animals (5 month old). Melatonin treatment counteracted both these processes. Aging was also associated with an oxidation/depletion of cardiolipin which could be counteracted as well by melatonin. It is proposed that the increased level of oxidized cardiolipin could be responsible, at least in part, for the increased susceptibility to Ca(2+)-induced MPT opening and cytochrome c release in rat heart mitochondria with aging. Melatonin treatment counteracts both these processes, most likely, by preventing the oxidation/depletion of cardiolipin. Our results might have implications in the necrotic and apoptotic myocytes cell death in aged myocardium, particularly in ischemia/reperfusion injury.
Collapse
|
137
|
Skulachev VP. New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. BIOCHEMISTRY (MOSCOW) 2010; 74:1400-3. [PMID: 19961424 DOI: 10.1134/s0006297909120165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Much evidence has recently been reported suggesting that reactive oxygen species (ROS) produced in mitochondria play a crucial role in the programmed senescence of organisms. In particular, it has been shown that antioxidants addressed to mitochondria slow down the appearance of symptoms of senescence and development of senile diseases and increase the median lifespan of various organisms from fungi to mammals. At the biochemical level, the mechanism of action of such rechargeable antioxidants as plastoquinonyldecyltriphenyl phosphonium (SkQ1) includes, in particular, prevention of oxidation of mitochondrial cardiolipin by ROS. The hormone melatonin also exhibits a number of such effects, and decrease in its level with age could explain the weakening of antioxidant protection upon aging. According to Moosmann et al., there exists a natural mechanism of antioxidant protection that, like SkQ1, is localized in the internal mitochondrial membrane and is rechargeable. It involves methionine residues in the surface regions of proteins encoded by mitochondrial DNA. It appears that in organisms with high respiratory metabolism the genetic code in the mitochondrial system of protein biosynthesis has changed. In these organisms (including some yeasts, insects, crustaceans, and vertebrates), the AUA codon codes for methionine rather than isoleucine, as in the case of synthesis of proteins encoded either in the nucleus or in mitochondria of organisms with lower rates of metabolism (other yeast species, sponges, and echinoderms). Methionine quenches ROS, being converted to methionine sulfoxide, which is re-reduced to the initial methionine by NADPH.
Collapse
Affiliation(s)
- V P Skulachev
- Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
138
|
Das A, McDowell M, Pava MJ, Smith JA, Reiter RJ, Woodward JJ, Varma AK, Ray SK, Banik NL. The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-alpha toxicity involves membrane melatonin receptors. J Pineal Res 2010; 48:157-69. [PMID: 20082663 PMCID: PMC2862889 DOI: 10.1111/j.1600-079x.2009.00739.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Loss of motoneurons may underlie some of the deficits in motor function associated with the central nervous system (CNS) injuries and diseases. We tested whether melatonin, a potent antioxidant and free radical scavenger, would prevent motoneuron apoptosis following exposure to toxins and whether this neuroprotection is mediated by melatonin receptors. Exposure of VSC4.1 motoneurons to either 50 microm H(2)O(2), 25 microm glutamate (LGA), or 50 ng/mL tumor necrosis factor-alpha (TNF-alpha) for 24 h caused significant increases in apoptosis, as determined by Wright staining and ApopTag assay. Analyses of mRNA and proteins showed increased expression and activities of stress kinases and cysteine proteases and loss of mitochondrial membrane potential during apoptosis. These insults also caused increases in intracellular free [Ca(2+)] and activities of calpain and caspases. Cells exposed to stress stimuli for 15 min were then treated with 200 nm melatonin. Post-treatment of cells with melatonin attenuated production of reactive oxygen species (ROS) and phosphorylation of p38, MAPK, and JNK1, prevented cell death, and maintained whole-cell membrane potential, indicating functional neuroprotection. Melatonin receptors (MT1 and MT2) were upregulated following treatment with melatonin. To confirm the involvement of MT1 and MT2 in providing neuroprotection, cells were post-treated (20 min) with 10 microm luzindole (melatonin receptor antagonist). Luzindole significantly attenuated melatonin-induced neuroprotection, suggesting that melatonin worked, at least in part, via its receptors to prevent VSC4.1 motoneuron apoptosis. Results suggest that neuroprotection rendered by melatonin to motoneurons is receptor mediated and melatonin may be an effective neuroprotective agent to attenuate motoneuron death in CNS injuries and diseases.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences (Division of Neurology), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Misty McDowell
- Department of Neurosciences (Division of Neurology), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Matthew J Pava
- Department of Neurosciences (Division of Neurology), Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas, San Antonio, TX 78229, USA
| | - John J. Woodward
- Department of Neurosciences (Division of Neurology), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abhay K. Varma
- Department of Neurosciences (Division of Neurology), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Naren L. Banik
- Department of Neurosciences (Division of Neurology), Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence to: Naren L. Banik, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425. Phone: (843) 792-8570; Fax: (843) 792-8626; Naren L. Banik ()
| |
Collapse
|
139
|
Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 2010; 94:1915-7. [PMID: 20152967 DOI: 10.1016/j.fertnstert.2009.12.082] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/29/2009] [Accepted: 12/29/2009] [Indexed: 11/29/2022]
Abstract
It is assumed somatic cells can die in the apoptotic, the autophagic, or the necrotic way; however, the mechanisms of sperm death are not clear. Here, ejaculated human spermatozoa were evaluated for apoptosis and reactive oxygen species production in the absence or presence of melatonin, and we concluded that melatonin reverses sperm apoptosis due to its free radical scavenging actions.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome.
