101
|
Chamberlain LA, Aguayo T, Zerega NJC, Dybzinski R, Egerton-Warburton LM. Rapid improvement in soil health following the conversion of abandoned farm fields to annual or perennial agroecosystems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Incorporating perennial crops into agroecosystems has been shown to mitigate soil degradation and improve soil health by enhancing soil aggregation and soil organic carbon (SOC) accrual. However, our understanding of the ability and timeframe for perennial crop systems to build soil health within the context of conversion from abandoned crop land remains limited. Here, we examined changes in soil health in the first year following the conversion of an abandoned crop field into an agroecosystem planted with various treatments, including: novel perennial grain (intermediate wheatgrass, IWG; Thinopyrum intermedium), IWG/ alfalfa biculture, forage grass, tallgrass prairie, or annual wheat. We analyzed factors considered central to the concept of mitigating soil degradation to improve soil health (soil aggregation, aggregate organic carbon (OC), bulk SOC) and their soil biological and physicochemical correlates throughout the first growing season. Comparisons between treatments showed that both annual and perennial treatments rapidly and significantly improved soil health metrics including aggregation, aggregate stability, and OC levels compared to pre-conversion conditions. Such increases were positively correlated with the abundance of arbuscular mycorrhizal fungi (AMF hyphae, root colonization), labile SOC and microbial activity. Notably, IWG/ alfalfa biculture resulted in significantly higher levels of macroaggregate OC in comparison to other treatments, including tallgrass prairie, supporting the potential of perennial grasses to contribute to soil carbon gains. Overall, the conversion of this abandoned land to an agroecosystem produced rapid and substantial increases in soil health in the first year after planting.
Collapse
|
102
|
Zhao X, Tian Q, Huang L, Lin Q, Wu J, Liu F. Fine-root functional trait response to nitrogen deposition across forest ecosystems: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157111. [PMID: 35787896 DOI: 10.1016/j.scitotenv.2022.157111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) deposition has complex effects on vegetation dynamics and nutrient cycling in terrestrial ecosystems. However, how N deposition alters fine root traits remains unclear in forest ecosystems. Here, we carried out a synthesis based on 890 paired observations of 14 fine root traits from 79 articles to assess the effects of N deposition on fine root traits. The results showed that N deposition mainly affected root nutrient content and stoichiometry. Specifically, N deposition increased the root N content, root carbon: phosphorus (C:P) and root nitrogen: phosphorus (N:P) ratio, but decreased the root P content and root C:N ratio. Moreover, N deposition increased fine root respiration, but had no significant effect on other root morphological and physiological traits. N deposition effects on fine root biomass, root tissue density and fungal colonization decreased with N deposition duration. Compared to fine root P content, N deposition effects on fine root C content and C:P ratio increased with N deposition level. Moreover, the interaction between N deposition level and duration significantly affected fine root biomass. N deposition effects on fine-root biomass decreased with greater N deposition duration, especially in high N deposition experiments. Moreover, the effect of N deposition on root diameter decreased with mean annual temperature and mean annual precipitation. N form, forest type and soil depth significantly affect the effect of N deposition on fine root C:P. Therefore, the effects of N deposition on fine root traits were not only determined by N deposition level, duration and their interactions, but also regulated by abiotic factors. These findings highlight the diverse responses of fine root traits to N deposition have strong implications for forest ecosystems soil carbon stocks in a world of increasing N deposition associated with decreased root-derived carbon inputs and increases in fine-root respiration.
Collapse
Affiliation(s)
- Xiaoxiang Zhao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxiang Tian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Lin Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoling Lin
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Feng Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
103
|
Fleishman SM, Eissenstat DM, Bell TH, Centinari M. Functionally-explicit sampling can answer key questions about the specificity of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2022; 17:51. [PMID: 36221138 PMCID: PMC9555203 DOI: 10.1186/s40793-022-00445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The rhizosphere is a nexus for plant-microbe interactions and, as a host-structured environment, a location of high activity for distinct microbes and plant species. Although our insights into this habitat have exploded in recent years, we are still limited in our ability to answer key questions about the specificity of these root-microbial relationships. In particular, it can be difficult to confirm or reject microbiome heritability in many plant systems and to pinpoint which microbial taxa are key to plant functioning. Like other host-structured environments, the rhizosphere is structurally, chemically, and biologically complex, driven largely by differences in root anatomy, location, and function. In this Correspondence, we describe a review of 377 "rhizosphere microbiome" research papers and demonstrate how matching a sampling method to the biological question can advance our understanding of host-microbe interactions in a functionally heterogeneous environment. We found that the vast majority of studies (92%) pool all roots from a root system during sampling, ignoring variation in microbial composition between roots of different function and limiting insight into key root-microbial relationships. Furthermore, approaches for removing root-associated microbes are highly variable and non-standard, complicating multi-study analyses. Our understanding of the strength and nature of host-microbe relationships in heterogenous host-microbiome environments can be clarified by targeting sampling to locations of high interaction. While the high complexity of the rhizosphere creates logistical challenges, we suggest that unambiguous language and refined approaches will improve our ability to match methods to research questions and advance our understanding of the specificity of plant-microbial interactions.
Collapse
Affiliation(s)
- Suzanne M. Fleishman
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David M. Eissenstat
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Michela Centinari
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
104
|
Sun J, Xia J, Shao P, Ma J, Gao F, Lang Y, Xing X, Dong M, Li C. Response of the fine root morphological and chemical traits of Tamarix chinensis to water and salt changes in coastal wetlands of the Yellow River Delta. FRONTIERS IN PLANT SCIENCE 2022; 13:952830. [PMID: 36304393 PMCID: PMC9592973 DOI: 10.3389/fpls.2022.952830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
To explore the adaptation of the fine root morphology and chemical characteristics of Tamarix chinensis to water-salt heterogeneity in the groundwater-soil system of a coastal wetland zone, T. chinensis forests at different groundwater levels (high: GW1 0.54 m and GW2 0.83 m; medium: GW3 1.18 m; low: GW4 1.62 m and GW5 2.04 m) in the coastal wetland of the Yellow River Delta were researched, and the fine roots of T. chinensis standard trees were excavated. The fine roots were classified by the Pregitzer method, and the morphology, nutrients, and nonstructural carbohydrate characteristics of each order were determined. The results showed that the groundwater level had a significant indigenous effect on the soil water and salt conditions and affected the fine roots of T. chinensis. At high groundwater levels, the specific root length and specific surface area of fine roots were small, the root tissue density was high, the fine root growth rate was slow, the nutrient use efficiency was higher than at low groundwater levels, and the absorption of water increased with increasing specific surface area. With decreasing groundwater level, the N content and C/N ratio of fine roots first decreased and then increased, and the soluble sugar, starch, and nonstructural carbohydrate content of fine roots first increased and then decreased. At high and low groundwater levels, the metabolism of fine roots of T. chinensis was enhanced, and their adaptability to high salt content and low water content soil environments improved. The first- and second-order fine roots of T. chinensis were mainly responsible for water and nutrient absorption, while the higher-order (from the third to fifth orders) fine roots were primarily responsible for the transportation and storage of carbohydrates. The fine root morphology, nutrients, nonstructural carbohydrate characteristics, and other aspects of the water and salt environment heterogeneity cooperated in a synergistic response and trade-off adjustment.
Collapse
Affiliation(s)
- Jia Sun
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Pengshuai Shao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Jinzhao Ma
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Fanglei Gao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Ying Lang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | | | | | - Chuanrong Li
- College of Forestry, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
105
|
Klein M, Stewart JD, Porter SS, Weedon JT, Kiers ET. Evolution of manipulative microbial behaviors in the rhizosphere. Evol Appl 2022; 15:1521-1536. [PMID: 36330300 PMCID: PMC9624083 DOI: 10.1111/eva.13333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.
