101
|
Banca P, Lange I, Worbe Y, Howell NA, Irvine M, Harrison NA, Moutoussis M, Voon V. Reflection impulsivity in binge drinking: behavioural and volumetric correlates. Addict Biol 2016; 21:504-15. [PMID: 25678093 PMCID: PMC4766871 DOI: 10.1111/adb.12227] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The degree to which an individual accumulates evidence prior to making a decision, also known as reflection impulsivity, can be affected in psychiatric disorders. Here, we study decisional impulsivity in binge drinkers, a group at elevated risk for developing alcohol use disorders, comparing two tasks assessing reflection impulsivity and a delay discounting task, hypothesizing impairments in both subtypes of impulsivity. We also assess volumetric correlates of reflection impulsivity focusing on regions previously implicated in functional magnetic resonance imaging studies. Sixty binge drinkers and healthy volunteers were tested using two different information-gathering paradigms: the beads task and the Information Sampling Task (IST). The beads task was analysed using a behavioural approach and a Bayesian model of decision making. Delay discounting was assessed using the Monetary Choice Questionnaire. Regression analyses of primary outcomes were conducted with voxel-based morphometry analyses. Binge drinkers sought less evidence prior to decision in the beads task compared with healthy volunteers in both the behavioural and computational modelling analysis. There were no group differences in the IST or delay discounting task. Greater impulsivity as indexed by lower evidence accumulation in the beads task was associated with smaller dorsolateral prefrontal cortex and inferior parietal volumes. In contrast, greater impulsivity as indexed by lower evidence accumulation in the IST was associated with greater dorsal cingulate and precuneus volumes. Binge drinking is characterized by impaired reflection impulsivity suggesting a deficit in deciding on the basis of future outcomes that are more difficult to represent. These findings emphasize the role of possible therapeutic interventions targeting decision-making deficits.
Collapse
Affiliation(s)
- Paula Banca
- Department of PsychiatryUniversity of CambridgeUK
- PhD Programme in Experimental Biology and BiomedicineCenter for Neuroscience and Cell BiologyUniversity of CoimbraPortugal
- Institute for Biomedical Imaging and Life SciencesFaculty of MedicineUniversity of CoimbraPortugal
| | - Iris Lange
- Department of PsychiatryUniversity of CambridgeUK
| | - Yulia Worbe
- Behavioural and Clinical Neurosciences InstituteUniversity of CambridgeUK
| | | | | | | | - Michael Moutoussis
- The Wellcome Trust Centre for NeuroimagingInstitute of NeurologyUniversity College LondonUK
| | - Valerie Voon
- Department of PsychiatryUniversity of CambridgeUK
- Behavioural and Clinical Neurosciences InstituteUniversity of CambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustUK
| |
Collapse
|
102
|
Zhou Y, Huang T, Lee F, Kreek MJ. Involvement of Endocannabinoids in Alcohol "Binge" Drinking: Studies of Mice with Human Fatty Acid Amide Hydrolase Genetic Variation and After CB1 Receptor Antagonists. Alcohol Clin Exp Res 2016; 40:467-73. [PMID: 26857901 DOI: 10.1111/acer.12989] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/14/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The endocannabinoid system has been found to play an important role in modulating alcohol intake. Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH; a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models. A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice. METHODS As this FAAH SNP has been reported to be associated with altered alcohol abuse, the present study used these genetic knock-in mice containing the human SNP C385A to determine the impact of variant FAAH gene on alcohol "binge" drinking in the drinking-in-the-dark (DID) model. RESULTS We found that the FAAH(A/A) mice had greater alcohol intake and preference than the wild-type FAAH(C/C) mice, suggesting that increased endocannabinoid signaling in FAAH(A/A) mice led to increased alcohol "binge" consumption. The specificity on alcohol vulnerability was suggested by the lack of any FAAH genotype difference on sucrose or saccharin intake. Using the "binge" DID model, we confirmed that selective CB1 receptor antagonist AM251 reduced alcohol intake in the wild-type mice. CONCLUSIONS These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol "binge" drinking.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases , The Rockefeller University, New York, New York
| | - Ted Huang
- Department of Psychiatry , Weill Cornell Medical Center, New York, New York
| | - Francis Lee
- Department of Psychiatry , Weill Cornell Medical Center, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases , The Rockefeller University, New York, New York
| |
Collapse
|
103
|
González-Sepúlveda M, Pozo OJ, Marcos J, Valverde O. Chronic pain causes a persistent anxiety state leading to increased ethanol intake in CD1 mice. J Psychopharmacol 2016; 30:188-203. [PMID: 26681793 DOI: 10.1177/0269881115622238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mood disorders and chronic pain are closely linked, but limited progress has been made in understanding the role of chronic and neuropathic pain in the aetiopathogenesis of depression. To explore the pathological mechanisms that mediate the association between pain and depressive-like behaviours, we studied the time-dependent effect of neuropathic pain on the development of anxiety-like and despair behaviours in CD1 mice. We analysed behavioural data, neuroinflammation reactions and changes in neurotransmitter (glutamate and serotonin) levels in the mouse prefrontal cortex. Sciatic-operated mice displayed long-lasting anxiety-like and despair behaviours, starting 5 and 20 days after partial sciatic nerve ligation, respectively. Glutamatergic neurotransmission and IL-1β cytokine expression were enhanced in the prefrontal cortex of mice with neuropathic pain. We found no change in serotonin metabolism, cytokine IL-6 or brain-derived neurotrophic factor levels. While sciatic-operated mice exposed to intermittent ethanol intake (20% v/v) using the drinking in the dark procedure consumed higher amounts of ethanol than sham-operated mice, thermal allodynia and despair behaviour were not attenuated by ethanol consumption. Our findings reveal an association between glutamatergic neurotransmission and pain-induced mood disorders, and indicate that moderate ethanol consumption does not relieve nociceptive and depressive behaviours associated with chronic pain in mice.
Collapse
Affiliation(s)
- Marta González-Sepúlveda
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Oscar J Pozo
- Bioanalysis Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Josep Marcos
- Bioanalysis Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Olga Valverde
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
104
|
Todkar A, Granholm L, Aljumah M, Nilsson KW, Comasco E, Nylander I. HPA Axis Gene Expression and DNA Methylation Profiles in Rats Exposed to Early Life Stress, Adult Voluntary Ethanol Drinking and Single Housing. Front Mol Neurosci 2016; 8:90. [PMID: 26858597 PMCID: PMC4726785 DOI: 10.3389/fnmol.2015.00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/24/2015] [Indexed: 11/24/2022] Open
Abstract
The neurobiological basis of early life stress (ELS) impact on vulnerability to alcohol use disorder is not fully understood. The effect of ELS, adult ethanol consumption and single housing, on expression of stress and DNA methylation regulatory genes as well as blood corticosterone levels was investigated in the hypothalamus and pituitary of adult out-bred Wistar rats subjected to different rearing conditions. A prolonged maternal separation (MS) of 360 min (MS360) was used to study the effect of ELS, and a short MS of 15 min (MS15) was used as a control. Voluntary ethanol drinking was assessed using a two-bottle free choice paradigm to simulate human episodic drinking. The effects of single housing and ethanol were assessed in conventional animal facility rearing (AFR) conditions. Single housing in adulthood was associated with lower Crhr1 and higher Pomc expression in the pituitary, whereas ethanol drinking was associated with higher expression of Crh in the hypothalamus and Crhr1 in the pituitary, accompanied by lower corticosterone levels. As compared to controls with similar early life handling, rats exposed to ELS displayed lower expression of Pomc in the hypothalamus, and higher Dnmt1 expression in the pituitary. Voluntary ethanol drinking resulted in lower Fkbp5 expression in the pituitary and higher Crh expression in the hypothalamus, independently of rearing conditions. In rats exposed to ELS, water and ethanol drinking was associated with higher and lower corticosterone levels, respectively. The use of conventionally reared rats as control group yielded more significant results than the use of rats exposed to short MS. Positive correlations, restricted to the hypothalamus and ELS group, were observed between the expression of the hypothalamus-pituitary-adrenal receptor and the methylation-related genes. Promoter DNA methylation and expression of respective genes did not correlate suggesting that other loci are involved in transcriptional regulation. Concluding, single housing is a confounding factor to be considered in voluntary ethanol drinking paradigms. ELS and ethanol drinking in adulthood exert independent effects on hypothalamic and pituitary related genes, however, in a manner dependent on the control group used.
