101
|
Rogozin IB, Basu MK, Csürös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol 2009; 1:99-113. [PMID: 20333181 PMCID: PMC2817406 DOI: 10.1093/gbe/evp011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 11/29/2022] Open
Abstract
The deep phylogeny of eukaryotes is an important but extremely difficult problem of evolutionary biology. Five eukaryotic supergroups are relatively well established but the relationship between these supergroups remains elusive, and their divergence seems to best fit a “Big Bang” model. Attempts were made to root the tree of eukaryotes by using potential derived shared characters such as unique fusions of conserved genes. One popular model of eukaryotic evolution that emerged from this type of analysis is the unikont–bikont phylogeny: The unikont branch consists of Metazoa, Choanozoa, Fungi, and Amoebozoa, whereas bikonts include the rest of eukaryotes, namely, Plantae (green plants, Chlorophyta, and Rhodophyta), Chromalveolata, excavates, and Rhizaria. We reexamine the relationships between the eukaryotic supergroups using a genome-wide analysis of rare genomic changes (RGCs) associated with multiple, conserved amino acids (RGC_CAMs and RGC_CAs), to resolve trifurcations of major eukaryotic lineages. The results do not support the basal position of Chromalveolata with respect to Plantae and unikonts or the monophyly of the bikont group and appear to be best compatible with the monophyly of unikonts and Chromalveolata. Chromalveolata show a distinct, additional signal of affinity with Plantae, conceivably, owing to genes transferred from the secondary, red algal symbiont. Excavates are derived forms, with extremely long branches that complicate phylogenetic inference; nevertheless, the RGC analysis suggests that they are significantly more likely to cluster with the unikont–Chromalveolata assemblage than with the Plantae. Thus, the first split in eukaryotic evolution might lie between photosynthetic and nonphotosynthetic forms and so could have been triggered by the endosymbiosis between an ancestral unicellular eukaryote and a cyanobacterium that gave rise to the chloroplast.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
102
|
Abstract
A recent phylogenomic investigation shows that the enigmatic flagellate Breviata is a distinct anaerobic lineage within the eukaryote super-group Amoebozoa and challenges the unikont-bikont rooting of the tree of eukaryotes.
Collapse
Affiliation(s)
- Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Canada
| | | |
Collapse
|
103
|
Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, Frugier M. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem 2009; 284:18893-903. [PMID: 19443655 DOI: 10.1074/jbc.m109.015297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinctive features of aspartyl-transfer RNA (tRNA) synthetases (AspRS) from the protozoan Plasmodium genus are described. These apicomplexan AspRSs contain 29-31 amino acid insertions in their anticodon binding domains, a remarkably long N-terminal appendix that varies in size from 110 to 165 amino acids and two potential initiation codons. This article focuses on the atypical functional and structural properties of Plasmodium falciparum cytosolic AspRS, the causative parasite of human malaria. This species encodes a 626 or 577 amino acids AspRS depending on whether initiation starts on the first or second in-frame initiation codon. The longer protein has poor solubility and a propensity to aggregate. Production of the short version was favored as shown by the comparison of the recombinant protein with endogenous AspRS. Comparison of the tRNA aminoacylation activity of wild-type and mutant parasite AspRSs with those of yeast and human AspRSs revealed unique properties. The N-terminal extension contains a motif that provides unexpectedly strong RNA binding to plasmodial AspRS. Furthermore, experiments demonstrated the requirement of the plasmodial insertion for AspRS dimerization and, therefore, tRNA aminoacylation and other putative functions. Implications for the parasite biology are proposed. These data provide a robust background for unraveling the precise functional properties of the parasite AspRS and for developing novel lead compounds against malaria, targeting its idiosyncratic domains.
Collapse
Affiliation(s)
- Tania Bour
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
104
|
Whalley J, Brooks S, Beiko RG. Radié: visualizing taxon properties and parsimonious mappings using a radial phylogenetic tree. Bioinformatics 2009; 25:672-3. [PMID: 19193733 DOI: 10.1093/bioinformatics/btp044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SUMMARY A phenotypic character has a convex mapping to a given phylogenetic tree if each character state can be assigned a single point of origin in the tree. However, phenomena such as convergent evolution and lateral genetic transfer can lead to intermingling of character states and a consequent non-convex mapping. The phylogenetic heterogeneity of different characters can identify subsets of states that are non-randomly associated or which may have been transferred from one lineage to another. We have developed Radié, an interactive 3D Java application for mapping character states to the leaves and internal edges of a radial phylogenetic tree. In Radié each state of a given character is associated with a unique color, and internal edges with many descendant character states can be represented in a number of different ways to illustrate the diversity within each group. AVAILABILITY Radié is freely available for download at http://kiwi.cs.dal.ca/~beiko/software-and-data/radie; source code is available upon request from the authors.
Collapse
Affiliation(s)
- Jacqueline Whalley
- School of Computing and Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | | | | |
Collapse
|
105
|
Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci U S A 2009; 106:3859-64. [PMID: 19237557 DOI: 10.1073/pnas.0807880106] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all of eukaryotic diversity has been classified into 6 suprakingdom-level groups (supergroups) based on molecular and morphological/cell-biological evidence; these are Opisthokonta, Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Excavata. However, molecular phylogeny has not provided clear evidence that either Chromalveolata or Excavata is monophyletic, nor has it resolved the relationships among the supergroups. To establish the affinities of Excavata, which contains parasites of global importance and organisms regarded previously as primitive eukaryotes, we conducted a phylogenomic analysis of a dataset of 143 proteins and 48 taxa, including 19 excavates. Previous phylogenomic studies have not included all major subgroups of Excavata, and thus have not definitively addressed their interrelationships. The enigmatic flagellate Andalucia is sister to typical jakobids. Jakobids (including Andalucia), Euglenozoa and Heterolobosea form a major clade that we name Discoba. Analyses of the complete dataset group Discoba with the mitochondrion-lacking excavates or "metamonads" (diplomonads, parabasalids, and Preaxostyla), but not with the final excavate group, Malawimonas. This separation likely results from a long-branch attraction artifact. Gradual removal of rapidly-evolving taxa from the dataset leads to moderate bootstrap support (69%) for the monophyly of all Excavata, and 90% support once all metamonads are removed. Most importantly, Excavata robustly emerges between unikonts (Amoebozoa + Opisthokonta) and "megagrouping" of Archaeplastida, Rhizaria, and chromalveolates. Our analyses indicate that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.
