101
|
Kim KH, Choi JM, Li F, Arizpe A, Wooton-Kee CR, Anakk S, Jung SY, Finegold MJ, Moore DD. Xenobiotic Nuclear Receptor Signaling Determines Molecular Pathogenesis of Progressive Familial Intrahepatic Cholestasis. Endocrinology 2018; 159:2435-2446. [PMID: 29718219 PMCID: PMC7263843 DOI: 10.1210/en.2018-00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/20/2018] [Indexed: 01/14/2023]
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a genetically heterogeneous disorder of bile flow disruption due to abnormal canalicular transport or impaired bile acid (BA) metabolism, causing excess BA accumulation and liver failure. We previously reported an intrahepatic cholestasis mouse model based on loss of function of both farnesoid X receptor (FXR; NR1H4) and a small heterodimer partner (SHP; NR0B2) [double knockout (DKO)], which has strong similarities to human PFIC5. We compared the pathogenesis of DKO livers with that of another intrahepatic cholestasis model, Bsep-/-, which represents human PFIC2. Both models exhibit severe hepatomegaly and hepatic BA accumulation, but DKO showed greater circulating BA and liver injury, and Bsep-/- had milder phenotypes. Molecular profiling of BAs uncovered specific enrichment of cholic acid (CA)-derived BAs in DKO livers but chenodeoxycholate-derived BAs in Bsep-/- livers. Transcriptomic and proteomic analysis revealed specific activation of CA synthesis and alternative basolateral BA transport in DKO but increased chenodeoxycholic acid synthesis and canalicular transport in Bsep-/-. The constitutive androstane receptor (CAR)/pregnane X receptor (PXR)-CYP2B/CYP2C axis is activated in DKO livers but not in other cholestasis models. Loss of this axis in Fxr:Shp:Car:Pxr quadruple knockouts blocked Cyp2b/Cyp2c gene induction, impaired bilirubin conjugation/elimination, and increased liver injury. Differential CYP2B expression in DKO and Bsep-/- was recapitulated in human PFIC5 and PFIC2 livers. In conclusion, loss of FXR/SHP results in distinct molecular pathogenesis and CAR/PXR activation, which promotes Cyp2b/Cyp2c gene transcription and bilirubin clearance. CAR/PXR activation was not observed in Bsep-/- mice or PFIC2 patients. These findings provide a deeper understanding of the heterogeneity of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jong Min Choi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| | - Armando Arizpe
- School of Natural Science, University of Texas at Austin, Austin, Texas
| | - Clavia Ruth Wooton-Kee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Milton J Finegold
- Department of Pathology and Immunology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Correspondence: David D. Moore, PhD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030. E-mail:
| |
Collapse
|
102
|
Animal models of NAFLD from the pathologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:929-942. [PMID: 29746920 DOI: 10.1016/j.bbadis.2018.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Fatty liver disease is a multifactorial world-wide health problem resulting from a complex interplay between liver, adipose tissue and intestine and initiated by alcohol abuse, overeating, various types of intoxication, adverse drug reactions and genetic or acquired metabolic defects. Depending on etiology fatty liver disease is commonly categorized as alcoholic or non-alcoholic. Both types may progress from simple steatosis to the necro-inflammatory lesion of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH), respectively, and finally to cirrhosis and hepatocellular carcinoma. Animal models are helpful to clarify aspects of pathogenesis and progression. Generally, they are classified as nutritional (dietary), toxin-induced and genetic, respectively, or represent a combination of these factors. Numerous reviews are dealing with NASH animal models designed to imitate as closely as possible the metabolic situation associated with human disease. This review focuses on currently used mouse models of NASH with particular emphasis on liver morphology. Despite metabolic similarities most models (except those with chemically or genetically induced porphyria or keratin 18-deficiency) fail to develop the morphologic key features of NASH, namely hepatocyte ballooning and formation of histologically and immunohistochemically well-defined Mallory-Denk-Bodies (MDBs). Although MDBs are not universally detectable in ballooned hepatocytes in NASH their experimental reproduction and analysis may, however, significantly contribute to our understanding of important pathogenic aspects of NASH despite the obvious differences in etiology.
Collapse
|
103
|
Shmarakov IO, Borschovetska VL, Blaner WS. Hepatic Detoxification of Bisphenol A is Retinoid-Dependent. Toxicol Sci 2018; 157:141-155. [PMID: 28123100 DOI: 10.1093/toxsci/kfx022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl) propane) is a widely used industrial chemical. The extensive distribution of BPA in the environment poses risks to humans. However, the molecular mechanisms underlying BPA toxicity as well as its effective detoxification and elimination are not well understood. We have investigated specifically for BPA the notion raised in the literature that the optimal sensing, detoxification, and elimination of xenobiotics requires retinoid (natural derivatives and synthetic analogs of vitamin A) actions. The objective of the study was to explore how retinoids, both those stored in the liver and those originating from recent oral intake, help maintain an optimal xenobiotic detoxification response, affecting mRNA expression and activities of elements of xenobiotic detoxification system upon BPA administration to mice. Wild-type and mice lacking hepatic retinoid stores (Lrat-/-) were acutely treated with BPA (50 mg/kg body weight), with or without oral supplementation with retinyl acetate. Hepatic mRNA expression levels of the genes encoding nuclear receptors and their downstream targets involved in xenobiotic biotransformation, phase I and phase II enzyme activities, and levels of oxidative damage to cellular proteins and lipids in hepatic microsomes, mitochondria and cytosol, were assessed. BPA treatment induced hepatic activities needed for its detoxification and elimination in wild-type mice. However, BPA failed to induce these activities in the livers of Lrat-/- mice. Oral supplementation with retinyl acetate restored phase I and phase II enzyme activities, but accelerated BPA-induced oxidative damage through enhancement of non-mitochondrial ROS production. Thus, the activities of the enzymes involved in the hepatic elimination of BPA require hepatic retinoid stores. The extent of hepatic damage that arises from acute BPA intoxication is directly affected by retinoid administration during the period of BPA exposure and hepatic retinoid stores that have accumulated over the lifetime of the organism.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Biochemistry and Biotechnology, Chernivtsi National University, Chernivtsi, Ukraine.,Department of Medicine, Columbia University, New York, NY, USA
| | - Vira L Borschovetska
- Department of Biochemistry and Biotechnology, Chernivtsi National University, Chernivtsi, Ukraine
| | | |
Collapse
|
104
|
Diabetic cognitive dysfunction is associated with increased bile acids in liver and activation of bile acid signaling in intestine. Toxicol Lett 2018; 287:10-22. [DOI: 10.1016/j.toxlet.2018.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
|
105
|
Moscovitz JE, Kalgutkar AS, Nulick K, Johnson N, Lin Z, Goosen TC, Weng Y. Establishing Transcriptional Signatures to Differentiate PXR-, CAR-, and AhR-Mediated Regulation of Drug Metabolism and Transport Genes in Cryopreserved Human Hepatocytes. J Pharmacol Exp Ther 2018; 365:262-271. [PMID: 29440451 DOI: 10.1124/jpet.117.247296] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
The potential for drug-drug interactions (DDIs) arising from transcriptional regulation of drug-disposition genes via activation of nuclear receptors (NRs), such as pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), remains largely unexplored, as highlighted in a recent guidance document from the European Medicines Agency. The goal of this research was to establish PXR-/CAR-/AhR-specific drug-metabolizing enzyme (DME) and transporter gene expression signatures in sandwich-cultured cryopreserved human hepatocytes using selective activators of PXR (rifampin), CAR (CITCO), and AhR (omeprazole). Dose response for ligand-induced changes to 38 major human DMEs and critical hepatobiliary transporters were assessed using a custom gene expression array card. We identified novel differentially expressed drug-disposition genes for PXR (↑ABCB1/MDR1, CYP2C9, CYP2C19, and EPHX1, ↓ABCB11), CAR [↑sulfotransferase (SULT) 1E1, uridine glucuronosyl transferase (UGT) 2B4], and AhR (↑SLC10A1/NTCP, SLCO1B1/OATP1B1], and coregulated genes (CYP1A1, CYP2B6, CYP2C8, CYP3A4, UGT1A1, UGT1A4). Subsequently, DME gene expression signatures were generated for known CYP3A4 inducers PF-06282999 and pazopanib. The former produced an induction signature almost identical to that of rifampin, suggesting activation of the PXR pathway, whereas the latter produced an expression signature distinct from those of PXR, CAR, or AhR, suggesting involvement of an alternate pathway(s). These results demonstrate that involvement of PXR/CAR/AhR can be identified via expression changes of signature DME/transporter genes. Inclusion of such signature genes could serve to simultaneously identify potential inducers and inhibitors, and the NRs involved in the transcriptional regulation, thus providing a more holistic and mechanism-based assessment of DDI risk for DMEs and transporters beyond conventional cytochrome P450 isoforms.
