101
|
Schäfer M, Meldau S. Real-Time Genetic Manipulations of the Cytokinin Pathway: A Tool for Laboratory and Field Studies. Methods Mol Biol 2017; 1569:127-139. [PMID: 28265993 DOI: 10.1007/978-1-4939-6831-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although many established tools for cytokinin (CK) pathway manipulations are well suitable for the analysis of molecular interactions, their use on a whole plant scale is often limited by the induction of severe developmental defects. To circumvent this problem, different methods were developed that allow for a more precise manipulation of the CK pathway. Here we present one of these systems, the pOp6/LhGR system for chemically inducible gene expression. This system allows regulation on a spatial, temporal, and quantitative scale and therefore provides a superior tool for analyzing the role of CKs in the interactions of plants with their environment. The pOp6/LhGR system was tested for RNAi-mediated gene silencing and heterologous gene expression and was successfully used for CK pathway manipulations in different model organisms (Arabidopsis thaliana, Nicotiana tabaccum, Nicotiana attenuata, Citrus sinensis × C. trifoliate). Here we describe specific aspects of the screening procedure and present an experimental setup that can not only be used in the laboratory but is also applicable under field conditions.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany
| | - Stefan Meldau
- Research & Development, KWS SAAT SE, Grimsehlstrasse 31, 37574, Einbeck, Germany.
| |
Collapse
|
102
|
Voller J, Maková B, Kadlecová A, Gonzalez G, Strnad M. Plant Hormone Cytokinins for Modulating Human Aging and Age-Related Diseases. HEALTHY AGEING AND LONGEVITY 2017. [DOI: 10.1007/978-3-319-63001-4_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
103
|
Kudo T, Kobayashi M, Terashima S, Katayama M, Ozaki S, Kanno M, Saito M, Yokoyama K, Ohyanagi H, Aoki K, Kubo Y, Yano K. TOMATOMICS: A Web Database for Integrated Omics Information in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:e8. [PMID: 28111364 PMCID: PMC5444566 DOI: 10.1093/pcp/pcw207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 05/23/2023]
Abstract
Solanum lycopersicum (tomato) is an important agronomic crop and a major model fruit-producing plant. To facilitate basic and applied research, comprehensive experimental resources and omics information on tomato are available following their development. Mutant lines and cDNA clones from a dwarf cultivar, Micro-Tom, are two of these genetic resources. Large-scale sequencing data for ESTs and full-length cDNAs from Micro-Tom continue to be gathered. In conjunction with information on the reference genome sequence of another cultivar, Heinz 1706, the Micro-Tom experimental resources have facilitated comprehensive functional analyses. To enhance the efficiency of acquiring omics information for tomato biology, we have integrated the information on the Micro-Tom experimental resources and the Heinz 1706 genome sequence. We have also inferred gene structure by comparison of sequences between the genome of Heinz 1706 and the transcriptome, which are comprised of Micro-Tom full-length cDNAs and Heinz 1706 RNA-seq data stored in the KaFTom and Sequence Read Archive databases. In order to provide large-scale omics information with streamlined connectivity we have developed and maintain a web database TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics/). In TOMATOMICS, access to the information on the cDNA clone resources, full-length mRNA sequences, gene structures, expression profiles and functional annotations of genes is available through search functions and the genome browser, which has an intuitive graphical interface.
Collapse
Affiliation(s)
- Toru Kudo
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masaaki Kobayashi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shin Terashima
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Minami Katayama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Soichi Ozaki
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Maasa Kanno
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Misa Saito
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koji Yokoyama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hajime Ohyanagi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
104
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
105
|
Ding W, Tong H, Zheng W, Ye J, Pan Z, Zhang B, Zhu S. Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Osckt1 in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:88. [PMID: 28197164 PMCID: PMC5281565 DOI: 10.3389/fpls.2017.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 05/04/2023]
Abstract
Cytokinins play important roles in regulating plant development, including shoot and root meristems, leaf longevity, and grain yield. However, the in planta functions of rice cytokinin receptors have not been genetically characterized yet. Here we isolated a rice mutant, Osckt1, with enhanced tolerance to cytokinin treatment. Further analysis showed that Osckt1 was insensitive to aromatic cytokinins but responded normally to isoprenoid and phenylurea-type cytokinins. Map-based cloning revealed that the mutation occurred in a putative cytokinin receptor gene, histidine kinase 6 (OsHK6). OsCKT1 was found to be expressed in various tissues throughout the plant and the protein was located in the endoplasmic reticulum. In addition, whole-genome gene expression profiling analysis showed that OsCKT1 was involved in cytokinin regulation of a number of biological processes, including secondary metabolism, sucrose and starch metabolism, chlorophyll synthesis, and photosynthesis. Our results demonstrate that OsCKT1 plays important roles in cytokinin perception and control of root development in rice.
Collapse
Affiliation(s)
- Wona Ding
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Huishan Tong
- School of Marine Sciences, Ningbo UniversityNingbo, China
| | - Wenjuan Zheng
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Jing Ye
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Zhichong Pan
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Botao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of SciencesNingbo, China
- *Correspondence: Botao Zhang, Shihua Zhu,
| | - Shihua Zhu
- College of Science and Technology, Ningbo UniversityNingbo, China
- *Correspondence: Botao Zhang, Shihua Zhu,
| |
Collapse
|
106
|
Durán-Medina Y, Díaz-Ramírez D, Marsch-Martínez N. Cytokinins on the Move. FRONTIERS IN PLANT SCIENCE 2017; 8:146. [PMID: 28228770 PMCID: PMC5296302 DOI: 10.3389/fpls.2017.00146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/24/2017] [Indexed: 05/02/2023]
Abstract
Cytokinins are important signals that participate in different plant processes, and are well known for their strong influence in plant development. With the years, knowledge has been built about their effects, chemical nature, metabolism, and signaling mechanisms. However, one aspect about cytokinins that has been lagging behind is cytokinin transport. Recent reports are providing more information about how cytokinins are transported and how their transport is connected to their effects in development. This review provides a general overview of what is known about cytokinin transport, with a focus on the latest reports.
Collapse
|
107
|
Lacombe B, Achard P. Long-distance transport of phytohormones through the plant vascular system. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:1-8. [PMID: 27340874 DOI: 10.1016/j.pbi.2016.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 05/18/2023]
Abstract
Phytohormones are a group of low abundance molecules that activate various metabolic and developmental processes in response to environmental and endogenous signals. Like animal hormones, plant hormones often have distinct source and target tissues, hence ensuring long-range communication at the whole-plant level. Plants rely on various hormone distribution mechanisms depending on the distance and the direction of the transport. Here, we highlight the recent findings on the long-distance movement of plant hormones within the vasculature, from the physiological role to the molecular mechanism of the transport.