Collapse
|
106
|
Ding G, Yu Z, Zhao J, Wang Z, Li Y, Xing X, Wang C, Liu L, Li Y. Tree of life based on genome context networks. PLoS One 2008; 3:e3357. [PMID: 18852873 PMCID: PMC2566592 DOI: 10.1371/journal.pone.0003357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/11/2008] [Indexed: 11/18/2022] Open
Abstract
Efforts in phylogenomics have greatly improved our understanding of the backbone tree of life. However, due to the systematic error in sequence data, a sequence-based phylogenomic approach leads to well-resolved but statistically significant incongruence. Thus, independent test of current phylogenetic knowledge is required. Here, we have devised a distance-based strategy to reconstruct a highly resolved backbone tree of life, on the basis of the genome context networks of 195 fully sequenced representative species. Along with strongly supporting the monophylies of three superkingdoms and most taxonomic sub-divisions, the derived tree also suggests some intriguing results, such as high G+C gram positive origin of Bacteria, classification of Symbiobacterium thermophilum and Alcanivorax borkumensis in Firmicutes. Furthermore, simulation analyses indicate that addition of more gene relationships with high accuracy can greatly improve the resolution of the phylogenetic tree. Our results demonstrate the feasibility of the reconstruction of highly resolved phylogenetic tree with extensible gene networks across all three domains of life. This strategy also implies that the relationships between the genes (gene network) can define what kind of species it is.
Collapse
Affiliation(s)
- Guohui Ding
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhonghao Yu
- College of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jing Zhao
- College of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Zhen Wang
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yun Li
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiaobin Xing
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chuan Wang
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lei Liu
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Yixue Li
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- College of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
107
|
Field MC, Gabernet-Castello C, Dacks JB. Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:84-96. [PMID: 17977461 DOI: 10.1007/978-0-387-74021-8_7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mark C Field
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | |
Collapse
|
108
|
Brinkmann H, Philippe H. The Diversity Of Eukaryotes And The Root Of The Eukaryotic Tree. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:20-37. [DOI: 10.1007/978-0-387-74021-8_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
109
|
Jékely G. Origin of eukaryotic endomembranes: a critical evaluation of different model scenarios. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:38-51. [PMID: 17977457 DOI: 10.1007/978-0-387-74021-8_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
All cells can be assigned to one of two categories based on the complexity of cellular organization, eukaryotes and prokaryotes. Eukaryotes possess, among other distinguishing features, an intracellular dynamic membrane system through which there is a constant flow of membranes scaffolded by an internal cytoskeleton. Prokaryotes, however, can have internal membranes, entirely lack a system that resembles eukaryotic endomembranes in terms of dynamics, complexity and the multitude of functions. How and why did the complex endomembrane system of eukaryotes arise? Here I give a critical overview of the different cell biological model scenarios that have been proposed to explain endomembrane origins. I argue that the widely held symbiotic models for the origin of the nuclear envelope and other endomembranes are cell biologically and evolutionarily highly implausible. Recent findings about the origin of nuclear pore complexes also severely challenge such models. I also criticize a scenario of de novo vesicle formation at the origin of the endomembrane system. I contrast these scenarios to traditional and revised autogenous models according to which eukaryotic endomembranes evolved by the inward budding of a prokaryotic cell's plasma membrane. I argue that such models can best satisfy the major constraints of membrane topology, membrane heredity and straightforwardly account for selection pressures while being consistent with genomic findings.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
110
|
Kim E, Graham LE. EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. PLoS One 2008; 3:e2621. [PMID: 18612431 PMCID: PMC2440802 DOI: 10.1371/journal.pone.0002621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/02/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup.
Collapse
Affiliation(s)
- Eunsoo Kim
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | |
Collapse
|
111
|
Abstract
The genomic peculiarities among microbial eukaryotes challenge the conventional wisdom of genome evolution. Currently, many studies and textbooks explore principles of genome evolution from a limited number of eukaryotic lineages, focusing often on only a few representative species of plants, animals and fungi. Increasing emphasis on studies of genomes in microbial eukaryotes has and will continue to uncover features that are either not present in the representative species (e.g. hypervariable karyotypes or highly fragmented mitochondrial genomes) or are exaggerated in microbial groups (e.g. chromosomal processing between germline and somatic nuclei). Data for microbial eukaryotes have emerged from recent genome sequencing projects, enabling comparisons of the genomes from diverse lineages across the eukaryotic phylogenetic tree. Some of these features, including amplified rDNAs, subtelomeric rDNAs and reduced genomes, appear to have evolved multiple times within eukaryotes, whereas other features, such as absolute strand polarity, are found only within single lineages.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
112
|
Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. BMC Evol Biol 2008; 8:151. [PMID: 18485228 PMCID: PMC2416651 DOI: 10.1186/1471-2148-8-151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive. Results Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses. Conclusion We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.
Collapse
|
113
|
Phylogenetic and Structural Analysis of Translationally Controlled Tumor Proteins. J Mol Evol 2008; 66:472-83. [DOI: 10.1007/s00239-008-9099-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/06/2008] [Accepted: 02/28/2008] [Indexed: 12/16/2022]
|
114
|
Allen JWA, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 2008; 275:2385-402. [PMID: 18393999 DOI: 10.1111/j.1742-4658.2008.06380.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment is restricted to, but conserved throughout, the protist phylum Euglenozoa.
Collapse
|
115
|
Rogozin IB, Thomson K, Csürös M, Carmel L, Koonin EV. Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov's law of homologous series. Biol Direct 2008; 3:7. [PMID: 18346278 PMCID: PMC2292158 DOI: 10.1186/1745-6150-3-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare genomic changes (RGCs) that are thought to comprise derived shared characters of individual clades are becoming an increasingly important class of markers in genome-wide phylogenetic studies. Recently, we proposed a new type of RGCs designated RGC_CAMs (after Conserved Amino acids-Multiple substitutions) that were inferred using genome-wide identification of amino acid replacements that were: i) located in unambiguously aligned regions of orthologous genes, ii) shared by two or more taxa in positions that contain a different, conserved amino acid in a much broader range of taxa, and iii) require two or three nucleotide substitutions. When applied to animal phylogeny, the RGC_CAM approach supported the coelomate clade that unites deuterostomes with arthropods as opposed to the ecdysozoan (molting animals) clade. However, a non-negligible level of homoplasy was detected. RESULTS We provide a direct estimate of the level of homoplasy caused by parallel changes and reversals among the RGC_CAMs using 462 alignments of orthologous genes from 19 eukaryotic species. It is shown that the impact of parallel changes and reversals on the results of phylogenetic inference using RGC_CAMs cannot explain the observed support for the Coelomata clade. In contrast, the evidence in support of the Ecdysozoa clade, in large part, can be attributed to parallel changes. It is demonstrated that parallel changes are significantly more common in internal branches of different subtrees that are separated from the respective common ancestor by relatively short times than in terminal branches separated by longer time intervals. A similar but much weaker trend was detected for reversals. The observed evolutionary trend of parallel changes is explained in terms of the covarion model of molecular evolution. As the overlap between the covarion sets in orthologous genes from different lineages decreases with time after divergence, the likelihood of parallel changes decreases as well. CONCLUSION The level of homoplasy observed here appears to be low enough to justify the utility of RGC_CAMs and other types of RGCs for resolution of hard problems in phylogeny. Parallel changes, one of the major classes of events leading to homoplasy, occur much more often in relatively recently diverged lineages than in those separated from their last common ancestor by longer time intervals of time. This pattern seems to provide the molecular-evolutionary underpinning of Vavilov's law of homologous series and is readily interpreted within the framework of the covarion model of molecular evolution.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Karen Thomson
- Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA
| | - Miklós Csürös
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Liran Carmel
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
116
|
Aleshin VV, Konstantinova AV, Mikhailov KV, Nikitin MA, Petrov NB. Do we need many genes for phylogenetic inference? BIOCHEMISTRY (MOSCOW) 2008; 72:1313-23. [PMID: 18205615 DOI: 10.1134/s000629790712005x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.