Collapse
Affiliation(s)
| | - Linnea Granholm
- Department of Pharmaceutical Bioscience, Uppsala University Uppsala, Sweden
| | - Mujtaba Aljumah
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Kent W Nilsson
- Centre for Clinical Research, Västerås Central Hospital, Uppsala University Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Bioscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
105
|
Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J Neurosci 2016; 36:701-13. [PMID: 26791202 PMCID: PMC4719011 DOI: 10.1523/jneurosci.2254-15.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023] Open
Abstract
Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons, which is dependent on D1R and mTORC1. We also find that mTORC1 is necessary for the sustained alcohol consumption and preference across the initial drinking sessions. The first alcohol binge activates mTORC1 in NAc D1+ neurons and increases levels of synaptic proteins involved in glutamatergic signaling. Thus, the D1R/mTORC1-dependent plasticity following the first alcohol exposure may be a critical cellular component of reinforcement learning.
Collapse
Affiliation(s)
- Jacob T Beckley
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Sophie Laguesse
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Scott A Wegner
- Department of Neurology, University of California, San Francisco, California 94143-0663
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, California 94143-0663
| |
Collapse
|
106
|
Gondré-Lewis MC, Warnock KT, Wang H, June HL, Bell KA, Rabe H, Phani Babu Tiruveedhula V, Cook J, Lüddens H, Aurelian L, June HL. Early life stress is a risk factor for excessive alcohol drinking and impulsivity in adults and is mediated via a CRF/GABA(A) mechanism. Stress 2016; 19:235-47. [PMID: 27023221 PMCID: PMC4962560 DOI: 10.3109/10253890.2016.1160280] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood stress and trauma are associated with substance use disorders in adulthood, but the neurological changes that confer increased vulnerability are largely unknown. In this study, maternal separation (MS) stress, restricted to the pre-weaning period, was used as a model to study mechanisms of protracted effects of childhood stress/traumatic experiences on binge drinking and impulsivity. Using an operant self-administration model of binge drinking and a delay discounting assay to measure impulsive-like behavior, we report that early life stress due to MS facilitated acquisition of binge drinking and impulsivity during adulthood in rats. Previous studies have shown heightened levels of corticotropin releasing factor (CRF) after MS, and here, we add that MS increased expression levels of GABA(A) α2 subunit in central stress circuits. To investigate the precise role of these circuits in regulating impulsivity and binge drinking, the CRF1 receptor antagonist antalarmin and the novel GABA(A) α2 subunit ligand 3-PBC were infused into the central amygdala (CeA) and medial prefrontal cortex (mPFC). Antalarmin and 3-PBC at each site markedly reduced impulsivity and produced profound reductions on binge-motivated alcohol drinking, without altering responding for sucrose. Furthermore, whole-cell patch-clamp studies showed that low concentrations of 3-PBC directly reversed the effect of relatively high concentrations of ethanol on α2β3γ2 GABA(A) receptors, by a benzodiazepine site-independent mechanism. Together, our data provide strong evidence that maternal separation, i.e. early life stress, is a risk factor for binge drinking, and is linked to impulsivity, another key risk factor for excessive alcohol drinking. We further show that pharmacological manipulation of CRF and GABA receptor signaling is effective to reverse binge drinking and impulsive-like behavior in MS rats. These results provide novel insights into the role of the brain stress systems in the development of impulsivity and excessive alcohol consumption.
Collapse
Affiliation(s)
- Marjorie C. Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
- Correspondence and request for materials should be addressed to: Dr. Marjorie C. Gondré-Lewis, Associate Professor, Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington, DC 20059, Ph: 202-806-5274,
| | - Kaitlin T. Warnock
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Hong Wang
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Harry L. June
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Kimberly A. Bell
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Holger Rabe
- Department of Psychiatry, University of Mainz, D-55131, Germany
| | | | - James Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Hartmut Lüddens
- Department of Psychiatry, University of Mainz, D-55131, Germany
| | - Laure Aurelian
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Harry L. June
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
107
|
Kvamme TL, Schmidt C, Strelchuk D, Chang-Webb YC, Baek K, Voon V. Sexually dimorphic brain volume interaction in college-aged binge drinkers. Neuroimage Clin 2015; 10:310-7. [PMID: 26900571 PMCID: PMC4724035 DOI: 10.1016/j.nicl.2015.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND Binge consumption of alcohol is a major societal problem associated with important cognitive, physiological and neurotoxic consequences. Converging evidence highlights the need to assess binge drinking (BD) and its effects on the developing brain while taking into account gender differences. Here, we compared the brain volumetric differences between genders in college-aged binge drinkers and healthy volunteers. METHOD T1-weighted magnetic resonance imaging (MRI) images of 30 binge drinkers (18 males) and 46 matched healthy volunteers (23 males) were examined using voxel-based morphometry. The anatomical scans were covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Whole brain voxel-wise group comparisons were performed using a cluster extent threshold correction. RESULTS Several large clusters qualified with group-by-gender interactions were observed in prefrontal, striatal and medial temporal areas, whereby BD females had more volume than non-BD females, while males showed the inverse pattern of decreased volume in BD males and increased volume in non-BD males. AUDIT scores negatively correlated with volume in the right superior frontal cortex and precentral gyrus. CONCLUSIONS These findings dovetail with previous studies reporting that a state effect of BD in college-aged drinkers and the severity of alcohol use are associated with volumetric alterations in the cortical and subcortical areas of the brain. Our study indicates that these widespread volumetric changes vary differentially by gender, suggesting either sexual dimorphic endophenotypic risk factors, or differential neurotoxic sensitivities for males and females.
Collapse
Key Words
- AAL, Automatic Anatomical Labeling
- AUDIT, Alcohol Use Disorders Identification Test
- AUDs, alcohol-use disorders
- Adolescence
- Alcohol
- BD, binge drinking
- BDI, Beck Depression Inventory
- Binge drinking
- FWE, familywise error
- GLM, general linear model
- Gender
- HV, healthy volunteer
- ICBM, International Consortium for Brain Mapping
- IFG, inferior frontal gyrus
- MNI, Montreal Neurological Institute
- MRI, magnetic resonance imaging
- Magnetic resonance imaging
- NIAAA, National Institute of Alcoholism and Alcohol Abuse
- Neurodevelopment
- PFC, prefrontal cortex
- SPM, Statistical Parametric Mapping
- STAI, Spielberger Trait Anxiety Inventory
- SVCs, small volume corrections
- Striatum
- UPPS-P, UPPS-P Impulsive Behavior
- Voxel-based morphometry
- WBIC, Wolfson Brain Imaging Center
Collapse
Affiliation(s)
- Timo L. Kvamme
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cognitive Neuroscience Research Unit, Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
- Center of Functionally Integrative Neuroscience, MINDLab, Aarhus University, Aarhus C, Denmark
| | - Casper Schmidt
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cognitive Neuroscience Research Unit, Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
- Center of Functionally Integrative Neuroscience, MINDLab, Aarhus University, Aarhus C, Denmark
| | - Daniela Strelchuk
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
- NIHR Biomedical Research Council, University of Cambridge, United kingdom
| |
Collapse
|
108
|
Bendre M, Comasco E, Nylander I, Nilsson KW. Effect of voluntary alcohol consumption on Maoa expression in the mesocorticolimbic brain of adult male rats previously exposed to prolonged maternal separation. Transl Psychiatry 2015; 5:e690. [PMID: 26645625 PMCID: PMC5068586 DOI: 10.1038/tp.2015.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Discordant associations between monoamine oxidase A (MAOA) genotype and high alcohol drinking have been reported in human and non-human primates. Environmental influences likely moderate genetic susceptibility. The biological basis for this interplay remains elusive, and inconsistencies call for translational studies in which conditions can be controlled and brain tissue is accessible. The present study investigated whether early life stress and subsequent adult episodic alcohol consumption affect Maoa expression in stress- and reward-related brain regions in the rat. Outbred Wistar rats were exposed to rearing conditions associated with stress (prolonged maternal separation) or no stress during early life, and given free choice between alcohol and/or water in adulthood. Transcript levels of Maoa were assessed in the ventral tegmental area, nucleus accumbens (NAc), medial prefrontal cortex, cingulate cortex, amygdala and dorsal striatum (DS). Blood was collected to assess corticosterone levels. After alcohol consumption, lower blood corticosterone and Maoa expression in the NAc and DS were found in rats exposed to early life stress compared with control rats. An interaction between early life stress and voluntary alcohol intake was found in the NAc. Alcohol intake before death correlated negatively with Maoa expression in DS in high alcohol-drinking rats exposed to early life stress. Maoa expression is sensitive to adulthood voluntary alcohol consumption in the presence of early life stress in outbred rats. These findings add knowledge of the molecular basis of the previously reported associations between early life stress, MAOA and susceptibility to alcohol misuse.