Collapse
Affiliation(s)
- Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', 34060 Montpellier Cedex, France
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
108
|
Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res 2016. [DOI: 10.1007/s11284-016-1410-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
109
|
Lehotai N, Feigl G, Koós Á, Molnár Á, Ördög A, Pető A, Erdei L, Kolbert Z. Nitric oxide-cytokinin interplay influences selenite sensitivity in Arabidopsis. PLANT CELL REPORTS 2016; 35:2181-2195. [PMID: 27449496 DOI: 10.1007/s00299-016-2028-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Selenite oppositely modifies cytokinin and nitric oxide metabolism in Arabidopsis organs. A mutually negative interplay between the molecules exists in selenite-exposed roots; and their overproduction causes selenite insensitivity. Selenium-induced phytotoxicity is accompanied by developmental alterations such as primary root (PR) shortening. Growth changes are provoked by the modulation of hormone status and signalling. Cytokinin (CK) cooperates with the nitric oxide (NO) in many aspects of plant development; however, their interaction under abiotic stress has not been examined. Selenite inhibited the growth of Arabidopsis seedlings and reduced root meristem size through cell division arrest. The CK-dependent pARR5::GUS activity revealed the intensification of CK signalling in the PR tip, which may be partly responsible for the root meristem shortening. The selenite-induced alterations in the in situ expressions of cytokinin oxidases (AtCKX4::GUS, AtCKX5::GUS) are associated with selenite-triggered changes of CK signalling. In wild-type (WT) and NO-deficient nia1nia2 root, selenite led to the diminution of NO content, but CK overproducer ipt-161 and -deficient 35S:CKX2 roots did not show NO decrease. Exogenous NO (S-nitroso-N-acetyl-DL-penicillamine, SNAP) reduced the pARR5::GFP and pTCS::GFP expressions. Roots of the 35S:CKX and cyr1 plants suffered more severe selenite-triggered viability loss than the WT, while in ipt-161 and gsnor1-3 no obvious viability decrease was observed. Exogenous NO ameliorated viability loss, but benzyladenine intensified it. Based on the results, selenite impacts development by oppositely modifying CK signalling and NO level. In the root system, CK signalling intensifies which possibly contributes to the nitrate reductase-independent NO diminution. A mutually negative CK-NO interplay exists in selenite-exposed roots; however, overproduction of both molecules worsens selenite sensing. Hereby, we suggest novel regulatory interplay and role for NO and CK in abiotic stress signalling.
Collapse
Affiliation(s)
- Nóra Lehotai
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Gábor Feigl
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Ágnes Koós
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Andrea Pető
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - László Erdei
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
110
|
Abstract
Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport.
Collapse
|
111
|
Šmehilová M, Dobrůšková J, Novák O, Takáč T, Galuszka P. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance. FRONTIERS IN PLANT SCIENCE 2016; 7:1264. [PMID: 27602043 PMCID: PMC4993776 DOI: 10.3389/fpls.2016.01264] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 05/18/2023]
Abstract
Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in all UGT mutants. In contrast, a specific regulation of CKX7, CKX1 and CKX2 was observed for each individual UGT mutant isoform after exogenous CK uptake. Employing an in silico prediction we proposed cytosolic localization of UGT76C1 and UGT76C2, that we further confirmed by GFP tagging of UGT76C2. Integrating all the results, we therefore hypothesize that UGTs possess different physiological roles in Arabidopsis and serve as a fine-tuning mechanism of active CK levels in cytosol.
Collapse
Affiliation(s)
- Mária Šmehilová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Jana Dobrůšková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc and Institute of Experimental Botany ASCROlomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| |
Collapse
|
112
|
Sugiura D, Kojima M, Sakakibara H. Phytohormonal Regulation of Biomass Allocation and Morphological and Physiological Traits of Leaves in Response to Environmental Changes in Polygonum cuspidatum. FRONTIERS IN PLANT SCIENCE 2016; 7:1189. [PMID: 27555859 PMCID: PMC4977362 DOI: 10.3389/fpls.2016.01189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/25/2016] [Indexed: 05/22/2023]
Abstract
Plants plastically change their morphological and physiological traits in response to environmental changes, which are accompanied by changes in endogenous levels of phytohormones. Although roles of phytohormones in various aspects of plant growth and development were elucidated, their importance in the regulation of biomass allocation was not fully investigated. This study aimed to determine causal relationships among changes in biomass allocation, morphological and physiological traits, and endogenous levels of phytohormones such as gibberellins (GAs) and cytokinins (CKs) in response to environmental changes in Polygonum cuspidatum. Seedlings of P. cuspidatum were grown under two light intensities, each at three nitrogen availabilities. The seedlings grown in high light intensity and high nitrogen availability (HH) were subjected to three additional treatments: Defoliating half of the leaves (Def), transferral to low nitrogen availability (LowN), or low light intensity (LowL). Biomass allocation at the whole-plant level, morphological and physiological traits of each leaf, and endogenous levels of phytohormones in each leaf and shoot apex were measured. Age-dependent changes in leaf traits were also investigated. After the treatments, endogenous levels of GAs in the shoot apex and leaves significantly increased in Def, decreased in LowN, and did not change in LowL compared with HH seedlings. Among all of the seedlings, the levels of GAs in the shoot apex and leaves were strongly correlated with biomass allocation ratio between leaves and roots. The levels of GAs in the youngest leaves were highest, while the levels of CKs were almost consistent in each leaf. The levels of CKs were positively correlated with leaf nitrogen content in each leaf, whereas the levels of GAs were negatively correlated with the total non-structural carbohydrate content in each leaf. These results support our hypothesis that GAs and CKs are key regulatory factors that control biomass allocation, leaf morphology, and photosynthesis in response to changes in environmental variables in P. cuspidatum.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Laboratory of Plant Ecology, Department of Biological Sciences, Graduate School of Science, The University of TokyoBunkyo, Japan
| | - Mikiko Kojima
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
113
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
114
|
Zürcher E, Müller B. Cytokinin Synthesis, Signaling, and Function--Advances and New Insights. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:1-38. [PMID: 27017005 DOI: 10.1016/bs.ircmb.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plant hormones referred to as cytokinins are chemical signals that control numerous developmental processes throughout the plant life cycle, including gametogenesis, root meristem specification, vascular development, shoot and root growth, meristem homeostasis, senescence, and more. In addition, they mediate responses to environmental cues such as light, stress, and nutrient conditions. The core mechanistics of cytokinin metabolism and signaling have been elucidated, but more layers of regulation, additional functions, and interactions with other signals are continuously discovered and described. In this chapter, we recapitulate the highlights of over 100 years of cytokinin research covering its isolation, the elucidation of phosphorelay signaling, and how cytokinin functions in various developmental contexts including its interaction with other pathways. Additionally, given cytokinin's paracrine signaling mechanism, we postulate that cellular exporters for cytokinins exist.