Collapse
Affiliation(s)
- Jamie E Moscovitz
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| | - Kelly Nulick
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| | - Nathaniel Johnson
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| | - Zhiwu Lin
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| | - Theunis C Goosen
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| | - Yan Weng
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts (J.E.M., A.S.K., Y.W.), and Medicine Design, Pfizer Inc., Groton, Connecticut (K.N., N.J., Z.L., T.C.G.)
| |
Collapse
|
106
|
Csanaky IL, Lickteig AJ, Klaassen CD. Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicol Appl Pharmacol 2018. [PMID: 29452137 DOI: 10.1016/j.taap.2018.02.005.aryl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of the most potent aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid (BA) homeostasis was examined in male and female wild-type and AhR-null mice shortly after 4-day exposure, rather than at a later time when secondary non-AhR dependent effects are more likely to occur. TCDD had similar effects on BA homeostasis in male and female mice. TCDD decreased the concentration of total-(Σ) BAs in liver by approximately 50% (all major BA categories except for the non-6,12-OH BAs), without decreasing the expression of the rate limiting BA synthetic enzyme (Cyp7a1) or altering the major BA regulatory pathways (FXR) in liver and intestine. Even though the Σ-BAs in liver were markedly decreased, the Σ-BAs excreted into bile were not altered. TCDD decreased the relative amount of 12-OH BAs (TCA, TDCA, CA, DCA) in bile and increased the biliary excretion of TCDCA and its metabolites (TαMCA, TUDCA); this was likely due to the decreased Cyp8b1 (12α-hydroxylase) in liver. The concentration of Σ-BAs in serum was not altered by TCDD, indicating that serum BAs do not reflect BA status in liver. However, proportions of individual BAs in serum reflected the decreased expression of Cyp8b1. All these TCDD-induced changes in BA homeostasis were absent in AhR-null mice. In summary, through the AhR, TCDD markedly decreases BA concentrations in liver and reduces the 12α-hydroxylation of BAs without altering Cyp7a1 and FXR signaling. The TCDD-induced decrease in Σ-BAs in liver did not result in a decrease in biliary excretion or serum concentrations of Σ-BAs.
Collapse
Affiliation(s)
- Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, MO 64108; USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
107
|
Bogen KT. Biphasic hCAR Inhibition-Activation by Two Aminoazo Liver Carcinogens. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
108
|
Csanaky IL, Lickteig AJ, Klaassen CD. Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicol Appl Pharmacol 2018; 343:48-61. [PMID: 29452137 DOI: 10.1016/j.taap.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023]
Abstract
The effects of the most potent aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid (BA) homeostasis was examined in male and female wild-type and AhR-null mice shortly after 4-day exposure, rather than at a later time when secondary non-AhR dependent effects are more likely to occur. TCDD had similar effects on BA homeostasis in male and female mice. TCDD decreased the concentration of total-(Σ) BAs in liver by approximately 50% (all major BA categories except for the non-6,12-OH BAs), without decreasing the expression of the rate limiting BA synthetic enzyme (Cyp7a1) or altering the major BA regulatory pathways (FXR) in liver and intestine. Even though the Σ-BAs in liver were markedly decreased, the Σ-BAs excreted into bile were not altered. TCDD decreased the relative amount of 12-OH BAs (TCA, TDCA, CA, DCA) in bile and increased the biliary excretion of TCDCA and its metabolites (TαMCA, TUDCA); this was likely due to the decreased Cyp8b1 (12α-hydroxylase) in liver. The concentration of Σ-BAs in serum was not altered by TCDD, indicating that serum BAs do not reflect BA status in liver. However, proportions of individual BAs in serum reflected the decreased expression of Cyp8b1. All these TCDD-induced changes in BA homeostasis were absent in AhR-null mice. In summary, through the AhR, TCDD markedly decreases BA concentrations in liver and reduces the 12α-hydroxylation of BAs without altering Cyp7a1 and FXR signaling. The TCDD-induced decrease in Σ-BAs in liver did not result in a decrease in biliary excretion or serum concentrations of Σ-BAs.
Collapse
Affiliation(s)
- Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, MO 64108; USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
109
|
Zhang Y, Lickteig AJ, Csanaky IL, Klaassen CD. Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion. Toxicol Appl Pharmacol 2017; 338:112-123. [PMID: 29175453 DOI: 10.1016/j.taap.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/20/2023]
Abstract
Fibrates are hypolipidemic drugs that act as activators of peroxisome proliferator-activated receptor α (PPARα). In both humans and rodents, females were reported to be less responsive to fibrates than males. Previous studies on fibrates and PPARα usually involved male mice, but little has been done in females. The present study aimed to provide the first comprehensive analysis of the effects of clofibrate (CLOF) and PPARα on bile acid (BA) homeostasis in female mice. Study in WT male mice showed that a 4-day CLOF treatment increased liver weight, bile flow, and biliary BA excretion, but decreased total BAs in both serum and liver. In contrast, WT female mice were less susceptible to these CLOF-mediated responses observed in males. In WT female mice, CLOF decreased total BAs in the liver, but had little effect on the mRNAs of hepatic BA-related genes. Next, a comparative analysis between WT and PPARα-null female mice showed that lack of PPARα in female mice decreased total BAs in serum, but had little effect on total BAs in liver or bile. However, lack of PPARα in female mice increased mRNAs of BA synthetic enzymes (Cyp7a1, Cyp8b1, Cyp27a1, and Cyp7b1) and transporters (Ntcp, Oatp1a1, Oatp1b2, and Mrp3). Furthermore, the increase of Cyp7a1 in PPARα-null female mice was associated with an increase in liver Fxr-Shp-Lrh-1 signaling. In conclusion, female mice are resistant to CLOF-mediated effects on BA metabolism observed in males, which could be attributed to PPARα-mediated suppression in females on genes involved in BA synthesis and transport.
Collapse
Affiliation(s)
- Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160,USA
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital & Clinics, Kansas City, MO 64108; USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160,USA.
| |
Collapse
|
110
|
Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450. Int J Mol Sci 2017; 18:ijms18112353. [PMID: 29117101 PMCID: PMC5713322 DOI: 10.3390/ijms18112353] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s.
Collapse
|
111
|
Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos 2017; 45:1197-1214. [PMID: 28864748 PMCID: PMC5649562 DOI: 10.1124/dmd.117.077024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) and BDE-99 (2, 2', 4, 4',5-pentabromodiphenyl ether), are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ-free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for 4 days. Following BDE-47 treatment, GF mice had higher levels of 5-OH-BDE-47 but lower levels of four other metabolites in liver than CV mice; whereas following BDE-99 treatment GF mice had lower levels of four minor metabolites in liver than CV mice. RNA sequencing demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal conditions, the lack of gut microbiome upregulated the Cyp2c subfamily but downregulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated upregulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Soowan Lee
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Sara Cade
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Li-Jung Kuo
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Irvin R Schultz
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Deepak K Bhatt
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Bhagwat Prasad
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| |
Collapse
|
112
|
Forbes KP, Kouranova E, Tinker D, Janowski K, Cortner D, McCoy A, Cui X. Creation and Preliminary Characterization of Pregnane X Receptor and Constitutive Androstane Receptor Knockout Rats. Drug Metab Dispos 2017; 45:1068-1076. [PMID: 28716828 DOI: 10.1124/dmd.117.075788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/13/2017] [Indexed: 02/13/2025] Open
Abstract
The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that regulate the expression of phase I (cytochrome P450s) and phase II metabolizing enzymes and transporter genes in response to stimulation from xenobiotics, including prescription drugs. PXR and CAR knockout and humanized mouse models have proven useful. However, the rat being bigger in size is a preferred model system for studying drug metabolism and pharmacokinetics. Here, we report the creation and preliminary characterization of PXR and CAR knockout rats and PXR/CAR double knockout rats. Whereas the expression of phase I and II enzymes and transporter genes were not upregulated by nuclear receptor-specific agonists pregnenlone-16α-carbonitrile and 1,4-bis-[2-(3,5-dichloropyridyloxy)] benzene in the knockout rats, confirming the disruption of respective nuclear receptor(s), our data demonstrate that PXR appears to suppress the basal expression levels of Cyp2b2, Cyp3a23/3a1, Cyp3a2, Cyp3a18, and Ugt2b1 genes, while CAR maintains Cyp2b2 and Ugt2b1 and suppresses Cyp3a9 basal expression levels. In wild-type rats, agonist binding of the nuclear receptors relieves the suppression, and target genes are expressed at levels comparable to knockout rats, with or without drug treatment. Overall, our findings are in good agreement with data obtained from human primary hepatocytes, nuclear receptor knockout cell lines, and mouse knockout models. We believe these models are a useful complement to their mouse counterparts for drug development and as importantly, for functional studies on metabolic pathways involving nuclear receptors.
Collapse
Affiliation(s)
| | | | - Daniel Tinker
- Horizon Discovery Group Company, St. Louis, Missouri
| | | | - Doug Cortner
- Horizon Discovery Group Company, St. Louis, Missouri
| | - Aaron McCoy
- Horizon Discovery Group Company, St. Louis, Missouri
| | - Xiaoxia Cui
- Horizon Discovery Group Company, St. Louis, Missouri
| |
Collapse
|
113
|
Nagahori H, Nakamura K, Sumida K, Ito S, Ohtsuki S. Combining Genomics To Identify the Pathways of Post-Transcriptional Nongenotoxic Signaling and Energy Homeostasis in Livers of Rats Treated with the Pregnane X Receptor Agonist, Pregnenolone Carbonitrile. J Proteome Res 2017; 16:3634-3645. [PMID: 28825834 DOI: 10.1021/acs.jproteome.7b00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcriptomic, proteomic, phosphoproteomic, and metabolomic analyses were combined to determine the role of pregnane X receptor (PXR) in nongenotoxic signaling and energy homeostasis in liver after rats were repeatedly orally dosed with the PXR agonist pregnenolone carbonitrile (PCN) for 7 days. Analyses of mRNAs and proteins in the supernatant, membrane, and cytosolic fractions of enlarged liver homogenates showed diverse expression profiles. Gene set enrichment analysis showed that the synchronous increase in mRNAs and proteins involved in chemical carcinogenesis and the response to drug was possibly mediated by the PXR pathway and proteasome core complex assembly was possibly mediated by the Nrf2 pathway. In addition, levels of proteins in the endoplasmic reticulum lumen and involved in the acute-phase response showed specific increase with no change in mRNA level, and those composed of the mitochondrial inner membrane showed specific decrease. The analysis of phosphorylated peptides of poly(A) RNA binding proteins showed a decrease in phosphorylation, possibly by casein kinase 2, which may be related to the regulation of protein expression. Proteins involved in insulin signaling pathways showed an increase in phosphorylation, possibly by protein kinase A, and those involved in apoptosis showed a decrease. Metabolomic analysis suggested the activation of the pentose phosphate and anaerobic glycolysis pathways and the increase of amino acid and fatty acid levels, as occurs in the Warburg effect. In conclusion, the results of combined analyses suggest that PXR's effects are due to transcriptional and post-transcriptional regulation with alteration of nongenotoxic signaling pathways and energy homeostasis.
