101
|
Nie L, Li Y, Liu Y, Shi L, Chen H. Recent Applications of Contact Lenses for Bacterial Corneal Keratitis Therapeutics: A Review. Pharmaceutics 2022; 14:2635. [PMID: 36559128 PMCID: PMC9786638 DOI: 10.3390/pharmaceutics14122635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Corneal keratitis is a common but severe infectious disease; without immediate and efficient treatment, it can lead to vision loss within a few days. With the development of antibiotic resistance, novel approaches have been developed to combat corneal keratitis. Contact lenses were initially developed to correct vision. Although silicon hydrogel-based contact lenses protect the cornea from hypoxic stress from overnight wear, wearing contact lenses was reported as an essential cause of corneal keratitis. With the development of technology, contact lenses are integrated with advanced functions, and functionalized contact lenses are used for killing bacteria and preventing infectious corneal keratitis. In this review, we aim to examine the current applications of contact lenses for anti-corneal keratitis.
Collapse
Affiliation(s)
- Linyan Nie
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanfeng Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Linqi Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Huiyun Chen
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
| |
Collapse
|
102
|
Huang Z, Lin Y. Transfer printing technologies for soft electronics. NANOSCALE 2022; 14:16749-16760. [PMID: 36353821 DOI: 10.1039/d2nr04283e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft electronics have received increasing attention in recent years, owing to their wide range of applications in dynamic nonplanar surface integration electronics that include skin electronics, implantable devices, and soft robotics. Transfer printing is a widely used assembly technology for micro- and nano-fabrication, which enables the integration of functional devices with flexible or elastomeric substrates for the manufacturing of soft electronics. Through advanced materials and process design, numerous impressive studies related to transfer printing strategies and applications have been proposed. Herein, a discussion of transfer printing technologies toward soft electronics in terms of mechanisms and example demonstrations is provided. Moreover, the perspectives on the potential challenges and future directions of this field are briefly discussed.
Collapse
Affiliation(s)
- Zhenlong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
103
|
Kim TY, Mok JW, Hong SH, Jeong SH, Choi H, Shin S, Joo CK, Hahn SK. Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat Commun 2022; 13:6801. [PMID: 36357417 PMCID: PMC9649789 DOI: 10.1038/s41467-022-34597-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Glaucoma is one of the irreversible ocular diseases that can cause vision loss in some serious cases. Although Triggerfish has been commercialized for monitoring intraocular pressure in glaucoma, there is no smart contact lens to monitor intraocular pressure and take appropriate drug treatment in response to the intraocular pressure levels. Here, we report a precisely integrated theranostic smart contact lens with a sensitive gold hollow nanowire based intraocular pressure sensor, a flexible drug delivery system, wireless power and communication systems and an application specific integrated circuit chip for both monitoring and control of intraocular pressure in glaucoma. The gold hollow nanowire based intraocular pressure sensor shows high ocular strain sensitivity, chemical stability and biocompatibility. Furthermore, the flexible drug delivery system can be used for on-demand delivery of timolol for intraocular pressure control. Taken together, the intraocular pressure levels can be successfully monitored and controlled by the theranostic smart contact lens in glaucoma induced rabbits. This theranostic smart contact lens would be harnessed as a futuristic personal healthcare platform for glaucoma and other ocular diseases.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jee Won Mok
- CK St. Mary's Eye Center, CK building, 559, Gangnam-daero, Seocho-gu, Seoul, 06531, Korea
| | - Sang Hoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyunsik Choi
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea
| | - Sangbaie Shin
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea
| | - Choun-Ki Joo
- CK St. Mary's Eye Center, CK building, 559, Gangnam-daero, Seocho-gu, Seoul, 06531, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea.
| |
Collapse
|
104
|
Wu Q, Yang C, Chen W, Chen K, Chen H, Liu F, Liu D, Lin H, Xie X, Chen W. Wireless-Powered Electrical Bandage Contact Lens for Facilitating Corneal Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202506. [PMID: 36073832 PMCID: PMC9631068 DOI: 10.1002/advs.202202506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Corneal injury can lead to severe vision impairment or even blindness. Although numerous methods are developed to accelerate corneal wound healing, most of them are passive treatments that rarely participate in controlling endogenous cell behaviors or are incompatible with nontransparent bandage. In this work, a wireless-powered electrical bandage contact lens (EBCL) is developed to generate a localized external electric field to accelerate corneal wound healing and vision recovery. The wireless electrical stimulation circuit employed a flower-shaped layout design that can be compactly integrated on bandage contact lens without blocking the vision. The role of the external electric field in promoting corneal wound healing is examined in vitro, where the responses of directional migration and corneal cells alignment to the electric field are observed. The RNA sequencing (RNA-seq) analysis indicates that the electrical stimulation can participate in controlling cell division, proliferation, and migration. Furthermore, the wireless EBCL is demonstrated to accelerate the completed recovery of corneal wounds on rabbits' eyes by electrical stimulation, while the control group exhibits delayed recovery and obvious corneal defects. As a new generation of intelligent device, the wireless and patient-friendly EBCL can provide a promising therapeutic strategy for ocular diseases.
Collapse
Affiliation(s)
- Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Wan Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Kexin Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Hui‐jiuan Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Dong Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Xi Xie
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| |
Collapse
|
105
|
Zhu H, Yang H, Zhan L, Chen Y, Wang J, Xu F. Hydrogel-Based Smart Contact Lens for Highly Sensitive Wireless Intraocular Pressure Monitoring. ACS Sens 2022; 7:3014-3022. [PMID: 36260093 DOI: 10.1021/acssensors.2c01299] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Real-time intraocular pressure (IOP) monitoring plays a crucial role in glaucoma diagnosis and treatment. The wireless smart contact lens based on a flexible inductor-capacitor-resistor (LCR) sensor is chip-free and battery-free, demonstrating excellent application potential for physiological signal monitoring. To promote the use of LCR contact lenses for clinical IOP monitoring, reliable, comfortable contact lens materials should be used and excellent sensitivity needs to be realized. Here, we propose a method for producing hydrogel-based smart contact lenses for wireless IOP monitoring that uses the conformal stacking technique, solving the problems of swelling of the hydrogel and spherical integration of the pyramid-microstructured dielectric elastomer. The IOP of the in vitro porcine eye is successfully monitored owing to the high sensitivity of the spherical pyramid-microstructured capacitive pressure sensor and the hydrogel substrate. In addition, a glasses-integrated impedance-matching tunable reader for remote signal measurement is realized by enhancing the signal amplitude and increasing the reading distance, improving the portability of the signal measurement equipment. With the above improved designs, the wireless contact lens system has application potential for clinical IOP monitoring and shows substantial promise for next-generation daily ocular health management.