Collapse
Affiliation(s)
- M Bendre
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - E Comasco
- Department of Neuroscience, Uppsala University, Uppsala, Sweden,Department of Neuroscience, Uppsala University, Husargatan 3, BMC, Box 593, Uppsala 751 24, SwedenE-mail:
| | - I Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden,Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, Uppsala SE-751 24, Sweden. E-mail:
| | - K W Nilsson
- Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| |
Collapse
|
109
|
Luciana M, Feldstein Ewing SW. Introduction to the special issue: Substance use and the adolescent brain: Developmental impacts, interventions, and longitudinal outcomes. Dev Cogn Neurosci 2015; 16:1-4. [PMID: 26589541 PMCID: PMC4741096 DOI: 10.1016/j.dcn.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adolescent substance abuse is a major public health problem, particularly given the negative brain and behavioral consequences that often occur during and following acute intoxication. Negative outcomes appear to be especially pronounced when substance use is initiated in the early adolescent years, perhaps due to neural adaptations that increase risk for substance use disorders into adulthood. Recent models to explain these epidemiological trends have focused on brain-based vulnerabilities to use as well as neurodevelopmental aberrations associated with initiation of use in substance naïve samples or through the description of case-control differences between heavy users and controls. Within this research, adolescent alcohol and marijuana users have shown relative decreases in regional gray matter volumes, substance-specific alterations in white matter volumes, deviations in microstructural integrity in white matter tracts that regulate communication between subcortical areas and higher level regulatory control regions, and deficits in functional connectivity. How these brain anomalies map onto other types of youth risk behavior and later vulnerabilities represent major questions for continued research. This special issue addresses these compelling and timely questions by introducing new methodologies, empirical relationships, and perspectives from major leaders in this field.
Collapse
Affiliation(s)
- Monica Luciana
- Developmental Cognitive Neuroscience, Department of Psychology and Center for Neurobehavioral Development, University of Minnesota, Minneapolis, 55455 MN, United States.
| | - Sarah W Feldstein Ewing
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
110
|
Paiva PCP, Paiva HND, Lamounier JA, Ferreira EFE, César CAS, Zarzar PM. [Binge drinking among 12-year-old adolescent schoolchildren and its association with sex, socioeconomic factors and alcohol consumption by best friends and family members]. CIENCIA & SAUDE COLETIVA 2015; 20:3427-35. [PMID: 26602720 DOI: 10.1590/1413-812320152011.18792014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/23/2014] [Indexed: 11/22/2022] Open
Abstract
This is a cross-sectional study with a convenience sample of 101 twelve-year-old adolescents enrolled in public and private schools in the city of Diamantina in the State of Minas Gerais. The scope was to evaluate the prevalence of binge drinking among 12-year-old schoolchildren and its association with gender, socioeconomic status and alcohol consumption by family members and best friends. The participants completed a self-administered questionnaire entitled the Alcohol Use Disorders Identification Test (AUDIT-C) and the consumption of alcoholic beverages by friends and family. Parents/guardians answered the form on sociodemographic questions. Descriptive analyses and association tests were performed (p < 0.05). The prevalence of binge drinking was 24.8%. Alcoholic beverage consumption began at the age of 10 (16.8%), though sex was not associated with binge drinking by adolescents. However, attending a public school (0.005) and alcohol consumption by best friends (p < 000.1) were associated with binge drinking by adolescents in the bivariate analysis. The prevalence of binge drinking was high and was associated with low socioeconomic status and alcohol consumption by the best friend. No association between sex and alcohol consumption by the family members of adolescents was detected.
Collapse
Affiliation(s)
- Paula Cristina Pelli Paiva
- Departamento de Odontologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil,
| | - Haroldo Neves de Paiva
- Departamento de Odontologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil,
| | | | | | | | - Patrícia Maria Zarzar
- Departamento de Odontopediatria e Ortodontia, Faculdade de Odontologia, UFMG, MG, Brasil
| |
Collapse
|
111
|
Navarro-Zaragoza J, Ros-Simó C, Milanés MV, Valverde O, Laorden ML. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress. PLoS One 2015; 10:e0141502. [PMID: 26509576 PMCID: PMC4624901 DOI: 10.1371/journal.pone.0141502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.
Collapse
Affiliation(s)
- Javier Navarro-Zaragoza
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- * E-mail:
| | - Clara Ros-Simó
- Grup de Recerca en Neurobiologia del Comportament (GRNC), Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Olga Valverde
- Grup de Recerca en Neurobiologia del Comportament (GRNC), Universitat Pompeu Fabra, Barcelona, Spain
| | - María-Luisa Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
112
|
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:1863-77. [PMID: 26431116 PMCID: PMC4594192 DOI: 10.1111/acer.12810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.
Collapse
Affiliation(s)
- Angela R. Ozburn
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J. Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - John C. Crabbe
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
113
|
López-Moreno JA, Marcos M, Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Costa-Alba P, Bernardo E, Laso FJ, Rodríguez de Fonseca F, Nadal R, Viveros MP, Maldonado R, Giné E. Histone Deacetylase Gene Expression Following Binge Alcohol Consumption in Rats and Humans. Alcohol Clin Exp Res 2015; 39:1939-50. [PMID: 26365275 DOI: 10.1111/acer.12850] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol binge drinking is one of the most common patterns of excessive alcohol use and recent data would suggest that histone deacetylases (HDACs) gene expression profiling could be useful as a biomarker for psychiatric disorders. METHODS This study aimed to characterize the gene expression patterns of Hdac 1-11 in samples of rat peripheral blood, liver, heart, prefrontal cortex, and amygdala following repeated binge alcohol consumption and to determine the parallelism of Hdac gene expression between rats and humans in peripheral blood. To accomplish this goal, we examined Hdac gene expression following 1, 4, or 8 alcohol binges (3 g/kg, orally) in the rat, in patients who were admitted to the hospital emergency department for acute alcohol intoxication, and in rats trained in daily operant alcohol self-administration. RESULTS We primarily found that acute alcohol binging reduced gene expression (Hdac1-10) in the peripheral blood of alcohol-naïve rats and that this effect was attenuated following repeated alcohol binges. There was also a reduction of Hdac gene expression in the liver (Hdac2,4,5), whereas there was increased expression in the heart (Hdac1,7,8) and amygdala (Hdac1,2,5). Additionally, increased blood alcohol concentrations were measured in rat blood at 1 to 4 hours following repeated alcohol binging, and the only group that developed hepatic steotosis (fatty liver) were those animals exposed to 8 alcohol binge events. Finally, both binge consumption of alcohol in humans and daily operant alcohol self-administration in rats increased Hdac gene expression in peripheral blood. CONCLUSIONS Our results suggest that increases in HDAC gene expression within the peripheral blood are associated with chronic alcohol consumption, whereas HDAC gene expression is reduced following initial exposure to alcohol.
Collapse
Affiliation(s)
| | - Miguel Marcos
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
| | - Javier Calleja-Conde
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Victor Echeverry-Alzate
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Kora M Bühler
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Pilar Costa-Alba
- Emergency Department, University Hospital of Salamanca, Salamanca, Spain
| | - Edgar Bernardo
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Francisco-Javier Laso
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
| | | | - Roser Nadal
- Psychobiology Unit, School of Psychology, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Paz Viveros
- Department of Physiology (Animal Physiology II), School of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
114
|
Karatayev O, Lukatskaya O, Moon SH, Guo WR, Chen D, Algava D, Abedi S, Leibowitz SF. Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet. Alcohol 2015; 49:479-89. [PMID: 25979531 DOI: 10.1016/j.alcohol.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
Clinical studies demonstrate frequent co-existence of nicotine and alcohol abuse and suggest that this may result, in part, from the ready access to and intake of fat-rich diets. Whereas animal studies show that high-fat diet intake in adults can enhance the consumption of either nicotine or ethanol and that maternal consumption of a fat-rich diet during pregnancy increases operant responding for nicotine in offspring, little is known about the impact of dietary fat on the co-abuse of these two drugs. The goal of this study was to test in Long-Evans rats the effects of perinatal exposure to fat on the co-use of nicotine and ethanol, using a novel paradigm that involves simultaneous intravenous (IV) self-administration of these two drugs. Fat- vs. chow-exposed offspring were characterized and compared, first in terms of their nicotine self-administration behavior, then in terms of their nicotine/ethanol self-administration behavior, and lastly in terms of their self-administration of ethanol in the absence of nicotine. The results demonstrate that maternal consumption of fat compared to low-fat chow during gestation and lactation significantly stimulates nicotine self-administration during fixed-ratio testing. It also increases nicotine/ethanol self-administration during fixed-ratio and dose-response testing, with BEC elevated to 120 mg/dL, and causes an increase in breakpoint during progressive ratio testing. Of particular note is the finding that rats perinatally exposed to fat self-administer significantly more of the nicotine/ethanol mixture as compared to nicotine alone, an effect not evident in the chow-control rats. After removal of nicotine from the nicotine/ethanol mixture, this difference between the fat- and chow-exposed rats was lost, with both groups failing to acquire the self-administration of ethanol alone. Together, these findings suggest that perinatal exposure to a fat-rich diet, in addition to stimulating self-administration of nicotine, causes an even greater vulnerability to the excessive co-use of nicotine and ethanol.