Collapse
Affiliation(s)
- E Zürcher
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland
| | - B Müller
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland.
| |
Collapse
|
115
|
Adibi M, Yoshida S, Weijers D, Fleck C. Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization. PLoS One 2016; 11:e0147830. [PMID: 26872130 PMCID: PMC4752473 DOI: 10.1371/journal.pone.0147830] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Plants have the ability to continously generate new organs by maintaining populations of stem cells throught their lives. The shoot apical meristem (SAM) provides a stable environment for the maintenance of stem cells. All cells inside the SAM divide, yet boundaries and patterns are maintained. Experimental evidence indicates that patterning is independent of cell lineage, thus a dynamic self-regulatory mechanism is required. A pivotal role in the organization of the SAM is played by the WUSCHEL gene (WUS). An important question in this regard is that how WUS expression is positioned in the SAM via a cell-lineage independent signaling mechanism. In this study we demonstrate via mathematical modeling that a combination of an inhibitor of the Cytokinin (CK) receptor, Arabidopsis histidine kinase 4 (AHK4) and two morphogens originating from the top cell layer, can plausibly account for the cell lineage-independent centering of WUS expression within SAM. Furthermore, our laser ablation and microsurgical experiments support the hypothesis that patterning in SAM occurs at the level of CK reception and signaling. The model suggests that the interplay between CK signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression, and provides directions for further experimental investigation.
Collapse
Affiliation(s)
- Milad Adibi
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- * E-mail: (MA); (CF)
| | - Saiko Yoshida
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Christian Fleck
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- * E-mail: (MA); (CF)
| |
Collapse
|
116
|
Vylíčilová H, Husičková A, Spíchal L, Srovnal J, Doležal K, Plíhal O, Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. PHYTOCHEMISTRY 2016; 122:22-33. [PMID: 26706318 DOI: 10.1016/j.phytochem.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N(6)-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in detached wheat leaf senescence, tobacco callus and Amaranthus bioassays. The synthetic compounds showed significant activity, especially in delaying senescence in detached wheat leaves. They were also tested in bacterial receptor bioassays using both monocot and dicot members of the cytokinin receptor family. Most of the derivatives did not trigger cytokinin signaling via the AHK3 and AHK4 receptors from Arabidopsis thaliana in the bacterial assay, but some of them specifically activated the ZmHK1 receptor from Zea mays and were also more active than the aromatic cytokinin BAP in an ARR5::GUS cytokinin bioassay using transgenic Arabidopsis plants. Whole transcript expression analysis was performed using an Arabidopsis model to gather information about the reprogramming of gene transcription when senescent leaves were treated with selected C2-substituted aromatic cytokinin ribosides. Genome-wide expression profiling revealed that the synthetic halogenated derivatives induced the expression of genes related to cytokinin signaling and metabolism. They also prompted both up- and down-regulation of a unique combination of genes coding for components of the photosystem II (PSII) reaction center, light-harvesting complex II (LHCII), and the oxygen-evolving complex, as well as several stress factors responsible for regulating photosynthesis and chlorophyll degradation. Chlorophyll content and fluorescence analyses demonstrated that treatment with the halogenated derivatives increased the efficiency of PSII photochemistry and the abundance of LHCII relative to DMSO- and BAP-treated controls. These findings demonstrate that it is possible to manipulate and fine-tune leaf longevity using synthetic aromatic cytokinin analogs.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 5, CZ-77900 Olomouc, Czech Republic
| | - Karel Doležal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Ondřej Plíhal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| | - Lucie Plíhalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
117
|
Abstract
The cytokinins have been implicated in many facets of plant growth and development including cell division and differentiation, shoot and root growth, apical dominance, senescence, fruit and seed development, and the response to biotic and abiotic stressors. Cytokinin levels are regulated by a balance between biosynthesis [isopentenyl transferase (IPT)], activation [Lonely Guy (LOG)], inactivation (O-glucosyl transferase), re-activation (β-glucosidase), and degradation [cytokinin oxidase/dehydrogenase (CKX)]. During senescence, the levels of active cytokinins decrease, with premature senescence leading to a decrease in yield. During the early stages of fruit and seed development, cytokinin levels are transiently elevated, and coincide with nuclear and cell divisions which are a determinant of final seed size. Exogenous application of cytokinin, ectopic expression of IPT, or down-regulation of CKX have, on occasions, led to increased seed yield, leading to the suggestion that cytokinin may be limiting yield. However, manipulation of cytokinins is complex, not only because of their pleiotropic nature but also because the genes coding for biosynthesis and metabolism belong to multigene families, the members of which are themselves spatially and temporally differentiated. Previous research on yield of rice showed that plant breeders could directly target the cytokinins. Modern genome editing tools could be employed to target and manipulate cytokinin levels to increase seed yield with the concurrent aim of maintaining quality. However, how the cytokinin level is modified and whether IPT or CKX is targeted may depend on whether the plant is considered to be in a source-limiting environment or to be sink limited.
Collapse
Affiliation(s)
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand School of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
118
|
Pospíšilová H, Jiskrová E, Vojta P, Mrízová K, Kokáš F, Čudejková MM, Bergougnoux V, Plíhal O, Klimešová J, Novák O, Dzurová L, Frébort I, Galuszka P. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. N Biotechnol 2016; 33:692-705. [PMID: 26773738 DOI: 10.1016/j.nbt.2015.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 01/10/2023]
Abstract
Together with auxins, cytokinins are the main plant hormones involved in many different physiological processes. Given this knowledge, cytokinin levels can be manipulated by genetic modification in order to improve agronomic parameters of cereals in relation to, for example, morphology, yield, and tolerance to various stresses. The barley (Hordeum vulgare) cultivar Golden Promise was transformed using the cytokinin dehydrogenase 1 gene from Arabidopsis thaliana (AtCKX1) under the control of mild root-specific β-glucosidase promoter from maize. Increased cytokinin degradation activity was observed positively to affect the number and length of lateral roots. The impact on morphology depended upon the recombinant protein's subcellular compartmentation. While assumed cytosolic and vacuolar targeting of AtCKX1 had negligible effect on shoot growth, secretion of AtCKX1 protein to the apoplast had a negative effect on development of the aerial part and yield. Upon the application of severe drought stress, all transgenic genotypes maintained higher water content and showed better growth and yield parameters during revitalization. Higher tolerance to drought stress was most caused by altered root morphology resulting in better dehydration avoidance.