Collapse
Affiliation(s)
- Hengtian Zhu
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Huan Yang
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Liuwei Zhan
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Ye Chen
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Fei Xu
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| |
Collapse
|
106
|
Kang D, Lee JI, Maeng B, Lee S, Kwon Y, Kang MS, Park J, Kim J. Safe, Durable, and Sustainable Self-Powered Smart Contact Lenses. ACS NANO 2022; 16:15827-15836. [PMID: 36069332 DOI: 10.1021/acsnano.2c05452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart contact lenses have the potential to serve as noninvasive healthcare devices or virtual displays. However, their implementation is limited by the lack of suitable power sources for microelectronic devices. This Article demonstrates smart contact lenses with fully embedded glucose fuel cells that are safe, flexible, and durable against deformations. These fuel cells produced stable power throughout the day or during intermittent use after storage for weeks. When the lenses were exposed to 0.05 mM glucose solution, a steady-state maximum power density of 4.4 μW/cm2 was achieved by optimizing the chemistry and porous structure of the fuel cell components. Additionally, even after bending the lenses in half 100 times, the fuel cell performance was maintained without any mechanical failure. Lastly, when the fuel cells were connected to electroresponsive hydrogel capacitors, we could clearly distinguish between the tear glucose levels under normal and diabetic conditions through the naked eye.
Collapse
Affiliation(s)
- Dongwon Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Bohee Maeng
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Seyeon Lee
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
107
|
Han Z, Chen S, Deng L, Liang Q, Qu X, Li J, Wang B, Wang H. Anti-Fouling, Adhesive Polyzwitterionic Hydrogel Electrodes Toughened Using a Tannic Acid Nanoflower. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45954-45965. [PMID: 36181479 DOI: 10.1021/acsami.2c14614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive polyzwitterionic hydrogels with good adhesion properties show potential prospect in implantable electrodes and electronic devices. Adhesive property of polyzwitterionic hydrogels in humid environments can be improved by the introduction of catechol groups. However, common catechol modifiers can usually quench free radicals, resulting in a contradiction between long-term tissue adhesion and hydrogel toughness. By adding tannic acid (TA) to the dispersion of clay nanosheets and nanofibers, we designed TA-coated nanoflowers and nanofibers as the reinforcing phase to prepare polyzwitterionic hydrogels with adhesion properties. The hydrogel combines the mussel-like and zwitterionic co-adhesive mechanism to maintain long-term adhesion in underwater environments. In particular, the noncovalent cross-linking provided by the nanoflower structure effectively compensates for the defects caused by free-radical quenching so that the hydrogel obtained a high stretchability of over 2900% and a toughness of 1.16 J/m3. The hydrogel also has excellent anti-biofouling property and shows resistance to bacteria and cells. In addition, the hydrogel possesses a low modulus (<10 kPa) and ionic conductivity (0.25 S/m), making it an ideal material for the preparation of implantable electrodes.
Collapse
Affiliation(s)
- Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
108
|
Busnatu ȘS, Niculescu AG, Bolocan A, Andronic O, Pantea Stoian AM, Scafa-Udriște A, Stănescu AMA, Păduraru DN, Nicolescu MI, Grumezescu AM, Jinga V. A Review of Digital Health and Biotelemetry: Modern Approaches towards Personalized Medicine and Remote Health Assessment. J Pers Med 2022; 12:1656. [PMID: 36294795 PMCID: PMC9604784 DOI: 10.3390/jpm12101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
With the prevalence of digitalization in all aspects of modern society, health assessment is becoming digital too. Taking advantage of the most recent technological advances and approaching medicine from an interdisciplinary perspective has allowed for important progress in healthcare services. Digital health technologies and biotelemetry devices have been more extensively employed for preventing, detecting, diagnosing, monitoring, and predicting the evolution of various diseases, without requiring wires, invasive procedures, or face-to-face interaction with medical personnel. This paper aims to review the concepts correlated to digital health, classify and describe biotelemetry devices, and present the potential of digitalization for remote health assessment, the transition to personalized medicine, and the streamlining of clinical trials.
Collapse
Affiliation(s)
- Ștefan Sebastian Busnatu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Alexandru Scafa-Udriște
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Dan Nicolae Păduraru
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Mihnea Ioan Nicolescu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Viorel Jinga
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
109
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
110
|
Song H, Shin H, Seo H, Park W, Joo BJ, Kim J, Kim J, Kim HK, Kim J, Park J. Wireless Non-Invasive Monitoring of Cholesterol Using a Smart Contact Lens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203597. [PMID: 35975449 PMCID: PMC9534953 DOI: 10.1002/advs.202203597] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Herein, a wireless and soft smart contact lens that enables real-time quantitative recording of cholesterol in tear fluids for the monitoring of patients with hyperlipidemia using a smartphone is reported. This contact lens incorporates an electrochemical biosensor for the continuous detection of cholesterol concentrations, stretchable antenna, and integrated circuits for wireless communication, which makes a smartphone the only device required to operate this lens remotely without obstructing the wearer's vision. The hyperlipidemia rabbit model is utilized to confirm the correlation between cholesterol levels in tear fluid and blood and to confirm the feasibility of this smart contact lens for diagnostic application of cholesterol-related diseases. Further in vivo tests with human subjects demonstrated its good biocompatibility, wearability, and reliability as a non-invasive healthcare device.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Haein Shin
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Byung Jun Joo
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Jeongho Kim
- Department of Biomedical ScienceThe Graduate SchoolKyungpook National University680 Gukchebosang‐ro, Jung‐guDaegu41944Republic of Korea
| | - Jeonghyun Kim
- Department of Electronics Convergence EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Hong Kyun Kim
- Department of Biomedical ScienceThe Graduate SchoolKyungpook National University680 Gukchebosang‐ro, Jung‐guDaegu41944Republic of Korea
- Department of OphthalmologyBio‐Medical InstituteSchool of MedicineKyungpook National University Hospital130 Dongdeok‐ro, Jung‐guDaegu41944Republic of Korea
| | - Jayoung Kim
- Department of Medical EngineeringCollege of MedicineYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
- KIURI InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
111
|
Zhang J, Kim K, Kim HJ, Meyer D, Park W, Lee SA, Dai Y, Kim B, Moon H, Shah JV, Harris KE, Collar B, Liu K, Irazoqui P, Lee H, Park SA, Kollbaum PS, Boudouris BW, Lee CH. Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat Commun 2022; 13:5518. [PMID: 36127347 PMCID: PMC9489713 DOI: 10.1038/s41467-022-33254-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Continuous monitoring of intraocular pressure, particularly during sleep, remains a grand challenge in glaucoma care. Here we introduce a class of smart soft contact lenses, enabling the continuous 24-hour monitoring of intraocular pressure, even during sleep. Uniquely, the smart soft contact lenses are built upon various commercial brands of soft contact lenses without altering their intrinsic properties such as lens power, biocompatibility, softness, transparency, wettability, oxygen transmissibility, and overnight wearability. We show that the smart soft contact lenses can seamlessly fit across different corneal curvatures and thicknesses in human eyes and therefore accurately measure absolute intraocular pressure under ambulatory conditions. We perform a comprehensive set of in vivo evaluations in rabbit, dog, and human eyes from normal to hypertension to confirm the superior measurement accuracy, within-subject repeatability, and user comfort of the smart soft contact lenses beyond current wearable ocular tonometers. We envision that the smart soft contact lenses will be effective in glaucoma care.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ho Joong Kim
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Dawn Meyer
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Seul Ah Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yumin Dai
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Bongjoong Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Mechanical and System Design Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jay V Shah
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Keely E Harris
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Brett Collar
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kangying Liu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Center for Implantable Devices, Purdue University, West Lafayette, IN, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Shin Ae Park
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.
| | - Pete S Kollbaum
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA. .,School of Optometry, Indiana University, Bloomington, IN, USA.