Collapse
|
115
|
Adolescent drinking and brain morphometry: A co-twin control analysis. Dev Cogn Neurosci 2015; 16:130-138. [PMID: 26278682 PMCID: PMC4691358 DOI: 10.1016/j.dcn.2015.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Examined brain structures previously linked to adolescent drinking. Used co-twin control study design to disentangle risk from effects of exposure. Confirmed several previous findings primarily reflecting preexisting vulnerability.
Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication) and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus.
Collapse
|
116
|
Hägele C, Friedel E, Kienast T, Kiefer F. How do we 'learn' addiction? Risk factors and mechanisms getting addicted to alcohol. Neuropsychobiology 2015; 70:67-76. [PMID: 25359487 DOI: 10.1159/000364825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/24/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Alcohol dependence is one of the leading contributors to the burden of disease in the world. A range of genetic and environmental risk factors has been identified to date, and preclinical and clinical studies including imaging studies have identified neuronal networks involved in the development of alcohol dependence. METHODS We review genetic and environmental risk factors for the development of alcohol addiction as well as structural and neuronal changes, including their transmitter systems, due to regular alcohol intake. RESULTS Stress as well as family background and, in juveniles, the peer group could be identified as environmental risk factors for alcohol dependence. Heritability is estimated at around 50%, and it seems to be comparable in women and men. There is ongoing research on a broad range of putative endophenotypes such as tolerance of the effects of alcohol intake or personal traits like 'impulsivity'. On the neurobiological level, chronic alcohol intake seems to render mesolimbic circuits hypersensitive to alcohol and alter the motivational reward system including dopaminergic neurotransmission. CONCLUSION Environmental and genetic risk factors, and especially their interaction, facilitate the development of alcohol dependence. Ongoing alcohol intake results in profound alterations of neuronal systems crucial for motivation, learning, memory and cognition control. Future studies should further combine the knowledge of neurobiological mechanisms and risk factors to develop new prevention strategies.
Collapse
Affiliation(s)
- Claudia Hägele
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
117
|
Stock AK, Riegler L, Chmielewski WX, Beste C. Paradox effects of binge drinking on response inhibition processes depending on mental workload. Arch Toxicol 2015; 90:1429-36. [DOI: 10.1007/s00204-015-1565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
118
|
Upregulation of dopamine D2 receptors in the nucleus accumbens indirect pathway increases locomotion but does not reduce alcohol consumption. Neuropsychopharmacology 2015; 40:1609-18. [PMID: 25578797 PMCID: PMC4915247 DOI: 10.1038/npp.2015.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/11/2014] [Accepted: 11/23/2014] [Indexed: 11/08/2022]
Abstract
Brain imaging studies performed in humans have associated low striatal dopamine release and D2R binding with alcohol dependence. Conversely, high striatal D2R binding has been observed in unaffected members of alcoholic families suggesting that high D2R function may protect against alcohol dependence. A possible protective role of increased D2R levels in the striatum is further supported by preclinical studies in non-human primates and rodents. Here, we determined whether there is a causal relationship between D2R levels and alcohol intake. To this end, we upregulated D2R expression levels in the nucleus accumbens of the adult mouse, but selectively restricted the upregulation to the indirect striatal output pathway, which endogenously expresses D2Rs. After overexpression was established, mice were tested in two models of free-choice alcohol drinking: the continuous and intermittent access two-bottle choice models. As anticipated, we found that D2R upregulation leads to hyperactivity in the open field. Contrary to our expectation, D2R upregulation did not reduce alcohol intake during continuous or intermittent access or when alcohol drinking was tested in the context of aversive outcomes. These data argue against a protective role of accumbal indirect pathway D2Rs in alcohol consumption but emphasize their importance in promoting locomotor activity.
Collapse
|
119
|
Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol 2015; 49:299-310. [PMID: 25499829 DOI: 10.1016/j.alcohol.2014.07.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
Abstract
Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired sleep homeostasis. In conclusion, we suggest that alcohol may disrupt sleep homeostasis to cause sleep disruptions.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA.
| | - Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
120
|
Mrejeru A, Martí-Prats L, Avegno EM, Harrison NL, Sulzer D. A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience 2015; 290:649-58. [PMID: 25660505 DOI: 10.1016/j.neuroscience.2014.12.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
The mechanisms by which alcohol drinking promotes addiction in humans and self-administration in rodents remain obscure, but it is well known that alcohol can enhance dopamine (DA) neurotransmission from neurons of the ventral tegmental area (VTA) and increase DA levels within the nucleus accumbens and prefrontal cortex. We recorded from identified DA neuronal cell bodies within ventral midbrain slices prepared from a transgenic mouse line (TH-GFP) using long-term stable extracellular recordings in a variety of locations and carefully mapped the responses to applied ethanol (EtOH). We identified a subset of DA neurons in the medial VTA located within the rostral linear and interfascicular nuclei that fired spontaneously and exhibited a concentration-dependent increase of firing frequency in response to EtOH, with some neurons responsive to as little as 20mM EtOH. Many of these medial VTA DA neurons were also insensitive to the D2 receptor agonist quinpirole. In contrast, DA neurons in the lateral VTA (located within the parabrachial pigmented and paranigral nuclei) were either unresponsive or responded only to 100mM EtOH. Typically, these lateral VTA DA cells had very slow firing rates, and all exhibited inhibition by quinpirole via D2 "autoreceptors". VTA non-DA cells did not show any significant response to low levels of EtOH. These findings are consistent with evidence for heterogeneity among midbrain DA neurons and provide an anatomical and pharmacological distinction between DA neuron sub-populations that will facilitate future mechanistic studies on the actions of EtOH in the VTA.
Collapse
Affiliation(s)
- A Mrejeru
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - L Martí-Prats
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Burjassot, Spain
| | - E M Avegno
- Departments of Anesthesiology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - N L Harrison
- Departments of Anesthesiology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA.
| | - D Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
121
|
Repunte-Canonigo V, Shin W, Vendruscolo LF, Lefebvre C, van der Stap L, Kawamura T, Schlosburg JE, Alvarez M, Koob GF, Califano A, Sanna PP. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks. Genome Biol 2015; 16:68. [PMID: 25886852 PMCID: PMC4410476 DOI: 10.1186/s13059-015-0593-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 01/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. RESULTS Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. CONCLUSIONS Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.
Collapse
Affiliation(s)
- Vez Repunte-Canonigo
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - William Shin
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA. .,Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA.
| | - Leandro F Vendruscolo
- Committee for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA. .,Current affiliation: Intramural Research Program, NIDA-NIH, Baltimore, MD, 21224, USA.
| | - Celine Lefebvre
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Current affiliation: Inserm Unit U981, Gustave Roussy Institute, Villejuif, France.
| | - Lena van der Stap
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - Tomoya Kawamura
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - Joel E Schlosburg
- Committee for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| | - Mariano Alvarez
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA.
| | - George F Koob
- Committee for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA. .,Current affiliation: National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, 20852, USA.
| | - Andrea Califano
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Department of Biomedical Informatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Department of Biochemistry and Molecular Biophysics, Hammer Health Sciences Center, Columbia University, New York, NY, 10032, USA. .,Cancer Regulatory Network Program, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Pietro Paolo Sanna
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
122
|
Varlinskaya EI, Truxell EM, Spear LP. Sex differences in sensitivity to the social consequences of acute ethanol and social drinking during adolescence. Behav Brain Res 2014; 282:6-13. [PMID: 25557799 DOI: 10.1016/j.bbr.2014.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/20/2014] [Accepted: 12/25/2014] [Indexed: 01/23/2023]
Abstract
In human adolescents, sociable males frequently drink to enhance positive emotional states, whereas anxious females often drink to avoid negative affective states. This study used a rat model of adolescence to provide information regarding possible sex differences in contributors to social drinking. The effects of ethanol (0, 0.5, and 0.75g/kg) on play fighting and social preference were assessed on P30, P32, and P34 using a within-subject design. Then animals were tested in a social drinking paradigm (P37-P40), with this testing revealing high drinkers and low drinkers. Sex differences in sensitivity to ethanol emerged among high and low drinkers. High socially drinking males, but not females, when tested prior to drinking sessions, showed significant increases in play fighting at both doses. In low drinking males, play fighting was increased by 0.5g/kg ethanol, whereas the higher dose of 0.75g/kg produced significant decreases in play fighting. High drinking females initially showed low levels of social preference than high drinking males and low drinking females and were extremely sensitive to ethanol-induced enhancement of this social measure. Low social drinkers, both males and females, were more sensitive to the suppressing effects of ethanol on social preference following 0.75g/kg ethanol. These findings indicate that during adolescence enhanced sensitivity to the facilitating effects of ethanol on play fighting is associated with heavy drinking among males, whereas low social preference together with high sensitivity to ethanol-induced enhancement of social preference is related to high social drinking in females.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Eric M Truxell
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| | - Linda P Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
123
|
Worbe Y, Irvine M, Lange I, Kundu P, Howell NA, Harrison NA, Bullmore ET, Robbins TW, Voon V. Neuronal correlates of risk-seeking attitudes to anticipated losses in binge drinkers. Biol Psychiatry 2014; 76:717-24. [PMID: 24387822 PMCID: PMC4192134 DOI: 10.1016/j.biopsych.2013.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Abnormal decision making under risk is associated with a number of psychiatric disorders. Here, we focus on binge drinkers (BD), characterized by repeated episodes of heavy alcohol intoxication. Previous studies suggest a decreased sensitivity to aversive conditioning in BD. Here, we asked whether BD might be characterized by enhanced risk seeking related to decreased sensitivity to the anticipation of negative outcomes. METHODS Using an anticipatory risk-taking task (40 BD and 70 healthy volunteers) and an adapted version of this task for functional magnetic resonance imaging (21 BD and 21 healthy volunteers), we assessed sensitivity to reward and loss across risk probabilities. RESULTS In the behavioral task, BD showed a higher number of risky choices in high-risk losses. In the neuroimaging task, the high-risk attitude in the loss condition was associated with greater activity in dorsolateral prefrontal, lateral orbitofrontal, and superior parietal cortices in BD. Explicit exposure of BD to the probability and magnitude of loss, via introduction of feedback, resulted in a subsequent decrease in risky choices. This change in risk attitude in BD was associated with greater activity in inferior frontal gyrus, which also correlated with the percentage of decrease in risky choices after feedback presentation, suggesting a possible role for cognitive control toward risk-seeking attitudes. CONCLUSIONS Our findings suggest that a decrease in sensitivity to the anticipation of high-risk negative outcomes might underlie BD behavior. Presentation of explicit feedback of probability and loss in BD can potentially modify risk-taking attitudes, which have important public health implications and suggest possible therapeutic targets.