Collapse
Affiliation(s)
- Malin Klein
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Justin D. Stewart
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - James T. Weedon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
106
|
Sallaku G, Rewald B, Sandén H, Balliu A. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. FRONTIERS IN PLANT SCIENCE 2022; 13:949086. [PMID: 36247619 PMCID: PMC9558002 DOI: 10.3389/fpls.2022.949086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Vegetable grafting is increasingly recognized as an effective and sustainable plant production alternative. Grafted plants usually show increased uptake of water and minerals compared with self-rooted plants, mostly thought a consequence of the vigorous rootstocks selected. However, while studies frequently addressed the effects of rootstocks on the performance of scions, knowledge on the influences of scions on biomass allocation, morphology, and metabolic activity of roots is rare. In particular, the plasticity of root traits affecting resource acquisition and its efficiency remains poorly understood. Two different rootstock species, Cucurbita maxima × Cucurbita moschata and Lagenaria siceraria, were grafted in combination with melon (Cucumis melo) and watermelon (Citrullus lanatus). Self-grafted rootstocks were used as control. Plant biomass and root traits were determined after destructive harvesting 30 and/or 60 days after grafting. Traits included biomass allocation, leaf and root morphology, potential activities of four extracellular enzymes on root tips and basal root segments, and root respiration. Successfully grafted scions increase the ratio of root to whole plant dry matter (RMF), and increased ratios of root length to whole plant dry matter (RLR) and to plant leaf area (RL : LA). In contrast, morphological root traits such as diameter, tissue density, and specific root length remain surprisingly stable, and thus scion-induced changes of those traits may only play a minor role for the beneficial effects of grafting in Cucurbitaceae. Incompatibility in melon/L. siceraria grafts, however, was likely responsible for the reduced root growth in combination with clear changes in root morphological traits. Reduced root respiration rates seem to be the effects of a non-compatible rootstock-scion combination rather than an active, C-efficiency increasing acclimation. In contrast, heterografts with melon and watermelon frequently resulted in root-stock-specific, often enhanced potential enzymatic activities of acid phosphatase, β-glucosidase, leucine-amino-peptidase, and N-acetyl-glucosaminidase both at root tips and basal parts of lateral roots-presenting a potential and complementary mechanism of grafted plants to enhance nutrient foraging. The studied melon and watermelon scions may thus increase the nutrient foraging capacity of grafted plants by fostering the relative allocation of C to the root system, and enhancing the extracellular enzymatic activities governed by roots or their rhizobiome.
Collapse
Affiliation(s)
- Glenda Sallaku
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Hans Sandén
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Astrit Balliu
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| |
Collapse
|
107
|
Wang T, Huang L, Zhang X, Wang M, Tan D. Root Morphology and Biomass Allocation of 50 Annual Ephemeral Species in Relation to Two Soil Condition. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192495. [PMID: 36235362 PMCID: PMC9570868 DOI: 10.3390/plants11192495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 05/09/2023]
Abstract
Different organ morphologies determine the manner in which plants acquire resources, and the proportion of biomass of each organ is a critical driving force for organs to function in the future. Regrettably, we still lack a comprehensive understanding of root traits and seedling biomass allocation. Accordingly, we investigated and collected the seedling root morphological traits and biomass allocation of 50 annual ephemeral species to clarify the adaptation to environment. The findings of this study showed that there was a significantly negative correlation between root tissue density (RTD) and root diameter (RD) (p < 0.05), which did not conform to the hypothesis of the one-dimensional root economics spectrum (RES). On this basis, we divided 50 plant species into those rooted in dense or gravelly sand (DGS) or loose sand (LS) groups according to two soil conditions to determine the differences in root strategy and plant strategy between the two groups of plants. Our study revealed that the species rooting DGS tend to adopt a high penetration root strategy. However, the species rooting LS adopt high resource acquisition efficiency. At the whole-plant level, 50 species of ephemerals were distributed along the resource acquisition and conservation axis. Species rooting DGS tend to adopt the conservation strategy of high stem biomass fraction and low resource acquisition efficiency, while species rooting LS tend to adopt the acquisition strategy of high root and leaf biomass fraction and high resource acquisition efficiency. The research results provide a theoretical basis for the restoration and protection of vegetation in desert areas.
Collapse
|
108
|
Chi Y, Tam NFY, Li WC, Ye Z. Multiple geochemical and microbial processes regulated by redox and organic matter control the vertical heterogeneity of As and Cd in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156229. [PMID: 35643135 DOI: 10.1016/j.scitotenv.2022.156229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneity of arsenic (As) and cadmium (Cd) in paddy soils seriously hinders the assessment of contamination status and prediction of rice uptake. Their vertical patterns across different environmental conditions and the underlying mechanisms remain largely unexplored. In this study, maximum vertical differences of bioavailable As and Cd within 0-30 cm depth in paddy soils were 4.1-fold and four orders of magnitude, respectively. The vertical patterns of As and Cd followed the vertical redox gradient in long-term reduced paddies, but were shaped by the vertical pH gradient derived from acidic wastewater irrigation in partly oxidized soils. Iron(III)- and sulfate-reducing bacteria played key roles in the formation of vertical pH gradient and the immobilization of As and Cd by iron (hydr)oxides and sulfides under varied redox conditions. Soil redox and organic matter determined the transition between these two mechanisms via regulating microbial iron(III) and sulfate reduction processes. The work proposes that soil vertical As and Cd patterns directly affect the accumulation of As and Cd in different rice cultivars with different vertical root patterns. This is the first study elucidating the controlling mechanisms governing the vertical As and Cd patterns in paddy fields, providing important references to identify, manage and remediate contaminated paddy fields.
Collapse
Affiliation(s)
- Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Kowloon, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Wai Chin Li
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
109
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
110
|
Smoczynska A, Pacak A, Grabowska A, Bielewicz D, Zadworny M, Singh K, Dolata J, Bajczyk M, Nuc P, Kesy J, Wozniak M, Ratajczak I, Harwood W, Karlowski WM, Jarmolowski A, Szweykowska-Kulinska Z. Excess nitrogen responsive HvMADS27 transcription factor controls barley root architecture by regulating abscisic acid level. FRONTIERS IN PLANT SCIENCE 2022; 13:950796. [PMID: 36172555 PMCID: PMC9511987 DOI: 10.3389/fpls.2022.950796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 β-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.
Collapse
Affiliation(s)
- Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Grabowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jacek Kesy
- Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wozniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Wendy Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norfolk, United Kingdom
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
111
|
Gleason SM, Barnard DM, Green TR, Mackay S, Wang DR, Ainsworth EA, Altenhofen J, Brodribb TJ, Cochard H, Comas LH, Cooper M, Creek D, DeJonge KC, Delzon S, Fritschi FB, Hammer G, Hunter C, Lombardozzi D, Messina CD, Ocheltree T, Stevens BM, Stewart JJ, Vadez V, Wenz J, Wright IJ, Yemoto K, Zhang H. Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. PLANT, CELL & ENVIRONMENT 2022; 45:2554-2572. [PMID: 35735161 DOI: 10.1111/pce.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
Collapse
Affiliation(s)
- Sean M Gleason
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Dave M Barnard
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Timothy R Green
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Scott Mackay
- Department of Geography & Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA
| | - Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth A Ainsworth
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, Illinois, USA
| | - Jon Altenhofen
- Northern Colorado Water Conservancy District, Berthoud, Colorado, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Tasmania Node, Hobart, Tasmania, Australia
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Louise H Comas
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Danielle Creek
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kendall C DeJonge
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, cedex, France
| | - Felix B Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Cameron Hunter
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Danica Lombardozzi
- National Center for Atmospheric Research (NCAR), Climate & Global Dynamics Lab, Boulder, Colorado, USA
| | - Carlos D Messina
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Troy Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Bo Maxwell Stevens
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Jared J Stewart
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | | | - Joshua Wenz
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Western Sydney University Node, Penrith, New South Wales, Australia
| | - Kevin Yemoto
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Huihui Zhang
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| |
Collapse
|
112
|
Encinas‐Valero M, Esteban R, Hereş A, Vivas M, Fakhet D, Aranjuelo I, Solla A, Moreno G, Curiel Yuste J. Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress. THE NEW PHYTOLOGIST 2022; 235:2237-2251. [PMID: 35491749 PMCID: PMC9541754 DOI: 10.1111/nph.18182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Climate change and pathogen outbreaks are the two major causes of decline in Mediterranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in response to these stressful conditions have been widely documented but the responses of the root systems remain unexplored. The effects of environmental stress over roots and its potential role during the declining process need to be evaluated. We aimed to study how key morphological and architectural root parameters and nonstructural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy, susceptible and declining trees). Holm oaks with different health statuses had different soil resource-uptake strategies. While healthy and susceptible trees showed a conservative resource-uptake strategy independently of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the phenotypic plasticity of their fine root system. This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-consuming strategy promoted to cope with the stress and at the expense of foliage maintenance. Our study describes a potential feedback loop resulting from strong unprecedented belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish dehesa.