Collapse
Affiliation(s)
- Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd. , 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | | | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd. , 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | | | | |
Collapse
|
114
|
Lv S, Qiu X, Li J, Liang J, Li W, Zhang C, Zhang ZN, Luan B. Glucagon-induced extracellular cAMP regulates hepatic lipid metabolism. J Endocrinol 2017; 234:73-87. [PMID: 28515141 DOI: 10.1530/joe-16-0649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/07/2023]
Abstract
Hormonal signals help to maintain glucose and lipid homeostasis in the liver during the periods of fasting. Glucagon, a pancreas-derived hormone induced by fasting, promotes gluconeogenesis through induction of intracellular cAMP production. Glucagon also stimulates hepatic fatty acid oxidation but the underlying mechanism is poorly characterized. Here we report that following the acute induction of gluconeogenic genes Glucose 6 phosphatase (G6Pase) and Phosphoenolpyruvate carboxykinase (Pepck) expression through cAMP-response element-binding protein (CREB), glucagon triggers a second delayed phase of fatty acid oxidation genes Acyl-coenzyme A oxidase (Aox) and Carnitine palmitoyltransferase 1a (Cpt1a) expression via extracellular cAMP. Increase in extracellular cAMP promotes PPARα activity through direct phosphorylation by AMP-activated protein kinase (AMPK), while inhibition of cAMP efflux greatly attenuates Aox and Cpt1a expression. Importantly, cAMP injection improves lipid homeostasis in fasted mice and obese mice, while inhibition of cAMP efflux deteriorates hepatic steatosis in fasted mice. Collectively, our results demonstrate the vital role of glucagon-stimulated extracellular cAMP in the regulation of hepatic lipid metabolism through AMPK-mediated PPARα activation. Therefore, strategies to improve cAMP efflux could serve as potential new tools to prevent obesity-associated hepatic steatosis.
Collapse
Affiliation(s)
- Sihan Lv
- Department of EndocrinologyShanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinchen Qiu
- Department of EndocrinologyShanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Li
- Department of EndocrinologyShanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinye Liang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bing Luan
- Department of EndocrinologyShanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
115
|
Cunha V, Santos MM, Moradas-Ferreira P, Castro LFC, Ferreira M. Simvastatin modulates gene expression of key receptors in zebrafish embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:465-476. [PMID: 28682217 DOI: 10.1080/15287394.2017.1335258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptors (NR) are involved in the regulation of several metabolic processes and it is well known that these constituents may be modulated by different chemicals classes, including pharmaceuticals that may activate or antagonize NR. In mammals, some pharmaceuticals modulate the transcription of pregnane X receptor, Pxr, peroxisome proliferator activated receptor, Ppars, and aryl hydrocarbon receptor, Ahr, affecting mRNA expression of genes belonging to various regulatory pathways, including lipid metabolism and detoxification mechanisms. The aim of this study was to determine the effects of simvastatin (SIM), an anticholesterolemic drug, on selected NR and AhR mRNA transcription levels during zebrafish early development. Embryos were collected at different development stages (0, 2, 6, 14, 24, 48, and 72 hr post fertilization (hpf)) and mRNA of all target NR was detected at all time points. Embryos (1 and 24 hpf) were exposed to different concentrations of SIM (5 or 50 μg/L) in two differing assays with varying exposure times (2 or 80 hr). The transcription levels of ahr2, raraa, rarab, rarga, pparαa, pparβ1, pparγ, pxr, rxraa, rxrab, rxrbb, rxrga, rxrgb, as well as levels of cholesterol (Chol) were measured after exposure. SIM exerted no marked effect on Chol levels, and depending upon exposure duration mRNA levels of NR and AhR either increased or decreased. After 2 hr SIM treatment in 24 hpf embryos, transcription of ppars, pxr, and ahr was up-regulated, while after 80 hr mRNA levels of pxr and ahr were decreased with no marked changes in ppars. Data demonstrate that SIM produced alterations in gene expression of NR which are involved in varying physiological functions and that may disturb regulation of different physiological processes which might impair fish survival and ecosystems regeneration.
Collapse
Affiliation(s)
- V Cunha
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - M M Santos
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - P Moradas-Ferreira
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
- d I3S-Institute for Research and Innovation in Health, University of Porto , Porto , Portugal
| | - L F C Castro
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - M Ferreira
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- e School of Marine Studies, Faculty of Science , Technology and Environment, The University of the South Pacific, Private mail box, Laucala Bay Road , Suva , Fiji Islands
| |
Collapse
|
116
|
Yu H, Shao H, Wu Q, Sun X, Li L, Li K, Li X, Li Y, Zhang Q, Wu J, Chen H. Altered gene expression of hepatic cytochrome P450 in a rat model of intermittent hypoxia with emphysema. Mol Med Rep 2017; 16:881-886. [PMID: 28560400 DOI: 10.3892/mmr.2017.6642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/28/2017] [Indexed: 02/05/2023] Open
Abstract
Patients with respiratory overlap syndrome (OS), defined as concomitant chronic obstructive pulmonary disease and obstructive sleep apnea syndrome, may exhibit an increased blood concentration of ingested drugs. This poor elimination of drugs is primarily attributed to downregulated gene expression of the drug‑metabolizing cytochrome P450 enzymes (CYPs) in the liver. However, the underlying mechanisms of the decreased expression of CYPs in OS are poorly understood. In order to address this, a rat model of intermittent hypoxia with emphysema was evaluated in the present study, by analyzing liver gene expression using the reverse transcription‑quantitative polymerase chain reaction. Intermittent hypoxia and cigarette smoke exposure caused upregulation of hepatic inflammatory cytokines, while CYPs were downregulated. This downregulation of CYPs was associated with an increase in nuclear factor (NF)‑κB expression and a decrease in the expression of nuclear receptors pregnane X receptor, constitutive androstane receptor and glucocorticoid receptor, which are the upstream regulatory molecules of CYPs. The results of the present study indicated that, during the development of OS, systematic inflammatory reactions may downregulate hepatic CYP gene expression via the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Hongzhi Yu
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Hongxia Shao
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qi Wu
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Xin Sun
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Li Li
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Kuan Li
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Xue Li
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Yu Li
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qiuyang Zhang
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Junping Wu
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | | |
Collapse
|
117
|
Cheng SL, Bammler TK, Cui JY. RNA Sequencing Reveals Age and Species Differences of Constitutive Androstane Receptor-Targeted Drug-Processing Genes in the Liver. Drug Metab Dispos 2017; 45:867-882. [PMID: 28232382 PMCID: PMC5478913 DOI: 10.1124/dmd.117.075135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
The constitutive androstane receptor (CAR/Nr1i3) is an important xenobiotic-sensing nuclear receptor that is highly expressed in the liver and is well known to have species differences. During development, age-specific activation of CAR may lead to modified pharmacokinetics and toxicokinetics of drugs and environmental chemicals, leading to higher risks for adverse drug reactions in newborns and children. The goal of this study was to systematically investigate the age- and species-specific regulation of various drug-processing genes (DPGs) after neonatal or adult CAR activation in the livers of wild-type, CAR-null, and humanized CAR transgenic mice. At either 5 or 60 days of age, the three genotypes of mice were administered a species-appropriate CAR ligand or vehicle once daily for 4 days (i.p.). The majority of DPGs were differentially regulated by age and/or CAR activation. Thirty-six DPGs were commonly upregulated by CAR activation regardless of age or species of CAR. Although the cumulative mRNAs of uptake transporters were not readily altered by CAR, the cumulative phase I and phase II enzymes as well as efflux transporters were all increased after CAR activation in both species. In general, mouse CAR activation produced comparable or even greater fold increases of many DPGs in newborns than in adults; conversely, humanized CAR activation produced weaker induction in newborns than in adults. Western blotting and enzyme activity assays confirmed the age and species specificities of selected CAR-targeted DPGs. In conclusion, this study systematically compared the effect of age and species of CAR proteins on the regulation of DPGs in the liver and demonstrated that the regulation of xenobiotic biotransformation by CAR is profoundly modified by age and species.