Collapse
Affiliation(s)
- V V Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
117
|
Itoh M, Nacher JC, Kuma KI, Goto S, Kanehisa M. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes. Genome Biol 2008; 8:R121. [PMID: 17588271 PMCID: PMC2394772 DOI: 10.1186/gb-2007-8-6-r121] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/10/2007] [Accepted: 06/25/2007] [Indexed: 01/08/2023] Open
Abstract
A rapid emergence of animal-specific domains was observed in animals, contributing to specific domain combinations and functional diversification, but no similar trends were observed in other clades of eukaryotes. Background In higher multicellular eukaryotes, complex protein domain combinations contribute to various cellular functions such as regulation of intercellular or intracellular signaling and interactions. To elucidate the characteristics and evolutionary mechanisms that underlie such domain combinations, it is essential to examine the different types of domains and their combinations among different groups of eukaryotes. Results We observed a large number of group-specific domain combinations in animals, especially in vertebrates. Examples include animal-specific combinations in tyrosine phosphorylation systems and vertebrate-specific combinations in complement and coagulation cascades. These systems apparently underwent extensive evolution in the ancestors of these groups. In extant animals, especially in vertebrates, animal-specific domains have greater connectivity than do other domains on average, and contribute to the varying number of combinations in each animal subgroup. In other groups, the connectivities of older domains were greater on average. To observe the global behavior of domain combinations during evolution, we traced the changes in domain combinations among animals and fungi in a network analysis. Our results indicate that there is a correlation between the differences in domain combinations among different phylogenetic groups and different global behaviors. Conclusion Rapid emergence of animal-specific domains was observed in animals, contributing to specific domain combinations and functional diversification, but no such trends were observed in other clades of eukaryotes. We therefore suggest that the strategy for achieving complex multicellular systems in animals differs from that of other eukaryotes.
Collapse
Affiliation(s)
- Masumi Itoh
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jose C Nacher
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kei-ichi Kuma
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Susumu Goto
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Minoru Kanehisa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
118
|
Fuellen G. Homology and phylogeny and their automated inference. Naturwissenschaften 2008; 95:469-81. [PMID: 18288471 DOI: 10.1007/s00114-008-0348-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 12/20/2007] [Accepted: 01/12/2008] [Indexed: 11/25/2022]
Abstract
The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this "historical" approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of 'my closest relative looks and behaves like I do', often referred to as 'guilt by association'. To enable knowledge transfer on a large scale, several automated 'phylogenomics pipelines' have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.
Collapse
Affiliation(s)
- Georg Fuellen
- Bioinformatics Research Group, Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
| |
Collapse
|
119
|
Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, Cole JC, Logsdon JM, Patterson DJ, Bhattacharya D, Katz LA. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 2008; 8:14. [PMID: 18205932 PMCID: PMC2249577 DOI: 10.1186/1471-2148-8-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 01/18/2008] [Indexed: 11/17/2022] Open
Abstract
Background Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches. Results The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the 'Opisthokonta' receive strong support in our analyses. The supergroup 'Amoebozoa' has only moderate support, whereas the 'Chromalveolata', 'Excavata', 'Plantae', and 'Rhizaria' receive very limited or no support. Conclusion Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the eukaryotic tree of life, which will be critical for resolving their phylogenetic interrelationships.
Collapse
Affiliation(s)
- Hwan Su Yoon
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Scott DA, Hickerson SM, Vickers TJ, Beverley SM. The role of the mitochondrial glycine cleavage complex in the metabolism and virulence of the protozoan parasite Leishmania major. J Biol Chem 2008; 283:155-165. [PMID: 17981801 PMCID: PMC2963101 DOI: 10.1074/jbc.m708014200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For the human pathogen Leishmania major, a key metabolic function is the synthesis of thymidylate, which requires 5,10-methylenetetrahydrofolate (5,10-CH(2)-THF). 5,10-CH(2)-THF can be synthesized from glycine by the mitochondrial glycine cleavage complex (GCC). Bioinformatic analysis revealed the four subunits of the GCC in the L. major genome, and the role of the GCC in parasite metabolism and virulence was assessed through studies of the P subunit (glycine decarboxylase (GCVP)). First, a tagged GCVP protein was expressed and localized to the parasite mitochondrion. Second, a gcvP(-) mutant was generated and shown to lack significant GCC activity using an indirect in vivo assay after incorporation of label from [2-(14)C]glycine into DNA. The gcvP(-) mutant grew poorly in the presence of excess glycine or minimal serine; these studies also established that L. major promastigotes require serine for optimal growth. Although gcvP(-) promastigotes and amastigotes showed normal virulence in macrophage infections in vitro, both forms of the parasite showed substantially delayed replication and lesion pathology in infections of both genetically susceptible or resistant mice. These data suggest that, as the physiology of the infection site changes during the course of infection, so do the metabolic constraints on parasite replication. This conclusion has great significance to the interpretation of metabolic requirements for virulence. Last, these studies call attention in trypanosomatid protozoa to the key metabolic intermediate 5,10-CH(2)-THF, situated at the junction of serine, glycine, and thymidylate metabolism. Notably, genome-based predictions suggest the related parasite Trypanosoma brucei is totally dependent on the GCC for 5,10-CH(2)-THF synthesis.
Collapse
Affiliation(s)
- David A Scott
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Suzanne M Hickerson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tim J Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
121
|
Phylogenomics, Protein Family Evolution, and the Tree of Life: An Integrated Approach between Molecular Evolution and Computational Intelligence. APPLICATIONS OF COMPUTATIONAL INTELLIGENCE IN BIOLOGY 2008. [DOI: 10.1007/978-3-540-78534-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
122
|
Anantharaman V, Iyer LM, Aravind L. Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. Annu Rev Microbiol 2007; 61:453-75. [PMID: 17506670 DOI: 10.1146/annurev.micro.61.080706.093309] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Data from protist genomes suggest that eukaryotes show enormous variability in their gene complements, especially of genes coding regulatory proteins. Overall counts of eukaryotic signaling proteins show weak nonlinear scaling with proteome size, but individual superfamilies of signaling domains might show vast expansions in certain protists. Alteration of domain architectural complexity of signaling proteins and repeated lineage-specific reshaping of architectures might have played a major role in the emergence of new signaling interactions in different eukaryotes. Lateral transfer of various signaling domains from bacteria or from hosts, in parasites such as apicomplexans, appears to also have played a major role in the origin of new functional networks. Lineage-specific expansion of regulatory proteins, particularly of transcription factors, has played a critical role in the adaptive radiation of different protist lineages. Comparative genomics allows objective reconstruction of the ancestral conditions and subsequent diversification of several regulatory systems involved in phosphorylation, cyclic nucleotide signaling, Ubiquitin conjugation, chromatin remodeling, and posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
123
|
Dacks JB, Walker G, Field MC. Implications of the new eukaryotic systematics for parasitologists. Parasitol Int 2007; 57:97-104. [PMID: 18180199 DOI: 10.1016/j.parint.2007.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/15/2007] [Accepted: 11/16/2007] [Indexed: 11/24/2022]
Abstract
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes "progressing" towards a "crown radiation" of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
124
|
Singh S, Malik BK, Sharma DK. Choke point analysis of metabolic pathways in E.histolytica: a computational approach for drug target identification. Bioinformation 2007; 2:68-72. [PMID: 18188424 PMCID: PMC2174424 DOI: 10.6026/97320630002068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 07/17/2007] [Accepted: 10/06/2007] [Indexed: 11/23/2022] Open
Abstract
With the Entamoeba genome essentially complete, the organism can be studied from a whole genome standpoint. The understanding of cellular mechanisms and interactions between cellular components is instrumental to the development of new effective drugs and vaccines. Metabolic pathway analysis is becoming increasingly important for assessing inherent network properties in reconstructed biochemical reaction networks. Metabolic pathways illustrate how proteins work in concert to produce cellular compounds or to transmit information at different levels. Identification of drug targets in E. histolytica through metabolic pathway analysis promises to be a novel approach in this direction. This article focuses on the identification of drug targets by subjecting the Entamoeba genome to BLAST with the e-value inclusion threshold set to 0.005 and choke point analysis. A total of 86.9 percent of proposed drug targets with biological evidence are chokepoint reactions in Entamoeba genome database.