Collapse
Affiliation(s)
- Manuel Encinas‐Valero
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
| | - Raquel Esteban
- Department of Plant Biology and EcologyUniversity of Basque Country (UPV/EHU)B/Sarriena s/n48940LeioaBizkaiaSpain
| | - Ana‐Maria Hereş
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
- Department of Forest SciencesTransilvania University of BraşovSirul Beethoven‐1500123BraşovRomania
| | - María Vivas
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Dorra Fakhet
- Instituto de Agrobiotecnología (IdAB)Consejo Superior de Investigaciones Científicas (CSIC)‐Gobierno de NavarraAvenida Pamplona 12331192MutilvaSpain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB)Consejo Superior de Investigaciones Científicas (CSIC)‐Gobierno de NavarraAvenida Pamplona 12331192MutilvaSpain
| | - Alejandro Solla
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Gerardo Moreno
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Jorge Curiel Yuste
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5E‐48009BilbaoBizkaiaSpain
| |
Collapse
|
113
|
Li W, Luo S, Wang J, Zheng X, Zhou X, Xiang Z, Liu X, Fang X. Nitrogen deposition magnifies destabilizing effects of plant functional group loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155419. [PMID: 35483460 DOI: 10.1016/j.scitotenv.2022.155419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Terrestrial ecosystems are under threat by the co-occurring biodiversity loss and nitrogen (N) deposition. Awareness is growing that the stabilizing effects of plant diversity on productivity depend on environmental context, but it remains unknown about how the loss of plant functional groups and N deposition interactively influence species richness and community stability. Here we carried out an eight-year experiment of plant functional groups removal and N addition experiment in subalpine meadow. We found that the removal of plant functional groups and N addition interactively affected averaged plant species richness and community stability. Without N addition, the absence of forbs, but not other functional groups, significantly decreased average species richness and community stability through decreasing species asynchrony (i.e., asynchronous dynamics among species under fluctuating conditions). Under N addition, the absence of forbs, grasses and legumes all led to significant declines in average species richness, causing a decrease in community stability by decreasing species asynchrony, among which the absence of forbs had the greatest negative effects on community stability. Moreover, N addition reinforced the destabilizing effects caused by the loss of functional groups. Our findings show that the diverse forbs maintain plant community stability through asynchronous dynamics among species, especially under N deposition scenario. Therefore, we suggest that conservation and restoration of plant communities and their stability would benefit from a functional-group specific strategy by considering the largely ignored forb species, while helps guide conservation management efforts to reduce temporal variability for ecosystem service in the face of uncertain species extinction and N deposition scenarios.
Collapse
Affiliation(s)
- Wenjin Li
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Shan Luo
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Junfeng Wang
- Institute of Grassland Science, Key Laboratory of Vegetation, Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, Jilin, China
| | - Xinyi Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xi Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhiqiang Xiang
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiangwen Fang
- State Key Laboratory of Grassland Agro-ecosystems, Gannan Grassland Ecosystem National Observation and Research Station, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
114
|
Zhang C, Xue W, Xue J, Zhang J, Qiu L, Chen X, Hu F, Kardol P, Liu M. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Chongzhe Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Key Laboratory of Biological Interaction and Crop Health Nanjing Agricultural University Nanjing China
| | - Wenfeng Xue
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Jingrong Xue
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Jing Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Key Laboratory of Biological Interaction and Crop Health Nanjing Agricultural University Nanjing China
| | - Lujie Qiu
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Key Laboratory of Biological Interaction and Crop Health Nanjing Agricultural University Nanjing China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Paul Kardol
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Key Laboratory of Biological Interaction and Crop Health Nanjing Agricultural University Nanjing China
- Centre for Grassland Microbiome, College of Pastoral Agricultural Science and Technology Lanzhou University Lanzhou China
| |
Collapse
|
115
|
Cabal C. Root tragedy of the commons: Revisiting the mechanisms of a misunderstood theory. FRONTIERS IN PLANT SCIENCE 2022; 13:960942. [PMID: 35991453 PMCID: PMC9386591 DOI: 10.3389/fpls.2022.960942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fine root density in the soil is a plant functional trait of paramount importance for plant ecology and agriculture. Fine root proliferation by plants involves complex plant strategies that may depend on various abiotic and biotic factors. Concretely, the root tragedy of the commons (RToC) is a behavioral strategy predicted by game theory models in which interacting plants forage for soil resources inefficiently. Generally, researchers assume that the RToC is a proactive competition strategy directly induced by the non-self roots. In this opinion, I recall Hardin's original definition of the tragedy of the commons to challenge this notion. I argue that the RToC is a suboptimal phenotypically plastic response of the plants based on the soil resource information exclusively, and I discuss how this alternative perspective carries important implications for the design of experiments investigating the physiological mechanisms underlying observable plant root responses.
Collapse
Affiliation(s)
- Ciro Cabal
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, United States
- Department of Biogeography and Global Change, National Museum of Natural Sciences, MNCN, CSIC, Madrid, Spain
| |
Collapse
|
116
|
Affiliation(s)
- Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
117
|
Tumber‐Dávila SJ, Schenk HJ, Du E, Jackson RB. Plant sizes and shapes above and belowground and their interactions with climate. THE NEW PHYTOLOGIST 2022; 235:1032-1056. [PMID: 35150454 PMCID: PMC9311740 DOI: 10.1111/nph.18031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Although the above and belowground sizes and shapes of plants strongly influence plant competition, community structure, and plant-environment interactions, plant sizes and shapes remain poorly characterized across climate regimes. We investigated relationships among shoot and root system size and climate. We assembled and analyzed, to our knowledge, the largest global database describing the maximum rooting depth, lateral spread, and shoot size of terrestrial plants - more than doubling the Root Systems of Individual Plants database to 5647 observations. Water availability and growth form greatly influence shoot size, and rooting depth is primarily influenced by temperature seasonality. Shoot size is the strongest predictor of lateral spread, with root system diameter being two times wider than shoot width on average for woody plants. Shoot size covaries strongly with rooting system size; however, the geometries of plants differ considerably across climates, with woody plants in more arid climates having shorter shoots, but deeper, narrower root systems. Additionally, estimates of the depth and lateral spread of plant root systems are likely underestimated at the global scale.