Collapse
Affiliation(s)
- Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
118
|
Cao L, Che Y, Meng T, Deng S, Zhang J, Zhao M, Xu W, Wang D, Pu Z, Wang G, Hao H. Repression of intestinal transporters and FXR-FGF15 signaling explains bile acids dysregulation in experimental colitis-associated colon cancer. Oncotarget 2017; 8:63665-63679. [PMID: 28969019 PMCID: PMC5609951 DOI: 10.18632/oncotarget.18885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) are important endogenous signaling molecules that play vital roles in the pathological development of various diseases including colitis-associated cancer (CAC). BAs were previously found dysregulated under conditions of CAC; however, the exact patterns and underlying molecular mechanisms remain largely elusive. Based on the development of a method for comprehensive analysis of BAs, this study aims to elucidate the dysregulation patterns and involved mechanisms in a typical CAC model induced by azoxymethane (AOM)/dextran sodium sulfate (DSS). CAC mice showed decreased BAs transformation in gut and glucuronidation in colon, leading to accumulation of primary BAs but reduction of secondary BAs in colon. CAC mice were characterized by an accumulation of BAs in various compartments except ileum, which is in line with repressed ileal FXR-FGF15 feedback signaling and the increased expression of hepatic CYP7A1. The compromised ileal FXR-FGF15 signaling was caused in part by the reduced absorption of FXR ligands including free and tauro-conjungated BAs due to the downregulation of various transporters of BAs in the ileum of CAC mice.
Collapse
Affiliation(s)
- Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Tuo Meng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shanshan Deng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Wanfeng Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Dandan Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhichen Pu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
119
|
Yoshida M, Cho N, Akita H, Kobayashi K. Association of a reactive intermediate derived from 1',6-dihydroxy metabolite with benzbromarone-induced hepatotoxicity. J Biochem Mol Toxicol 2017; 31. [PMID: 28598529 DOI: 10.1002/jbt.21946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Treatment with benzbromarone can be associated with liver injury, but the detailed mechanism remains unknown. Our recent studies demonstrated that benzbromarone was metabolized to 1',6-dihydroxybenzbromarone and followed by formation of reactive intermediates that were trapped by glutathione, suggesting that the reactive intermediates may be responsible for the liver injury. The aim of this study was to clarify whether the reactive intermediates derived from 1',6-dihydroxybenzbromarone is a risk factor of liver injury in mice. An incubation study using mouse liver microsomes showed that the rates of formation of 1',6-dihydroxybenzbromarone from benzbromarone were increased by pretreatment with dexamethasone. Levels of a hepatic glutathione adduct derived from 1',6-dihydroxybenzbromarone were increased by pretreatment with dexamethasone. Furthermore, plasma alanine amino transferase activities were increased in mice treated with benzbromarone after pretreatment with dexamethasone. The results suggest that the reactive intermediate derived from 1',6-dihydroxybenzbromarone may be associated with liver injury.
Collapse
Affiliation(s)
- Mina Yoshida
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoki Cho
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
120
|
Flores K, Manautou JE, Renfro JL. Gender-specific expression of ATP-binding cassette (Abc) transporters and cytoprotective genes in mouse choroid plexus. Toxicology 2017; 386:84-92. [PMID: 28587784 DOI: 10.1016/j.tox.2017.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
The choroid plexus (CP) and blood-brain barrier (BBB) control the movement of several drugs and endogenous compounds between the brain and systemic circulation. The multidrug resistance associated protein (Mrp) efflux transporters form part of these barriers. Several Mrp transporters are positively regulated by the transcription factor nuclear factor erythroid-2-related factor (Nrf2) in liver. The Mrps, Nrf2 and Nrf2-dependent genes are cytoprotective and our aim was to examine basal gender differences in expression of Mrp transporters, Nrf2 and Nrf2-dependent genes (Nqo1 and Ho-1) in the brain-barriers. Previous studies have shown higher expression of Mrp1, Mrp2 and Mrp4 in female mouse liver and kidney. We hypothesized that similar renal/hepatic gender-specific patterns are present in the brain-barrier epithelia interfaces. qPCR and immunoblot analyses showed that Mrp4, Ho-1 and Nqo1 expression was higher in female CP. Mrp1, Mrp2 and Nrf2 expression in the CP had no gender pattern. Female Mrp1, Mrp2 and Mrp4 mouse brain expressions in remaining brain areas, excluding CP, were higher than male. Functional analysis of Mrp4 in CP revealed active accumulation of the Mrp4 model substrate fluo-cAMP. WT female CP had 10-fold higher accumulation in the vascular spaces than males and 60% higher than Mrp4-/- females. Probenecid blocked all transport. Methotrexate did as well except in Mrp4-/- females where it had no effect, suggesting compensatory induction of transport occurred in Mrp4-/-. Collectively, our findings indicate significant gender differences in expression of Mrp transporters and cytoprotective genes in the CP and BBB.
Collapse
Affiliation(s)
- Katiria Flores
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - J Larry Renfro
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
121
|
Dexamethasone induces human glutathione S transferase alpha 1 (hGSTA1) expression through the activation of glucocorticoid receptor (hGR). Toxicology 2017; 385:59-66. [DOI: 10.1016/j.tox.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022]
|
122
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
123
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
124
|
Abdelmegeid M, Vailati-Riboni M, Alharthi A, Batistel F, Loor J. Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves. J Dairy Sci 2017; 100:3155-3165. [DOI: 10.3168/jds.2016-12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/10/2016] [Indexed: 12/12/2022]
|
125
|
Zhang X, Li S, Zhou Y, Su W, Ruan X, Wang B, Zheng F, Warner M, Gustafsson JÅ, Guan Y. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc Natl Acad Sci U S A 2017; 114:3181-3185. [PMID: 28270609 PMCID: PMC5373383 DOI: 10.1073/pnas.1700172114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Sha Li
- Department of Pathophysiology, Medical College, Hebei University of Engineering, Handan 056002, Hebei Province, China
| | - Yunfeng Zhou
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Wen Su
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiongzhong Ruan
- Center for Nephrology and Urology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Bing Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14186 Stockholm, Sweden
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204;
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14186 Stockholm, Sweden
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China;
| |
Collapse
|
126
|
Lu D, Wang S, Xie Q, Guo L, Wu B. Transcriptional Regulation of Human UDP-Glucuronosyltransferase 2B10 by Farnesoid X Receptor in Human Hepatoma HepG2 Cells. Mol Pharm 2017; 14:2899-2907. [PMID: 28267333 DOI: 10.1021/acs.molpharmaceut.6b01103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about transcriptional regulators of UDP-glucuronosyltransferase 2B10 (UGT2B10), an enzyme known to glucuronidate many chemicals and drugs such as nicotine and tricyclic antidepressants. Here, we uncovered that UGT2B10 was transcriptionally regulated by farnesoid X receptor (FXR), the bile acid sensing nuclear receptor. GW4064 and chenodeoxycholic acid (two specific FXR agonists) treatment of HepG2 cells led to a significant increase in the mRNA level of UGT2B10. The treated cells also showed enhanced glucuronidation activities toward amitriptyline (an UGT2B10 probe substrate). In reporter gene assays, the extent of UGT2B10 activation by the FXR agonists was positively correlated with the amount of cotransfected FXR. Consistently, knockdown of FXR by shRNA attenuated the induction effect on UGT2B10 expression. Furthermore, a combination of electrophoretic mobility shift assay and chromatin immunoprecipitation showed that the FXR receptor trans-activated UGT2B10 through its specific binding to the -209- to -197-bp region (an IR1 element) of the UGT2B10 promoter. In summary, our results for the first time established FXR as a transcriptional regulator of human UGT2B10.
Collapse
Affiliation(s)
- Danyi Lu
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shuai Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Xie
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lianxia Guo
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
127
|
Manzanares MÁ, de Miguel C, Ruiz de Villa MC, Santella RM, Escrich E, Solanas M. Dietary lipids differentially modulate the initiation of experimental breast carcinogenesis through their influence on hepatic xenobiotic metabolism and DNA damage in the mammary gland. J Nutr Biochem 2017; 43:68-77. [PMID: 28264783 DOI: 10.1016/j.jnutbio.2017.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/15/2016] [Accepted: 01/25/2017] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. In addition to reproductive factors, environmental factors such as nutrition and xenobiotic exposure have a role in the etiology of this malignancy. A stimulating and a potentially protective effect on experimental breast cancer has been previously described for high corn oil and high extra-virgin olive oil diets, respectively. This work investigates the effect of these lipids on the metabolism of 7,12-dimethylbenz(a)anthracene (DMBA), a polycyclic aromatic hydrocarbon that can initiate carcinogenesis and its consequences in an experimental rat breast cancer model. The PUFA n-6-enriched diet increased expression of Phase I enzymes prior to DMBA administration and raised the activity of CYP1s in the hours immediately after induction, while reducing the activity of Phase II enzymes, mainly NQO1. The levels of reactive metabolites measured in plasma by GC-MS and DMBA-DNA adducts in the mammary gland of the animals fed the high corn oil diet were also higher than in the other groups. On the other hand, the high extra-virgin olive oil diet and the control low-fat diet exhibited better coordinated Phase I and Phase II activity, with a lower production of reactive metabolites and less DNA damage in the mammary gland. The concordance between these effects and the different efficacy of the carcinogenesis process due to the dietary treatment suggest that lipids may differently modify mammary gland susceptibility or resistance to cancer initiation over the exposure to environmental carcinogens. SUMMARY Dietary lipids influence the initiation of DMBA-induced mammary cancer through the modulation of liver xenobiotic metabolism, formation of reactive metabolites and subsequent DNA damage in the target tissue.