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA. .,Department of Chemistry, Purdue University, West Lafayette, IN, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA. .,School of Optometry, Indiana University, Bloomington, IN, USA. .,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA. .,School of Materials Engineering, Purdue University, West Lafayette, IN, USA. .,Center for Implantable Devices, Purdue University, West Lafayette, IN, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
112
|
Beduk T, Beduk D, Hasan MR, Guler Celik E, Kosel J, Narang J, Salama KN, Timur S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. BIOSENSORS 2022; 12:583. [PMID: 36004979 PMCID: PMC9406027 DOI: 10.3390/bios12080583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.
Collapse
Affiliation(s)
- Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
| | - Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey;
| | - Jurgen Kosel
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
113
|
Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155670. [PMID: 35957227 PMCID: PMC9371187 DOI: 10.3390/s22155670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 05/12/2023]
Abstract
As a vital biomarker, glucose plays an important role in multiple physiological and pathological processes. Thus, glucose detection has become an important direction in the electrochemical analysis field. In order to realize more convenient, real-time, comfortable and accurate monitoring, smartphone-based portable, wearable and implantable electrochemical glucose monitoring is progressing rapidly. In this review, we firstly introduce technologies integrated in smartphones and the advantages of these technologies in electrochemical glucose detection. Subsequently, this overview illustrates the advances of smartphone-based portable, wearable and implantable electrochemical glucose monitoring systems in diverse biofluids over the last ten years (2012-2022). Specifically, some interesting and innovative technologies are highlighted. In the last section, after discussing the challenges in this field, we offer some future directions, such as application of advanced nanomaterials, novel power sources, simultaneous detection of multiple markers and a closed-loop system.
Collapse
|
114
|
Liu H, Sun Z, Chen Y, Zhang W, Chen X, Wong CP. Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS NANO 2022; 16:10088-10129. [PMID: 35786945 DOI: 10.1021/acsnano.2c02812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible in-plane architecture micro-supercapacitors (MSCs) are competitive candidates for on-chip miniature energy storage applications owing to their light weight, small size, high flexibility, as well as the advantages of short charging time, high power density, and long cycle life. However, tedious and time-consuming processes are required for the manufacturing of high-resolution interdigital electrodes using conventional approaches. In contrast, the laser processing technique enables high-efficiency high-precision patterning and advanced manufacturing of nanostructured electrodes. In this review, the recent advances in laser manufacturing and patterning of nanostructured electrodes for applications in flexible in-plane MSCs are comprehensively summarized. Various laser processing techniques for the synthesis, modification, and processing of interdigital electrode materials, including laser pyrolysis, reduction, oxidation, growth, activation, sintering, doping, and ablation, are discussed. In particular, some special features and merits of laser processing techniques are highlighted, including the impacts of laser types and parameters on manufacturing electrodes with desired morphologies/structures and their applications on the formation of high-quality nanoshaped graphene, the selective deposition of nanostructured materials, the controllable nanopore etching and heteroatom doping, and the efficient sintering of nanometal products. Finally, the current challenges and prospects associated with the laser processing of in-plane MSCs are also discussed. This review will provide a useful guidance for the advanced manufacturing of nanostructured electrodes in flexible in-plane energy storage devices and beyond.
Collapse
Affiliation(s)
- Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
115
|
Sheng F, Zhang B, Zhang Y, Li Y, Cheng R, Wei C, Ning C, Dong K, Wang ZL. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS NANO 2022; 16:10958-10967. [PMID: 35775629 DOI: 10.1021/acsnano.2c03365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implantable sensors with the abilities of real-time healthcare monitoring and auxiliary training are important for exercise-induced or disease-induced muscle and ligament injuries. However, some of these implantable sensors have some shortcomings, such as requiring an external power supply or poor flexibility and stability. Herein, an organogel/silicone fiber-helical sensor based on a triboelectric nanogenerator (OFS-TENG) is developed for power-free and sutureable implantation ligament strain monitoring. The OFS-TENG with high stability and ultrastretchability is composed of an organogel fiber and a silicone fiber intertwined with a double helix structure. The organogel fiber possesses the merits of rapid preparation (15 s), good transparency (>95%), high stretchability (600%), and favorable stability (over 6 months). The OFS-TENG is successfully implanted on the patellar ligament of the rabbit knee for the real-time monitoring of knee ligament stretch and muscle stress, which is expected to provide a solution for real-time diagnosis of muscle and ligament injuries. The prepared self-powered OFS-TENG can monitor data on human muscles and ligaments in real-time.
Collapse
Affiliation(s)
- Feifan Sheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yihan Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuanhui Wei
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| |
Collapse
|
116
|
Mun J, Kim TY, Myung D, Hahn SK. Smart contact lens containing hyaluronate-rose bengal conjugate for biophotonic myopia vision correction. Biomater Sci 2022; 10:4997-5005. [PMID: 35815427 DOI: 10.1039/d2bm00584k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the collagen layer weakens with increasing age or certain diseases such as keratoconus and myopia, the mechanical property of the collagen layer decreases with corneal deformation. To circumvent these problems, the corneal collagen has been crosslinked with the photosensitizer riboflavin under UV light after de-epithelialization. However, this treatment with riboflavin and UV light can cause notable damage to the eye. Here, the biocompatible rose bengal (RB) dye was conjugated to hyaluronic acid (HA) to enhance the corneal permeability, which can be activated by safe green light with a wavelength of 530 nm. Two-photon microscopy revealed the deep tissue penetration of the HA-RB conjugate in comparison with RB. Collagen fibrillogenesis, ex vivo tensile test, and ex vivo histological analysis confirmed the effective collagen crosslinking by HA-RB conjugate and the light irradiation. Furthermore, we developed a smart contact lens for on-demand HA-RB conjugate delivery from the reservoir embedded in the contact lens. Taken together, we could envision the feasibility of a smart contact lens for biophotonic myopia vision correction.
Collapse
Affiliation(s)
- Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
117
|
Hsu J. Personalized Digital Health Beyond the Pandemic. J Nurse Pract 2022; 18:709-714. [PMID: 35645634 PMCID: PMC9130337 DOI: 10.1016/j.nurpra.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effectiveness of telehealth and personalized digital health became evident during the coronavirus disease 2019 pandemic. This article defines what personalized digital health is and provides selected examples of the various personalized digital health devices patients may be using. The article also delves into how to implement and incorporate these personalized digital health devices in practice and presents suggestions on political actions that nurse practitioners need to advocate for with regard to telehealth and personalized digital health policy.