Collapse
Affiliation(s)
- Shersingh Joseph Tumber‐Dávila
- Department of Earth System ScienceStanford University473 Via OrtegaStanfordCA94305USA
- Harvard ForestHarvard University324 N Main StPetershamMA01366USA
| | - H. Jochen Schenk
- Department of Biological ScienceCalifornia State University Fullerton800 North State College BlvdFullertonCA92831USA
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal University19 Xinjiekouwai StreetBeijing100875China
| | - Robert B. Jackson
- Department of Earth System ScienceStanford University473 Via OrtegaStanfordCA94305USA
- Woods Institute for the EnvironmentStanford University473 Via OrtegaStanfordCA94305USA
- Precourt Institute for EnergyStanford University473 Via OrtegaStanfordCA94305USA
| |
Collapse
|
118
|
Montagnoli A, Lasserre B, Terzaghi M, Byambadorj SO, Nyam-Osor B, Scippa GS, Chiatante D. Fertilization reduces root architecture plasticity in Ulmus pumila used for afforesting Mongolian semi-arid steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:878299. [PMID: 35958214 PMCID: PMC9359110 DOI: 10.3389/fpls.2022.878299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 06/13/2023]
Abstract
In this study, we assessed the functional and architectural traits in the coarse roots of Ulmus pumila trees, which are used for afforesting the semi-arid steppe of Mongolia. Tree growth was supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and compost). In July, 2019, for each of these treatments six trees, outplanted in 2011 as 2-year-old seedlings from a container nursery, were randomly selected, excavated by hand, and digitized. The build-up of root length correlated positively with increasing levels of watering for both soil depths analyzed. The application of fertilizers led to root growth suppression resulting in a general reduction of root length in a lowered rooting depth. When root system characteristics were analyzed in relation to wind direction, unfertilized trees showed higher root diameter values in both soil layers of leeward quadrants, likely a response to mechanical forces to improve stability. On the contrary, fertilized trees did not show differences in root diameter among the different quadrants underscoring a strong reduction in root plasticity with a lack of morpho-architectural response to the mechanical forces generated by the two prevailing winds. Finally, the root branching density, another important trait for fast dissipation of mechanical forces, was significantly reduced by the fertilization, independently of the quadrants and watering regime. Our results suggest that knowledge of the root response to the afforestation techniques applied in the semi-arid steppe of Mongolia is a necessary step for revealing the susceptibility of this forest shelterbelt to the exacerbating environmental conditions caused by climate change and, thus, to the development of a sustainable and successful strategy to restore degraded lands.
Collapse
Affiliation(s)
- Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Bruno Lasserre
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Mattia Terzaghi
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
119
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.). Sci Rep 2022; 12:11197. [PMID: 35778470 PMCID: PMC9249782 DOI: 10.1038/s41598-022-15133-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leaf microbiota mediates foliar functional traits, influences plant fitness, and contributes to various ecosystem functions, including nutrient and water cycling. Plant phenology and harsh environmental conditions have been described as the main determinants of leaf microbiota assembly. How climate change may modulate the leaf microbiota is unresolved and thus, we have a limited understanding on how environmental stresses associated with climate change driven weather events affect composition and functions of the microbes inhabiting the phyllosphere. Thus, we conducted a pot experiment to determine the effects of flooding stress on the wheat leaf microbiota. Since plant phenology might be an important factor in the response to hydrological stress, flooding was induced at different plant growth stages (tillering, booting and flowering). Using a metabarcoding approach, we monitored the response of leaf bacteria to flooding, while key soil and plant traits were measured to correlate physiological plant and edaphic factor changes with shifts in the bacterial leaf microbiota assembly. In our study, plant growth stage represented the main driver in leaf microbiota composition, as early and late plants showed distinct bacterial communities. Overall, flooding had a differential effect on leaf microbiota dynamics depending at which developmental stage it was induced, as a more pronounced disruption in community assembly was observed in younger plants.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
120
|
Temporal dynamics of fine root production, mortality and turnover deviate across branch orders in a larch stand. Oecologia 2022; 199:699-709. [PMID: 35776205 DOI: 10.1007/s00442-022-05206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Fine roots play a key role in carbon, nutrient, and water biogeochemical cycles in forest ecosystems. However, inter-annual dynamics of fine root production, mortality, and turnover on the basis of long-term measurement have been less studied. Here, field scanning rhizotrons were employed for tracking fine root by branch order over a 6 years period in a larch plantation. For total fine roots, from the first- to the fifth-order roots, annual root length production, length mortality, standing crops, and turnover rate varied up to 3.4, 2.3, 1.5, and 2.3-folds during the study period, respectively. The inter-annual variability of those roots indices in the first-order and the second-order roots were greater than that of the higher order (third- to fifth-order) roots. The turnover rate was markedly larger for the first-order roots than for the higher order roots, showing the greatest variability up to 20 times. Seasonal dynamics of root length production followed a general concentrated pattern with peak typically occurring in June or July, whereas root length mortality followed a general bimodal mortality pattern with the dominant peak in May and the secondary peak in August or October. Furthermore, the seasonal patterns of root length production and mortality were similar across years, especially for the first-order and the second-order roots. These results from long-term observation were beneficial for reducing uncertainty of characterizing fine root demography in consideration of large variation among years. Our findings highlight it is important for better understanding of fine root dynamics and determining root demography through distinguishing observation years and root branch orders.
Collapse
|
121
|
Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM, Hannula SE, Hestrin R, Hoosein S, Kumar A, Mhretu G, Neuenkamp L, Soti P, Xie Y, Helgason T. What are mycorrhizal traits? Trends Ecol Evol 2022; 37:573-581. [PMID: 35504748 DOI: 10.1016/j.tree.2022.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022]
Abstract
Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological, and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.
Collapse
Affiliation(s)
- V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tanya E Cheeke
- School of Biological Sciences, Washington State University, Richland, WA 99354, USA
| | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110151, Colombia
| | - Jessica Duchicela
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Cameron Egan
- Department of Biology, Okanagan College, 1000 KLO Rd, Kelowna, BC, Canada V1Y 4X8
| | - Manju M Gupta
- Department of Biology, University of Delhi, Sri Aurobindo College, Delhi 110017, India
| | - S Emilia Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Shabana Hoosein
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | - Amit Kumar
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, 21335 Lüneburg, Germany
| | - Genet Mhretu
- Department of Biology, Mekelle University, Mekelle 231, Ethiopia
| | - Lena Neuenkamp
- University of Bern, Institute of Plant Sciences, Berne 3013, Switzerland; Department of Ecology and Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante 03009, Spain
| | - Pushpa Soti
- Biology Department, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077
| | | |
Collapse
|
122
|
Belowground structure and determinants of woody plant height at a tropical dry forest site in Zambia, southern Africa. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Root metrics and plant height for 256 excavated saplings and small trees of 27 species, including sown plants, were used to describe belowground structure and assess factors that influence shoot growth in a tropical dry forest (TDF) in Zambia. Models were developed to (i) estimate taproot depth from incomplete excavations and (ii) coarse lateral root biomass from proximal diameter data. The majority of the species studied are slow-growing and had a median height of <200 cm at the age of 16 years. Root development advanced sequentially from taproot elongation to thickening to coarse lateral root development. Shrubs in shallow soil had short taproots with a lower wood density. Plant age explained <10% of the variance in shoot height. Root variables explained the majority of the variance in shoot height. More research is needed to improve our knowledge about how belowground structures influence shoot growth and tree recruitment in TDFs of southern Africa.