Collapse
Affiliation(s)
- Hana Pospíšilová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eva Jiskrová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Vojta
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Katarína Mrízová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Filip Kokáš
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mária Majeská Čudejková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Veronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondřej Plíhal
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Klimešová
- Department of Crop Science, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Ondřej Novák
- Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lenka Dzurová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
119
|
el-Showk S, Help-Rinta-Rahko H, Blomster T, Siligato R, Marée AFM, Mähönen AP, Grieneisen VA. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out. PLoS Comput Biol 2015; 11:e1004450. [PMID: 26505899 PMCID: PMC4623515 DOI: 10.1371/journal.pcbi.1004450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 07/17/2015] [Indexed: 12/25/2022] Open
Abstract
An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones’ respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other. After moving onto land, plants developed vascular tissues to support their weight and transport water and nutrients. Vascular tissue consists of xylem, which makes up wood, and phloem, which gives rise to the innermost bark. In the model species Arabidopsis thaliana, these tissues form in the growing root tip in a radial pattern consisting of a xylem axis and two phloem poles. Xylem is thought to be positioned by negative interactions between two plant hormones, auxin and cytokinins. Cytokinins activate exporters which pump auxin out of cells, while auxin activates a gene which blocks cytokinin response. This leads auxin to accumulate in some cells which become xylem cells. We developed a computational model which includes only the essential processes but allows them to interact in a realistic spatial context. Using this model we show that these interactions can produce the expected auxin pattern even without a pattern in cytokinin distribution, contrary to expectations based on observed patterns in cytokinin signalling. Furthermore, we learned that hormonal regulation fine-tunes the exporters’ activity, and auxin importers play an important role. The regulatory network not only ensures correct formation of the vasculature but may also position root branches on alternating sides of the xylem.
Collapse
Affiliation(s)
- Sedeer el-Showk
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Computational and Systems Biology, John Innes Centre, Norwich United Kingdom
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Hanna Help-Rinta-Rahko
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Tiina Blomster
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Riccardo Siligato
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Ari Pekka Mähönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- * E-mail: (APM), (VAG)
| | - Verônica A. Grieneisen
- Computational and Systems Biology, John Innes Centre, Norwich United Kingdom
- * E-mail: (APM), (VAG)
| |
Collapse
|
120
|
Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu CJ. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun 2015; 5:3274. [PMID: 24513716 DOI: 10.1038/ncomms4274] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/16/2014] [Indexed: 12/25/2022] Open
Abstract
Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant's growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C(14) or C(13)-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.
Collapse
Affiliation(s)
- Kewei Zhang
- 1] Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA [2]
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Olomouc CZ-78371, Czech Republic
| | - Zhaoyang Wei
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Mingyue Gou
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Xuebin Zhang
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York 11439, USA
| | - Huijun Yang
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yuanheng Cai
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Miroslav Strnad
- 1] Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Olomouc CZ-78371, Czech Republic [2] Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Chang-Jun Liu
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
121
|
Böttcher C, Burbidge CA, Boss PK, Davies C. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. BMC PLANT BIOLOGY 2015; 15:223. [PMID: 26377914 PMCID: PMC4573921 DOI: 10.1186/s12870-015-0611-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/10/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. RESULTS A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. CONCLUSIONS The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of different members from each of five gene families suggests a highly complex and finely-tuned regulation of cytokinin concentrations and response to different cytokinin species at particular stages of fruit development. The same complexity and specialisation is also reflected in the distinct expression profiles of cytokinin-related genes in other grapevine organs.
Collapse
Affiliation(s)
- Christine Böttcher
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| | - Crista A Burbidge
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| | - Paul K Boss
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| | - Christopher Davies
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
122
|
Morrison EN, Emery RJN, Saville BJ. Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. PLoS One 2015; 10:e0130945. [PMID: 26107181 PMCID: PMC4479884 DOI: 10.1371/journal.pone.0130945] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/27/2015] [Indexed: 02/02/2023] Open
Abstract
Ustilago maydis is the causative agent of common smut of corn. Early studies noted its ability to synthesize phytohormones and, more recently these growth promoting substances were confirmed as cytokinins (CKs). Cytokinins comprise a group of phytohormones commonly associated with actively dividing tissues. Lab analyses identified variation in virulence between U. maydis dikaryon and solopathogen infections of corn cob tissue. Samples from infected cob tissue were taken at sequential time points post infection and biochemical profiling was performed using high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS). This hormone profiling revealed that there were altered levels of ABA and major CKs, with a marked reduction in CK glucosides, increases in methylthiol CKs and a particularly dramatic increase in cisZ CK forms, in U. maydis infected tissue. These changes were more pronounced in the more virulent dikaryon relative to the solopathogenic strain suggesting a role for cytokinins in moderating virulence during biotrophic infection. These findings highlight the fact that U. maydis does not simply mimic a fertilized seed but instead reprograms the host tissue. Results underscore the suitability of the Ustilago maydis- Zea mays model as a basis for investigating the control of phytohormone dynamics during biotrophic infection of plants.
Collapse
Affiliation(s)
- Erin N. Morrison
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - R. J. Neil Emery
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Barry J. Saville
- Forensic Science Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
123
|
Tameshige T, Hirakawa Y, Torii KU, Uchida N. Cell walls as a stage for intercellular communication regulating shoot meristem development. FRONTIERS IN PLANT SCIENCE 2015; 6:324. [PMID: 26029226 PMCID: PMC4426712 DOI: 10.3389/fpls.2015.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/24/2015] [Indexed: 05/07/2023]
Abstract
Aboveground organs of plants are ultimately derived/generated from the shoot apical meristem (SAM), which is a proliferative tissue located at the apex of the stem. The SAM contains a population of stem cells that provide new cells for organ/tissue formation. The SAM is composed of distinct cell layers and zones with different properties. Primordia of lateral organs develop at the periphery of the SAM. The shoot apex is a dynamic and complex tissue, and as such intercellular communications among cells, layers and zones play significant roles in the coordination of cell proliferation, growth and differentiation to achieve elaborate morphogenesis. Recent findings have highlighted the importance of a number of signaling molecules acting in the cell wall space for the intercellular communication, including classic phytohormones and secretory peptides. Moreover, accumulating evidence has revealed that cell wall properties and their modifying enzymes modulate hormone actions. In this review, we outline how behaviors of signaling molecules and changes of cell wall properties are integrated for the shoot meristem regulation.