Collapse
Affiliation(s)
- Yulia Worbe
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael Irvine
- Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Iris Lange
- Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Prantik Kundu
- Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas A Howell
- Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Neil A Harrison
- Brighton and Sussex Medical School, University of Sussex, Brighton
| | - Edward T Bullmore
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire & Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom; GlaxoSmithKline, Clinical Unit Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Valerie Voon
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
124
|
Thiele TE, Crabbe JC, Boehm SL. "Drinking in the Dark" (DID): a simple mouse model of binge-like alcohol intake. ACTA ACUST UNITED AC 2014; 68:9.49.1-9.49.12. [PMID: 24984686 DOI: 10.1002/0471142301.ns0949s68] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One of the greatest challenges that scientists face when studying the neurobiology and/or genetics of alcohol (ethanol) consumption is that most preclinical animal models do not voluntarily consume enough ethanol to achieve pharmacologically meaningful blood ethanol concentrations (BECs). Recent rodent models have been developed that promote binge-like levels of ethanol consumption associated with high BECs (i.e., ≥100 mg/dl). This unit describes procedures for an animal model of binge-like ethanol drinking which has come to be called "drinking in the dark" (DID). The "basic" variation of DID involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hr, beginning 3 hr into the dark cycle, on cages of singly-housed C57BL/6J mice. Using this procedure, mice typically consume enough ethanol to achieve BECs >100 mg/dl and to exhibit behavioral evidence of intoxication. An alternative two-bottle (ethanol and water) procedure is also described.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, North Carolina
| | | | | |
Collapse
|
125
|
Blednov YA, Benavidez JM, Black M, Harris RA. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front Neurosci 2014; 8:129. [PMID: 24904269 PMCID: PMC4034339 DOI: 10.3389/fnins.2014.00129] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Some anti-inflammatory medications reduce alcohol consumption in rodent models. Inhibition of phosphodiesterases (PDE) increases cAMP and reduces inflammatory signaling. Rolipram, an inhibitor of PDE4, markedly reduced ethanol intake and preference in mice and reduced ethanol seeking and consumption in alcohol-preferring fawn-hooded rats (Hu et al., 2011; Wen et al., 2012). To determine if these effects were specific for PDE4, we compared nine PDE inhibitors with different subtype selectivity: propentofylline (nonspecific), vinpocetine (PDE1), olprinone, milrinone (PDE3), zaprinast (PDE5), rolipram, mesopram, piclamilast, and CDP840 (PDE4). Alcohol intake was measured in C57BL/6J male mice using 24-h two-bottle choice and two-bottle choice with limited (3-h) access to alcohol. Only the selective PDE4 inhibitors reduced ethanol intake and preference in the 24-h two-bottle choice test. For rolipram, piclamilast, and CDP840, this effect was observed after the first 6 h but not after the next 18 h. Mesopram, however, produced a long-lasting reduction of ethanol intake and preference. In the limited access test, rolipram, piclamilast, and mesopram reduced ethanol consumption and total fluid intake and did not change preference for ethanol, whereas CDP840 reduced both consumption and preference without altering total fluid intake. Our results provide novel evidence for a selective role of PDE4 in regulating ethanol drinking in mice. We suggest that inhibition of PDE4 may be an unexplored target for medication development to reduce excessive alcohol consumption.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - Jillian M Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
126
|
A model of alcohol drinking under an intermittent access schedule using group-housed mice. PLoS One 2014; 9:e96787. [PMID: 24804807 PMCID: PMC4013044 DOI: 10.1371/journal.pone.0096787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Here, we describe a new model of voluntary alcohol drinking by group-housed mice. The model employs sensor-equipped cages that track the behaviors of the individual animals via implanted radio chips. After the animals were allowed intermittent access to alcohol (three 24 h intervals every week) for 4 weeks, the proportions of licks directed toward bottles containing alcohol were 50.9% and 39.6% for the male and female mice, respectively. We used three approaches (i.e., quinine adulteration, a progressive ratio schedule and a schedule involving a risk of punishment) to test for symptoms of compulsive alcohol drinking. The addition of 0.01% quinine to the alcohol solution did not significantly affect intake, but 0.03% quinine induced a greater than 5-fold reduction in the number of licks on the alcohol bottles. When the animals were required to perform increasing numbers of instrumental responses to obtain access to the bottle with alcohol (i.e., a progressive ratio schedule), they frequently reached a maximum of 21 responses irrespective of the available reward. Although the mice rarely achieved higher response criteria, the number of attempts was ∼10 times greater in case of alcohol than water. We have developed an approach for mapping social interactions among animals that is based on analysis of the sequences of entries into the cage corners. This approach allowed us to identify the mice that followed other animals in non-random fashions. Approximately half of the mice displayed at least one interaction of this type. We have not yet found a clear correlation between imitative behavior and relative alcohol preference. In conclusion, the model we describe avoids the limitations associated with testing isolated animals and reliably leads to stable alcohol drinking. Therefore, this model may be well suited to screening for the effects of genetic mutations or pharmacological treatments on alcohol-induced behaviors.
Collapse
|
127
|
Rodent models for compulsive alcohol intake. Alcohol 2014; 48:253-64. [PMID: 24731992 DOI: 10.1016/j.alcohol.2014.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
Continued seeking and drinking of alcohol despite adverse legal, health, economic, and societal consequences is a central hallmark of human alcohol use disorders. This compulsive drive for alcohol, defined by resistance to adverse and deleterious consequences, represents a major challenge when attempting to treat alcoholism clinically. Thus, there has long been interest in developing pre-clinical rodent models for the compulsive drug use that characterizes drug addiction. Here, we review recent studies that have attempted to model compulsive aspects of alcohol and cocaine intake in rodents, and consider technical and conceptual issues that need to be addressed when trying to recapitulate compulsive aspects of human addiction. Aversion-resistant alcohol intake has been examined by pairing intake or seeking with the bitter tastant quinine or with footshock, and exciting recent work has used these models to identify neuroadaptations in the amygdala, cortex, and striatal regions that promote compulsive intake. Thus, rodent models do seem to reflect important aspects of compulsive drives that sustain human addiction, and will likely provide critical insights into the molecular and circuit underpinnings of aversion-resistant intake as well as novel therapeutic interventions for compulsive aspects of addiction.
Collapse
|
128
|
Thiele TE, Navarro M. "Drinking in the dark" (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice. Alcohol 2014; 48:235-41. [PMID: 24275142 DOI: 10.1016/j.alcohol.2013.08.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
Abstract
This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called "drinking in the dark" (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes, Best, Belknap, Finn, and Crabbe (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2-4 h, beginning 3 h into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal's dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol dependence.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA.