Collapse
Affiliation(s)
- Miguel Ángel Manzanares
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Cristina de Miguel
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Eduard Escrich
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Montserrat Solanas
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
128
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
129
|
Piekos S, Pope C, Ferrara A, Zhong XB. Impact of Drug Treatment at Neonatal Ages on Variability of Drug Metabolism and Drug-drug Interactions in Adult Life. ACTA ACUST UNITED AC 2017; 3:1-9. [PMID: 28344923 DOI: 10.1007/s40495-016-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW As the number of patients taking more than one medication concurrently continues to increase, predicting and preventing drug-drug interactions (DDIs) is now more important than ever. Administration of one drug can cause changes in the expression and activity of drug metabolizing enzymes (DMEs) and alter the efficacy or toxicity of other medications that are substrates for these enzymes, resulting in a DDI. In today's medical practice, potential DDIs are evaluated based on the current medications a patient is taking with little regard to drugs the patient has been exposed to in the past. The purpose of this review is to discuss potential impacts of drug treatment at neonatal ages on the variability of drug metabolism and DDIs in adult life. RECENT FINDINGS Existing evidence from the last thirty years has shown that exposure to certain xenobiotics during neonatal life has the potential to persistently alter DME expression through adult life. With recent advancements in the understanding of epigenetic regulation on gene expression, this phenomenon is resurfacing in the scientific community in hopes of defining possible mechanisms. Exposure to compounds that have the ability to bind nuclear receptors and trigger epigenetic modifications at neonatal and pediatric ages may have long-term, if not permanent, consequences on gene expression and DME activity. SUMMARY The information summarized in this review should challenge the way current healthcare providers assess DDI potential and may offer an explanation to the significant interindividual variability in drug metabolism that is observed among patients.
Collapse
Affiliation(s)
- Stephanie Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Austin Ferrara
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
130
|
Katsuoka F, Yamazaki H, Yamamoto M. Small Maf deficiency recapitulates the liver phenotypes of Nrf1- and Nrf2-deficient mice. Genes Cells 2016; 21:1309-1319. [PMID: 27723178 DOI: 10.1111/gtc.12445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022]
Abstract
Nrf1 and Nrf2 (NF-E2-related factors 1 and 2, respectively) are transcription factors that belong to the Cap'n'collar (CNC) family and play critical roles in various tissues, including the liver. Liver-specific Nrf1 knockout mice show hepatic steatosis, accompanied by dysregulation of various metabolic genes. Nrf2 knockout mice show impairment in the induction of antioxidant and xenobiotic-metabolizing enzyme genes. Although it has been shown that small Maf (sMaf) proteins act as obligatory partners of CNC proteins, their precise contributions to the function of CNC proteins remain unclear especially in the context of adult liver functions. To address this issue, we generated mice that conditionally lack expression of all sMaf proteins in the liver. The liver-specific sMaf-deficient mice develop hepatic steatosis and dysregulation of genes involved in lipid and amino acid metabolism and proteasomal subunit expression. Importantly, the gene expression profiles in the sMaf-deficient livers share a strong similarity with those in Nrf1-deficient livers. In addition, the basal expression levels of a number of Nrf2 target genes were diminished in the sMaf-deficient livers. These results provide the first genetic evidence that sMaf proteins are indispensable for liver functions as heterodimeric partners for Nrf1 and Nrf2.
Collapse
Affiliation(s)
- Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Hiromi Yamazaki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| |
Collapse
|
131
|
Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population. Eur J Clin Pharmacol 2016; 73:29-37. [PMID: 27704169 DOI: 10.1007/s00228-016-2137-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE Complete or partial inactivity of UGT1A1, the unique enzyme responsible for bilirubin glucuronidation, is commonly associated with hyperbilirubinemia. We investigated the dynamic expression of UGT1A1, and that of the transcription factors (TFs) involved in its developmental regulation, during human hepatic growth in Han Chinese individuals. METHODS Eighty-eight prenatal, pediatric, and adult liver samples were obtained from Han Chinese individuals. Quantitative real-time polymerase chain reaction was used to evaluate mRNA expression of UGT1A1 and TFs including PXR, CAR, HNF1A, HNF4A, PPARA, etc. UGT1A1 protein levels and metabolic activity were determined by western blotting and high-performance liquid chromatography. Direct sequencing was employed to genotype UGT1A1*6 (211G˃A) and UGT1A1*28 (TA6˃TA7) polymorphisms. RESULTS UGT1A1 expression was minimal in prenatal samples, but significantly elevated during pediatric and adult stages. mRNA and protein levels and metabolic activity were prominently increased (120-, 20-, and 10-fold, respectively) in pediatric and adult livers compared to prenatal samples. Furthermore, expression did not differ appreciably between pediatric and adult periods. Dynamic expression of TFs, including PXR, CAR, HNF1A, HNF4A, and PPARA, was consistent with UGT1A1 levels at each developmental stage. A pronounced correlation between expression of these TFs and that of UGT1A1 (P < 0.001) was observed. Moreover, UGT1A1*6 and UGT1A1*28 polymorphisms reduced levels of UGT1A1 by up to 40-60 %. CONCLUSIONS Hepatic expression of transcription factors is associated with developmental regulation of UGT1A1 in the Han Chinese population. Moreover, UGT1A1 polymorphisms are associated with reduced expression of UGT1A1 mRNA and protein, as well as enzyme activity.
Collapse
|
132
|
Suiko M, Kurogi K, Hashiguchi T, Sakakibara Y, Liu MC. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Biosci Biotechnol Biochem 2016; 81:63-72. [PMID: 27649811 DOI: 10.1080/09168451.2016.1222266] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cytosolic sulfotransferases (SULTs) are Phase II detoxifying enzymes that mediate the sulfate conjugation of numerous xenobiotic molecules. While the research on the SULTs has lagged behind the research on Phase I cytochrome P-450 enzymes and other Phase II conjugating enzymes, it has gained more momentum in recent years. This review aims to summarize information obtained in several fronts of the research on the SULTs, including the range of the SULTs in different life forms, concerted actions of the SULTs and other Phase II enzymes, insights into the structure-function relationships of the SULTs, regulation of SULT expression and activity, developmental expression of SULTs, as well as the use of a zebrafish model for studying the developmental pharmacology/toxicology.
Collapse
Affiliation(s)
- Masahito Suiko
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Katsuhisa Kurogi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan.,b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| | - Takuyu Hashiguchi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Yoichi Sakakibara
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Ming-Cheh Liu
- b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| |
Collapse
|
133
|
Yang H, Ni HM, Guo F, Ding Y, Shi YH, Lahiri P, Fröhlich LF, Rülicke T, Smole C, Schmidt VC, Zatloukal K, Cui Y, Komatsu M, Fan J, Ding WX. Sequestosome 1/p62 Protein Is Associated with Autophagic Removal of Excess Hepatic Endoplasmic Reticulum in Mice. J Biol Chem 2016; 291:18663-74. [PMID: 27325701 PMCID: PMC5009243 DOI: 10.1074/jbc.m116.739821] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Indexed: 01/28/2023] Open
Abstract
Xenobiotics exposure increases endoplasmic reticulum (ER) proliferation and cytochrome P-450 (CYP) induction to sustain metabolic requirements. Whether autophagy is essential for the removal of excess ER and CYP and whether an autophagy receptor is involved in this process in mammals remains elusive. In this study, we show that autophagy is induced in mouse livers after withdrawal of the hepatic mitogen 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP). Although isolated autophagosomes, autolysosomes, and lysosomes from mouse livers after withdrawal of TCPOBOP contained ER proteins, those in control mouse livers did not. Liver-specific Atg5 knockout mice had higher basal hepatic ER content that was further increased and sustained after withdrawal of TCPOBOP compared with wild-type mice. In addition to regulating ER degradation, our results also suggest that autophagy plays a role in regulating the homeostasis of hepatic CYP because blocking autophagy led to increased CYP2B10 accumulation either at the basal level or following TCPOBOP withdrawal. Furthermore, we found that the autophagy receptor protein sequestosome 1 (SQSTM1)/p62 is associated with the ER. After withdrawal of TCPOBOP, p62 knockout mice had increased ER content in the liver compared with wild-type mice. These results suggest that p62 may act as an autophagy receptor for the autophagic removal of excess ER in the mouse liver. Taken together, our results indicate that autophagy is important for the removal of excess ER and hepatic CYP enzymes in mouse livers, a process associated with the autophagy receptor protein p62.