Collapse
|
118
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
119
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
120
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
121
|
Yang C, Wu Q, Liu J, Mo J, Li X, Yang C, Liu Z, Yang J, Jiang L, Chen W, Chen HJ, Wang J, Xie X. Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure. Nat Commun 2022; 13:2556. [PMID: 35581184 PMCID: PMC9114010 DOI: 10.1038/s41467-022-29860-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Engineering wearable devices that can wirelessly track intraocular pressure and offer feedback-medicine administrations are highly desirable for glaucoma treatments, yet remain challenging due to issues of limited sizes, wireless operations, and wireless cross-coupling. Here, we present an integrated wireless theranostic contact lens for in situ electrical sensing of intraocular pressure and on-demand anti-glaucoma drug delivery. The wireless theranostic contact lens utilizes a highly compact structural design, which enables high-degreed integration and frequency separation on the curved and limited surface of contact lens. The wireless intraocular pressure sensing modulus could ultra-sensitively detect intraocular pressure fluctuations, due to the unique cantilever configuration design of capacitive sensing circuit. The drug delivery modulus employs an efficient wireless power transfer circuit, to trigger delivery of anti-glaucoma drug into aqueous chamber via iontophoresis. The minimally invasive, smart, wireless and theranostic features endow the wireless theranostic contact lens as a highly promising system for glaucoma treatments.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Junqing Liu
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.,School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.,The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ziqi Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jingbo Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.,School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lelun Jiang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China. .,The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
122
|
Kim SK, Lee GH, Jeon C, Han HH, Kim SJ, Mok JW, Joo CK, Shin S, Sim JY, Myung D, Bao Z, Hahn SK. Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Long-Term Robust Continuous Glucose Monitoring of Smart Contact Lens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110536. [PMID: 35194844 PMCID: PMC10782562 DOI: 10.1002/adma.202110536] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Indexed: 05/26/2023]
Abstract
Smart contact lenses for continuous glucose monitoring (CGM) have great potential for huge clinical impact. To date, their development has been limited by challenges in accurate detection of glucose without hysteresis for tear glucose monitoring to track the blood glucose levels. Here, long-term robust CGM in diabetic rabbits is demonstrated by using bimetallic nanocatalysts immobilized in nanoporous hydrogels in smart contact lenses. After redox reaction of glucose oxidase, the nanocatalysts facilitate rapid decomposition of hydrogen peroxide and nanoparticle-mediated charge transfer with drastically improved diffusion via rapid swelling of nanoporous hydrogels. The ocular glucose sensors result in high sensitivity, fast response time, low detection limit, low hysteresis, and rapid sensor warming-up time. In diabetic rabbits, smart contact lens can detect tear glucose levels consistent with blood glucose levels measured by a glucometer and a CGM device, reflecting rapid concentration changes without hysteresis. The CGM in a human demonstrates the feasibility of smart contact lenses for further clinical applications.
Collapse
Affiliation(s)
- Su-Kyoung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Cheonhoo Jeon
- Department of Electrical Enginnering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jee Won Mok
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Collage of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Collage of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, Korea
| | - Sangbaie Shin
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea
| | - Jae-Yoon Sim
- Department of Electrical Enginnering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - David Myung
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, 94303, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea
| |
Collapse
|
123
|
Ye Z, Ling Y, Yang M, Xu Y, Zhu L, Yan Z, Chen PY. A Breathable, Reusable, and Zero-Power Smart Face Mask for Wireless Cough and Mask-Wearing Monitoring. ACS NANO 2022; 16:5874-5884. [PMID: 35298138 DOI: 10.1021/acsnano.1c11041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein introduce a lightweight and zero-power smart face mask, capable of wirelessly monitoring coughs in real time and identifying proper mask wearing in public places during a pandemic. The smart face mask relies on the compact, battery-free radio frequency (RF) harmonic transponder, which is attached to the inner layer of the mask for detecting its separation from the face. Specifically, the RF transponder composed of miniature antennas and passive frequency multiplier is made of spray-printed silver nanowires (AgNWs) coated with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) passivation layer and the recently discovered multiscale porous polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) substrate. Unlike conventional on-chip or on-board wireless sensors, the SEBS-AgNWs/PEDOT:PSS-based RF transponder is lightweight, stretchable, breathable, and comfortable. In addition, this wireless device has excellent resilience and robustness in long-term and repeated usages (i.e., repeated placement and removal of the soft transponder on the mask). We foresee that this wireless smart face mask, providing simultaneous cough and mask-wearing monitoring, may mitigate virus-transmissive events by tracking the potential contagious person and identifying mask-wearing conditions. Moreover, the ability to wirelessly assess cough frequencies may improve diagnosis accuracy for dealing with several diseases, such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yadong Xu
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Liang Zhu
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
124
|
Elsherif M, Moreddu R, Alam F, Salih AE, Ahmed I, Butt H. Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review. Front Med (Lausanne) 2022; 9:858784. [PMID: 35445050 PMCID: PMC9013844 DOI: 10.3389/fmed.2022.858784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is a chronic disease requiring a careful management to prevent its collateral complications, such as cardiovascular and Alzheimer's diseases, retinopathy, nephropathy, foot and hearing impairment, and neuropathy. Self-monitoring of blood glucose at point-of-care settings is an established practice for diabetic patients. However, current technologies for glucose monitoring are invasive, costly, and only provide single snapshots for a widely varying parameter. On the other hand, tears are a source of physiological information that mirror the health state of an individual by expressing different concentrations of metabolites, enzymes, vitamins, salts, and proteins. Therefore, the eyes may be exploited as a sensing site with substantial diagnostic potential. Contact lens sensors represent a viable route for targeting minimally-invasive monitoring of disease onset and progression. Particularly, glucose concentration in tears may be used as a surrogate to estimate blood glucose levels. Extensive research efforts recently have been devoted to develop smart contact lenses for continual glucose detection. The latest advances in the field are reviewed herein. Sensing technologies are described, compared, and the associated challenges are critically discussed.
Collapse
Affiliation(s)
- Mohamed Elsherif
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- *Correspondence: Mohamed Elsherif
| | | | - Fahad Alam
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Israr Ahmed
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- Haider Butt
| |
Collapse
|
125
|
Ye Y, Ge Y, Zhang Q, Yuan M, Cai Y, Li K, Li Y, Xie R, Xu C, Jiang D, Qu J, Liu X, Wang Y. Smart Contact Lens with Dual-Sensing Platform for Monitoring Intraocular Pressure and Matrix Metalloproteinase-9. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104738. [PMID: 35195359 PMCID: PMC9036001 DOI: 10.1002/advs.202104738] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Indexed: 05/09/2023]
Abstract
Contact lenses have become a popular health-monitoring wearable device due to their direct contact with the eyes. By integrating biosensors into contact lenses, real-time and noninvasive diagnoses of various diseases can be realized. However, current contact lens sensors often require complex electronics, which may obstruct the user's vision or even damage the cornea. Moreover, most of the reported contact lens sensors can only detect one analyte. Therefore, an optical-based dual-functional smart contact lens sensor has been introduced to monitor intraocular pressure (IOP) and detect matrix metalloproteinase-9 (MMP-9), both of which are key biomarkers in many eye-related diseases such as glaucoma. Specifically, the elevated IOP is continuously monitored by applying an antiopal structure through color changes, without any complex electronics. Together with the peptide modified gold nanobowls (AuNBs) surface-enhanced Raman scattering (SERS) substrate, the quantitative analysis of MMP-9 at a low nanomolar range is achieved in real tear samples. The dual-sensing functions are thus demonstrated, providing a convenient, noninvasive, and potentially multifunctional sensing platform for monitoring health and diagnostic biomarkers in human tears.