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA
| |
Collapse
|
129
|
Sharma R, Sahota P, Thakkar MM. Rapid tolerance development to the NREM sleep promoting effect of alcohol. Sleep 2014; 37:821-4. [PMID: 24899768 DOI: 10.5665/sleep.3598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
STUDY OBJECTIVES Alcohol tolerance is a major contributor towards the development of alcohol dependence. Does alcohol intake result in rapid tolerance development to alcohol induced NREM sleep promotion? This has never been examined. Our objective was to examine whether two bouts of alcohol consumption on consecutive days results in rapid tolerance development to alcohol-induced NREM sleep promotion. DESIGN N/A. SETTING N/A. PATIENTS OR PARTICIPANTS C57BL/6J mice. INTERVENTIONS Mice (N = 5) were implanted with sleep electrodes using standard surgical conditions. Following postoperative recovery and habituation, the experiment was begun. On baseline day, water bottle changes were performed at 10:00 (3 h after dark onset) and 14:00 to mimic conditions during alcohol consumption days. On next 2 days, (Days 1 and 2) mice were allowed to self-administer alcohol (20% v/v) for 4 h beginning at 10:00 and ending at 14:00. Sleep-wakefulness was continuously recorded from 10:00 to 18:00 (8 h; 4 h during alcohol + 4 h post-alcohol) on all 3 days. MEASUREMENTS AND RESULTS Although mice consumed comparable amounts of alcohol on Days 1 and 2, NREM sleep and wakefulness were significantly and differentially affected during 4 h post-alcohol period. A robust alcohol-induced NREM sleep promotion was observed on Day 1. However, no such sleep promotion was observed on Day 2, suggesting rapid tolerance development. CONCLUSIONS Our study is the first to demonstrate that alcohol consumption for two consecutive days results in development of rapid tolerance to alcohol-induced sleep promotion.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO
| |
Collapse
|
130
|
Tipps ME, Moschak TM, Mitchell SH. Behavioral disinhibition in mice bred for high drinking in the dark (HDID) and HS controls increases following ethanol. Drug Alcohol Depend 2014; 136:149-52. [PMID: 24485881 PMCID: PMC3956112 DOI: 10.1016/j.drugalcdep.2013.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/26/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alcohol consumption and behavioral inhibition share some common underlying genetic mechanisms. The current study examined whether lines of mice selected for high blood ethanol concentrations, attained by heavy drinking in the dark period (DID) of the light-dark cycle that models binge drinking, also exhibit higher levels of drug-naïve inhibition. It also examined whether the administration of ethanol would result in higher levels of disinhibition in these selected lines compared to the founder stock (HS). METHODS A Go/No-Go task was used to assess baseline inhibition and the effects of acute ethanol on disinhibition (response to a No-Go cue) in the HS line and in mice selected for high levels of DID (HDID-1 and HDID-2). RESULTS Lines did not differ in inhibition at baseline and all lines showed increased disinhibition following moderate doses of ethanol. Ethanol decreased responding to Go cues for HDID-2 and HS lines at high doses but not HDID-1 mice. CONCLUSIONS These data corroborate previous work showing ethanol-induced increases in behavioral disinhibition. The selection paradigm did not result in differential sensitivity to the disinhibiting effects of ethanol, but did result in differential sensitivity to the suppressant effects of ethanol on operant behavior between the two HDID lines.
Collapse
Affiliation(s)
- Megan E. Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University
| | - Travis M. Moschak
- Department of Behavioral Neuroscience, Oregon Health & Science University
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University,Department of Psychiatry, Oregon Health & Science University,Portland Alcohol Research Center, Oregon Health & Science University
| |
Collapse
|
131
|
Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission. Neuropsychopharmacology 2014; 39:579-94. [PMID: 23995582 PMCID: PMC3895236 DOI: 10.1038/npp.2013.230] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/25/2022]
Abstract
Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the 'drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a 'front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum.
Collapse
|
132
|
Anton RF, Schacht JP, Book SW. Pharmacologic treatment of alcoholism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:527-42. [PMID: 25307594 DOI: 10.1016/b978-0-444-62619-6.00030-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progress in understanding the neuroscience of addiction has significantly advanced the development of more efficacious medications for the treatment of alcohol use disorders (AUD). While several medications have been approved by regulatory bodies around the world for the treatment of AUD, they are not universally efficacious. Recent research has yielded improved understanding of the genetics and brain circuits that underlie alcohol reward and its habitual use. This research has contributed to pharmacogenetic studies of medication response, and will ultimately lead to a more "personalized medicine" approach to AUD pharmacotherapy. This chapter summarizes work on clinically available medications (both approved by regulatory bodies and investigational) for the treatment of alcohol dependence, as well as the psychiatric disorders that are commonly comorbid with AUD. Studies that have evaluated genetic influences on medication response and those that have employed neuroimaging to probe mechanisms of medication action or response are highlighted. Finally, new targets discovered in animal models for possible pharmacologic intervention in humans are overviewed and future directions in medications development provided.
Collapse
Affiliation(s)
- Raymond F Anton
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Joseph P Schacht
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sarah W Book
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
133
|
Abstract
Alcoholism (alcohol dependence and alcohol use disorder, AUD) is quintessentially behavioral in nature. AUD is behaviorally and genetically complex. This review discusses behavioral assessment of alcohol sensitivity, tolerance, dependence, withdrawal, and reinforcement. The focus is on using laboratory animal models to explore genetic contributions to individual differences in alcohol responses. Rodent genetic animal models based on selective breeding for high vs low alcohol response, and those based on the use of inbred strains, are reviewed. Genetic strategies have revealed the complexity of alcohol responses where genetic influences on multiple alcohol-related behaviors are mostly discrete. They have also identified areas where genetic influences are consistent across behavioral assays and have been used to model genetic differences among humans at different risk for AUD.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
134
|
Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:15-29. [PMID: 25307566 DOI: 10.1016/b978-0-444-62619-6.00002-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented.
Collapse
|
135
|
Crabbe JC. Rodent models of genetic contributions to motivation to abuse alcohol. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2014; 61:5-29. [PMID: 25306777 PMCID: PMC4988659 DOI: 10.1007/978-1-4939-0653-6_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In summary, there are remarkably few studies focused on the genetic contributions to alcohol's reinforcing values. Almost all such studies examine the two-bottle preference test. Despite the deficiencies I have raised in its interpretation, a rodent genotype's willingness to drink ethanol when water is freely available offers a reasonable aggregate estimate of alcohol's reinforcing value relative to other genotypes (Green and Grahame 2008). As indicated above, however, preference drinking studies will likely never avoid the confounding role of taste preferences and most often yield intake levels not sufficient to yield a pharmacologically significant BAL. Thus, the quest for improved measures of reinforcing value continues. Of the potential motivational factors considered by McClearn in his seminal review in this series, we can safely conclude that rodent alcohol drinking is not primarily directed at obtaining calories. The role of taste (and odor) remains a challenge. McClearn appears to have been correct that especially those genotypes that avoid alcohol are probably doing so based on preingestive sensory cues; however, postingestive consequences are also important. Cunningham's intragastric model shows the role of both preingestional and postingestional modulating factors for the best known examples, the usually nearly absolutely alcohol-avoiding DBA/2J and HAP-2 mice. Much subsequent data reinforce McClearn's earlier conclusion that C57BL/6J mice, at least, do not regulate their intake around a given self-administered dose of alcohol by adjusting their intake. This leaves us with the puzzle of why nearly all genotypes, even those directionally selectively bred for high voluntary intake for many generations, fail to self-administer intoxicating amounts of alcohol. Since McClearn's review, many ingenious assays to index alcohol's motivational effects have been used extensively, and new methods for inducing dependence have supplanted the older ones prevalent in 1968. I have tried to identify promising areas where the power of genetics could be fruitfully harvested and generally feel that we have a much more clear idea now about some important experiments remaining to be performed.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Medical Center (R&D 12), 3710 SW US Veterans Hospital Road, Portland, Oregon 97239 USA, Phone: 503-273-5298, FAX: 503-721-1029
| |
Collapse
|
136
|
Binge drinking and the differential influence of ethanol on cognitive control subprocesses: a novel field of neurotoxicology. Arch Toxicol 2013; 88:9-10. [DOI: 10.1007/s00204-013-1172-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
137
|
Nylander I, Roman E. Is the rodent maternal separation model a valid and effective model for studies on the early-life impact on ethanol consumption? Psychopharmacology (Berl) 2013; 229:555-69. [PMID: 23982922 PMCID: PMC3782650 DOI: 10.1007/s00213-013-3217-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/10/2013] [Indexed: 12/18/2022]
Abstract
RATIONALE Early-life events can cause long-term neurobiological and behavioural changes with a resultant effect upon reward and addiction processes that enhance risk to develop alcohol use disorders. Maternal separation (MS) is used to study the mediating mechanisms of early-life influences in rodents. In MS studies, the pups are exposed to maternal absence during the first postnatal weeks. The outcome of MS experiments exhibits considerable variation and questions have been raised about the validity of MS models. OBJECTIVES This short review aims to provide information about experimental conditions that are important to consider when assessing the impact of early-life environment on voluntary ethanol consumption. RESULTS The results from currently used MS protocols are not uniform. However, studies consistently show that longer separations of intact litters predispose for higher ethanol consumption and/or preference in adult male rats as compared to shorter periods of MS. Studies using individual pup MS paradigms, other controls, low ethanol concentrations, adult females or examining adolescent consumption reported no differences or inconsistent results. CONCLUSIONS There is no "a rodent MS model", there are several models and they generate different results. The compiled literature shows that MS is a model of choice for analysis of early-life effects on voluntary ethanol consumption but there are examples of MS paradigms that are not suitable. These studies emphasize the importance to carefully designed MS experiments to supply the optimal conditions to definitely test the research hypothesis and to be particulate in the interpretation of the outcome.