Collapse
Affiliation(s)
- Hua Yang
- From the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 20032, China, the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hong-Min Ni
- the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Fengli Guo
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Yifeng Ding
- the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ying-Hong Shi
- From the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Pooja Lahiri
- the Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
| | - Leopold F Fröhlich
- the Department of Cranio-Maxillofacial Surgery, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Thomas Rülicke
- the Institute of Laboratory Animal Science and Biomodels Austria, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Claudia Smole
- the Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
| | - Volker C Schmidt
- the Institute of Laboratory Animal Science and Biomodels Austria, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Kurt Zatloukal
- the Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
| | - Yue Cui
- the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98159, and
| | - Masaaki Komatsu
- the Department of Biochemistry, School of Medicine, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Jia Fan
- From the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 20032, China,
| | - Wen-Xing Ding
- the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160,
| |
Collapse
|
134
|
Brewer CT, Chen T. PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B 2016; 6:441-449. [PMID: 27709012 PMCID: PMC5045535 DOI: 10.1016/j.apsb.2016.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 01/30/2023] Open
Abstract
The pregnane X receptor (PXR) plays an important and diverse role in mediating xenobiotic induction of drug-metabolizing enzymes and transporters. Several protein isoforms of PXR exist, and they have differential transcriptional activity upon target genes; transcript variants 3 (PXR3) and 4 (PXR4) do not induce target gene expression, whereas transcript variants 1 (PXR1) and 2 (PXR2) respond to agonist by activating target gene expression. PXR protein variants also display differences in protein-protein interactions; PXR1 interacts with p53, whereas PXR3 does not. Furthermore, the transcript variants of PXR that encode these protein isoforms are differentially regulated by methylation and deletions in the respective promoters of the variants, and their expression differs in various human cancers and also in cancerous tissue compared to adjacent normal tissues. PXR1 and PXR4 mRNA are downregulated by methylation in cancerous tissue and have divergent effects on cellular proliferation when ectopically overexpressed. Additional detailed and comparative mechanistic studies are required to predict the effect of PXR transcript variant expression on carcinogenesis, therapeutic response, and the development of toxicity.
Collapse
Key Words
- AF, activating function
- BAMCA, bacterial artificial chromosome array–based methylated CpG island amplification
- CYP, cytochrome P450
- Drug metabolism
- GST, glutathione S-transferase
- MDR, multidrug resistance protein
- NHR, nuclear hormone receptor
- P-gp, P-glycoprotein
- PXR1, PXR transcript variant 1 (434 residues)
- PXR2, transcript variant 2 (473 residues)
- PXR3, transcript variant 3 (397 residues)
- PXR4, transcript variant 4 (322 residues;AK122990)
- Pregnane X receptor
- RACE, 5′ rapid amplification of cDNA ends
- Therapeutic responses
- Toxicity
- Transcript variants
- UGT, UDP-glucuronosyltransferase
- UTR, untranslated region
- shRNA, short hairpin RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- C. Trent Brewer
- Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Corresponding author at: Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Mail Stop #1000, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel.: +1 901 595 5937; fax: +1 901 595 5715.Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Mail Stop #1000, 262 Danny Thomas PlaceMemphisTN38105USA
| |
Collapse
|
135
|
Park S, Cheng SL, Cui JY. Characterizing drug-metabolizing enzymes and transporters that are bona fide CAR-target genes in mouse intestine. Acta Pharm Sin B 2016; 6:475-491. [PMID: 27709017 PMCID: PMC5045557 DOI: 10.1016/j.apsb.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022] Open
Abstract
Intestine is responsible for the biotransformation of many orally-exposed chemicals. The constitutive androstane receptor (CAR/Nr1i3) is known to up-regulate many genes encoding drug-metabolizing enzymes and transporters (drug-processing genes/DPGs) in liver, but less is known regarding its effect in intestine. Sixty-day-old wild-type and Car−/− mice were administered the CAR-ligand TCPOBOP or vehicle once daily for 4 days. In wild-type mice, Car mRNA was down-regulated by TCPOBOP in liver and duodenum. Car−/− mice had altered basal intestinal expression of many DPGs in a section-specific manner. Consistent with the liver data (Aleksunes and Klaassen, 2012), TCPOBOP up-regulated many DPGs (Cyp2b10, Cyp3a11, Aldh1a1, Aldh1a7, Gsta1, Gsta4, Gstm1-m4, Gstt1, Ugt1a1, Ugt2b34, Ugt2b36, and Mrp2–4) in specific sections of small intestine in a CAR-dependent manner. However, the mRNAs of Nqo1 and Papss2 were previously known to be up-regulated by TCPOBOP in liver but were not altered in intestine. Interestingly, many known CAR-target genes were highest expressed in colon where CAR is minimally expressed, suggesting that additional regulators are involved in regulating their expression. In conclusion, CAR regulates the basal expression of many DPGs in intestine, and although many hepatic CAR-targeted DPGs were bona fide CAR-targets in intestine, pharmacological activation of CAR in liver and intestine are not identical.
Collapse
Key Words
- Aldh, aldehyde dehydrogenase
- Asbt, solute carrier family 10, member 2 (apical sodium/bile acid cotransporter)
- CAR
- CAR, constitutive androstane receptor
- CITCO, 6-(4-chlorophenyl)imidazo [2,1-b](1,3)thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime
- Cq, quantification cycle
- Cyp, cytochrome P450
- DPGs, drug-processing genes (genes that encodes drug metabolizing enzymes or transporters)
- Drug-metabolizing enzymes
- Drug-processing genes
- Gst, glutathione S-trasnferase
- H3, Histone 3
- HRP, horseradish peroxidase
- Intestine
- Mice
- Mrp, multi-drug resistance-associated protein (ABC transporter family C member)
- Nqo1, NAD(P)H dehydrogenase quinone 1
- Nrf2, nuclear factor erythroid 2-related factor 2
- Oatp, organic anion transporting polypeptide (solute carrier organic anion transporter family member)
- PBS, phosphate-buffered saline
- PBST, phosphate-buffered saline with 0.05% tween 20
- PPARα, peroxisome proliferator activated receptor alpha
- PVDF, polyvinylidene difluoride
- Papss2, 3ʹ-phosphoadenosine 5ʹ-phosphosulfate synthase 2
- ST buffer, sucrose Tris buffer
- Sult, sulfotransferase
- TCPOBOP, 3,3ʹ,5,5ʹ-tetrachloro-1,4-bis(pyridyloxy)benzene
- Transporters
- Ugt, UDP glucuronosyltransferase
- WT, wild-type
- cDNA, complementary DNA
- ddCq, delta delta Cq
- hCAR, human constitutive androstane receptor
- qPCR, quantitative polymerase chain reaction
Collapse
|
136
|
Xu SF, Wu Q, Zhang BB, Li H, Xu YS, Du YZ, Wei LX, Liu J. Comparison of mercury sulfides with mercury chloride and methylmercury on hepatic P450, phase-2 and transporter gene expression in mice. J Trace Elem Med Biol 2016; 37:37-43. [PMID: 27473830 DOI: 10.1016/j.jtemb.2016.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022]
Abstract
Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30mg/kg), α-HgS (HgS, 30mg/kg), HgCl2 (33.6mg/kg), or MeHg (3.1mg/kg) for 7days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1-4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes.
Collapse
Affiliation(s)
- S F Xu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Q Wu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - B B Zhang
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - H Li
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Y S Xu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Y Z Du
- Northwest Plateau Institute of biology of Chinese Academy of Sciences, Xining, China
| | - L X Wei
- Northwest Plateau Institute of biology of Chinese Academy of Sciences, Xining, China
| | - J Liu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China.
| |
Collapse
|
137
|
The antiandrogen flutamide is a novel aryl hydrocarbon receptor ligand that disrupts bile acid homeostasis in mice through induction of Abcc4. Biochem Pharmacol 2016; 119:93-104. [PMID: 27569425 DOI: 10.1016/j.bcp.2016.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
Abstract
Flutamide (FLU), an oral, nonsteroidal antiandrogen drug used in the treatment of prostate cancer, is associated with idiosyncratic hepatotoxicity that sometimes causes severe liver damage, including cholestasis, jaundice, and liver necrosis. To understand the mechanism of toxicity, a combination of aryl hydrocarbon receptor (Ahr)-deficient (Ahr-/-) mice, primary hepatocytes, luciferase reporter gene assays, in silico ligand docking and ultra-performance chromatography-quadrupole time-of-flight mass spectrometry-based metabolomics was used. A significant increase of liver weights, and liver and serum bile acid levels was observed after FLU treatment, indicating hepatomegaly and disrupted bile acid homeostasis. Expression of the AhR gene battery was markedly increased in livers of wild-type mice Ahr+/+ treated with FLU, while no change was noted in Ahr-/- mice. Messenger RNAs encoded by AhR target genes were induced in primary mouse hepatocytes cultured with FLU, which confirmed the in vivo results. Ligand-docking analysis further predicted that FLU is an AhR agonist ligand which was confirmed by luciferase reporter gene assays. Multivariate data analysis showed that bile acids were responsible for the separation of vehicle- and FLU-treated Ahr+/+ mice, while there was no separation in Ahr-/- mice. Expression of mRNA encoding the bile acid transporter ABCC4 was increased and farnesoid X receptor signaling was inhibited in the livers of Ahr+/+ mice, but not in Ahr-/- mice treated with FLU, in agreement with the observed downstream metabolic alterations. These findings provide new insights into the mechanism of liver injury caused by FLU treatment involving activation of AhR and the alterations of bile acid homeostasis, which could guide clinical application.