Collapse
Affiliation(s)
- Shailza Singh
- Center for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | | | | |
Collapse
|
125
|
Centrohelida is still searching for a phylogenetic home: analyses of seven Raphidiophrys contractilis genes. Gene 2007; 405:47-54. [PMID: 17931802 DOI: 10.1016/j.gene.2007.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 06/25/2007] [Accepted: 09/06/2007] [Indexed: 11/21/2022]
Abstract
By recent advance in evolutionary biology, the majority of eukaryotes are classified into six eukaryotic assemblages called as "supergroups". However, several eukaryotic groups show no clear evolutionary affinity to any of the six supergroups. Centrohelida, one of major heliozoan groups, are such an unresolved lineage. In this study, we newly determined the genes encoding translation elongation factor 2 (EF2), cytosolic heat shock protein 70 (HSP70), and cytosolic heat shock protein 90 (HSP90) from the centroheliozoan Raphidiophrys contractilis. The three Raphidiophrys genes were then combined with previously determined actin, alpha-tubulin, beta-tubulin, and SSU rRNA sequences to phylogenetically analyze the position of Centrohelida in global eukaryotic phylogeny. Although the multi-gene data sets examined in this study are the largest ones including the centroheliozoan sequences, the relationships between Centrohelida and the eukaryotic groups considered were unresolved. Our careful investigation revealed that the phylogenetic estimates were highly sensitive to genes included in the multi-gene alignment. The signal of SSU rRNA and that of alpha-tubulin appeared to conflict with one another: the former strongly prefers a monophyly of Diplomonadida (e.g., Giardia), Parabasalia (e.g., Trichomonas), Heterolobosea (e.g., Naegleria), and Euglenozoa (e.g., Trypanosoma), while the latter unites Diplomonadida, Parabasalia, Metazoa, and Fungi. In addition, EF2 robustly unites Rhodophyta and Viridiplantae, while the remaining genes considered in this study do not positively support the particular relationship. Thus, it is difficult to identify the phylogenetic relatives of Centrohelida in the present study, since strong (and some are conflicting) gene-specific "signals" are predominant in the current multi-gene data. We concluded that larger scale multi-gene phylogenies are necessary to elucidate the origin and evolution of Centrohelida.
Collapse
|
126
|
Kloepper TH, Kienle CN, Fasshauer D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 2007; 18:3463-71. [PMID: 17596510 PMCID: PMC1951749 DOI: 10.1091/mbc.e07-03-0193] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 11/11/2022] Open
Abstract
Proteins of the SNARE (soluble N-ethylmalemide-sensitive factor attachment protein receptor) family are essential for the fusion of transport vesicles with an acceptor membrane. Despite considerable sequence divergence, their mechanism of action is conserved: heterologous sets assemble into membrane-bridging SNARE complexes, in effect driving membrane fusion. Within the cell, distinct functional SNARE units are involved in different trafficking steps. These functional units are conserved across species and probably reflect the conservation of the particular transport step. Here, we have systematically analyzed SNARE sequences from 145 different species and have established a highly accurate classification for all SNARE proteins. Principally, all SNAREs split into four basic types, reflecting their position in the four-helix bundle complex. Among these four basic types, we established 20 SNARE subclasses that probably represent the original repertoire of a eukaryotic cenancestor. This repertoire has been modulated independently in different lines of organisms. Our data are in line with the notion that the ur-eukaryotic cell was already equipped with the various compartments found in contemporary cells. Possibly, the development of these compartments is closely intertwined with episodes of duplication and divergence of a prototypic SNARE unit.
Collapse
Affiliation(s)
- Tobias H. Kloepper
- *Research Group Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany; and
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - C. Nickias Kienle
- *Research Group Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany; and
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dirk Fasshauer
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
127
|
Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF. Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans. Curr Biol 2007; 17:1420-5. [PMID: 17689961 DOI: 10.1016/j.cub.2007.07.036] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/18/2022]
Abstract
Resolving the global phylogeny of eukaryotes has proven to be challenging. Among the eukaryotic groups of uncertain phylogenetic position are jakobids, a group of bacterivorous flagellates that possess the most bacteria-like mitochondrial genomes known. Jakobids share several ultrastructural features with malawimonads and an assemblage of anaerobic protists (e.g., diplomonads and oxymonads). These lineages together with Euglenozoa and Heterolobosea have collectively been designated "excavates". However, published molecular phylogenies based on the sequences of nuclear rRNAs and up to six nucleus-encoded proteins do not provide convincing support for the monophyly of excavates, nor do they uncover their relationship to other major eukaryotic groups. Here, we report the first large-scale eukaryotic phylogeny, inferred from 143 nucleus-encoded proteins comprising 31,604 amino acid positions, that includes jakobids, malawimonads and cercozoans. We obtain compelling support for the monophyly of jakobids, Euglenozoa plus Heterolobosea (JEH group), and for the association of cercozoans with stramenopiles plus alveolates. Furthermore, we observe a sister-group relationship between the JEH group and malawimonads after removing fast-evolving species from the dataset. We discuss the implications of these results for the concept of "excavates" and for the elucidation of eukaryotic phylogeny in general.