Collapse
Affiliation(s)
- Toshiaki Tameshige
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yuki Hirakawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
124
|
Chandler JW, Werr W. Cytokinin-auxin crosstalk in cell type specification. TRENDS IN PLANT SCIENCE 2015; 20:291-300. [PMID: 25805047 DOI: 10.1016/j.tplants.2015.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 05/24/2023]
Abstract
Auxin and cytokinin affect cell fate specification transcriptionally and non-transcriptionally, and their roles have been characterised in several founder cell specification and activation contexts. Similarly to auxin, local cytokinin synthesis and response gradients are instructive, and the roles of ARABIDOPSIS RESPONSE REGULATOR 7/15 (ARR7/15) and the negative cytokinin response regulator ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6, as well as auxin signalling via MONOPTEROS/BODENLOS, are functionally conserved across different developmental processes. Auxin and cytokinin crosstalk is tissue- and context-specific, and may be synergistic in the shoot apical meristem (SAM) but antagonistic in the root. We review recent advances in understanding the interactions between auxin and cytokinin in pivotal developmental processes, and show that feedback complexity and the multistep nature of specification processes argue against a single morphogenetic signal.
Collapse
Affiliation(s)
- John William Chandler
- Institute of Developmental Biology, Cologne Biocenter, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| | - Wolfgang Werr
- Institute of Developmental Biology, Cologne Biocenter, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
125
|
Sugiura D, Sawakami K, Kojima M, Sakakibara H, Terashima I, Tateno M. Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:397-409. [PMID: 32480684 DOI: 10.1071/fp14212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/19/2014] [Indexed: 06/11/2023]
Abstract
We evaluated the roles of gibberellins (GAs) and cytokinins (CKs) in regulation of morphological traits such as biomass allocation and leaf mass per area (LMA). Seedlings of Polygonum cuspidatum Siebold & Zucc. were grown under various light and N availabilities. We exogenously sprayed solutions of gibberellin (GA3), benzyl adenine (BA), uniconazole (an inhibitor of GA biosynthesis) or their mixtures on the aboveground parts, and changes in morphological and physiological traits and relative growth rate (RGR) were analysed. Endogenous levels of GAs and CKs in the control plants were also quantified. The morphological traits were changed markedly by the spraying. Biomass allocation to leaves was increased by GA3 and BA, whereas it decreased by uniconazole. GA3 decreased LMA, whereas uniconazole increased it. We found close relationships among morphological and physiological traits such as photosynthetic rate and net assimilation rate, and RGR under all growth conditions. Seedlings with high levels of endogenous GAs or CKs and low levels of endogenous GAs or CKs showed morphologies similar to those sprayed with GA3 or BA, and those sprayed with uniconazole, respectively. Thus we concluded these phytohormones are involved in the regulation of biomass allocation responding to either light or N availability.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Laboratory of Plant Ecology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Koichiro Sawakami
- Nikko Botanical Garden, Graduate School of Science, The University of Tokyo, 1842 Hanaishi, Nikko, Tochigi 321-1435, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Terashima
- Laboratory of Plant Ecology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Masaki Tateno
- Nikko Botanical Garden, Graduate School of Science, The University of Tokyo, 1842 Hanaishi, Nikko, Tochigi 321-1435, Japan
| |
Collapse
|
126
|
Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1851-63. [PMID: 25609827 PMCID: PMC4378623 DOI: 10.1093/jxb/eru522] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
Cytokinin receptors play a key role in cytokinin-dependent processes regulating plant growth, development, and adaptation; therefore, the functional properties of these receptors are of great importance. Previously the properties of cytokinin receptors were investigated in heterologous assay systems using unicellular microorganisms, mainly bacteria, expressing receptor proteins. However, within microorganisms receptors reside in an alien environment that might distort the receptor properties. Therefore, a new assay system has been developed allowing studies of individual receptors within plant membranes (i.e. closer to their natural environment). The main ligand-binding characteristics of receptors from Arabidopsis [AHK2, AHK3, and AHK4] and maize (ZmHK1) were refined in this new system, and the properties of full-length Arabidopsis receptor AHK2 were characterized for the first time. Ligand specificity profiles of receptors towards cytokinin bases were comparable with the profiles retrieved in bacterial assay systems. In contrast, cytokinin-9-ribosides displayed a strongly reduced affinity for receptors in the plant assay system, indicating that ribosides as the common transport form of cytokinins have no or very weak cytokinin activity. This underpins the central role of free bases as the sole biologically active cytokinin compounds. According to molecular modelling and docking studies, N (9)-ribosylation alters the bonding pattern in cytokinin-receptor interaction and prevents β6-β7 loop movement important for tight hormone binding. A common feature of all receptors was a greatly reduced ligand binding at low (5.0-5.5) pH. The particularly high sensitivity of ZmHK1 to pH changes leads to the suggestion that some cytokinin receptors may play an additional role as pH sensors in the lumen of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sergey N Lomin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry M Krivosheev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Mikhail Yu Steklov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry I Osolodkin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Georgy A Romanov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
127
|
Asgher M, Khan MIR, Anjum NA, Khan NA. Minimising toxicity of cadmium in plants--role of plant growth regulators. PROTOPLASMA 2015; 252:399-413. [PMID: 25303855 DOI: 10.1007/s00709-014-0710-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.