Collapse
|
123
|
Pierick K, Link RM, Leuschner C, Homeier J. Elevational trends of tree fine root traits in species‐rich tropical Andean forests. OIKOS 2022. [DOI: 10.1111/oik.08975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kerstin Pierick
- Plant Ecology and Ecosystems Research, Univ. of Goettingen Göttingen Germany
| | - Roman M. Link
- Ecophysiology and Vegetation Ecology, Julius‐von‐Sachs‐Inst. of Biological Sciences, Univ. of Würzburg Würzburg Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Univ. of Goettingen Göttingen Germany
- Centre for Biodiversity and Sustainable Land Use, Univ. of Goettingen Göttingen Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, Univ. of Goettingen Göttingen Germany
- Centre for Biodiversity and Sustainable Land Use, Univ. of Goettingen Göttingen Germany
| |
Collapse
|
124
|
Schwieger S, Kreyling J, Peters B, Gillert A, Freiherr von Lukas U, Jurasinski G, Köhn D, Blume‐Werry G. Rewetting prolongs root growing season in minerotrophic peatlands and mitigates negative drought effects. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Schwieger
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
- Department of Ecology and Environmental Sciences Umeå University Umeå Sweden
| | - Juergen Kreyling
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
| | - Bo Peters
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
| | - Alexander Gillert
- Fraunhofer Institute for Computer Graphics Research IGD Rostock Germany
| | | | - Gerald Jurasinski
- Faculty of Agriculture and Environmental Sciences University of Rostock Rostock Germany
| | - Daniel Köhn
- Faculty of Agriculture and Environmental Sciences University of Rostock Rostock Germany
| | - Gesche Blume‐Werry
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
- Department of Ecology and Environmental Sciences Umeå University Umeå Sweden
| |
Collapse
|
125
|
Li Z, Wang S, Wang W, Gu J, Wang Y. The Hierarchy of Protoxylem Groupings in Primary Root and Their Plasticity to Nitrogen Addition in Three Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:903318. [PMID: 35812911 PMCID: PMC9260270 DOI: 10.3389/fpls.2022.903318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Protoxylem grouping (PG), a classification based on the number of protoxylem poles, is a crucial indicator related to other functional traits in fine roots, affecting growth and survival of individual root. However, within root system, less is known about the arrangement of PG. Moreover, the responses of PG to fertilization are still unclear. Here, we selected three common hardwood species in Northeast China, Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense, conducted root pruning and nutrient addition. In this study, we analyzed the PG, morphology, and other anatomy traits of newly formed root branches. The results showed all root length, diameter, and stele, as well as hydraulic conductivity, were significantly positive related to the PG number, and the PG number generally decreased with ascending root developmental order; these patterns were independent of species and fertilization. Additionally, we also found the plasticity of PGs to environmental changes, in terms of the increased frequency of high PG roots after fertilization, significantly in J. mandshurica and F. mandshurica. Therefore, the heterogeneity, hierarchy, and plasticity of individual roots within root system may be widespread in woody plants, which is of great significance to deepen our understanding in root growth and development, as well as the belowground ecological process.
Collapse
Affiliation(s)
- Zhongyue Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Siyuan Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Wenna Wang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jiacun Gu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yan Wang
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
126
|
Weemstra M, Kuyper TW, Sterck FJ, Umaña MN. Incorporating belowground traits: avenues towards a whole‐tree perspective on performance. OIKOS 2022. [DOI: 10.1111/oik.08827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monique Weemstra
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - María Natalia Umaña
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| |
Collapse
|
127
|
Sanaphre-Villanueva L, Pineda-García F, Dáttilo W, Pinzón-Pérez LF, Ricaño-Rocha A, Paz H. Above- and below-ground trait coordination in tree seedlings depend on the most limiting resource: a test comparing a wet and a dry tropical forest in Mexico. PeerJ 2022; 10:e13458. [PMID: 35722267 PMCID: PMC9205306 DOI: 10.7717/peerj.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
The study of above- and below-ground organ plant coordination is crucial for understanding the biophysical constraints and trade-offs involved in species' performance under different environmental conditions. Environmental stress is expected to increase constraints on species trait combinations, resulting in stronger coordination among the organs involved in the acquisition and processing of the most limiting resource. To test this hypothesis, we compared the coordination of trait combinations in 94 tree seedling species from two tropical forest systems in Mexico: dry and moist. In general, we expected that the water limitation experienced by dry forest species would result in stronger leaf-stem-root coordination than light limitation experienced by moist forest species. Using multiple correlations analyses and tools derived from network theory, we found similar functional trait coordination between forests. However, the most important traits differed between the forest types. While in the dry forest the most central traits were all related to water storage (leaf and stem water content and root thickness), in the moist forest they were related to the capacity to store water in leaves (leaf water content), root efficiency to capture resources (specific root length), and stem toughness (wood density). Our findings indicate that there is a shift in the relative importance of mechanisms to face the most limiting resource in contrasting tropical forests.
Collapse
Affiliation(s)
- Lucía Sanaphre-Villanueva
- Centro del Cambio Global y la Sustentabilidad A.C., Consejo Nacional de Ciencia y Tecnología, Villahermosa, Tabasco, México,Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Fernando Pineda-García
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luisa Fernanda Pinzón-Pérez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Arlett Ricaño-Rocha
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Horacio Paz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México,Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México,Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
128
|
Kotowska MM, Samhita S, Hertel D, Triadiati T, Beyer F, Allen K, Link RM, Leuschner C. Consequences of tropical rainforest conversion to tree plantations on fine root dynamics and functional traits. OIKOS 2022. [DOI: 10.1111/oik.08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martyna M. Kotowska
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Sasya Samhita
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Dietrich Hertel
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Triadiati Triadiati
- Dept of Biology, Faculty of Mathematics and Natural Sciences, IPB Univ. Bogor Indonesia
| | - Friderike Beyer
- Chair of Silviculture, Faculty of Environment and Natural Resources, Univ. of Freiburg Freiburg Germany
| | - Kara Allen
- Manaaki Whenua‐Landcare Research Lincoln New Zealand
| | - Roman M. Link
- Chair of Ecophysiology and Vegetation Ecology, Julius von Sachs Inst. of Biological Sciences, Univ. of Würzburg Würzburg Germany
| | - Christoph Leuschner
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| |
Collapse
|
129
|
Chen Y, Vogel A, Wagg C, Xu T, Iturrate-Garcia M, Scherer-Lorenzen M, Weigelt A, Eisenhauer N, Schmid B. Drought-exposure history increases complementarity between plant species in response to a subsequent drought. Nat Commun 2022; 13:3217. [PMID: 35680926 PMCID: PMC9184649 DOI: 10.1038/s41467-022-30954-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Growing threats from extreme climatic events and biodiversity loss have raised concerns about their interactive consequences for ecosystem functioning. Evidence suggests biodiversity can buffer ecosystem functioning during such climatic events. However, whether exposure to extreme climatic events will strengthen the biodiversity-dependent buffering effects for future generations remains elusive. We assess such transgenerational effects by exposing experimental grassland communities to eight recurrent summer droughts versus ambient conditions in the field. Seed offspring of 12 species are then subjected to a subsequent drought event in the glasshouse, grown individually, in monocultures or in 2-species mixtures. Comparing productivity between mixtures and monocultures, drought-selected plants show greater between-species complementarity than ambient-selected plants when recovering from the subsequent drought, causing stronger biodiversity effects on productivity and better recovery of drought-selected mixtures after the drought. These findings suggest exposure to recurrent climatic events can improve ecosystem responses to future events through transgenerational reinforcement of species complementarity.
Collapse
Affiliation(s)
- Yuxin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, 361102, Xiamen, China.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Tianyang Xu
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Maitane Iturrate-Garcia
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Department of Chemical and Biological Metrology, Federal Institute of Metrology METAS, Lindenweg 50, 3003, Bern-Wabern, Switzerland
| | | | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
130
|
Yan H, Freschet GT, Wang H, Hogan JA, Li S, Valverde-Barrantes OJ, Fu X, Wang R, Dai X, Jiang L, Meng S, Yang F, Zhang M, Kou L. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. THE NEW PHYTOLOGIST 2022; 234:1639-1653. [PMID: 35243647 DOI: 10.1111/nph.18066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The root economics space (RES) is multidimensional and largely shaped by belowground biotic and abiotic influences. However, how root-fungal symbioses and edaphic fertility drive this complexity remains unclear. Here, we measured absorptive root traits of 112 tree species in temperate and subtropical forests of China, including traits linked to functional differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) hosts. Our data, from known mycorrhizal tree species, revealed a 'fungal-symbiosis' dimension distinguishing AM from ECM species. This divergence likely resulted from the contrasting mycorrhizal evolutionary development of AM vs ECM associations. Increased root tissue cortical space facilitates AM symbiosis, whereas increased root branching favours ECM symbiosis. Irrespective of mycorrhizal type, a 'root-lifespan' dimension reflecting aspects of root construction cost and defence was controlled by variation in specific root length and root tissue density, which was fully independent of root nitrogen content. Within this function-based RES, we observed a substantial covariation of axes with soil phosphorus and nitrate levels, highlighting the role played by these two axes in nutrient acquisition and conservation. Overall, our findings demonstrate the importance of evolved mycorrhizal symbiosis pathway and edaphic fertility in framing the RES, and provide theoretical and mechanistic insights into the complexity of root economics.