Collapse
Affiliation(s)
- Naiara Rodríguez-Ezpeleta
- Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| | | | | | | | | | | | | |
Collapse
|
128
|
Derelle R, Lopez P, Le Guyader H, Manuel M. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 2007; 9:212-9. [PMID: 17501745 DOI: 10.1111/j.1525-142x.2007.00153.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicellular organization arose several times by convergence during the evolution of eukaryotes (e.g., in terrestrial plants, several lineages of "algae," fungi, and metazoans). To reconstruct the evolutionary transitions between unicellularity and multicellularity, we need a proper understanding of the origin and diversification of regulatory molecules governing the construction of a multicellular organism in these various lineages. Homeodomain (HD) proteins offer a paradigm for studying such issues, because in multicellular eukaryotes, like animals, fungi and plants, these transcription factors are extensively used in fundamental developmental processes and are highly diversified. A number of large eukaryote lineages are exclusively unicellular, however, and it remains unclear to what extent this condition reflects their primitive lack of "good building blocks" such as the HD proteins. Taking advantage from the recent burst of sequence data from a wide variety of eukaryote taxa, we show here that HD-containing transcription factors were already existing and diversified (in at least two main classes) in the last common eukaryote ancestor. Although the family was retained and independently expanded in the multicellular taxa, it was lost in several lineages of unicellular parasites or intracellular symbionts. Our findings are consistent with the idea that the common ancestor of eukaryotes was complex in molecular terms, and already possessed many of the regulatory molecules, which later favored the multiple convergent acquisition of multicellularity.
Collapse
Affiliation(s)
- Romain Derelle
- Université Pierre et Marie Curie-Paris 6, UMR 7138 CNRS UPMC MNHN IRD, Case 05, 7 quai St Bernard, 75005 Paris, France
| | | | | | | |
Collapse
|
129
|
Annoura T, Sariego I, Nara T, Makiuchi T, Fujimura T, Taka H, Mineki R, Murayama K, Aoki T. Dihydroorotate dehydrogenase arises from novel fused gene product with aspartate carbamoyltransferase in Bodo saliens. Biochem Biophys Res Commun 2007; 358:253-8. [PMID: 17475213 DOI: 10.1016/j.bbrc.2007.04.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 11/22/2022]
Abstract
The ACT-DHOD gene in the kinetoplastid Bodo saliens encodes aspartate carbamoyltransferase and dihydroorotate dehydrogenase, the second and fourth enzymes of pyrimidine biosynthesis. Although the single mRNA species yielded a 70-kDa ACT-DHOD protein, Western blotting with anti-DHOD-peptide antibody showed a major band of 35-kDa and minor bands. In-gel digestion and liquid chromatography-tandem mass (MS/MS) spectrometry showed that the 35-kDa band contained DHOD-specific polypeptides and an ACT-specific polypeptide, suggesting the occurrence of independent DHOD and ACT. Immunoprecipitation and MS/MS analysis identified a 70-kDa ACT-DHOD and a 35-kDa DHOD independently, and the N-terminal amino acid of 35-kDa DHOD was blocked. In vitro processing assay showed that recombinant ACT-DHOD was decreased by the B. saliens lysate, accompanying the appearance of 35-kDa DHOD and 35-kDa ACT. These results indicate that fused ACT-DHOD is the precursor to mature DHOD. Large amount of 35-kDa DHOD in B. saliens is discussed from a viewpoint of its physiological roles.
Collapse
Affiliation(s)
- Takeshi Annoura
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 2007; 7:89. [PMID: 17562012 PMCID: PMC1920508 DOI: 10.1186/1471-2148-7-89] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/11/2007] [Indexed: 11/13/2022] Open
Abstract
Background Lateral gene transfer is increasingly invoked to explain phylogenetic results that conflict with our understanding of organismal relationships. In eukaryotes, the most common observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an observation would involve a single eukaryote or a small group of related eukaryotes encoding a gene from a specific bacterial lineage. Results Here we show that several apparently simple cases of lateral transfer are actually more complex than they originally appeared: in these instances we find that two or more distantly related eukaryotic groups share the same bacterial gene, resulting in a punctate distribution. Specifically, we describe phylogenies of three core carbon metabolic enzymes: transketolase, glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate-3-epimerase. Phylogenetic trees of each of these enzymes includes a strongly-supported clade consisting of several eukaryotes that are distantly related at the organismal level, but whose enzymes are apparently all derived from the same lateral transfer. With less sampling any one of these examples would appear to be a simple case of bacterium-to-eukaryote lateral transfer; taken together, their evolutionary histories cannot be so simple. The distributions of these genes may represent ancient paralogy events or genes that have been transferred from bacteria to an ancient ancestor of the eukaryotes that retain them. They may alternatively have been transferred laterally from a bacterium to a single eukaryotic lineage and subsequently transferred between distantly related eukaryotes. Conclusion Determining how complex the distribution of a transferred gene is depends on the sampling available. These results show that seemingly simple cases may be revealed to be more complex with greater sampling, suggesting many bacterial genes found in eukaryotic genomes may have a punctate distribution.
Collapse
|
131
|
Carmel L, Wolf YI, Rogozin IB, Koonin EV. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 2007; 17:1034-44. [PMID: 17495008 PMCID: PMC1899114 DOI: 10.1101/gr.6438607] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.
Collapse
Affiliation(s)
- Liran Carmel
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
- Corresponding author.E-mail ; fax (301) 480-9241
| |
Collapse
|
132
|
Makiuchi T, Nara T, Annoura T, Hashimoto T, Aoki T. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups. Gene 2007; 394:78-86. [PMID: 17383832 DOI: 10.1016/j.gene.2007.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 02/06/2023]
Abstract
The genes encoding orotate phosphoribosyltransferase (OPRT) and orotidine-5'-monophosphate decarboxylase (OMPDC), the fifth and sixth enzymes in the de novo pyrimidine biosynthetic pathway, are fused as OPRT-OMPDC in most eukaryotic groups. On the other hand, the inversely linked OMPDC-OPRT fusion is present in trypanosomatids, belonging to kinetoplastids together with bodonids in a supergroup, Euglenozoa. Here, we show the presence of OMPDC-OPRT in the bodonid, Bodo caudatus, while OPRT-OMPDC in Euglena gracilis, another euglenozoan species belonging to euglenoids. These results suggest that the OMPDC-OPRT fusion event occurred in a common ancestor of kinetoplastids. Genome sequence database searches further revealed the presence of OMPDC-OPRT in stramenopiles and cyanobacteria. Phylogenetic reconstruction of OPRT and OMPDC rejected statistically the monophyly of the OPRT domains of stramenopile and kinetoplastid OMPDC-OPRT, demonstrating that these gene fusions do not share a common evolutionary origin, despite the identical gene order. Thus, the OMPDC-OPRT fusion is likely to have emerged independently in these eukaryotic groups. Phylogenetic analyses also suggested that cyanobacterial OMPDC-OPRT arose via lateral transfer. We conclude that gene fusion events occur more frequently than previously thought and that lateral gene transfer has made a marked contribution to establishment of the rearranged structure of OPRT and OMPDC genes in eukaryotes.