Collapse
Affiliation(s)
- Ying Ye
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Yuancai Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Qingwen Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Meiling Yuan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Yu Cai
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Kang Li
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Yang Li
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Ruifeng Xie
- School of Opto‐Electronic EngineeringChangchun University of Science and TechnologyChangchun130022P. R. China
| | - Changshun Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Danfeng Jiang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
| | - Xiaohu Liu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Yi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
- School of Opto‐Electronic EngineeringChangchun University of Science and TechnologyChangchun130022P. R. China
| |
Collapse
|
126
|
Zhu J, Hu Z, Zhang S, Zhang X, Zhou H, Xing C, Guo H, Qiu D, Yang H, Song C, Cheng H. Stretchable 3D Wideband Dipole Antennas from Mechanical Assembly for On-Body Communication. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12855-12862. [PMID: 35254805 DOI: 10.1021/acsami.1c24651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of wearable/stretchable electronics could largely benefit from advanced stretchable antennas with excellent on-body performance upon mechanical deformations. Despite recent developments of stretchable antennas based on intrinsically stretchable conductors, they are often affected by lossy human tissues and exhibit resonant frequency shifts upon stretching, preventing their applications in on-body wireless communication and powering. This work reports a three-dimensional (3D) stretchable wideband dipole antenna from mechanical assembly to simultaneously reduce the frequency detuning and enhance on-body performance. The large bandwidth is achieved by coupling two resonances from two pairs of radiation arms, which is well-maintained even when the antenna is directly placed on human bodies or stretched over 25%. Such an excellent on-body performance allows the antenna to robustly transmit the wireless data and energy. The design of the 3D stretchable wideband dipole antenna with significantly enhanced on-body wireless communication performance was validated by an experimental demonstration that features a small difference in the wirelessly received power between the on-body and off-body use. The combination of the mechanically assembled 3D geometries and the coupled mechanical-electromagnetic properties can open up new opportunities in deformable 3D antennas and other microwave devices with excellent on-body performance and tunable properties.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
| | - Zhihui Hu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Senhao Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
| | - Honglei Zhou
- Institute of Flexible Electronics Technology of THU, Jiaxing 314000, Zhejiang, China
| | - Chenghao Xing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
| | - Huaiqian Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
| | - Donghai Qiu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, China
| | - Hongbo Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, China
| | - Chaoyun Song
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania, United States
| |
Collapse
|
127
|
Lee G, Jeon C, Mok JW, Shin S, Kim S, Han HH, Kim S, Hong SH, Kim H, Joo C, Sim J, Hahn SK. Smart Wireless Near-Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103254. [PMID: 35092362 PMCID: PMC8948592 DOI: 10.1002/advs.202103254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/30/2021] [Indexed: 05/04/2023]
Abstract
Diabetic retinopathy is currently treated by highly invasive repeated therapeutic injections and surgical interventions without complete vision recovery. Here, a noninvasive smart wireless far red/near-infrared (NIR) light emitting contact lens developed successfully for the repeated treatment of diabetic retinopathy with significantly improved compliance. A far red/NIR light emitting diode (LED) is connected with an application-specific integrated circuit chip, wireless power, and communication systems on a PET film, which is embedded in a silicone elastomer contact lens by thermal crosslinking. After in vitro characterization, it is confirmed that the retinal vascular hyper-permeability induced by diabetic retinopathy in rabbits is reduced to a statistically significant level by simply repeated wearing of smart far red/NIR LED contact lens for 8 weeks with 120 µW light irradiation for 15 min thrice a week. Histological analysis exhibits the safety and feasibility of LED contact lenses for treating diabetic retinopathy. This platform technology for smart LED contact lens would be harnessed for various biomedical photonic applications.
Collapse
Affiliation(s)
- Geon‐Hui Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Cheonhoo Jeon
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Jee Won Mok
- Department of Ophthalmology and Visual ScienceSeoul St. Mary's HospitalCollege of MedicineThe Catholic University of Korea505, Banpo‐dongSeocho‐guSeoul06591South Korea
| | - Sangbaie Shin
- PHI BIOMED Co.168, Yeoksam‐roGangnam‐guSeoul06248South Korea
| | - Su‐Kyoung Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Hye Hyeon Han
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Seong‐Jong Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Sang Hoon Hong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Hwanhee Kim
- PHI BIOMED Co.168, Yeoksam‐roGangnam‐guSeoul06248South Korea
| | - Choun‐Ki Joo
- Department of Ophthalmology and Visual ScienceSeoul St. Mary's HospitalCollege of MedicineThe Catholic University of Korea505, Banpo‐dongSeocho‐guSeoul06591South Korea
| | - Jae‐Yoon Sim
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| |
Collapse
|
128
|
Chitrakar C, Hedrick E, Adegoke L, Ecker M. Flexible and Stretchable Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1664. [PMID: 35268893 PMCID: PMC8911085 DOI: 10.3390/ma15051664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
Medical science technology has improved tremendously over the decades with the invention of robotic surgery, gene editing, immune therapy, etc. However, scientists are now recognizing the significance of 'biological circuits' i.e., bodily innate electrical systems for the healthy functioning of the body or for any disease conditions. Therefore, the current trend in the medical field is to understand the role of these biological circuits and exploit their advantages for therapeutic purposes. Bioelectronics, devised with these aims, work by resetting, stimulating, or blocking the electrical pathways. Bioelectronics are also used to monitor the biological cues to assess the homeostasis of the body. In a way, they bridge the gap between drug-based interventions and medical devices. With this in mind, scientists are now working towards developing flexible and stretchable miniaturized bioelectronics that can easily conform to the tissue topology, are non-toxic, elicit no immune reaction, and address the issues that drugs are unable to solve. Since the bioelectronic devices that come in contact with the body or body organs need to establish an unobstructed interface with the respective site, it is crucial that those bioelectronics are not only flexible but also stretchable for constant monitoring of the biological signals. Understanding the challenges of fabricating soft stretchable devices, we review several flexible and stretchable materials used as substrate, stretchable electrical conduits and encapsulation, design modifications for stretchability, fabrication techniques, methods of signal transmission and monitoring, and the power sources for these stretchable bioelectronics. Ultimately, these bioelectronic devices can be used for wide range of applications from skin bioelectronics and biosensing devices, to neural implants for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA; (C.C.); (E.H.); (L.A.)