Collapse
|
141
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
Collapse
|
142
|
Srinivasan V, Spence DW, Moscovitch A, Pandi-Perumal SR, Trakht I, Brown GM, Cardinali DP. Malaria: therapeutic implications of melatonin. J Pineal Res 2010; 48:1-8. [PMID: 20025640 DOI: 10.1111/j.1600-079x.2009.00728.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malaria, which infects more than 300 million people annually, is a serious disease. Epidemiological surveys indicate that of those who are affected, malaria will claim the lives of more than one million individuals, mostly children. There is evidence that the synchronous maturation of Plasmodium falciparum, the parasite that causes a severe form of malaria in humans and Plasmodium chabaudi, responsible for rodent malaria, could be linked to circadian changes in melatonin concentration. In vitro melatonin stimulates the growth and development of P. falciparum through the activation of specific melatonin receptors coupled to phospholipase-C activation and the concomitant increase of intracellular Ca2+. The Ca2+ signaling pathway is important to stimulate parasite transition from the trophozoite to the schizont stage, the final stage of intraerythrocytic cycle, thus promoting the rise of parasitemia. Either pinealectomy or the administration of the melatonin receptor blocking agent luzindole desynchronizes the parasitic cell cycle. Therefore, the use of melatonin antagonists could be a novel therapeutic approach for controlling the disease. On the other hand, the complexity of melatonin's action in malaria is underscored by the demonstration that treatment with high doses of melatonin is actually beneficial for inhibiting apoptosis and liver damage resulting from the oxidative stress in malaria. The possibility that the coordinated administration of melatonin antagonists (to impair the melatonin signal that synchronizes P. falciparum) and of melatonin in doses high enough to decrease oxidative damage could be a novel approach in malaria treatment is discussed.
Collapse
|
143
|
Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia JA, Forcada F, Cebrián-Pérez JA, Muino-Blanco T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 2010; 48:39-46. [PMID: 19919602 DOI: 10.1111/j.1600-079x.2009.00722.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We recently demonstrated the presence of melatonin in ram seminal plasma and differences in its concentration in this fluid between the breeding and nonbreeding season. In this study, we investigate the hypothesis that in vitro treatment with melatonin affects ram sperm quality, and that this is reflected in the in vitro fertilization (IVF) results. Semen from nine rams was collected during the nonreproductive season and treated with 1 mum, 10 nm and 100 pm melatonin. Samples were incubated at 39 degrees C and 5% CO2, and motility, viability, capacitation status and phosphatidylserine (PS) translocation were assessed before and after melatonin addition, either 1 or 3 hr of incubation. Fertility rate of the melatonin-treated samples was determined by means of IVF. Although melatonin failed to affect both sperm kinematic parameters and viability, the exposure of ram spermatozoa to melatonin has a direct effect, decreasing capacitation and PS translocation at 1 mum, and increasing short-term capacitation at 100 pm, which caused an increased oocyte fertilization rate following IVF. Furthermore, cleavage rate of oocytes fertilized with 100 pm melatonin-treated spermatozoa was higher than that with 1 mum melatonin and control samples (P < 0.1). These results prove that melatonin has a direct effect on ram spermatozoa in the nonreproductive season, which can be explained, at least in part, by the melatonin capacity as a reactive oxygen species scavenger and antioxidant. These findings might help to select the optimal experimental conditions for IVF and to improve sperm preservation protocols.