Collapse
Affiliation(s)
- Ingrid Nylander
- Department of Pharmaceutical Biosciences, Neuropharmacology Addiction & Behaviour, Uppsala University, Box 591, 751 24, Uppsala, Sweden,
| | | |
Collapse
|
138
|
Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology 2013; 76 Pt B:204-17. [PMID: 24035914 DOI: 10.1016/j.neuropharm.2013.08.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
Abstract
The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Pauline Charbogne
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U964, Illkirch F-67404, France; CNRS, UMR7104, Illkirch F-67404, France; UdS Université de Strasbourg, CNRS UMR 7104 - Inserm U964, Illkirch F-67404, France; Inserm U964, Illkirch F-67404, France
| | | | | |
Collapse
|
139
|
Ledesma JC, Baliño P, Aragon CMG. Reduction in central H2O2 levels prevents voluntary ethanol intake in mice: a role for the brain catalase-H2O2 system in alcohol binge drinking. Alcohol Clin Exp Res 2013; 38:60-7. [PMID: 24033657 DOI: 10.1111/acer.12253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) is the cosubstrate used by the enzyme catalase to form Compound I (the catalase-H2 O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This centrally formed acetaldehyde has been shown to be involved in some of the psychopharmacological effects induced by EtOH in rodents, including voluntary alcohol intake. It has been observed that different levels of this enzyme in the central nervous system (CNS) result in variations in the amount of EtOH consumed. This has been interpreted to mean that the brain catalase-H2 O2 system, by determining EtOH metabolism, mediates alcohol self-administration. To date, however, the role of H2 O2 in voluntary EtOH drinking has not been investigated. METHODS In the present study, we explored the consequence of a reduction in cerebral H2 O2 levels in volitional EtOH ingestion. With this end in mind, we injected mice of the C57BL/6J strain intraperitoneally with the H2 O2 scavengers alpha-lipoic acid (LA; 0 to 50 mg/kg) or ebselen (Ebs; 0 to 25 mg/kg) 15 or 60 minutes, respectively, prior to offering them an EtOH (10%) solution following a drinking-in-the-dark procedure. The same procedure was followed to assess the selectivity of these compounds in altering EtOH intake by presenting mice with a (0.1%) solution of saccharin. In addition, we indirectly tested the ability of LA and Ebs to reduce brain H2 O2 availability. RESULTS The results showed that both LA and Ebs dose-dependently reduced voluntary EtOH intake, without altering saccharin consumption. Moreover, we demonstrated that these treatments decreased the central H2 O2 levels available to catalase. CONCLUSIONS Therefore, we propose that the amount of H2 O2 present in the CNS, by determining brain acetaldehyde formation by the catalase-H2 O2 system, could be a factor that determines an animal's propensity to consume EtOH.
Collapse
|
140
|
Stock AK, Blaszkewicz M, Beste C. Effects of binge drinking on action cascading processes: an EEG study. Arch Toxicol 2013; 88:475-88. [DOI: 10.1007/s00204-013-1109-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
|
141
|
Kash TL, Crabbe JC. Drinking through the pain. Nat Neurosci 2013; 16:987-8. [PMID: 23887132 PMCID: PMC3950929 DOI: 10.1038/nn.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A feature of abusive alcohol drinking has been modeled successfully in experiments with rats. The experiments show that changes in NMDA signaling in specific neural circuits accompany the transition to aversion-resistant drinking.
Collapse
Affiliation(s)
- Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
142
|
Rosenwasser AM, Fixaris MC, Crabbe JC, Brooks PC, Ascheid S. Escalation of intake under intermittent ethanol access in diverse mouse genotypes. Addict Biol 2013; 18:496-507. [PMID: 22862671 DOI: 10.1111/j.1369-1600.2012.00481.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental animals offered continuous 24-hour free choice access to ethanol rarely display voluntary ethanol consumption at levels sufficient to induce intoxication or to engender dependence. One of the simplest ways to increase voluntary ethanol intake is to impose temporal limitations on ethanol availability. Escalation of ethanol intake has been observed in both rats and mice under a variety of different schedules of alternating ethanol access and deprivation. Although such effects have been observed in a variety of rat and mouse genotypes, little is known concerning possible genetic correlations between responses to intermittent ethanol access and other ethanol-related phenotypes. In the present study, we examined the effects of intermittent ethanol access in mouse genotypes characterized by divergent responses to ethanol in other domains, including ethanol preference (C57BL/6J and C3H/HeJ mice), binge-like ethanol drinking (High Drinking in the Dark and HS/Npt mice) and ethanol withdrawal severity (Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant mice). Although intermittent ethanol access resulted in escalated ethanol intake in all tested genotypes, the robustness of the effect varied across genotypes. On the other hand, we saw no evidence that the effects of intermittent access are correlated with either binge-like drinking or withdrawal severity, and only weak evidence for a genetic correlation with baseline ethanol preference. Thus, these different ethanol-related traits appear to depend on largely unique sets of genetic mediators.
Collapse
Affiliation(s)
| | | | | | - Peter C. Brooks
- Department of Psychology; University of Maine; Orono; ME; USA
| | - Sonja Ascheid
- Department of Psychology; University of Maine; Orono; ME; USA
| |
Collapse
|
143
|
Gomez JL, Lewis MJ, Sebastian V, Serrano P, Luine VN. Alcohol administration blocks stress-induced impairments in memory and anxiety, and alters hippocampal neurotransmitter receptor expression in male rats. Horm Behav 2013; 63:659-66. [PMID: 23376488 PMCID: PMC3646638 DOI: 10.1016/j.yhbeh.2013.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 01/05/2023]
Abstract
Chronic exposure to stress has many deleterious effects on behavior, which can often lead to self-medication with anxiolytics, antidepressants, or alcohol. We determined the effects of alcohol administration following a stressor on established behavioral, physiological, and neural responses to stress. Male Sprague-Dawley rats received: No alcohol/No stress (CON), Alcohol alone (ALC), Stress alone (STR), or Stress plus Alcohol (STR+ALC). For seven consecutive days, two cohorts received an oral dose of 2.0 g/kg of either 20% ethanol or saline. In Cohort 1, behavioral testing began after the final treatment (day-8). Memory was tested using the object recognition (OR) and Y-maze, anxiety on the plus maze, and depression on the forced swim task. Memory on OR and Y-maze tasks was impaired in the ALC and STR groups. This deficit was reversed in the STR+ALC group, which performed not differently from the CON group. Stress alone was associated with increased anxiety, which was alleviated with alcohol treatment. No treatment effects were found in the forced swim task. In Cohort 2, hippocampal GABAα4 was upregulated in the STR+ALC group and GluN2B was upregulated in the ALC and STR+ALC groups. The STR+ALC group in Cohort 1 showed enhanced corticosterone levels after forced swim. The STR+ALC group in Cohort 2 showed increased corticosterone levels on day-1 of treatment and a habituation by day-7. In conclusion, this study found a reversal of stress-induced deficits in cognition and anxiety when alcohol was given post-stress, and changes in neurotransmitter receptor expression may contribute to these behavioral effects.
Collapse
Affiliation(s)
- J L Gomez
- Department of Psychology, Hunter College of CUNY, 695 Park Ave, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
144
|
Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation. PLoS One 2013; 8:e59870. [PMID: 23555817 PMCID: PMC3612084 DOI: 10.1371/journal.pone.0059870] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.