Collapse
Affiliation(s)
- Han Yan
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, Moulis, 09200, France
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Aaron Hogan
- Department of Biological Sciences, Institute of Environment, International Center of Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
- Department of Biology, University of Florida, Gainesville, FL, 32605, USA
| | - Shenggong Li
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Institute of Environment, International Center of Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruili Wang
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
131
|
Slette IJ, Hoover DL, Smith MD, Knapp AK. Repeated extreme droughts decrease root production, but not the potential for post‐drought recovery of root production, in a mesic grassland. OIKOS 2022. [DOI: 10.1111/oik.08899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ingrid J. Slette
- Dept of Biology and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| | - David L. Hoover
- USDA‐ARS Rangeland Resources and Systems Research Unit, Crops Research Laboratory Fort Collins CO USA
| | - Melinda D. Smith
- Dept of Biology and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| | - Alan K. Knapp
- Dept of Biology and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| |
Collapse
|
132
|
Rodríguez‐Alarcón S, Tamme R, P.Carmona C. Intraspecific trait changes in response to drought lead to trait convergence between‐ but not within species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Riin Tamme
- Institute of Ecology and Earth Sciences University of Tartu, J. Liivi 2 Tartu Estonia
| | - Carlos P.Carmona
- Institute of Ecology and Earth Sciences University of Tartu, J. Liivi 2 Tartu Estonia
| |
Collapse
|
133
|
Effects of Liming on the Morphologies and Nutrients of Different Functional Fine Roots of Cunninghamia lanceolata Seedlings. FORESTS 2022. [DOI: 10.3390/f13060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil acidification is an important cause of the productivity decline of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook)—one of the most important timber species in China. Although liming is an effective measure for reversing the effects of soil acidification, the effects on the morphologies and nutrients of different functional roots remain ambiguous. Thus, this study aimed to investigate the effects of liming on fine root traits of Chinese fir seedlings between two root function types (absorptive roots (AR) and transport roots (TR)). Chinese fir seedlings with equal performance were planted in each pot with two acidification soils (pH 3.6 and pH 4.3) and three levels of liming (0, 1000, and 4000 kg CaO ha−1). Our data showed that liming had no effect on the root biomass (RB) of AR and TR in mildly acidified soil, but it decreased the RB in severely acidified soil. Specific root length (SRL) of AR and TR were significantly increased by 24% and 27% with a high liming dose in mildly acidified soil, respectively. The specific root areas (SRA) of AR and TR were significantly increased by 10% and 22% with a high liming dose in mildly acidified soil, respectively. Furthermore, root N concentrations were significantly increased by 26% and 30% in AR and TR with a high liming dose in mildly acidified soil, respectively. Root P concentration of AR was significantly increased by 21% with a high liming dose in mildly acidified soil while root Ca concentration was significantly increased with all treatments. A similar trend was also observed in the Ca/Al ratio of roots. Both low and high doses of liming decreased the root Al concentration of AR by 26% and 31% in mildly acidified soil, respectively; however, there was no significant effect on TR in both soils. Our findings indicated that liming could alleviate Al toxicity to fine roots and increase root investment efficiency and absorption capacity. Liming also had coordinate effects on SRL, SRA, Root tissue density (RTD), N, P, Ca and Ca/Al between AR and TR. Our study suggested that to gain a comprehensive understanding of plant growth strategy, researchers in future studies must consider different functional roots rather than just the absorption part. Our results also revealed that the root system became more “acquisitive” due to the remediation of Al toxicity, which may be an important mechanism underlying the increment of the productivity of Chinese fir plantations undergoing liming.
Collapse
|
134
|
Jian Z, Ni Y, Lei L, Xu J, Xiao W, Zeng L. Phosphorus is the key soil indicator controlling productivity in planted Masson pine forests across subtropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153525. [PMID: 35104531 DOI: 10.1016/j.scitotenv.2022.153525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Soil physiochemical properties are critical to understanding forest productivity and carbon (C) finance schemes in terrestrial ecosystems. However, few studies have focused on the effects of the soil physiochemical properties on the productivity in planted forests. This study was therefore conducted at 113 sampling plots located in planted Masson pine forests across subtropical China to test what and how the aboveground net primary productivity (ANPP) would be explained by the soil physiochemical properties, stand attributes, and functional traits using regression analysis and structural equation modelling (SEM). Across subtropical China, the ANPP ranged from 1.79 to 14.04 Mg ha-1 year-1 among the plots, with an average value of 6.05 Mg ha-1 year-1. The variations in ANPP were positively related to the stand density, root phosphorus (P) content and soil total P content but were negatively related to the stand age, root C:P and N:P ratios. Among these factors, the combined effects of stand density, stand age and soil total P content explained 35% of the ANPP variations. The SEM results showed the indirect effect of the soil total P content via the root P content and C:P ratio on the ANPP and indirect effects of other soil properties (e.g., pH, clay, and bulk density) via the soil total P content and root functional traits (e.g., root P, C:P, and N:P) on the ANPP. By considering all possible variables and paths, the best-fitting SEM explained only 11-13% of the ANPP variations, which suggested that other factors may be more important in determining the productivity in planted forests. Overall, this study highlights that soil total P content should be used as a key soil indicator for determining the ANPP in planted Masson pine forests across subtropical China, and suggests that the root functional traits mediate the effects of soil properties on the ANPP.
Collapse
Affiliation(s)
- Zunji Jian
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing, China
| | - Yanyan Ni
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing, China
| | - Lei Lei
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing, China
| | - Jin Xu
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing, China
| | - Wenfa Xiao
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing, China
| | - Lixiong Zeng
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing, China.
| |
Collapse
|
135
|
Del Real AEP, Mitrano DM, Castillo-Michel H, Wazne M, Reyes-Herrera J, Bortel E, Hesse B, Villanova J, Sarret G. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128356. [PMID: 35149499 DOI: 10.1016/j.jhazmat.2022.128356] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Despite the increasing attention given to the impacts of nanoplastics in terrestrial environments, there is limited data about the effects on plants, and the quantitative information on uptake. In the present study, wheat plants grown in hydroponics were exposed to Pd-doped nanoplastics. This allowed us to quantify nanoplastics uptake and translocation to the shoots. Visualization of nanoplastics in roots was performed with synchrotron micro X-ray fluorescence (µXRF). Nanoplastics accumulated on the root epidermis, especially at the root tip and in root maturation zones. A close relationship between plant roots, rhizodeposits and nanoplastics behaviour was shown. Reinforcement of the cell wall in roots was evidenced using Fourier transform infrared spectroscopy (FTIR) and synchrotron-computed microtomography (µCT). Synchrotron-computed nanotomography (nanoCT) evidenced the presence of globular structures but they could not be identified as nanoplastics since they were observed both in the control and treated roots. By utilizing the inorganic tracer in the doped-nanoplastics, this study paves the road for elucidating interactions in more complex systems by using an integrative approach combining classical phytotoxicity markers with advanced nanometrology techniques.
Collapse
Affiliation(s)
- Ana Elena Pradas Del Real
- IMIDRA (Madrid Institute for Agroenvironmental Research), 28800 Alcalá de Henares, Spain; ESRF, The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | | | | | - Mohammad Wazne
- ESRF, The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France; eUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Juan Reyes-Herrera
- ESRF, The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - Emely Bortel
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625 Berlin, Germany
| | - Bernhard Hesse
- ESRF, The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France; Xploraytion GmbH, Bismarckstrasse 10-12, 10625 Berlin, Germany
| | - Julie Villanova
- ESRF, The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - Géraldine Sarret
- eUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| |
Collapse
|
136
|
Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K. Plant phosphorus-use and -acquisition strategies in Amazonia. THE NEW PHYTOLOGIST 2022; 234:1126-1143. [PMID: 35060130 DOI: 10.1111/nph.17985] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2 . We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.