Collapse
Affiliation(s)
- Takashi Makiuchi
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
133
|
Jékely G. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biol Direct 2007; 2:3. [PMID: 17239231 PMCID: PMC1794243 DOI: 10.1186/1745-6150-2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/19/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s) ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. PRESENTATION OF THE HYPOTHESIS Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix) but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis with the mitochondial ancestor evolved after phagotrophy as alphaproteobacterial prey developed post-ingestion defence mechanisms to circumvent digestion in the food vacuole. Mitochondrial symbiosis triggered the origin of the nucleus. Cilia evolved last and allowed eukaryotes to predate also on planktonic prey. I will discuss how this scenario may possibly fit into the contrasting phylogenetic frameworks that have been proposed. TESTING THE HYPOTHESIS Some aspects of the hypothesis can be tested experimentally by studying the level of exploitation cheaters can reach in social microbes. It would be interesting to test whether absorption of nutrients from lysed fellow colony members can happen and if cheaters can evolve into predators that actively digest neighbouring cells. IMPLICATIONS OF THE HYPOTHESIS The hypothesis highlights the importance of social exploitation in cell evolution and how a social environment can buffer drastic cellular transformations that would be lethal for planktonic forms.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
134
|
Judelson HS. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. ADVANCES IN GENETICS 2007; 57:97-141. [PMID: 17352903 DOI: 10.1016/s0065-2660(06)57003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genus Phytophthora includes many destructive pathogens of plants. Although having "fungus-like" appearances, Phytophthora species reside in a eukaryotic kingdom separate from that of true fungi. Distinct strategies are therefore required to study and defend against Phytophthora. Large sequence databases have recently been developed for several species, and tools for functional genomics have been enhanced. This chapter will review current progress in understanding the genome and transcriptome of Phytophthora, and provide examples of how genomics resources are advancing molecular studies of pathogenesis, development, transcription, and evolution. A better understanding of these remarkable pathogens should lead to new approaches for managing their diseases.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
135
|
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. EUKARYOTIC CELL 2006; 5:1517-31. [PMID: 16963634 PMCID: PMC1563581 DOI: 10.1128/ec.00106-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
Collapse
Affiliation(s)
- Thomas A Richards
- Deparment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
136
|
Waller RF, Keeling PJ. Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 2006; 383:33-7. [PMID: 16987614 DOI: 10.1016/j.gene.2006.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
The mitochondrial gene for COXII is typically encoded in the organelle genome, however in some members of two unrelated groups, Apicomplexa and Chlorophyceae, cox2 is split into two genes, and both are encoded in the nucleus. Rare genomic changes (RGCs) have acquired popularity as phylogenetic markers, and accordingly this rearrangement of cox2 has been used to infer a possible source of the apicomplexan plastid, the apicoplast, a topic that continues to attract much debate. Accurate interpretation of RGCs, however, is critically dependent on appropriate sampling of the character state of interest amongst relevant taxa. Dinoflagellates form the sister taxon to Apicomplexa, and therefore the state of their cox2 is essential to the interpretation of this apparent RGC. Here we present the first complete cox2 data from dinoflagellates, that suggests despite the remarkable similarity of cox2 seen in Alveolates and Chlorophyceae, this gene reorganization arose independently in these two groups, not through lateral transfer as previously suggested.
Collapse
Affiliation(s)
- Ross F Waller
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
137
|
Nakamura Y, Itoh T, Martin W. Rate and Polarity of Gene Fusion and Fission in Oryza sativa and Arabidopsis thaliana. Mol Biol Evol 2006; 24:110-21. [PMID: 17035354 DOI: 10.1093/molbev/msl138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic gene fusion and fission events are mechanistically more complicated than in prokaryotes, and their quantitative contributions to genome evolution are still poorly understood. We have identified all differentially composite or split genes in 2 fully sequenced plant genomes, Oryza sativa and Arabidopsis thaliana. Out of 10,172 orthologous gene pairs, 60 (0.6% of the total) revealed a verified fusion or fission event in either lineage after the divergence of O. sativa and A. thaliana. Polarizing these events by outgroup comparison revealed differences in the rate of gene fission but not of gene fusion in the rice and Arabidopsis lineages. Gene fission occurred at a higher rate than gene fusion in the O. sativa lineage and was furthermore more common in rice than in Arabidopsis. Nucleotide insertion bias has promoted gene fission in the O. sativa lineage, consistent with its generally longer nucleotide sequences than A. thaliana in selectively neutral regions, and with the abundance of transposable elements in rice. The divergence time of monocots and dicots (140-200 Myr) indicates that gene fusion/fission events occur at an average rate of 1x10(-11) to 2x10(-11) events per gene per year, approximately 100-fold slower than the average per site nuclear nucleotide substitution rate in these lineages. Gene fusion and fission are thus rare and slow processes in higher plant genomes; they should be of utility to address deeper evolutionary relationships among plants--and the relationship of plants to other eukaryotic lineages--where sequence-based phylogenies provide equivocal or conflicting results.
Collapse
Affiliation(s)
- Yoji Nakamura
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | |
Collapse
|
138
|
Kim E, Simpson AGB, Graham LE. Evolutionary Relationships of Apusomonads Inferred from Taxon-Rich Analyses of 6 Nuclear Encoded Genes. Mol Biol Evol 2006; 23:2455-66. [PMID: 16982820 DOI: 10.1093/molbev/msl120] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phylogenetic relationships of the biflagellate protist group Apusomonadidae have been unclear despite the availability of some molecular data. We analyzed sequences from 6 nuclear encoded genes-small-subunit rRNA, large-subunit rRNA, alpha-tubulin, beta-tubulin, actin, and heat shock protein 90-to infer the phylogenetic position of Apusomonas proboscidea Aléxéieff 1924. To increase the taxon richness of the study, we also obtained new sequences from representatives of several other major eukaryotic groups: Chrysochromulina sp. National Institute for Environmental Studies 1333 (Haptophyta), Cyanophora paradoxa (Glaucophyta), Goniomonas truncata (Cryptophyceae), Leucocryptos marina (Kathablepharidae), Mesostigma viride (Streptophyta, Viridiplantae), Peridinium limbatum (Alveolata), Pterosperma cristatum (Prasinophytae, Viridiplantae), Synura sphagnicola (Stramenopiles), and Thaumatomonas sp. (Rhizaria). In most individual gene phylogenies, Apusomonas branched close to either of the 2 related taxa-Opisthokonta (including animals, fungi, and choanoflagellates) or Amoebozoa. Combined analyses of all 4 protein-coding genes or all 6 studied genes strongly supported the hypothesis that Apusomonadidae is closely related to Opisthokonta (or to all other eukaryotic groups except Opisthokonta, depending on the position of the eukaryotic root). Alternative hypotheses were rejected in approximately unbiased tests at the 5% level. However, the strong phylogenetic signal supporting a specific affiliation between Apusomonadidae and Opisthokonta largely originated from the alpha-tubulin data. If alpha-tubulin is not considered, topologies in which Apusomonadidae is sister to Opisthokonta or is sister to Amoebozoa were more or less equally supported. One current model for deep eukaryotic evolution holds that eukaryotes are divided into primary "unikont" and "bikont" clades and are descended from a "uniflagellate" common ancestor. Together with other information, our data suggest instead that unikonts (=Opisthokonta and Amoebozoa) are not strictly monophyletic and are descended from biflagellate ancestors.