Collapse
Affiliation(s)
- Mohd Asgher
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | |
Collapse
|
128
|
Schäfer M, Meza-Canales ID, Navarro-Quezada A, Brütting C, Vanková R, Baldwin IT, Meldau S. Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:198-212. [PMID: 24924599 PMCID: PMC4286249 DOI: 10.1111/jipb.12227] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/11/2014] [Indexed: 05/21/2023]
Abstract
Nearly half a century ago insect herbivores were found to induce the formation of green islands by manipulating cytokinin (CK) levels. However, the response of the CK pathway to attack by chewing insect herbivores remains unclear. Here, we characterize the CK pathway of Nicotiana attenuata (Torr. ex S. Wats.) and its response to wounding and perception of herbivore-associated molecular patterns (HAMPs). We identified 44 genes involved in CK biosynthesis, inactivation, degradation, and signaling. Leaf wounding rapidly induced transcriptional changes in multiple genes throughout the pathway, as well as in the levels of CKs, including isopentenyladenosine and cis-zeatin riboside; perception of HAMPs present in the oral secretions (OS) of the specialist herbivore Manduca sexta amplified these responses. The jasmonate pathway, which triggers many herbivore-induced processes, was not required for these HAMP-triggered changes, but rather suppressed the CK responses. Interestingly CK pathway changes were observed also in systemic leaves in response to wounding and OS application indicating a role of CKs in mediating long distance systemic processes in response to herbivory. Since wounding and grasshopper OS elicited similar accumulations of CKs in Arabidopsis thaliana L., we propose that CKs are integral components of wounding and HAMP-triggered responses in many plant species.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Aura Navarro-Quezada
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR165 02 Prague 6-Lysolaje, Czech Republic
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
- German Centre for integrative Biodiversity Research (iDiv)04107, Leipzig, Germany
| |
Collapse
|
129
|
Liu F, Xiong X, Wu L, Fu D, Hayward A, Zeng X, Cao Y, Wu Y, Li Y, Wu G. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus. PLoS One 2014; 9:e110272. [PMID: 25314222 PMCID: PMC4196963 DOI: 10.1371/journal.pone.0110272] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Xiong
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lei Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland, Australia
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yinglong Cao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
130
|
Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 2014; 5:4983. [PMID: 25236855 DOI: 10.1038/ncomms5983] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
Legumes establish symbiotic associations with nitrogen-fixing bacteria (rhizobia) in root nodules to obtain nitrogen. Legumes control nodule number through long-distance communication between roots and shoots, maintaining the proper symbiotic balance. Rhizobial infection triggers the production of mobile CLE-RS1/2 peptides in Lotus japonicus roots; the perception of the signal by receptor kinase HAR1 in shoots presumably induces the production of an unidentified shoot-derived inhibitor (SDI) that translocates to roots and blocks further nodule development. Here we show that, CLE-RS1/2-HAR1 signalling activates the production of shoot-derived cytokinins, which have an SDI-like capacity to systemically suppress nodulation. In addition, we show that LjIPT3 is involved in nodulation-related cytokinin production in shoots. The expression of LjIPT3 is activated in an HAR1-dependent manner. We further demonstrate shoot-to-root long-distance transport of cytokinin in L. japonicus seedlings. These findings add essential components to our understanding of how legumes control nodulation to balance nutritional requirements and energy status.
Collapse
|
131
|
Musienko M, Zhuk V, Batsmanova L. Protective role of cytokinin under the heat stress on wheat plants. UKRAINIAN BOTANICAL JOURNAL 2014. [DOI: 10.15407/ukrbotj71.02.244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
132
|
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A 2014; 111:7150-5. [PMID: 24778257 DOI: 10.1073/pnas.1321519111] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by ∼90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.
Collapse
|
133
|
A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. Biochem J 2014; 458:225-37. [PMID: 24325449 DOI: 10.1042/bj20130792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.
Collapse
|
134
|
Mortier V, Wasson A, Jaworek P, De Keyser A, Decroos M, Holsters M, Tarkowski P, Mathesius U, Goormachtig S. Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. THE NEW PHYTOLOGIST 2014; 202:582-593. [PMID: 24443934 DOI: 10.1111/nph.12681] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/11/2013] [Indexed: 05/23/2023]
Abstract
LONELY GUY (LOG) genes encode cytokinin riboside 5'-monophosphate phosphoribohydrolases and are directly involved in the activation of cytokinins. To assess whether LOG proteins affect the influence of cytokinin on nodulation, we studied two LOG genes of Medicago truncatula. Expression analysis showed that MtLOG1 and MtLOG2 were upregulated during nodulation in a CRE1-dependent manner. Expression was mainly localized in the dividing cells of the nodule primordium. In addition, RNA interference revealed that MtLOG1 is involved in nodule development and that the gene plays a negative role in lateral root development. Ectopic expression of MtLOG1 resulted in a change in cytokinin homeostasis, triggered cytokinin-inducible genes and produced roots with enlarged vascular tissues and shortened primary roots. In addition, those 35S:LOG1 roots also displayed fewer nodules than the wild-type. This inhibition in nodule formation was local, independent of the SUPER NUMERIC NODULES gene, but coincided with an upregulation of the MtCLE13 gene, encoding a CLAVATA3/EMBRYO SURROUNDING REGION peptide. In conclusion, we demonstrate that in M. truncatula LOG proteins might be implicated in nodule primordium development and lateral root formation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
| | - Anton Wasson
- Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, 0200, Australia
| | - Pavel Jaworek
- Centre of the Region Haná for the Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
| | - Martijn Decroos
- Department of Plant Systems Biology, VIB, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
| | - Marcelle Holsters
- Department of Plant Systems Biology, VIB, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
| | - Petr Tarkowski
- Centre of the Region Haná for the Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, 0200, Australia
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
| |
Collapse
|
135
|
Kiba T, Takei K, Kojima M, Sakakibara H. Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev Cell 2014; 27:452-61. [PMID: 24286826 DOI: 10.1016/j.devcel.2013.10.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/12/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023]
Abstract
Cytokinins (CKs), a class of plant hormones, are central regulators of plant growth and development. Based on numerous physiological and genetic studies, the quantitative regulation of cytokinin levels is the major mechanism regulating cytokinin action in diverse developmental processes. Here, we identified a different mechanism with which the physiological function of CK is modulated through side-chain modification (trans-hydroxylation). The trans-hydroxylation that forms trans-zeatin (tZ)-type CK from N(6)-(Δ(2)-isopentenyl)adenine (iP)-type CK is catalyzed by the cytochrome P450 enzymes CYP735A1 and CYP735A2 in Arabidopsis. Deficiency in trans-hydroxylation activity results in dramatic retardation of shoot growth without affecting total CK quantity, while augmentation of the activity enhances shoot growth. Application of exogenous tZ but not iP recovers the wild-type phenotype in the mutants, indicating that trans-hydroxylation modifies the physiological function of CK. We propose that the control of cytokinin function by side-chain modification is crucial for shoot growth regulation in plants.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
136
|
Abstract
Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes.
Collapse
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599-3280
| | - G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755
| |
Collapse
|
137
|
Fonseca S, Rosado A, Vaughan-Hirsch J, Bishopp A, Chini A. Molecular locks and keys: the role of small molecules in phytohormone research. FRONTIERS IN PLANT SCIENCE 2014; 5:709. [PMID: 25566283 PMCID: PMC4269113 DOI: 10.3389/fpls.2014.00709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/26/2014] [Indexed: 05/03/2023]
Abstract
Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.