Collapse
|
138
|
Li CY, Cheng SL, Bammler TK, Cui JY. Editor's Highlight: Neonatal Activation of the Xenobiotic-Sensors PXR and CAR Results in Acute and Persistent Down-regulation of PPARα-Signaling in Mouse Liver. Toxicol Sci 2016; 153:282-302. [PMID: 27413110 DOI: 10.1093/toxsci/kfw127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Safety concerns have emerged regarding the potential long-lasting effects due to developmental exposure to xenobiotics. The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are critical xenobiotic-sensing nuclear receptors that are highly expressed in liver. The goal of this study was to test our hypothesis that neonatal exposure to PXR- or CAR-activators not only acutely but also persistently regulates the expression of drug-processing genes (DPGs). A single dose of the PXR-ligand PCN (75 mg/kg), CAR-ligand TCPOBOP (3 mg/kg), or vehicle (corn oil) was administered intraperitoneally to 3-day-old neonatal wild-type mice. Livers were collected 24 h post-dose or from adult mice at 60 days of age, and global gene expression of these mice was determined using Affymetrix Mouse Transcriptome Assay 1.0. In neonatal liver, PCN up-regulated 464 and down-regulated 449 genes, whereas TCPOBOP up-regulated 308 and down-regulated 112 genes. In adult liver, there were 15 persistently up-regulated and 22 persistently down-regulated genes following neonatal exposure to PCN, as well as 130 persistently up-regulated and 18 persistently down-regulated genes following neonatal exposure to TCPOBOP. Neonatal exposure to both PCN and TCPOBOP persistently down-regulated multiple Cyp4a members, which are prototypical-target genes of the lipid-sensor PPARα, and this correlated with decreased PPARα-binding to the Cyp4a gene loci. RT-qPCR, western blotting, and enzyme activity assays in livers of wild-type, PXR-null, and CAR-null mice confirmed that the persistent down-regulation of Cyp4a was PXR and CAR dependent. In conclusion, neonatal exposure to PXR- and CAR-activators both acutely and persistently regulates critical genes involved in xenobiotic and lipid metabolism in liver.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
139
|
Bright AS, Herrera-Garcia G, Moscovitz JE, You D, Guo GL, Aleksunes LM. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27818994 DOI: 10.11131/2016/101193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes.
Collapse
Affiliation(s)
- Amanda S Bright
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guadalupe Herrera-Garcia
- Department of Obstetrics and Gynecology, Rutgers-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dahea You
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
140
|
Li CY, Renaud HJ, Klaassen CD, Cui JY. Age-Specific Regulation of Drug-Processing Genes in Mouse Liver by Ligands of Xenobiotic-Sensing Transcription Factors. Drug Metab Dispos 2016; 44:1038-49. [PMID: 26577535 PMCID: PMC4931882 DOI: 10.1124/dmd.115.066639] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
The xenobiotic-sensing transcription factors (xeno-sensors) AhR, CAR, and PXR upregulate the expression of many drug-processing genes (DPGs) in liver. Previous studies have unveiled profound changes in the basal expression of DPGs during development; however, knowledge on the ontogeny of the inducibility of DPGs in response to pharmacological activation of xeno-sensors is still limited. The goal of this study was to investigate the age-specific regulation of DPGs by prototypical xeno-sensor ligands: 2,3,7,8-tetrachlorodibenzodioxin (TCDD) for AhR; 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) for CAR; and pregnane-16α-carbonitrile (PCN) for PXR during mouse liver development. The basal mRNAs of most DPGs were low during neonatal age, but gradually increased to adult levels, whereas some DPGs (Cyp1a2, Cyp2b10, Cyp3a11, Gstm2, Gstm3, Papss2, and Oatp1a4) exhibited an adolescent-predominant expression pattern. The inducibility of DPGs was age-specific: 1) during neonatal age, the highest fold increase in the mRNA expression was observed for Cyp1a2, Sult5a1, and Ugt1a9 by TCDD; Cyp3a11 and Mrp2 by TCPOBOP; as well as Gstm2 and Gstm3 by PCN; 2) during adolescent age, the highest fold increase in the mRNA expression was observed for Ugt1a6 and Mrp4 by TCDD, Cyp2b10, Ugt2b34, and Ugt2b35 by TCPOBOP, as well as Gsta1, Gsta4, Sult1e1, Ugt1a1, Mrp3, and Mrp4 by PCN; 3) in adults, the highest fold increase in the mRNA expression was observed for Aldh1a1, Aldh1a7, and Ugt2b36 by TCPOBOP, as well as Papss2 and Oatp1a4 by PCN. In conclusion, the inducibility of hepatic DPGs following the pharmacological activation of xeno-sensors is age specific.
Collapse
MESH Headings
- Age Factors
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Animals
- Animals, Newborn
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Ligands
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Polychlorinated Dibenzodioxins/pharmacology
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Helen J Renaud
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| |
Collapse
|
141
|
Esteras N, Dinkova-Kostova AT, Abramov AY. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol Chem 2016; 397:383-400. [PMID: 26812787 DOI: 10.1515/hsz-2015-0295] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022]
Abstract
The nuclear factor erythroid-derived 2 (NF-E2)-related factor 2 (Nrf2) is a transcription factor well-known for its function in controlling the basal and inducible expression of a variety of antioxidant and detoxifying enzymes. As part of its cytoprotective activity, increasing evidence supports its role in metabolism and mitochondrial bioenergetics and function. Neurodegenerative diseases are excellent candidates for Nrf2-targeted treatments. Most neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Friedreich's ataxia are characterized by oxidative stress, misfolded protein aggregates, and chronic inflammation, the common targets of Nrf2 therapeutic strategies. Together with them, mitochondrial dysfunction is implicated in the pathogenesis of most neurodegenerative disorders. The recently recognized ability of Nrf2 to regulate intermediary metabolism and mitochondrial function makes Nrf2 activation an attractive and comprehensive strategy for the treatment of neurodegenerative disorders. This review aims to focus on the potential therapeutic role of Nrf2 activation in neurodegeneration, with special emphasis on mitochondrial bioenergetics and function, metabolism and the role of transporters, all of which collectively contribute to the cytoprotective activity of this transcription factor.
Collapse
|
142
|
Lietzow J, Golchert J, Homuth G, Völker U, Jonas W, Köhrle J. 3,5-T2 alters murine genes relevant for xenobiotic, steroid, and thyroid hormone metabolism. J Mol Endocrinol 2016; 56:311-23. [PMID: 26903510 DOI: 10.1530/jme-15-0159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
The endogenous thyroid hormone (TH) metabolite 3,5-diiodo-l-thyronine (3,5-T2) acts as a metabolically active substance affecting whole-body energy metabolism and hepatic lipid handling in a desirable manner. Considering possible adverse effects regarding thyromimetic action of 3,5-T2 treatment in rodents, the current literature remains largely controversial. To obtain further insights into molecular mechanisms and to identify novel target genes of 3,5-T2 in liver, we performed a microarray-based liver tissue transcriptome analysis of male lean and diet-induced obese euthyroid mice treated for 4 weeks with a dose of 2.5 µg/g bw 3,5-T2 Our results revealed that 3,5-T2 modulates the expression of genes encoding Phase I and Phase II enzymes as well as Phase III transporters, which play central roles in metabolism and detoxification of xenobiotics. Additionally, 3,5-T2 changes the expression of TH responsive genes, suggesting a thyromimetic action of 3,5-T2 in mouse liver. Interestingly, 3,5-T2 in obese but not in lean mice influences the expression of genes relevant for cholesterol and steroid biosynthesis, suggesting a novel role of 3,5-T2 in steroid metabolism of obese mice. We concluded that treatment with 3,5-T2 in lean and diet-induced obese male mice alters the expression of genes encoding hepatic xenobiotic-metabolizing enzymes that play a substantial role in catabolism and inactivation of xenobiotics and TH and are also involved in hepatic steroid and lipid metabolism. The administration of this high dose of 3,5-T2 might exert adverse hepatic effects. Accordingly, the conceivable use of 3,5-T2 as pharmacological hypolipidemic agent should be considered with caution.
Collapse
Affiliation(s)
- Julika Lietzow
- Institut für Experimentelle EndokrinologieCharité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Wenke Jonas
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany German Center for Diabetes Research (DZD)Helmholtz Center Munich, Neuherberg, Germany
| | - Josef Köhrle
- Institut für Experimentelle EndokrinologieCharité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
143
|
RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1198-1217. [PMID: 27113289 DOI: 10.1016/j.bbagrm.2016.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known xenobiotic-sensing nuclear receptors with overlapping functions. However, there lacks a quantitative characterization to distinguish between the PXR and CAR target genes and signaling pathways in the liver. The present study performed a transcriptomic comparison of the PXR- and CAR-targets using RNA-Seq in livers of adult wild-type mice that were treated with the prototypical PXR ligand PCN (200mg/kg, i.p. once daily for 4days in corn oil) or the prototypical CAR ligand TCPOBOP (3mg/kg, i.p., once daily for 4days in corn oil). At the given doses, TCPOBOP differentially regulated many more genes (2125) than PCN (212), and 147 of the same genes were differentially regulated by both chemicals. As expected, the top pathways differentially regulated by both PCN and TCPOBOP were involved in xenobiotic metabolism, and they also up-regulated genes involved in retinoid metabolism, but down-regulated genes involved in inflammation and iron homeostasis. Regarding unique pathways, PXR activation appeared to overlap with the aryl hydrocarbon receptor signaling, whereas CAR activation appeared to overlap with the farnesoid X receptor signaling, acute-phase response, and mitochondrial dysfunction. The mRNAs of differentially regulated drug-processing genes (DPGs) partitioned into three patterns, namely TCPOBOP-induced, PCN-induced, as well as TCPOBOP-suppressed gene clusters. The cumulative mRNAs of the differentially regulated DPGs, phase-I and -II enzymes, as well as efflux transporters were all up-regulated by both PCN and TCPOBOPOP, whereas the cumulative mRNAs of the uptake transporters were down-regulated only by TCPOBOP. The absolute mRNA abundance in control and receptor-activated conditions was examined in each DPG category to predict the contribution of specific DPG genes in the PXR/CAR-mediated pharmacokinetic responses. The preferable differential regulation by TCPOBOP in the entire hepatic transcriptome correlated with a marked change in the expression of many DNA and histone epigenetic modifiers. In conclusion, the present study has revealed known and novel, as well as common and unique targets of PXR and CAR in mouse liver following pharmacological activation using their prototypical ligands. Results from this study will further support the role of these receptors in regulating the homeostasis of xenobiotic and intermediary metabolism in the liver, and aid in distinguishing between PXR and CAR signaling at various physiological and pathophysiological conditions. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
144
|
Xue H, Xie W, Jiang Z, Wang M, Wang J, Zhao H, Zhang X. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2. Xenobiotica 2016; 46:931-9. [PMID: 26931552 DOI: 10.3109/00498254.2016.1140847] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Acetaminophen (APAP) overdose leads to severe hepatotoxicity. 3,4-dihydroxyphenylacetic acid (DOPAC) is a scarcely studied microbiota-derived metabolite of quercetin. The aim of this study was to determine the protective effect of DOPAC against APAP-induced liver injury. 2. Mice were treated intragastrically with DOPAC (10, 20 or 50 mg/kg) for 3 days before APAP (300 mg/kg) injection. APAP alone caused increase in serum aminotransferase levels and changes in hepatic histopathology. APAP also promoted oxidative stress by increasing lipid peroxidation and decreasing anti-oxidant enzyme activities. These events led to hepatocellular necrosis and reduced liver function. DOPAC increased nuclear factor erythroid 2-related factor 2 (Nrf-2) translocation to the nucleus and enhanced the expression of phase II enzymes and anti-oxidant enzymes, and thereby reduced APAP hepatotoxicity and enhanced anti-oxidant ability. 3. Our data provide evidence that DOPAC protected the liver against APAP-induced injury, which is involved in Nrf-2 activation, implying that DOPAC can be considered as a potential natural hepatoprotective agent.