Collapse
Affiliation(s)
- Tatiana Reichert
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Anja Rammig
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lucia Fuchslueger
- Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Laynara F Lugli
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Carlos A Quesada
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Katrin Fleischer
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
- Department Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| |
Collapse
|
137
|
Han M, Chen Y, Li R, Yu M, Fu L, Li S, Su J, Zhu B. Root phosphatase activity aligns with the collaboration gradient of the root economics space. THE NEW PHYTOLOGIST 2022; 234:837-849. [PMID: 34873713 DOI: 10.1111/nph.17906] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
The adoption of diverse resource acquisition strategies is critical for plant growth and species coexistence. Root phosphatase is of particular importance in the acquisition of soil phosphorus (P), yet it is often overlooked in studies of root trait syndromes. Here, we evaluated the role of root phosphatase activity (RPA) within the root economics space and the order-based variation of RPA, as well as the correlations between RPA and a suite of leaf traits and soil properties over a range of evergreen tree species in a subtropical forest. Root phosphatase activity exhibited a high degree of inter-specific variation. We found that there were two leading dimensions of the multidimensional root economics space, the root diameter-specific root length axis (collaboration trait gradient) and the root tissue density-root nitrogen concentration axis (classical trait gradient), and RPA aligned with the former. Root phosphatase activity is used as a 'do it yourself' strategy of soil P acquisition, and was found to be inversely correlated with mycorrhizal colonization, which suggests a trade-off in plant P acquisition strategies. Compared with soil and foliar nutrient status, root traits mattered most for the large inter-specific changes in RPA. Furthermore, RPA generally decreased from first- to third-order roots. Taken together, such diverse P-acquisition strategies are conducive to plant coexistence within local forest communities. The use of easily measurable root traits and their tight correlations with RPA could be a feasible and promising approach to estimating species-specific RPA values, which would be helpful for better understanding plant P acquisition and soil P cycling.
Collapse
Affiliation(s)
- Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Ying Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Rui Li
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Miao Yu
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Liangchen Fu
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shuaifeng Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650224, China
| | - Jianrong Su
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650224, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
138
|
Insights into the Interactions Between Root Phenotypic Traits and the Rhizosphere Bacterial Community. Curr Microbiol 2022; 79:176. [PMID: 35488936 DOI: 10.1007/s00284-022-02870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/08/2022] [Indexed: 11/03/2022]
Abstract
The root phenotypic traits have been considered as important factors in shaping the rhizosphere microbiome and regulating plant growth. However, the relationships between root phenotypic traits and the rhizosphere bacterial community remain unclear. We investigated two fields with different developing tobacco roots by a long-term positioning test in Hengshi. The well-developed root system (WDR) showed much more superiority in root phenotypic traits, including total root length, total projection area, surface area, and root tip number, than the underdeveloped root system. The specific root traits in WDR provided more ecological niches for the rhizosphere microorganisms, contributing to a more diverse microbial community and a more complex microbial network. The total root length and root tip number were the key factors shaping bacterial communities in the rhizosphere. In turn, the phyla Acidobacteria and Bacteroidetes might play vital roles in modifying root development and promoting plant growth according to their positive correlation with root phenotypic traits. Linking root phenotypic traits to the microbiome may enhance our understanding of rhizospheric interactions and their roles in developing rhizosphere ecosystems.
Collapse
|
139
|
Zhou M, Guo Y, Sheng J, Yuan Y, Zhang WH, Bai W. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. THE NEW PHYTOLOGIST 2022; 234:422-434. [PMID: 35048364 DOI: 10.1111/nph.17978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Root anatomical traits play crucial roles in understanding root functions and root form-function linkages. However, the root anatomy and form-function linkages of monocotyledonous and dicotyledonous herbs remain largely unknown. We measured order-based anatomical traits and mycorrhizal colonization rates of 32 perennial herbs of monocotyledons and dicotyledons in a temperate steppe. For monocots, relative constant proportion of cortex and mycorrhizal colonization rates, but increased cell-wall thickening of the endodermis and proportion of stele were observed across root orders, indicating a slight reduction in absorption capacity and improvement in transportation capacity across orders. For dicots, the cortex and mycorrhizal colonization disappeared in the fourth-order and/or fifth-order roots, whereas the secondary vascular tissue increased markedly, suggesting significant transition of root functions from absorption to transportation across root orders. The allometric relationships between stele and cortex differed across root orders and plant groups, suggesting different strategies to coordinate the absorption and transportation functions among plant groups. In summary, our results revealed different functional transition patterns across root orders and distinct strategies for coordinating the absorption and transportation of root system between monocots and dicots. These findings will contribute to our understanding of the root form and functions in herbaceous species.
Collapse
Affiliation(s)
- Meng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Yumeng Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Sheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Yuan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenming Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
140
|
Teixeira J, Souza L, Le Stradic S, Fidelis A. Fire promotes functional plant diversity and modifies soil carbon dynamics in tropical savanna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152317. [PMID: 34914993 DOI: 10.1016/j.scitotenv.2021.152317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Fire is an evolutionary environmental filter in tropical savanna ecosystems altering functional diversity and associated C pools in the biosphere and fluxes between the atmosphere and biosphere. Therefore, alterations in fire regimes (e.g. fire exclusion) will strongly influence ecosystem processes and associated dynamics. In those ecosystems C dynamics and functions are underestimated by the fire-induced offset between C output and input. To determine how fire shapes ecosystem C pools and fluxes in an open savanna across recently burned and fire excluded areas, we measured the following metrics: (I) plant diversity including taxonomic (i.e. richness, evenness) and plant functional diversity (i.e. functional diversity, functional richness, functional dispersion and community weighted means); (II) structure (i.e. above- and below-ground biomass, litter accumulation); and (III) functions related to C balance (i.e. net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem transpiration (ET), soil respiration (soil CO2 efflux), ecosystem water use efficiency (eWUE) and total soil organic C (SOC). We found that fire promoted aboveground live and belowground biomass, including belowground organs, coarse and fine root biomass and contributed to higher biomass allocation belowground. Fire also increased both functional diversity and dispersion. NEE and total SOC were higher in burned plots compared to fire-excluded plots whereas soil respiration recorded lower values in burned areas. Both ET and eWUE were not affected by fire. Fire strongly favored functional diversity, fine root and belowground organ biomass in piecewise SEM models but the role of both functional diversity and ecosystem structure to mediate the effect of fire on ecosystem functions remain unclear. Fire regime will impact C balance, and fire exclusion may lead to lower C input in open savanna ecosystems.
Collapse
Affiliation(s)
- Juliana Teixeira
- Laboratory of Vegetation Ecology, Department of Biodiversity, Bioscience Institute, São Paulo State University (Unesp), Av. 24 A 1515, 13506-900 Rio Claro, SP, Brazil; Oklahoma Biological Survey & Department of Microbiology and Plant Biology, the University of Oklahoma, 111 E. Chesapeake Street, Norman, OK 73019-0390, USA.