Collapse
Affiliation(s)
- Eunsoo Kim
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | |
Collapse
|
139
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
140
|
Roger AJ, Hug LA. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philos Trans R Soc Lond B Biol Sci 2006; 361:1039-54. [PMID: 16754613 PMCID: PMC1578731 DOI: 10.1098/rstb.2006.1845] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes.
Collapse
Affiliation(s)
- Andrew J Roger
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Program in Evolutionary Biology Halifax, Nova Scotia, B3H 1X5 Canada.
| | | |
Collapse
|
141
|
Bern M, Goldberg D, Lyashenko E. Data mining for proteins characteristic of clades. Nucleic Acids Res 2006; 34:4342-53. [PMID: 16936320 PMCID: PMC1636346 DOI: 10.1093/nar/gkl440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Revised: 04/18/2006] [Accepted: 06/05/2006] [Indexed: 12/03/2022] Open
Abstract
A synapomorphy is a phylogenetic character that provides evidence of shared descent. Ideally a synapomorphy is ubiquitous within the clade of related organisms and nonexistent outside the clade, implying that it arose after divergence from other extant species and before the last common ancestor of the clade. With the recent proliferation of genetic sequence data, molecular synapomorphies have assumed great importance, yet there is no convenient means to search for them over entire genomes. We have developed a new program called Conserv, which can rapidly assemble orthologous sequences and rank them by various metrics, such as degree of conservation or divergence from out-group orthologs. We have used Conserv to conduct a largescale search for molecular synapomorphies for bacterial clades. The search discovered sequences unique to clades, such as Actinobacteria, Firmicutes and gamma-Proteobacteria, and shed light on several open questions, such as whether Symbiobacterium thermophilum belongs with Actinobacteria or Firmicutes. We conclude that Conserv can quickly marshall evidence relevant to evolutionary questions that would be much harder to assemble with other tools.
Collapse
Affiliation(s)
- Marshall Bern
- Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA.
| | | | | |
Collapse
|
142
|
Shalchian-Tabrizi K, Eikrem W, Klaveness D, Vaulot D, Minge M, Le Gall F, Romari K, Throndsen J, Botnen A, Massana R, Thomsen H, Jakobsen K. Telonemia, a new protist phylum with affinity to chromist lineages. Proc Biol Sci 2006; 273:1833-42. [PMID: 16790418 PMCID: PMC1634789 DOI: 10.1098/rspb.2006.3515] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup.
Collapse
Affiliation(s)
- K Shalchian-Tabrizi
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - W Eikrem
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - D Klaveness
- Program for Plankton Biology, Department of Biology, University of Oslo0316 Oslo, Norway
| | - D Vaulot
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - M.A Minge
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - F Le Gall
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - K Romari
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - J Throndsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - A Botnen
- Scientific Computing group at the University of Oslo's Center for Information Technology, University of Oslo0316 Oslo, Norway
| | - R Massana
- Institut de Ciències del Mar, CMIMA, Passeig Marítim de la Barceloneta37-49, 08003 Barcelona, Catalonia, Spain
| | - H.A Thomsen
- Department of Marine Ecology and Aquaculture, Danish Institute for Fisheries ResearchKavalergården 6, 2920 Charlottenlund, Denmark
| | - K.S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
- Author for correspondence ()
| |
Collapse
|
143
|
van Dooren GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 2006; 30:596-630. [PMID: 16774588 DOI: 10.1111/j.1574-6976.2006.00027.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mitochondrion of Plasmodium species is a validated drug target. However, very little is known about the functions of this organelle. In this review, we utilize data available from the Plasmodium falciparum genome sequencing project to piece together putative metabolic pathways that occur in the parasite, comparing this with the existing biochemical and cell biological knowledge. The Plasmodium mitochondrion contains both conserved and unusual features, including an active electron transport chain and many of the necessary enzymes for coenzyme Q and iron-sulphur cluster biosynthesis. It also plays an important role in pyrimidine metabolism. The mitochondrion participates in an unusual hybrid haem biosynthesis pathway, with enzymes localizing in both the mitochondrion and plastid organelles. The function of the tricarboxylic acid cycle in the mitochondrion is unclear. We discuss directions for future research into this fascinating, yet enigmatic, organelle.
Collapse
Affiliation(s)
- Giel G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
144
|
Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 2006; 1:22. [PMID: 16907971 PMCID: PMC1570339 DOI: 10.1186/1745-6150-1-22] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/14/2006] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. RESULTS I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the alpha-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation. CONCLUSION The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution--numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis--subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views. REVIEWERS this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
145
|
Cavalier-Smith T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci 2006; 273:1943-52. [PMID: 16822756 PMCID: PMC1634775 DOI: 10.1098/rspb.2006.3531] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 02/22/2006] [Indexed: 11/12/2022] Open
Abstract
Mitochondria originated by permanent enslavement of purple non-sulphur bacteria. These endosymbionts became organelles through the origin of complex protein-import machinery and insertion into their inner membranes of protein carriers for extracting energy for the host. A chicken-and-egg problem exists: selective advantages for evolving import machinery were absent until inner membrane carriers were present, but this very machinery is now required for carrier insertion. I argue here that this problem was probably circumvented by conversion of the symbiont protein-export machinery into protein-import machinery, in three phases. I suggest that the first carrier entered the periplasmic space via pre-existing beta-barrel proteins in the bacterial outer membrane that later became Tom40, and inserted into the inner membrane probably helped by a pre-existing inner membrane protein, thereby immediately providing the protoeukaryote host with photosynthesate. This would have created a powerful selective advantage for evolving more efficient carrier import by inserting Tom70 receptors. Massive gene transfer to the nucleus inevitably occurred by mutation pressure. Finally, pressure from harmful, non-selected gene transfer to the nucleus probably caused evolution of the presequence mechanism, and photosynthesis was lost.
Collapse
|
146
|
Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T. Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 2006; 72:3626-36. [PMID: 16672511 PMCID: PMC1472314 DOI: 10.1128/aem.72.5.3626-3636.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O(2)/H(2)S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O(2)/H(2)S gradient.