| |
Collapse
|
129
|
Li J, Bo X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127014. [PMID: 34461543 DOI: 10.1016/j.jhazmat.2021.127014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Today's rampant abuse of antibiotics and lean meat powder disturbs environment and threatens public human health. Therefore, fast in-site detection of antibiotics or lean meat powder residue could avoid potential risks. In this work, flexible graphene electrodes (FGE) were easily and facilely patterned and prepared by CO2 laser at room environment, which was coupled with a portable electrochemical analyzer for electronic signal transmission. Laser-enabled flexible electrochemical sensor on finger can be used for rapid real-time in-site electrochemical identification of chloramphenicol (CAP), clenbuterol (CLB) and ractopamine (RAC) in meat. The electrochemical response of CAP, CLB and RAC is investigated with the limit of detection of 2.70, 1.29 and 7.81 μM and the linear range of 10-200, 5-80 and 25-250 μM in phosphate buffer saline (PBS) pH 7.0, correspondingly. The minimum detection concentrations of CAP, CLB and RAC were 20, 10 and 30 μM, respectively, in actual samples of pork. And the minimum detection concentrations of CAP, CLB and RAC were 10, 5 and 25 μM in milk, respectively. Such an integrated sensing platform enriches application of sensors on finger in food security and provides information that prevents drug containments from entering food chain.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
130
|
Zhang J, Qian S, Chen L, Wu M, Cai Y, Mou X, Feng J. Antifouling and antibacterial zwitterionic hydrogels as soft contact lens against ocular bacterial infections. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
131
|
Zokaei S, Craighero M, Cea C, Kneissl LM, Kroon R, Khodagholy D, Lund A, Müller C. Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102813. [PMID: 34816573 DOI: 10.1002/smll.202102813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Stretchable conducting materials are appealing for the design of unobtrusive wearable electronic devices. Conjugated polymers with oligoethylene glycol side chains are excellent candidate materials owing to their low elastic modulus and good compatibility with polar stretchable polymers. Here, electrically conducting elastomeric blend fibers with high stretchability, wet spun from a blend of a doped polar polythiophene with tetraethylene glycol side chains and a polyurethane are reported. The wet-spinning process is versatile, reproducible, scalable, and produces continuous filaments with a diameter ranging from 30 to 70 µm. The fibers are stretchable up to 480% even after chemical doping with iron(III) p-toluenesulfonate hexahydrate and exhibit an electrical conductivity of up to 7.4 S cm-1 , which represents a record combination of properties for conjugated polymer-based fibers. The fibers remain conductive during elongation until fiber fracture and display excellent long-term stability at ambient conditions. Cyclic stretching up to 50% strain for at least 400 strain cycles reveals that the doped fibers exhibit high cyclic stability and retain their electrical conductivity. Finally, a directional strain sensing device, which makes use of the linear increase in resistance of the fibers up to 120% strain is demonstrated.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Claudia Cea
- Department of Electrical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Lucas M Kneissl
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Renee Kroon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| |
Collapse
|
132
|
Hosseinian H, Hosseini S, Martinez-Chapa SO, Sher M. A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery. Polymers (Basel) 2022; 14:185. [PMID: 35012207 PMCID: PMC8747307 DOI: 10.3390/polym14010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.
Collapse
Affiliation(s)
- Hamed Hosseinian
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Samira Hosseini
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Mazhar Sher
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
133
|
Zhang Y, Wu L, Zou M, Zhang L, Song Y. Suppressing the Step Effect of 3D Printing for Constructing Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107249. [PMID: 34724264 DOI: 10.1002/adma.202107249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
3D printing has been considered as a sustainable method to construct complicated 3D structures. However, the step effect induced by the traditional point-by-point or layer-by-layer additive manufacturing mode inevitably occurs and remains an obstacle to realizing the smoothness and uniformity of 3D samples. Here, a continuous liquid film confined 3D printing strategy is proposed to fabricate high-precision 3D structures based on the Digital Light Processing (DLP) technology. With the control of the confinement of the liquid-solid interface and the continuous printing mode, liquid film adhering to the cured structure is sucked into the cured layer structures with excess resin adhering to the cured structure scraping off, where the step effect is eliminated and post-washing is avoided. The morphology and dimension of the confined liquid film can be well regulated by ink properties and printing parameters to optimize the surface smoothness and printing fidelity. In addition, heat accumulation and thermal diffusion are also suppressed, ensuring the long-term printing stability. A centimeter-scale contact lens structure with central thickness of ≈135 µm comparable to commercial ones can be printed, which possesses extreme smoothness (sub 1.3 nm), homogeneous mechanical characteristic, biocompatibility, and high optical properties with imaging resolution of up to 228.1 lp mm-1 .
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Miaomiao Zou
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lidian Zhang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
134
|
Ma R, An X, Shao R, Zhang Q, Sun S. Recent advancement in noninvasive glucose monitoring and closed-loop management system for diabetes. J Mater Chem B 2022; 10:5537-5555. [DOI: 10.1039/d2tb00749e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes can cause many complications, which has become one of the most common diseases that may lead to death. Currently, the number of diabetics continues increasing year by year. Thus,...
Collapse
|
135
|
Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic Textiles for Wearable Point-of-Care Systems. Chem Rev 2021; 122:3259-3291. [PMID: 34939791 DOI: 10.1021/acs.chemrev.1c00502] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional public health systems are suffering from limited, delayed, and inefficient medical services, especially when confronted with the pandemic and the aging population. Fusing traditional textiles with diagnostic, therapeutic, and protective medical devices can unlock electronic textiles (e-textiles) as point-of-care platform technologies on the human body, continuously monitoring vital signs and implementing round-the-clock treatment protocols in close proximity to the patient. This review comprehensively summarizes the research advances on e-textiles for wearable point-of-care systems. We start with a brief introduction to emphasize the significance of e-textiles in the current healthcare system. Then, we describe textile sensors for diagnosis, textile therapeutic devices for medical treatment, and textile protective devices for prevention, by highlighting their working mechanisms, representative materials, and clinical application scenarios. Afterward, we detail e-textiles' connection technologies as the gateway for real-time data transmission and processing in the context of 5G technologies and Internet of Things. Finally, we provide new insights into the remaining challenges and future directions in the field of e-textiles. Fueled by advances in chemistry and materials science, textile-based diagnostic devices, therapeutic devices, protective medical devices, and communication units are expected to interact synergistically to construct intelligent, wearable point-of-care textile platforms, ultimately illuminating the future of healthcare system in the Internet of Things era.
Collapse
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
136
|
Sun YJ, Lin CH, Wu MR, Lee SH, Yang J, Kunchur CR, Mujica EM, Chiang B, Jung YS, Wang S, Mahajan VB. An intravitreal implant injection method for sustained drug delivery into mouse eyes. CELL REPORTS METHODS 2021; 1:100125. [PMID: 35128514 PMCID: PMC8813043 DOI: 10.1016/j.crmeth.2021.100125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Using small molecule drugs to treat eye diseases carries benefits of specificity, scalability, and transportability, but their efficacy is significantly limited by a fast intraocular clearance rate. Ocular drug implants (ODIs) present a compelling means for the slow and sustained release of small molecule drugs inside the eye. However, methods are needed to inject small molecule ODIs into animals with small eyes, such as mice, which are the primary genetic models for most human ocular diseases. Consequently, it has not been possible to fully investigate efficacy and ocular pharmacokinetics of ODIs. Here, we present a robust, cost-effective, and minimally invasive method called "mouse implant intravitreal injection" (MI3) to deliver ODIs into mouse eyes. This method will expand ODI research to cover the breadth of human eye diseases modeled in mice.
Collapse
Affiliation(s)
- Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Cheng-Hui Lin
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Man-Ru Wu
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Jing Yang
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Caitlin R. Kunchur
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Elena M. Mujica
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Bryce Chiang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Youn Soo Jung
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Department of Epidemiology and Clinical Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sui Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
137
|
Lee H, Lee J, Park H, Nam MS, Heo YJ, Kim S. Batteryless, Miniaturized Implantable Glucose Sensor Using a Fluorescent Hydrogel. SENSORS 2021; 21:s21248464. [PMID: 34960558 PMCID: PMC8704986 DOI: 10.3390/s21248464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
We propose a biomedical sensor system for continuous monitoring of glucose concentration. Despite recent advances in implantable biomedical devices, mm sized devices have yet to be developed due to the power limitation of the device in a tissue. We here present a mm sized wireless system with backscattered frequency-modulation communication that enables a low-power operation to read the glucose level from a fluorescent hydrogel sensor. The configuration of the reader structure is optimized for an efficient wireless power transfer and data communication, miniaturizing the entire implantable device to 3 × 6 mm 2 size. The operation distance between the reader and the implantable device reaches 2 mm with a transmission power of 33 dBm. We demonstrate that the frequency of backscattered signals changes according to the light intensity of the fluorescent glucose sensor. We envision that the present wireless interface can be applied to other fluorescence-based biosensors to make them highly comfortable, biocompatible, and stable within a body.