Collapse
Affiliation(s)
- Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
145
|
Iancu OD, Oberbeck D, Darakjian P, Metten P, McWeeney S, Crabbe JC, Hitzemann R. Selection for drinking in the dark alters brain gene coexpression networks. Alcohol Clin Exp Res 2013; 37:1295-303. [PMID: 23550792 DOI: 10.1111/acer.12100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/18/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2. The mechanisms through which genetic differences influence DID are currently unclear. Therefore, the current study examines the transcriptome, the first stage at which genetic variability affects neurobiology. Rather than focusing solely on differential expression (DE), we also examine changes in the ways that gene transcripts collectively interact with each other, as revealed by changes in coexpression patterns. METHODS Naïve mice (N = 48/group) were genotyped using the Mouse Universal Genotyping Array, which provided 3,683 informative markers. Quantitative trait locus (QTL) analysis used a marker-by-marker strategy with the threshold for a significant logarithm of odds (LOD) set at 10.6. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented largely as described elsewhere. RESULTS Significant QTLs for elevated BECs after DID were detected on chromosomes 4, 14, and 16; the latter 2 were associated with gene-poor regions. None of the QTLs overlapped with known QTLs for EtOH preference drinking. Ninety-four transcripts were detected as being differentially expressed in both selected lines versus HS controls; there was no overlap with known preference genes. The WGCNA revealed 2 modules as showing significant effects of both selections on intramodular connectivity. A number of genes known to be associated with EtOH phenotypes (e.g., Gabrg1, Glra2, Grik1, Npy2r, and Nts) showed significant changes in connectivity. CONCLUSIONS We found marked and consistent effects of selection on coexpression patterns; DE changes were more modest and less concordant. The QTLs and differentially expressed genes detected here are distinct from the preference phenotype. This is consistent with behavioral data and suggests that the DID and preference phenotypes are markedly different genetically.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
Empathy and social problem solving in alcohol dependence, mood disorders and selected personality disorders. Neurosci Biobehav Rev 2013; 37:448-70. [DOI: 10.1016/j.neubiorev.2013.01.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
|
147
|
D’Souza AJ, Desai SD, Rudner XL, Kelly MN, Ruan S, Shellito JE. Suppression of the macrophage proteasome by ethanol impairs MHC class I antigen processing and presentation. PLoS One 2013; 8:e56890. [PMID: 23451104 PMCID: PMC3581560 DOI: 10.1371/journal.pone.0056890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/18/2013] [Indexed: 12/20/2022] Open
Abstract
Alcohol binge-drinking (acute ethanol consumption) is immunosuppressive and alters both the innate and adaptive arms of the immune system. Antigen presentation by macrophages (and other antigen presenting cells) represents an important function of the innate immune system that, in part, determines the outcome of the host immune response. Ethanol has been shown to suppress antigen presentation in antigen presenting cells though mechanisms of this impairment are not well understood. The constitutive and immunoproteasomes are important components of the cellular proteolytic machinery responsible for the initial steps critical to the generation of MHC Class I peptides for antigen presentation. In this study, we used an in-vitro cell culture model of acute alcohol exposure to study the effect of ethanol on the proteasome function in RAW 264.7 cells. Additionally, primary murine peritoneal macrophages obtained by peritoneal lavage from C57BL/6 mice were used to confirm our cell culture findings. We demonstrate that ethanol impairs proteasome function in peritoneal macrophages through suppression of chymotrypsin-like (Cht-L) proteasome activity as well as composition of the immunoproteasome subunit LMP7. Using primary murine peritoneal macrophages, we have further demonstrated that, ethanol-induced impairment of the proteasome function suppresses processing of antigenic proteins and peptides by the macrophage and in turn suppresses the presentation of these antigens to cells of adaptive immunity. The results of this study provide an important mechanism to explain the immunosuppressive effects of acute ethanol exposure.
Collapse
Affiliation(s)
- Alain J. D’Souza
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Section of Pulmonary/Critical Care Medicine – Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Shyamal D. Desai
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Xiaowen L. Rudner
- Section of Pulmonary/Critical Care Medicine – Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Michelle N. Kelly
- Section of Pulmonary/Critical Care Medicine – Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - SanBao Ruan
- Section of Pulmonary/Critical Care Medicine – Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Judd E. Shellito
- Section of Pulmonary/Critical Care Medicine – Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
148
|
Giardino WJ, Ryabinin AE. CRF1 receptor signaling regulates food and fluid intake in the drinking-in-the-dark model of binge alcohol consumption. Alcohol Clin Exp Res 2013; 37:1161-70. [PMID: 23398267 DOI: 10.1111/acer.12076] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Several recent studies implementing the standard "drinking-in-the-dark" (DID) model of short-term binge-like ethanol (EtOH) intake in C57BL/6J mice highlighted a role for the stress-related neuropeptide corticotropin-releasing factor (CRF) and its primary binding partner, the CRF type-1 (CRF1) receptor. METHODS We evaluated the selectivity of CRF1 involvement in binge-like EtOH intake by interrupting CRF1 function via pharmacological and genetic methods in a slightly modified 2-bottle choice DID model that allowed calculation of an EtOH preference ratio. In addition to determining EtOH intake and preference, we also measured consumption of food and H2 O during the DID period, both in the presence and absence of EtOH and sweet tastant solutions. RESULTS Treatment with either of the CRF1-selective antagonists CP-376,395 (CP; 10 to 20 mg/kg, i.p.) or NBI-27914 (10 to 30 mg/kg, i.p.) decreased intake of 15% EtOH in male C57BL/6J mice, but did so in the absence of a concomitant decrease in EtOH preference. These findings were replicated genetically in a CRF1 knockout (KO) mouse model (also on a C57BL/6J background). In contrast to effects on EtOH intake, pharmacological blockade of CRF1 with CP increased intake of 10% sucrose, consistent with previous findings in CRF1 KO mice. Finally, pharmacological and genetic disruption of CRF1 activity significantly reduced feeding and/or total caloric intake in all experiments, confirming the existence of nonspecific effects. CONCLUSIONS Our findings indicate that blockade of CRF1 receptors does not exert specific effects on EtOH intake in the DID paradigm, and that slight modifications to this procedure, as well as additional consummatory control experiments, may be useful when evaluating the selectivity of pharmacological and genetic manipulations on binge-like EtOH intake.
Collapse
Affiliation(s)
- William J Giardino
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
149
|
Garbusow M, Friedel E, Sebold M, Beck A, Heinz A, Smolka MN. Wege in die Abhängigkeit. SUCHT-ZEITSCHRIFT FUR WISSENSCHAFT UND PRAXIS 2013. [DOI: 10.1024/0939-5911.a000254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hintergrund: Riskanter Alkoholkonsum und Alkoholabhängigkeit treten in Industrieländern häufig auf und manifestieren sich oft bereits im jungen Erwachsenenalter. Wir prüfen in dieser Studie den Einfluss dysfunktionaler Lernmechanismen und deren Modulation durch verschiedene Stressoren, wie z. B. die Menge des Alkoholkonsums, auf die Entstehung, den Verlauf und ggf. die Aufrechterhaltung der Abhängigkeitserkrankung. Zielsetzung: Bisher bekannte ätiologische Faktoren, die im Zusammenhang mit der Entwicklung einer Alkoholabhängigkeit stehen, betreffen sowohl genetische (z. B. die genetisch bedingte geringe Sensitivität gegenüber der akuten Alkoholwirkung oder eine positive Familiengeschichte bezüglich Alkoholabhängigkeit) als auch umweltbedingten Faktoren (z. B. Stress, Trauma, dysfunktionale familiäre Strukturen und der Einfluss der Peers). Belohnungsabhängige Lernmechanismen könnten mit dem veränderten Alkoholkonsum in Adoleszenz und jungem Erwachsenenalter assoziiert sein und somit ebenfalls zu den prädisponierenden Faktoren für die Entwicklung einer Alkoholabhängigkeit zählen. Unser Wissen über diese Mechanismen ist bisher jedoch begrenzt. Im Rahmen der Studie „Learning in Alcohol Dependence“ (LeAD) sollen Lernmechanismen und ihre Bedeutung für die Entstehung exzessiven Alkoholkonsums untersucht werden. Zudem wird im Längsschnitt erfasst, wie sich der Alkoholkonsum selbst wieder auf diese Lernmechanismen auswirkt. Methodik: Eine Kohorte 18-jähriger Männer mit hohem versus niedrigem Risiko an einer Alkoholabhängigkeit zu erkranken, wird im Längsschnitt untersucht, wobei unter anderem bereits bekannte Risikofaktoren erfasst werden. Lernmechanismen werden mithilfe verschiedener Paradigmen (dem Pavlow’schen und instrumentellen Lernen, Habituierung und Devaluation sowie Risikoverhalten) behavioral und mittels funktioneller Bildgebung untersucht. Schlussfolgerungen: Bisher existieren keine Untersuchungen beim Menschen, in denen spezifische Veränderungen des Lernverhaltens mit prädisponierenden Faktoren für die Entwicklung einer Alkoholabhängigkeit in Zusammenhang gebracht werden. Durch die LeAD-Studie sollen diese Faktoren weiter aufgeklärt werden, wodurch eine zielgerichtete Prävention besser möglich werden könnte. Dadurch ließen sich speziell in dieser Altersgruppe Prävalenz und Schwere der Alkoholabhängigkeit beeinflussen.
Collapse
Affiliation(s)
- Maria Garbusow
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin
| | - Eva Friedel
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin
| | - Miriam Sebold
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin
| | - Anne Beck
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin
| | - Andreas Heinz
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin
| | - Michael N. Smolka
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Forschungsbereich Systemische Neurowissenschaften, Technische Universität Dresden
| |
Collapse
|
150
|
Planeta CS. Animal models of alcohol and drug dependence. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S140-6. [DOI: 10.1590/1516-4446-2013-1149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|