Collapse
Affiliation(s)
- Adriana Casao
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC. Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res 2010; 48:20-38. [PMID: 19925580 DOI: 10.1111/j.1600-079x.2009.00721.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melatonin protects cells against various types of oxidative stress-induced apoptosis due primarily to its ability to effectively scavenge pathological and disease condition-augmented generation of mitochondrial reactive oxygen species (mROS). Once produced, mROS indiscriminately damage mitochondrial components and more importantly they crucially activate directly the mitochondrial permeability transition (MPT), one of the critical mechanisms for initiating post mitochondrial apoptotic signaling. Whether or not melatonin targets directly the MPT, however, remains inconclusive, particularly during oxidative stress. This study, thus, investigated this possibility of an 'oxidation free Ca(2+) stress' in the presence of vitamin E after ionomycin exposure as a sole Ca(2+)-mediated MPT in order to exclude melatonin's primary antioxidative effects as well as Ca(2+)-mediated oxidative stress. The studies were carried out using cultured rat brain astrocytes RBA-1. With the application of laser scanning multiple fluorescence imaging microscopy, we visualized for the first time multiple mitochondrial protective effects provided by melatonin during Ca(2+) stress. First, melatonin, due to its primary antioxidative actions, completely prevented mCa(2+)-induced mROS formation during ionomycin exposure. Secondly, when melatonin(')s antioxidative effects were prevented due to the addition of vitamin E, melatonin significantly prevented mCa(2+)-mediated MPT and apoptosis suggesting its direct targeting of the MPT. Surprisingly, in the presence of cyclosporin A, a MPT inhibitor, melatonin reduced further mCa(2+)-mediated apoptosis during ionomycin exposure also suggesting its targeting beyond the MPT. As astrocytes are actively involve in regulating synaptic transmission and neurovascular coupling in the CNS, these multiple mitochondrial layers of protection provided by melatonin against mCa(2+)-and/or mROS-mediated apoptosis in astrocytes may be crucial for future therapeutic prevention and treatment of astrocyte-mediated neurodegenerative diseases in the CNS.
Collapse
Affiliation(s)
- Mei-Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2009; 85:607-23. [PMID: 20039865 DOI: 10.1111/j.1469-185x.2009.00118.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin is a molecule present in a multitude of taxa and may be ubiquitous in organisms. It has been found in bacteria, unicellular eukaryotes, macroalgae, fungi, plants and animals. A primary biological function of melatonin in primitive unicellular organisms is in antioxidant defence to protect against toxic free radical damage. During evolution, melatonin has been adopted by multicellular organisms to perform many other biological functions. These functions likely include the chemical expression of darkness in vertebrates, environmental tolerance in fungi and plants, sexual signaling in birds and fish, seasonal reproductive regulation in photoperiodic mammals, and immunomodulation and anti-inflammatory activity in all vertebrates tested. Moreover, its waning production during aging may indicate senescence in terms of a bio-clock in many organisms. Conversely, high melatonin levels can serve as a signal of vitality and health. The multiple biological functions of melatonin can partially be attributed to its unconventional metabolism which is comprised of multi-enzymatic, pseudo-enzymatic and non-enzymatic pathways. As a result, several bioactive metabolites of melatonin are formed during its metabolism and some of the presumed biological functions of melatonin reported to date may, in fact, be mediated by these metabolites. The changing biological roles of melatonin seem to have evolved from its primary function as an antioxidant.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations. J Formos Med Assoc 2009; 108:599-611. [PMID: 19666347 DOI: 10.1016/s0929-6646(09)60380-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A wide spectrum of pathogenic mutations of mitochondrial DNA (mtDNA) has been demonstrated to cause mitochondrial dysfunction and overproduction of reactive oxygen species (ROS), in relation to mitochondrial and neurodegenerative diseases. Our previous studies have shown that large-scale deletions of mtDNA not only serve as an indicator of oxidative damage, but also result in greater susceptibility of human cells to apoptosis triggered by UV irradiation and other apoptotic stimuli. In this review, we focus on the involvement of mtDNA-mutation-associated oxidative stress and susceptibility to apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases. Different lines of research have provided concordant data to suggest that the mtDNA-mutation-elicited energy insufficiency and enhanced oxidative stress and damage lead to cell dysfunction, and increase the susceptibility of affected cells to apoptosis in patients with these diseases. Moreover, accumulating experimental evidence has shown that antioxidant therapy is a good strategy for decreasing intracellular ROS and alleviating oxidative-stress-induced apoptosis in cells of patients that harbor pathogenic mtDNA mutations.