Collapse
Affiliation(s)
- Hyeonkeon Lee
- Department of Electronics and Information Convergence Engineering (BK21 Four), Kyung Hee University, Yong-in 17104, Korea; (H.L.); (J.L.); (H.P.)
- Institute for Wearable Convergence Electronics, Kyung Hee University, Yong-in 17104, Korea
| | - Jongheon Lee
- Department of Electronics and Information Convergence Engineering (BK21 Four), Kyung Hee University, Yong-in 17104, Korea; (H.L.); (J.L.); (H.P.)
- Institute for Wearable Convergence Electronics, Kyung Hee University, Yong-in 17104, Korea
| | - Honghyeon Park
- Department of Electronics and Information Convergence Engineering (BK21 Four), Kyung Hee University, Yong-in 17104, Korea; (H.L.); (J.L.); (H.P.)
- Institute for Wearable Convergence Electronics, Kyung Hee University, Yong-in 17104, Korea
| | - Mi Song Nam
- Department of Mechanical Engineering and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yong-in 17104, Korea;
| | - Yun Jung Heo
- Department of Mechanical Engineering and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yong-in 17104, Korea;
- Correspondence: (Y.J.H.); (S.K.)
| | - Sanghoek Kim
- Department of Electronics and Information Convergence Engineering (BK21 Four), Kyung Hee University, Yong-in 17104, Korea; (H.L.); (J.L.); (H.P.)
- Institute for Wearable Convergence Electronics, Kyung Hee University, Yong-in 17104, Korea
- Correspondence: (Y.J.H.); (S.K.)
| |
Collapse
|
138
|
Zhang S, Zeng J, Wang C, Feng L, Song Z, Zhao W, Wang Q, Liu C. The Application of Wearable Glucose Sensors in Point-of-Care Testing. Front Bioeng Biotechnol 2021; 9:774210. [PMID: 34957071 PMCID: PMC8692794 DOI: 10.3389/fbioe.2021.774210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes and its complications have become a worldwide concern that influences human health negatively and even leads to death. The real-time and convenient glucose detection in biofluids is urgently needed. Traditional glucose testing is detecting glucose in blood and is invasive, which cannot be continuous and results in discomfort for the users. Consequently, wearable glucose sensors toward continuous point-of-care glucose testing in biofluids have attracted great attention, and the trend of glucose testing is from invasive to non-invasive. In this review, the wearable point-of-care glucose sensors for the detection of different biofluids including blood, sweat, saliva, tears, and interstitial fluid are discussed, and the future trend of development is prospected.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Junyan Zeng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo, China
| | - Luying Feng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Zening Song
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Wenjie Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chen Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
139
|
|
140
|
Elsherif M, Alam F, Salih AE, AlQattan B, Yetisen AK, Butt H. Wearable Bifocal Contact Lens for Continual Glucose Monitoring Integrated with Smartphone Readers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102876. [PMID: 34605152 DOI: 10.1002/smll.202102876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Commercial implantable continuous glucose monitoring devices are invasive and discomfort. Here, a minimally-invasive glucose detection system is developed to provide quantitative glucose measurements continually based on bifocal contact lenses. A glucose-sensitive phenylboronic acid derivative is immobilized in a hydrogel matrix and the surface of the hydrogel is imprinted with a Fresnel lens. The glucose-responsive hydrogel is attached to a commercial soft contact lens to be transformed into a bifocal contact lens. The contact lens showed bifocal lengths; far-field focal length originated from the contact lens' curvature, and near-field focal length resulting from the Fresnel lens. When tear glucose increased, the refractive index and groove depth of the Fresnel lens changed, shifting the near-field focal length and the light focusing efficiency. The recorded optical signals are detected at an identical distance far from the contact lens change. The bifocal contact lens allowed for detecting the tear glucose concentration within the physiological range of healthy individuals and diabetics (0.0-3.3 mm). The contact lens rapidly responded to glucose concentration changes and reached 90% of equilibrium within 40 min. The bifocal contact lens is a wearable diagnostic platform for continual biomarker detection at point-of-care settings.
Collapse
Affiliation(s)
- Mohamed Elsherif
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| | - Fahad Alam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| | - Ahmed E Salih
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| | - Bader AlQattan
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| |
Collapse
|
141
|
Hong W, Jiang C, Qin M, Song Z, Ji P, Wang L, Tu K, Lu L, Guo Z, Yang B, Wang X, Liu J. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor. SCIENCE ADVANCES 2021; 7:eabj4273. [PMID: 34818034 PMCID: PMC8612680 DOI: 10.1126/sciadv.abj4273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Precision medicine calls for high demand of continuous, closed-loop physiological monitoring and accurate control, especially for cardiovascular diseases. Cardiac optogenetics is promising for its superiority of cell selectivity and high time-space accuracy, but the efficacy of optogenetics relative to the input of light stimulus is detected and controlled separately by discrete instruments in vitro, which suffers from time retardation, energy consumption, and poor portability. Thus, a highly integrated system based on implantable sensors combining closed-loop self-monitoring with simultaneous treatment is highly desired. Here, we report a self-adaptive cardiac optogenetics system based on an original negative stretching-resistive strain sensor array for closed-loop heart rate recording and self-adaptive light intensity control. The strain sensor exhibits a dual and synchronous capability of precise monitor and physiological-electrical-optical regulation. In an in vivo ventricular tachycardia model, our system demonstrates the potential of a negative stretching-resistive device in controlling-in-sensor electronics for wearable/implantable autodiagnosis and telehealth applications.
Collapse
Affiliation(s)
- Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunpeng Jiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Pengfei Ji
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Lu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhejun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author.
| |
Collapse
|
142
|
Yang B, Jiang X, Fang X, Kong J. Wearable chem-biosensing devices: from basic research to commercial market. LAB ON A CHIP 2021; 21:4285-4310. [PMID: 34672310 DOI: 10.1039/d1lc00438g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable chem-biosensors have been garnering tremendous interest due to the significant potential in tailored healthcare diagnostics and therapeutics. With the development of the medical diagnostics revolution, wearable chem-biosensors as a rapidly emerging wave allow individuals to perform on-demand detection and obtain the required in-depth information. In contrast to commercial wearables, which tend to be miniaturized for measuring physical activities, the recent progressive wearable chem-biosensing device have mainly focused on non-invasive or minimally invasive monitoring biomarkers at the molecular level. Wearables is a multidisciplinary subject, and chem-biosensing is one of the most significant technologies. In this review, the currently basic academic research of wearable chem-biosensing devices and its commercial transformation were summarized and highlighted. Moreover, some representative wearable products on the market for individual health managements are presented. Strategies for the identification and sensing of biomarkers are discussed to further promote the development of wearable chem-biosensing devices. We also shared the limitations and breakthroughs of the next generation of chemo-biosensor wearables, from home use to clinical diagnosis.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P. R. China.
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P. R. China.