Collapse
Affiliation(s)
- Huiting Xue
- a College of Veterinary Medicine, Xinjiang Agricultural University , Urumqi , PR China and.,b College of Veterinary Medicine, Northwest A&F University , Yangling , PR China
| | - Wenyan Xie
- b College of Veterinary Medicine, Northwest A&F University , Yangling , PR China
| | - Zhihui Jiang
- b College of Veterinary Medicine, Northwest A&F University , Yangling , PR China
| | - Meng Wang
- b College of Veterinary Medicine, Northwest A&F University , Yangling , PR China
| | - Jian Wang
- b College of Veterinary Medicine, Northwest A&F University , Yangling , PR China
| | - Hongqiong Zhao
- a College of Veterinary Medicine, Xinjiang Agricultural University , Urumqi , PR China and
| | - Xiaoying Zhang
- a College of Veterinary Medicine, Xinjiang Agricultural University , Urumqi , PR China and.,b College of Veterinary Medicine, Northwest A&F University , Yangling , PR China
| |
Collapse
|
145
|
Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab Dispos 2016; 44:262-74. [PMID: 26586378 PMCID: PMC4746487 DOI: 10.1124/dmd.115.067504] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023] Open
Abstract
Little is known regarding the effect of intestinal microbiota modifiers, such as probiotics and conventionalization with exogenous bacteria, on host hepatic drug metabolism. Therefore, the goal of this study was to determine the effect of these modifiers on the expression of various drug-metabolizing enzymes of the host liver. VSL3 is a probiotic that contains eight live strains of bacteria. Five groups of mice were used: 1) conventional mice (CV), 2) conventional mice treated with VSL3 in drinking water, 3) germ-free (GF) mice, 4) GF mice treated with VSL3, and 5) GF mice exposed to the conventional environment for 2 months. All mice were 3 months old at tissue collection. GF conditions markedly downregulated the cytochrome P450 (P450) 3a gene cluster, but upregulated the Cyp4a cluster, whereas conventionalization normalized their expression to conventional levels [reverse-transcription quantitative polymerase chain reaction (qPCR) and western blot]. Changes in the Cyp3a and 4a gene expression correlated with alterations in the pregnane X receptor and peroxisome proliferator-activated receptor α-DNA binding, respectively (chromatin immunoprecipitation-qPCR). VSL3 increased each bacterial component in the large intestinal content of the CV mice, and increased these bacteria even more in GF mice, likely due to less competition for growth in the GF environment. VSL3 given to conventional mice increased the mRNAs of Cyp4v3, alcohol dehydrogenase 1, and carboxyesterase 2a, but decreased the mRNAs of multiple phase II glutathione-S-transferases. VSL3 given to germ-free mice decreased the mRNAs of UDP-glucuronosyltransferases 1a9 and 2a3. In conclusion, conventionalization and VSL3 alter the expression of many drug-metabolizing enzyme s in the liver, suggesting the importance of considering "bacteria-drug" interactions for various adverse drug reactions in patients.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
146
|
Lu L, Pandey AK, Houseal MT, Mulligan MK. The Genetic Architecture of Murine Glutathione Transferases. PLoS One 2016; 11:e0148230. [PMID: 26829228 PMCID: PMC4734686 DOI: 10.1371/journal.pone.0148230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Ashutosh K. Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
| | - M. Trevor Houseal
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
- * E-mail:
| |
Collapse
|
147
|
Xie W, Jiang Z, Wang J, Zhang X, Melzig MF. Protective effect of hyperoside against acetaminophen (APAP) induced liver injury through enhancement of APAP clearance. Chem Biol Interact 2016; 246:11-9. [DOI: 10.1016/j.cbi.2016.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 01/01/2023]
|
148
|
Nrf2 activators as potential modulators of injury in human kidney cells. Toxicol Rep 2016; 3:153-159. [PMID: 28959534 PMCID: PMC5615789 DOI: 10.1016/j.toxrep.2016.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent used in the treatment of solid tumors, with clinical use often complicated by kidney toxicity. Nuclear factor (erythroid-derived-2)-like 2 (Nrf2) is a transcription factor involved in kidney protectant effects. The purpose of this study was to determine whether the Nrf2 activators oltipraz, sulforaphane, and oleanolic acid could protect human kidney cells against cisplatin-induced injury and to compare the protective effects between three Nrf2 activators. Human proximal tubule cells (hPTC) and human embryonic kidney 293 cells (HEK293) were exposed to cisplatin doses in the absence and presence of Nrf2 activators. Pre- and delayed-cisplatin and Nrf2 activator exposures were also assessed. Cell viability was enhanced with Nrf2 activator exposures, with differences detected between pre- and delayed-treatments. Both sulforaphane and oltipraz increased the expression of anti-oxidant genes GCLC and NQO1. These findings suggest potential human kidney protective benefits of Nrf2 activators with planned exposures to cisplatin.
Collapse
|
149
|
Dietrich CG, Götze O, Geier A. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance. World J Gastroenterol 2016; 22:72-88. [PMID: 26755861 PMCID: PMC4698509 DOI: 10.3748/wjg.v22.i1.72] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/24/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests.
Collapse
|
150
|
Lee LY, Harberg C, Matkowskyj KA, Cook S, Roenneburg D, Werner S, Johnson J, Foley DP. Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice. Liver Transpl 2016; 22:91-102. [PMID: 26285140 PMCID: PMC4718744 DOI: 10.1002/lt.24303] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is a critical component of hepatic surgery. Oxidative stress has long been implicated as a key player in IRI. In this study, we examine the cell-specific role of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant response element pathway in warm hepatic IRI. Nrf2 knockout (KO) and wild-type (WT) animals and novel transgenic mice expressing a constitutively active nuclear factor (erythroid-derived 2)-like 2 (caNrf2) mutant in hepatocytes (AlbCre+/caNrf2+) and their littermate controls underwent partial hepatic ischemia or sham surgery. The animals were killed 6 hours after reperfusion, and their serum and tissue were collected for analysis. As compared to WT animals after ischemia/reperfusion (IR), Nrf2 KO mice had increased hepatocellular injury with increased serum alanine aminotransferase and aspartate aminotransferase, Suzuki score, apoptosis, an increased inflammatory infiltrate, and enhanced inflammatory cytokine expression. On the other hand, AlbCre+/caNrf2+ that underwent IR had significantly reduced serum transaminases, less necrosis on histology, and a less pronounced inflammatory infiltrate and inflammatory cytokine expression as compared to the littermate controls. However, there were no differences in apoptosis. Taken together, Nrf2 plays a critical role in our murine model of warm hepatic IRI, with Nrf2 deficiency exacerbating hepatic IRI and hepatocyte-specific Nrf2 overactivation providing protection against warm hepatic IRI.
Collapse
Affiliation(s)
- Lung-Yi Lee
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Calvin Harberg
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine. University of Wisconsin School of Medicine and Public Health, Madison, WI. 53726.,Veterans Administration Pathology Services, William S. Middleton Memorial Hospital, Madison, WI 53705
| | - Shelly Cook
- Department of Pathology and Laboratory Medicine. University of Wisconsin School of Medicine and Public Health, Madison, WI. 53726
| | - Drew Roenneburg
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Jeffrey Johnson
- Divisions of Pharmaceutical Sciences, University of Wisconsin Madison, WI 53705.,Molecular and Environmental Toxicological Center, University of Wisconsin Madison, WI 53705.,Center for Neuroscience, University of Wisconsin Madison, WI 53705.,Waisman Center, University of Wisconsin Madison, WI 53705
| | - David P. Foley
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Veterans Administration Surgical Services, William S. Middleton Memorial Hospital, Madison WI 53705
| |
Collapse
|