Collapse
Affiliation(s)
- Anke Behnke
- Department of Biology, Technische Universität Kaiserslautern, Erwin-Schrödinger Strasse 14, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
147
|
Cavalier-Smith T. Rooting the tree of life by transition analyses. Biol Direct 2006; 1:19. [PMID: 16834776 PMCID: PMC1586193 DOI: 10.1186/1745-6150-1-19] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite great advances in clarifying the family tree of life, it is still not agreed where its root is or what properties the most ancient cells possessed--the most difficult problems in phylogeny. Protein paralogue trees can theoretically place the root, but are contradictory because of tree-reconstruction artefacts or poor resolution; ribosome-related and DNA-handling enzymes suggested one between neomura (eukaryotes plus archaebacteria) and eubacteria, whereas metabolic enzymes often place it within eubacteria but in contradictory places. Palaeontology shows that eubacteria are much more ancient than eukaryotes, and, together with phylogenetic evidence that archaebacteria are sisters not ancestral to eukaryotes, implies that the root is not within the neomura. Transition analysis, involving comparative/developmental and selective arguments, can polarize major transitions and thereby systematically exclude the root from major clades possessing derived characters and thus locate it; previously the 20 shared neomuran characters were thus argued to be derived, but whether the root was within eubacteria or between them and archaebacteria remained controversial. RESULTS I analyze 13 major transitions within eubacteria, showing how they can all be congruently polarized. I infer the first fully resolved prokaryote tree, with a basal stem comprising the new infrakingdom Glidobacteria (Chlorobacteria, Hadobacteria, Cyanobacteria), which is entirely non-flagellate and probably ancestrally had gliding motility, and two derived branches (Gracilicutes and Unibacteria/Eurybacteria) that diverged immediately following the origin of flagella. Proteasome evolution shows that the universal root is outside a clade comprising neomura and Actinomycetales (proteates), and thus lies within other eubacteria, contrary to a widespread assumption that it is between eubacteria and neomura. Cell wall and flagellar evolution independently locate the root outside Posibacteria (Actinobacteria and Endobacteria), and thus among negibacteria with two membranes. Posibacteria are derived from Eurybacteria and ancestral to neomura. RNA polymerase and other insertions strongly favour the monophyly of Gracilicutes (Proteobacteria, Planctobacteria, Sphingobacteria, Spirochaetes). Evolution of the negibacterial outer membrane places the root within Eobacteria (Hadobacteria and Chlorobacteria, both primitively without lipopolysaccharide): as all phyla possessing the outer membrane beta-barrel protein Omp85 are highly probably derived, the root lies between them and Chlorobacteria, the only negibacteria without Omp85, or possibly within Chlorobacteria. CONCLUSION Chlorobacteria are probably the oldest and Archaebacteria the youngest bacteria, with Posibacteria of intermediate age, requiring radical reassessment of dominant views of bacterial evolution. The last ancestor of all life was a eubacterium with acyl-ester membrane lipids, large genome, murein peptidoglycan walls, and fully developed eubacterial molecular biology and cell division. It was a non-flagellate negibacterium with two membranes, probably a photosynthetic green non-sulphur bacterium with relatively primitive secretory machinery, not a heterotrophic posibacterium with one membrane.
Collapse
|
148
|
Burki F, Pawlowski J. Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts. Mol Biol Evol 2006; 23:1922-30. [PMID: 16829542 DOI: 10.1093/molbev/msl055] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "supergroup," but, in spite of this important position within the tree of life, their representatives are still missing in global phylogenies of eukaryotes. Here, we report the first large-scale analysis of eukaryote phylogeny including data for 2 rhizarian species, the foraminiferan Reticulomyxa filosa and the chlorarachniophyte Bigelowiella natans. Our results confirm the monophyly of Rhizaria (Foraminifera + Cercozoa), with very high bootstrap supports in all analyses. The overall topology of our trees is in agreement with the current view of eukaryote phylogeny with basal division into "unikonts" (Opisthokonts and Ameobozoa) and "bikonts" (Plantae, alveolates, stramenopiles, and excavates). As expected, Rhizaria branch among bikonts; however, their phylogenetic position is uncertain. Depending on the data set and the type of analysis, Rhizaria branch as sister group to either stramenopiles or excavates. Overall, the relationships between the major groups of unicellular bikonts are poorly resolved, despite the use of 85 proteins and the largest taxonomic sampling for this part of the tree available to date. This may be due to an acceleration of evolutionary rates in some bikont phyla or be related to their rapid diversification in the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
149
|
Waller RF, Slamovits CH, Keeling PJ. Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol 2006; 23:1437-43. [PMID: 16675503 DOI: 10.1093/molbev/msl008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The number of cases of lateral or horizontal gene transfer in eukaryotic genomes is growing steadily, but in most cases, neither the donor nor the recipient is known, and the biological implications of the transfer are not clear. We describe a relatively well-defined case of transfer from a cyanobacterial source to an ancestor of dinoflagellates that diverged before Oxyrrhis but after Perkinsus. This case is also exceptional in that 2 adjacent genes, a paralogue of the shikimate biosynthetic enzyme AroB and an O-methyltransferase (OMT) were transferred together and formed a fusion protein that was subsequently targeted to the dinoflagellate plastid. Moreover, this fusion subsequently reverted to 2 individual genes in the genus Karlodinium, but both proteins maintained plastid localization with the OMT moiety acquiring its own plastid-targeting peptide. The presence of shikimate biosynthetic enzymes in the plastid is not unprecedented as this is a plastid-based pathway in many eukaryotes, but this species of OMT has not been associated with the plastid previously. It appears that the OMT activity was drawn into the plastid simply by virtue of its attachment to the AroB paralogue resulting from their cotransfer and once in the plastid performed some essential function so that it remained plastid targeted after it separated from AroB. Gene fusion events are considered rare and likely stable, and such an event has recently been used to argue for a root of the eukaryotic tree. Our data, however, show that exact reversals of fusion events do take place, and hence gene fusion data are difficult to interpret without knowledge of the phylogeny of the organisms--therefore their use as phylogenetic markers must be considered carefully.
Collapse
Affiliation(s)
- Ross F Waller
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
150
|
Karpov SA, Bass D, Mylnikov AP, Cavalier-Smith T. Molecular phylogeny of Cercomonadidae and kinetid patterns of Cercomonas and Eocercomonas gen. nov. (Cercomonadida, Cercozoa). Protist 2006; 157:125-58. [PMID: 16647880 DOI: 10.1016/j.protis.2006.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 01/24/2006] [Indexed: 11/23/2022]
Abstract
Cercomonads are among the most abundant and widespread zooflagellates in soil and freshwater. We cultured 22 strains and report their complete 18S rRNA sequences and light microscopic morphology. Phylogenetic analysis of 51 Cercomonas rRNA genes shows in each previously identified major clade (A, B) two very robust, highly divergent, multi-species subclades (A1, A2; B1, B2). We studied kinetid ultrastructure of five clade A representatives by serial sections. All have two closely associated left ventral posterior microtubular roots, an anterior dorsal root, a microtubule-nucleating left anterior root, and a cone of microtubules passing to the nucleus. Anterior centrioles (=basal bodies, kinetosomes) of A1 have cartwheels; the posterior centriole does not, suggesting it is older, and implying flagellar transformation similar to other bikonts. Strain C-80 (subclade A2) differs greatly, having a dorsal posterior microtubule band, but lacking the A1-specific fibrillar striated root, nuclear extension to the centrioles, centriolar diaphragm, extrusomes; both mature centrioles lack cartwheels. For clade A2 we establish Eocercomonas gen. n., with type Eocercomonas ramosa sp. n., and for clade B1 Paracercomonas gen. n. (type Paracercomonas marina sp. n.). We establish Paracercomonas ekelundi sp. n. for culture SCCAP C1 and propose a Cercomonas longicauda neotype and Cercomonas (=Neocercomonas) jutlandica comb. n. and Paracercomonas (=Cercomonas) metabolica comb. n.
Collapse
Affiliation(s)
- Serguei A Karpov
- Department of Zoology, Herzen State Pedagogical University of Russia, Moika emb. 48, 191186 St. Petersburg, Russian Federation
| | | | | | | |
Collapse
|