Collapse
Affiliation(s)
- Sandra Fonseca
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología- Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Abel Rosado
- The Botany Department, University of British ColumbiaVancouver, BC, Canada
| | - John Vaughan-Hirsch
- Centre for Plant Integrative Biology, University of NottinghamNottingham, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of NottinghamNottingham, UK
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología- Consejo Superior de Investigaciones CientíficasMadrid, Spain
- *Correspondence: Andrea Chini, Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología- Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, C/ Darwin 3, 28049 Madrid, Spain e-mail:
| |
Collapse
|
138
|
Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. PLANT & CELL PHYSIOLOGY 2013; 54:1881-93. [PMID: 24058148 PMCID: PMC3814184 DOI: 10.1093/pcp/pct127] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/09/2013] [Indexed: 05/18/2023]
Abstract
Cytokinin activity in plants is closely related to nitrogen availability, and an Arabidopsis gene for adenosine phosphate-isopentenyltransferase (IPT), IPT3, is regulated by inorganic nitrogen sources in a nitrate-specific manner. In this study, we have identified another regulatory system of cytokinin de novo biosynthesis in response to nitrogen status. In rice, OsIPT4, OsIPT5, OsIPT7 and OsIPT8 were up-regulated in response to exogenously applied nitrate and ammonium, with accompanying accumulation of cytokinins. Pre-treatment of roots with l-methionine sulfoximine, a potent inhibitor of glutamine synthetase, abolished the nitrate- and ammonium-dependent induction of OsIPT4 and OsIPT5, while glutamine application induced their expression. Thus, neither nitrate nor ammonium, but glutamine or a related metabolite, is essential for the induction of these IPT genes in rice. On the other hand, glutamine-dependent induction of IPT3 occurs in Arabidopsis, at least to some extent. In transgenic lines repressing the expression of OsIPT4, which is the dominant IPT in rice roots, the nitrogen-dependent increase of cytokinin in the xylem sap was significantly reduced, and seedling shoot growth was retarded despite sufficient nitrogen. We conclude that plants possess multiple regulation systems for nitrogen-dependent cytokinin biosynthesis to modulate growth in response to nitrogen availability.
Collapse
|
139
|
Aloni R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. PLANTA 2013; 238:819-30. [PMID: 23835810 DOI: 10.1007/s00425-013-1927-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 05/21/2023]
Abstract
The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.
Collapse
Affiliation(s)
- Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Tel Aviv, Israel,
| |
Collapse
|
140
|
Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelský PL, Žáková K, Šmehilová M, Strnad M, Weckwerth W, Brzobohatý B. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4193-206. [PMID: 24064926 PMCID: PMC3808309 DOI: 10.1093/jxb/ert227] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, numerous developmental processes are controlled by cytokinin (CK) levels and their ratios to levels of other hormones. While molecular mechanisms underlying the regulatory roles of CKs have been intensely researched, proteomic and metabolomic responses to CK deficiency are unknown. Transgenic Arabidopsis seedlings carrying inducible barley cytokinin oxidase/dehydrogenase (CaMV35S>GR>HvCKX2) and agrobacterial isopentenyl transferase (CaMV35S>GR>ipt) constructs were profiled to elucidate proteome- and metabolome-wide responses to down- and up-regulation of CK levels, respectively. Proteome profiling identified >1100 proteins, 155 of which responded to HvCKX2 and/or ipt activation, mostly involved in growth, development, and/or hormone and light signalling. The metabolome profiling covered 79 metabolites, 33 of which responded to HvCKX2 and/or ipt activation, mostly amino acids, carbohydrates, and organic acids. Comparison of the data sets obtained from activated CaMV35S>GR>HvCKX2 and CaMV35S>GR>ipt plants revealed unexpectedly extensive overlaps. Integration of the proteomic and metabolomic data sets revealed: (i) novel components of molecular circuits involved in CK action (e.g. ribosomal proteins); (ii) previously unrecognized links to redox regulation and stress hormone signalling networks; and (iii) CK content markers. The striking overlaps in profiles observed in CK-deficient and CK-overproducing seedlings might explain surprising previously reported similarities between plants with down- and up-regulated CK levels.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Alena Kuklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Wolfgang Hoehenwarter
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- *Present address: Proteome Analysis Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle, Germany
| | - Lena Fragner
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Gabriela Rotková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Petr L. Jedelský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Prague, Czech Republic
| | - Kateřina Žáková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Mária Šmehilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
141
|
Pangesti N, Pineda A, Pieterse CMJ, Dicke M, van Loon JJA. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. FRONTIERS IN PLANT SCIENCE 2013; 4:414. [PMID: 24167508 PMCID: PMC3805956 DOI: 10.3389/fpls.2013.00414] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/29/2013] [Indexed: 05/22/2023]
Abstract
Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe-plant-insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht UniversityUtrecht, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Joop J. A. van Loon, Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, Netherlands e-mail:
| |
Collapse
|
142
|
Avalbaev AM, Somov KA, Yuldashev RA, Shakirova FM. Cytokinin oxidase is key enzyme of cytokinin degradation. BIOCHEMISTRY (MOSCOW) 2013; 77:1354-61. [PMID: 23244730 DOI: 10.1134/s0006297912120024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinin oxidase (EC 1.5.99.12) is an enzyme that catalyzes the irreversible degradation of cytokinin phytohormones that are extremely necessary for growth, development, and differentiation of plants. Cytokinin oxidase plays an important role in the regulation of quantitative level of cytokinins and their distribution in plant tissues. This review generalizes the available information on the structure, properties, and functional role of this enzyme in plant ontogeny under conditions of normal growth and under the influence of unfavorable environmental factors.
Collapse
Affiliation(s)
- A M Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Center of the Russian Academy of Sciences, pr. Oktyabrya 71, 450054 Ufa, Bashkortostan Republic, Russia
| | | | | | | |
Collapse
|
143
|
Zhang X, Chen Y, Lin X, Hong X, Zhu Y, Li W, He W, An F, Guo H. Adenine phosphoribosyl transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis. MOLECULAR PLANT 2013; 6:1661-72. [PMID: 23658065 DOI: 10.1093/mp/sst071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, the cytokinin metabolic processes, including cytokinin biosynthesis, interconversion, inactivation, and degradation, play critical roles in the regulation of cytokinin homeostasis and plant development. Purine metabolic enzymes have been implied to catalyze the cytokinin interconversion in previous works. In this study, we report that Adenine Phosphoribosyl Transferase 1 (APT1) is the causal gene of the high-dose cytokinin-resistant mutants. APT1 catalyzes the cytokinin conversion from free bases to nucleotides, and is functionally predominant among the five members of the Arabidopsis Adenine Phosphoribosyl Transferase family. Loss of APT1 activity in plants leads to excess accumulation of cytokinin bases, thus evoking myriad cytokinin-regulated responses, such as delayed leaf senescence, anthocyanin accumulation, and downstream gene expression. Thus, our study defines APT1 as a key metabolic enzyme participating in the cytokinin inactivation by phosphoribosylation.