Collapse
|
147
|
Abstract
Although the human genome has remained unchanged over the last 10,000 years, our lifestyle has become progressively more divergent from those of our ancient ancestors. This maladaptive change became apparent with the Industrial Revolution and has been accelerating in recent decades. Socially, we are people of the 21st century, but genetically we remain similar to our early ancestors. In conjunction with this discordance between our ancient, genetically-determined biology and the nutritional, cultural and activity patterns in contemporary Western populations, many diseases have emerged. Only a century ago infectious disease was a major cause of mortality, whereas today non-infectious chronic diseases are the greatest cause of death in the world. Epidemics of metabolic diseases (e.g., cardiovascular diseases, type 2 diabetes, obesity, metabolic syndrome and certain cancers) have become major contributors to the burden of poor health and they are presently emerging or accelerating, in most developing countries. One major lifestyle consequence is light at night and subsequent disrupted circadian rhythms commonly referred to as circadian disruption or chronodisruption. Mounting evidence reveals that particularly melatonin rhythmicity has crucial roles in a variety of metabolic functions as an anti-oxidant, anti-inflammatory chronobiotic and possibly as an epigenetic regulator. This paper provides a brief outline about metabolic dysregulation in conjunction with a disrupted melatonin rhythm.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | |
Collapse
|
148
|
Xu S, Zhou Z, Zhang L, Yu Z, Zhang W, Wang Y, Wang X, Li M, Chen Y, Chen C, He M, Zhang G, Zhong M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res 2009; 1311:189-96. [PMID: 19879861 DOI: 10.1016/j.brainres.2009.10.062] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 01/18/2023]
Abstract
Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.
Collapse
Affiliation(s)
- Shangcheng Xu
- Department of Occupational Health, Third Military Medical University, No 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Protective effect of melatonin against mitomycin C-induced genotoxic damage in peripheral blood of rats. J Biomed Biotechnol 2009; 2009:791432. [PMID: 19859567 PMCID: PMC2764378 DOI: 10.1155/2009/791432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/05/2009] [Indexed: 11/17/2022] Open
Abstract
Mitomycin C (MMC) generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N = 36) were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of
10 mg/kg and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96 hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic erythrocytes (MN-PCE) per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA) levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and 96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.
Collapse
|
150
|
Hibaoui Y, Roulet E, Ruegg UT. Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells. J Pineal Res 2009; 47:238-52. [PMID: 19664004 DOI: 10.1111/j.1600-079x.2009.00707.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress-induced mitochondrial dysfunction plays a crucial role in the pathogenesis of a wide range of diseases including muscle disorders. In this study, we demonstrate that melatonin readily rescued mitochondria from oxidative stress-induced dysfunction and effectively prevented subsequent apoptosis of primary muscle cultures prepared from C57BL/6J mice. In particular, melatonin (10(-4)-10(-6) m) fully prevented myotube death induced by tert-butylhydroperoxide (t-BHP; 10 microm-24 hr) as assessed by acid phosphatase, caspase-3 activities and cellular morphological changes. Using fluorescence imaging, we showed that the mitochondrial protection provided by melatonin was associated with an inhibition of t-BHP-induced reactive oxygen species generation. In line with this observation, melatonin prevented t-BHP-induced mitochondrial depolarization and mitochondrial permeability transition pore (PTP) opening. This was associated with a highly reduced environment as reflected by an increased glutathione content and an increased ability to maintain mitochondrial pyridine nucleotides and glutathione in a reduced state. Using isolated mitochondria, in a similar manner as cyclosporin A, melatonin (10(-8)-10(-6) m) desensitized the PTP to Ca(2+) and prevented t-BHP-induced mitochondrial swelling, pyridine nucleotide and glutathione oxidation. In conclusion, our findings suggest that inhibition of the PTP essentially contributes to the protective effect of melatonin against oxidative stress in myotubes.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Laboratory of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, Geneva, Switzerland
| | | | | |
Collapse
|