| | - Lara Souza
- Oklahoma Biological Survey & Department of Microbiology and Plant Biology, the University of Oklahoma, 111 E. Chesapeake Street, Norman, OK 73019-0390, USA
| | - Soizig Le Stradic
- Chair of Restoration Ecology, Department of Life Science Systems, Technical University of Munich, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Alessandra Fidelis
- Laboratory of Vegetation Ecology, Department of Biodiversity, Bioscience Institute, São Paulo State University (Unesp), Av. 24 A 1515, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
141
|
Dallstream C, Weemstra M, Soper FM. A framework for fine‐root trait syndromes: syndrome coexistence may support phosphorus partitioning in tropical forests. OIKOS 2022. [DOI: 10.1111/oik.08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Monique Weemstra
- Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | | |
Collapse
|
142
|
Gagliardi S, Avelino J, Fulthorpe R, Virginio Filho EDM, Isaac ME. No evidence of foliar disease impact on crop root functional strategies and soil microbial communities: what does this mean for organic coffee? OIKOS 2022. [DOI: 10.1111/oik.08987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jacques Avelino
- CIRAD, UMR PHIM Montpellier France
- PHIM, Univ. Montpellier, CIRAD, INRAE, Inst. Agro, IRD Montpellier France
| | | | | | | |
Collapse
|
143
|
Chalmandrier L, Stouffer DB, Purcell AST, Lee WG, Tanentzap AJ, Laughlin DC. Predictions of biodiversity are improved by integrating trait‐based competition with abiotic filtering. Ecol Lett 2022; 25:1277-1289. [DOI: 10.1111/ele.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Loïc Chalmandrier
- Department of Botany University of Wyoming Laramie Wyoming USA
- Centre for Integrative Ecology School of Biological Sciences University of Canterbury Christchurch New Zealand
- Theoretical Ecology Faculty of Biology and Pre‐Clinical Medicine University of Regensburg Regensburg Germany
| | - Daniel B. Stouffer
- Centre for Integrative Ecology School of Biological Sciences University of Canterbury Christchurch New Zealand
| | | | | | | | | |
Collapse
|
144
|
Erktan A, Roumet C, Munoz F. Dissecting fine root diameter distribution at the community level captures root morphological diversity. OIKOS 2022. [DOI: 10.1111/oik.08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amandine Erktan
- AMAP, INRA, CIRAD, CNRS, IRD, Univ. Montpellier Montpellier France
- J.F. Blumenbach Inst. of Zoology and Anthropology, Univ. of Göttingen Göttingen Germany
| | | | - François Munoz
- AMAP, INRA, CIRAD, CNRS, IRD, Univ. Montpellier Montpellier France
- Univ. Grenoble‐Alpes, LIPhy Grenoble
| |
Collapse
|
145
|
Wang X, Yan X, Huang K, Luo X, Zhang Y, Zhou L, Yang F, Xu X, Zhou X, Niu K, Guo H. Nitrogen enrichment and warming shift community functional composition via distinct mechanisms: the role of intraspecific trait variability and species turnover. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoyi Wang
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xuebin Yan
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Kailing Huang
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xi Luo
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Yuanyuan Zhang
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Luyao Zhou
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Fei Yang
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xiaohong Xu
- Laboratory Center of Life Sciences College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Xianhui Zhou
- State Key Laboratory of Grassland and Agro‐ecosystems School of Life Sciences Lanzhou University Lanzhou Gansu 730000 China
| | - Kechang Niu
- School of Life Sciences Nanjing University 210093 China
| | - Hui Guo
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
146
|
Ru J, Wan S, Hui D, Song J, Wang J. Increased interannual precipitation variability enhances the carbon sink in a semiarid grassland. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyi Ru
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| | - Shiqiang Wan
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| | - Dafeng Hui
- Department of Biological Sciences Tennessee State University Nashville Tennessee 37209 USA
| | - Jian Song
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| | - Jing Wang
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| |
Collapse
|
147
|
Wang C, Brunner I, Wang J, Guo W, Geng Z, Yang X, Chen Z, Han S, Li MH. The Right-Skewed Distribution of Fine-Root Size in Three Temperate Forests in Northeastern China. FRONTIERS IN PLANT SCIENCE 2022; 12:772463. [PMID: 35069627 PMCID: PMC8777189 DOI: 10.3389/fpls.2021.772463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Trees can build fine-root systems with high variation in root size (e.g., fine-root diameter) and root number (e.g., branching pattern) to optimize belowground resource acquisition in forest ecosystems. Compared with leaves, which are visible above ground, information about the distribution and inequality of fine-root size and about key associations between fine-root size and number is still limited. We collected 27,573 first-order fine-roots growing out of 3,848 second-order fine-roots, covering 51 tree species in three temperate forests (Changbai Mountain, CBS; Xianrendong, XRD; and Maoershan, MES) in Northeastern China. We investigated the distribution and inequality of fine-root length, diameter and area (fine-root size), and their trade-off with fine-root branching intensity and ratio (fine-root number). Our results showed a strong right-skewed distribution in first-order fine-root size across various tree species. Unimodal frequency distributions were observed in all three of the sampled forests for first-order fine-root length and area and in CBS and XRD for first-order fine-root diameter, whereas a marked bimodal frequency distribution of first-order fine-root diameter appeared in MES. Moreover, XRD had the highest and MES had the lowest inequality values (Gini coefficients) in first-order fine-root diameter. First-order fine-root size showed a consistently linear decline with increasing root number. Our findings suggest a common right-skewed distribution with unimodality or bimodality of fine-root size and a generalized trade-off between fine-root size and number across the temperate tree species. Our results will greatly improve our thorough understanding of the belowground resource acquisition strategies of temperate trees and forests.
Collapse
Affiliation(s)
- Cunguo Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Junni Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wei Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhenzhen Geng
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiuyun Yang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Zhijie Chen
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shijie Han
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mai-He Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
148
|
Montagnoli A, Chiatante D, Godbold DL, Koike T, Rewald B, Dumroese RK. Editorial: Modulation of Growth and Development of Tree Roots in Forest Ecosystems. FRONTIERS IN PLANT SCIENCE 2022; 13:850163. [PMID: 35242162 PMCID: PMC8886106 DOI: 10.3389/fpls.2022.850163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 05/02/2023]
Affiliation(s)
- Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
- *Correspondence: Antonio Montagnoli
| | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Douglas L. Godbold
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Landscape Carbon Deposition, Global Change Research Institute, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czechia
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Boris Rewald
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - R. Kasten Dumroese
- Rocky Mountain Research Station, U.S. Department of Agriculture Forest Service, Moscow, ID, United States
| |
Collapse
|
149
|
Yang S, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, van Logtestijn RSP, Hefting M, Goudzwaard L, Zuo J, Poorter L. Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:769551. [PMID: 35310622 PMCID: PMC8930200 DOI: 10.3389/fpls.2022.769551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark). The trait variation was explained by major taxa (38%), stem compartments (24%), and species within major taxa (19%). A continuous plant strategy gradient was found across and within taxa, running from hydraulic safe gymnosperms to conductive angiosperms. Both groups showed a second strategy gradient related to chemical defense. Gymnosperms strongly converged in their trait strategies because of their uniform tracheids. Angiosperms strongly diverged because of their different vessel arrangement and tissue types. The bark had higher concentrations of nutrients and phenolics whereas the wood had stronger physical defense. The gymnosperms have a conservative strategy associated with strong hydraulic safety and physical defense, and a narrow, specialized range of trait values, which allow them to grow well in drier and unproductive habitats. The angiosperm species show a wider trait variation in all stem compartments, which makes them successful in marginal- and in mesic, productive habitats. The associations between multiple wood and bark traits collectively define a slow-fast stem strategy spectrum as is seen also for each stem compartment.
Collapse
Affiliation(s)
- Shanshan Yang
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Shanshan Yang, ;
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - J. Hans C. Cornelissen
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Richard S. P. van Logtestijn
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Mariet Hefting
- Landscape Ecology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Leo Goudzwaard
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
150
|
Kościelniak P, Glazińska P, Kȩsy J, Zadworny M. Formation and Development of Taproots in Deciduous Tree Species. FRONTIERS IN PLANT SCIENCE 2021; 12:772567. [PMID: 34925417 PMCID: PMC8675582 DOI: 10.3389/fpls.2021.772567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Trees are generally long-lived and are therefore exposed to numerous episodes of external stimuli and adverse environmental conditions. In certain trees e.g., oaks, taproots evolved to increase the tree's ability to acquire water from deeper soil layers. Despite the significant role of taproots, little is known about the growth regulation through internal factors (genes, phytohormones, and micro-RNAs), regulating taproot formation and growth, or the effect of external factors, e.g., drought. The interaction of internal and external stimuli, involving complex signaling pathways, regulates taproot growth during tip formation and the regulation of cell division in the root apical meristem (RAM). Assuming that the RAM is the primary regulatory center responsible for taproot growth, factors affecting the RAM function provide fundamental information on the mechanisms affecting taproot development.
Collapse
Affiliation(s)
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kȩsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|