Collapse
Affiliation(s)
- Xinyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Life Sciences Building, 5 Yi He Yuan Road, Haidian, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
|
145
|
Pilkington SM, Montefiori M, Galer AL, Neil Emery RJ, Allan AC, Jameson PE. Endogenous cytokinin in developing kiwifruit is implicated in maintaining fruit flesh chlorophyll levels. ANNALS OF BOTANY 2013; 112:57-68. [PMID: 23644363 PMCID: PMC3690984 DOI: 10.1093/aob/mct093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/11/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Green kiwifruit (Actinidia deliciosa) retain high concentrations of chlorophyll in the fruit flesh, whereas in gold-fleshed kiwifruit (A. chinensis) chlorophyll is degraded to colourless catabolites during fruit development, leaving yellow carotenoids visible. The plant hormone group the cytokinins has been implicated in the delay of senescence, and so the aim of this work was to investigate the link between cytokinin levels in ripening fruit and chlorophyll de-greening. METHODS The expression of genes related to cytokinin metabolism and signal transduction and the concentration of cytokinin metabolites were measured. The regulation of gene expression was assayed using transient activation of the promoter of STAY-GREEN2 (SGR2) by cytokinin response regulators. KEY RESULTS While the total amount of cytokinin increased in fruit of both species during maturation and ripening, a high level of expression of two cytokinin biosynthetic gene family members, adenylate isopentenyltransferases, was only detected in green kiwifruit fruit during ripening. Additionally, high levels of O-glucosylated cytokinins were detected only in green kiwifruit, as was the expression of the gene for zeatin O-glucosyltransferase, the enzyme responsible for glucosylating cytokinin into a storage form. Season to season variation in gene expression was seen, and some de-greening of the green kiwifruit fruit occurred in the second season, suggesting environmental effects on the chlorophyll degradation pathway. Two cytokinin-related response regulators, RRA17 and RRB120, showed activity against the promoter of kiwifruit SGR2. CONCLUSIONS The results show that in kiwifruit, levels of cytokinin increase markedly during fruit ripening, and that cytokinin metabolism is differentially regulated in the fruit of the green and gold species. However, the causal factor(s) associated with the maintenance or loss of chlorophyll in kiwifruit during ripening remains obscure.
Collapse
Affiliation(s)
- Sarah M. Pilkington
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Mirco Montefiori
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
| | - Amy L. Galer
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Paula E. Jameson
- University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
146
|
El-Showk S, Ruonala R, Helariutta Y. Crossing paths: cytokinin signalling and crosstalk. Development 2013; 140:1373-83. [PMID: 23482484 DOI: 10.1242/dev.086371] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinins are a major class of plant hormones that are involved in various aspects of plant development, ranging from organ formation and apical dominance to leaf senescence. Cytokinin and auxin have long been known to interact antagonistically, and more recent studies have shown that cytokinins also interact with other plant hormones to regulate plant development. A growing body of research has begun to elucidate the molecular and genetic underpinnings of this extensive crosstalk. The rich interconnections between the synthesis, perception and transport networks of these plant hormones provide a wide range of opportunities for them to modulate, amplify or buffer one another. Here, we review this exciting and rapidly growing area of cytokinin research.
Collapse
Affiliation(s)
- Sedeer El-Showk
- Institute of Biotechnology/Department of Biosciences, University of Helsinki, Helsinki FI-00014, Finland
| | | | | |
Collapse
|
147
|
Chen X, Zhou X, Xi L, Li J, Zhao R, Ma N, Zhao L. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema ×grandiflora cv. Jinba). PLoS One 2013; 8:e61717. [PMID: 23613914 PMCID: PMC3629106 DOI: 10.1371/journal.pone.0061717] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 03/17/2013] [Indexed: 01/05/2023] Open
Abstract
The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously proven to be involved in local inhibition of shoot branching in Arabidopsis, pea, tomato, maize and rice. To investigate the function of BRC1, we isolated the BRC1 homolog from chrysanthemum. There were two transcripts of DgBRC1 coming from two alleles in one locus, both of which complemented the multiple branches phenotype of Arabidopsis brc1-1, indicating that both are functionally conserved. DgBRC1 was mainly expressed in dormant axillary buds, and down-regulated at the bud activation stage, and up-regulated by higher planting densities. DgBRC1 transcripts could respond to apical auxin supply and polar auxin transport. Moreover, we found that the acropetal cytokinin stream promoted branch outgrowth whether or not apical auxin was present. Basipetal cytokinin promoted outgrowth of branches in the absence of apical auxin, while strengthening the inhibitory effects on lower buds in the presence of apical auxin. The influence of auxin and strigolactons (SLs) on the production of cytokinin was investigated, we found that auxin locally down-regulated biosynthesis of cytokinin in nodes, SLs also down-regulated the biosynthesis of cytokinin, the interactions among these phytohormones need further investigation.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Xiaoyang Zhou
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Lin Xi
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Junxiang Li
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Ruiyan Zhao
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Nan Ma
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Liangjun Zhao
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
148
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:287-96. [PMID: 23234404 DOI: 10.1094/mpmi-06-12-0152-r] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hormone crosstalk is pivotal in plant-pathogen interactions. Here, we report on the accumulation of cytokinins (CK) in rice seedlings after infection of blast fungus Magnaporthe oryzae and its potential significance in rice-M. oryzae interaction. Blast infection to rice seedlings increased levels of N(6)-(Δ(2)-isopentenyl) adenine (iP), iP riboside (iPR), and iPR 5'-phosphates (iPRP) in leaf blades. Consistent with this, CK signaling was activated around the infection sites, as shown by histochemical staining for β-glucuronidase activity driven by a CK-responsive OsRR6 promoter. Diverse CK species were also detected in the hyphae (mycelium), conidia, and culture filtrates of blast fungus, indicating that M. oryzae is capable of production as well as hyphal secretion of CK. Co-treatment of leaf blades with CK and salicylic acid (SA), but not with either one alone, markedly induced pathogenesis-related genes OsPR1b and probenazole-induced protein 1 (PBZ1). These effects were diminished by RNAi-knockdown of OsNPR1 or WRKY45, the key regulators of the SA signaling pathway in rice, indicating that the effects of CK depend on these two regulators. Taken together, our data imply a coevolutionary rice-M. oryzae interaction, wherein M. oryzae probably elevates rice CK levels for its own benefits such as nutrient translocation. Rice plants, on the other hand, sense it as an infection signal and activate defense reactions through the synergistic action with SA.
Collapse
Affiliation(s)
- Chang-Jie Jiang
- National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Soler R, Erb M, Kaplan I. Long distance root-shoot signalling in plant-insect community interactions. TRENDS IN PLANT SCIENCE 2013; 18:149-56. [PMID: 22989699 DOI: 10.1016/j.tplants.2012.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/23/2012] [Indexed: 05/03/2023]
Abstract
Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground-belowground interactions that can be extrapolated to general plant-insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant-insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions.
Collapse
Affiliation(s)
- Roxina Soler
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | |
Collapse
|