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
143
|
You R, Fu X, Duan X. Acoustofluidic Based Wireless Micropump for Portable Drug Delivery Applications . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1276-1279. [PMID: 34891518 DOI: 10.1109/embc46164.2021.9629811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, an acoustofluidic based wireless micropump for drug delivery was proposed and fabricated. The key actuator of this micropump is a small gigahertz piezoelectric resonator, which could induce strong fluidic streaming at low applied power. This acoustofluidic micropump has stable and accurate dosage resolution (7.0 μL), and sufficient flow rate (1.34 mL/min). The miniaturized size and wireless controlled operation prove it as a portable drug delivery system.Clinical Relevance- The acoustofluidic based micropump could apply for the drug administration in a safe, effective and stable form. It has potential to integrate with miniaturized sensors and electronic circuit to form portable drug delivery systems, realizing smart on-demand drug delivery.
Collapse
|
144
|
van den Brink W, Bloem R, Ananth A, Kanagasabapathi T, Amelink A, Bouwman J, Gelinck G, van Veen S, Boorsma A, Wopereis S. Digital Resilience Biomarkers for Personalized Health Maintenance and Disease Prevention. Front Digit Health 2021; 2:614670. [PMID: 34713076 PMCID: PMC8521930 DOI: 10.3389/fdgth.2020.614670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Health maintenance and disease prevention strategies become increasingly prioritized with increasing health and economic burden of chronic, lifestyle-related diseases. A key element in these strategies is the empowerment of individuals to control their health. Self-measurement plays an essential role in achieving such empowerment. Digital measurements have the advantage of being measured non-invasively, passively, continuously, and in a real-world context. An important question is whether such measurement can sensitively measure subtle disbalances in the progression toward disease, as well as the subtle effects of, for example, nutritional improvement. The concept of resilience biomarkers, defined as the dynamic evaluation of the biological response to an external challenge, has been identified as a viable strategy to measure these subtle effects. In this review, we explore the potential of integrating this concept with digital physiological measurements to come to digital resilience biomarkers. Additionally, we discuss the potential of wearable, non-invasive, and continuous measurement of molecular biomarkers. These types of innovative measurements may, in the future, also serve as a digital resilience biomarker to provide even more insight into the personal biological dynamics of an individual. Altogether, digital resilience biomarkers are envisioned to allow for the measurement of subtle effects of health maintenance and disease prevention strategies in a real-world context and thereby give personalized feedback to improve health.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robbert Bloem
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Adithya Ananth
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Thiru Kanagasabapathi
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Arjen Amelink
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Gerwin Gelinck
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Sjaak van Veen
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Andre Boorsma
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
145
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
146
|
Non-invasive wearable chemical sensors in real-life applications. Anal Chim Acta 2021; 1179:338643. [PMID: 34535258 DOI: 10.1016/j.aca.2021.338643] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, non-invasive wearable chemical sensors have gained tremendous attention in the field of personal health monitoring and medical diagnosis. These sensors provide non-invasive, real-time, and continuous monitoring of targeted biomarkers with more simplicity than the conventional diagnostic approaches. This review primarily describes the substrate materials used for sensor fabrication, sample collection and handling, and analytical detection techniques that are utilized to detect biomarkers in different biofluids. Common substrates including paper, textile, and hydrogel for wearable sensor fabrication are discussed. Principles and applications of colorimetric and electrochemical detection in wearable chemical sensors are illustrated. Data transmission systems enabling wireless communication between the sensor and output devices are also discussed. Finally, examples of different designs of wearable chemical sensors including tattoos, garments, and accessories are shown. Successful development of non-invasive wearable chemical sensors will effectively help users to manage their personal health, predict the potential diseases, and eventually improve the overall quality of life.
Collapse
|
147
|
Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100899. [PMID: 34247412 PMCID: PMC11481680 DOI: 10.1002/adma.202100899] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The continuous operation of wearable electronics demands reliable sources of energy, currently met through Li-ion batteries and various energy harvesters. These solutions are being used out of necessity despite potential safety issues and unsustainable environmental impact. Safe and sustainable energy sources can boost the use of wearables systems in diverse applications such as health monitoring, prosthetics, and sports. In this regard, sweat- and sweat-equivalent-based studies have attracted tremendous attention through the demonstration of energy-generating biofuel cells, promising power densities as high as 3.5 mW cm-2 , storage using sweat-electrolyte-based supercapacitors with energy and power densities of 1.36 Wh kg-1 and 329.70 W kg-1 , respectively, and sweat-activated batteries with an impressive energy density of 67 Ah kg-1 . A combination of these energy generating, and storage devices can lead to fully energy-autonomous wearables capable of providing sustainable power in the µW to mW range, which is sufficient to operate both sensing and communication devices. Here, a comprehensive review covering these advances, addressing future challenges and potential solutions related to fully energy-autonomous wearables is presented, with emphasis on sweat-based energy storage and energy generation elements along with sweat-based sensors as applications.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) GroupJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Lu Yin
- Department of NanoengineeringCentre of Wearable SensorsUniversity of CaliforniaSan DiegoCA92093USA
| | - Arokia Nathan
- Darwin CollegeUniversity of CambridgeSilver StreetCambridgeCB3 9EUUK
| | - Joseph Wang
- Department of NanoengineeringCentre of Wearable SensorsUniversity of CaliforniaSan DiegoCA92093USA
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
148
|
Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv Healthc Mater 2021; 10:e2100116. [PMID: 33960133 DOI: 10.1002/adhm.202100116] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano-electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
149
|
Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. Adv Healthc Mater 2021; 10:e2100734. [PMID: 34165240 DOI: 10.1002/adhm.202100734] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/06/2021] [Indexed: 12/12/2022]
Abstract
The emergence and development of noninvasive biosensors largely facilitate the collection of physiological signals and the processing of health-related data. The utilization of appropriate machine learning algorithms improves the accuracy and efficiency of biosensors. Machine learning-reinforced biosensors are started to use in clinical practice, health monitoring, and food safety, bringing a digital revolution in healthcare. Herein, the recent advances in machine learning-reinforced noninvasive biosensors applied in healthcare are summarized. First, different types of noninvasive biosensors and physiological signals collected are categorized and summarized. Then machine learning algorithms adopted in subsequent data processing are introduced and their practical applications in biosensors are reviewed. Finally, the challenges faced by machine learning-reinforced biosensors are raised, including data privacy and adaptive learning capability, and their prospects in real-time monitoring, out-of-clinic diagnosis, and onsite food safety detection are proposed.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jianwu Wang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Tianyi Liu
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
150
|
Tu J, Gao W. Ethical Considerations of Wearable Technologies in Human Research. Adv Healthc Mater 2021; 10:e2100127. [PMID: 33870653 PMCID: PMC8429072 DOI: 10.1002/adhm.202100127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Wearable technologies hold great promise for disease diagnosis and patient care. Despite the flourishing research activities in this field, only a handful of wearable devices are commercialized and cleared for medical usage. The successful translation of current proof-of-concept prototypes requires extensive in-human testing. There is a lag between current standards and operation protocols to guide the responsible and ethical conduct of researchers in such in-human studies and the rapid development of the field. This essay presents relevant ethical concerns in early-stage human research from a researcher's perspective.
Collapse
Affiliation(s)
- Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, United States
| |
Collapse
|