101
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
102
|
Valdes-Aleman J, Fetter RD, Sales EC, Heckman EL, Venkatasubramanian L, Doe CQ, Landgraf M, Cardona A, Zlatic M. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron 2020; 109:105-122.e7. [PMID: 33120017 PMCID: PMC7837116 DOI: 10.1016/j.neuron.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023]
Abstract
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Collapse
Affiliation(s)
- Javier Valdes-Aleman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emily C Sales
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
103
|
Brown HE, Evans TA. Minimal structural elements required for midline repulsive signaling and regulation of Drosophila Robo1. PLoS One 2020; 15:e0241150. [PMID: 33091076 PMCID: PMC7580999 DOI: 10.1371/journal.pone.0241150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The Roundabout (Robo) family of axon guidance receptors has a conserved ectodomain arrangement of five immunoglobulin-like (Ig) domains plus three fibronectin type III (Fn) repeats. Based on the strong evolutionary conservation of this domain structure among Robo receptors, as well as in vitro structural and domain-domain interaction studies of Robo family members, this ectodomain arrangement is predicted to be important for Robo receptor signaling in response to Slit ligands. Here, we define the minimal ectodomain structure required for Slit binding and midline repulsive signaling in vivo by Drosophila Robo1. We find that the majority of the Robo1 ectodomain is dispensable for both Slit binding and repulsive signaling. We show that a significant level of midline repulsive signaling activity is retained when all Robo1 ectodomain elements apart from Ig1 are deleted, and that the combination of Ig1 plus one additional ectodomain element (Ig2, Ig5, or Fn3) is sufficient to restore midline repulsion to wild type levels. Further, we find that deleting four out of five Robo1 Ig domains (ΔIg2-5) does not affect negative regulation of Robo1 by Commissureless (Comm) or Robo2, while variants lacking all three fibronectin repeats (ΔFn1-3 and ΔIg2-Fn3) are insensitive to regulation by both Comm and Robo2, signifying a novel regulatory role for Robo1's Fn repeats. Our results provide an in vivo perspective on the importance of the conserved 5+3 ectodomain structure of Robo receptors, and suggest that specific biochemical properties and/or ectodomain structural conformations observed in vitro for domains other than Ig1 may have limited significance for in vivo signaling in the context of midline repulsion.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
104
|
Attoff K, Johansson Y, Cediel-Ulloa A, Lundqvist J, Gupta R, Caiment F, Gliga A, Forsby A. Acrylamide alters CREB and retinoic acid signalling pathways during differentiation of the human neuroblastoma SH-SY5Y cell line. Sci Rep 2020; 10:16714. [PMID: 33028897 PMCID: PMC7541504 DOI: 10.1038/s41598-020-73698-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Acrylamide (ACR) is a known neurotoxicant which crosses the blood–brain barrier, passes the placenta and has been detected in breast milk. Hence, early-life exposure to ACR could lead to developmental neurotoxicity. The aim of this study was to elucidate if non-cytotoxic concentrations of ACR alter neuronal differentiation by studying gene expression of markers significant for neurodevelopment in the human neuroblastoma SH-SY5Y cell model. Firstly, by using RNASeq we identified two relevant pathways that are activated during 9 days of retinoic acid (RA) induced differentiation i.e. RA receptor (RAR) activation and the cAMP response element-binding protein (CREB) signalling pathways. Next, by qPCR we showed that 1 and 70 µM ACR after 9 days exposure alter the expression of 13 out of 36 genes in the RAR activation pathway and 18 out of 47 in the CREB signalling pathway. Furthermore, the expression of established neuronal markers i.e. BDNF, STXBP2, STX3, TGFB1 and CHAT were down-regulated. Decreased protein expression of BDNF and altered ratio of phosphorylated CREB to total CREB were confirmed by western blot. Our results reveal that micromolar concentrations of ACR sustain proliferation, decrease neurite outgrowth and interfere with signalling pathways involved in neuronal differentiation in the SH-SY5Y cell model.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andrea Cediel-Ulloa
- Unit of Toxicology Sciences, Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden.,Department for organismal biology, Uppsala University, Uppsala, Sweden
| | - Jessica Lundqvist
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rajinder Gupta
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Anda Gliga
- Unit of Toxicology Sciences, Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. .,Department for organismal biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
105
|
Chen A, Li Q, Liao P, Zhao Q, Tang S, Wang P, Meng G, Dong Z. Semaphorin-1a-like gene plays an important role in the embryonic development of silkworm, Bombyx mori. PLoS One 2020; 15:e0240193. [PMID: 33007004 PMCID: PMC7531805 DOI: 10.1371/journal.pone.0240193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Fuyin-lethal red egg (Fuyin-lre) is a red egg mutant discovered from the germplasm resource Fuyin of Bombyx mori. The embryo of Fuyin-lre stops developing at the late stage of gastrulation due to chromosome structural variation. In this work, precise mutation sites at both ends of the mutated region were determined, and two inserted sequences with lengths of 1232 bp and 1845 bp were obtained at both ends of the mutation region. Interestingly, a bmmar1 transposon was detected in the inserted 1845 bp sequence. Bmmar1 possesses features of the Tcl/mariner superfamily of transposable elements (TEs), which belongs to class II TEs that use a DNA-mediated "cut and paste" mechanism to transpose. This finding suggests that Fuyin-lre mutation might be related to the "cut and paste" action of bmmar1. The mutation resulted in the deletion of 9 genes in the mutation region, of which the red egg gene re (BMSK0002766) did not affect embryonic development of B. mori, and the BMSK0002765 gene was unexpressed during the early stage of embryonic development. The RNA interference results of the remaining 7 genes suggest that the semaphorin-1a-like gene (BMSK0002764) had a major contribution to the embryonic lethality of Fuyin-lre.
Collapse
Affiliation(s)
- Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- The Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang Shaanxi, China
| | - Qiongyan Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Pengfei Liao
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Qiaoling Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Gang Meng
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhanpeng Dong
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- * E-mail:
| |
Collapse
|
106
|
Lungova V, Thibeault SL. Mechanisms of larynx and vocal fold development and pathogenesis. Cell Mol Life Sci 2020; 77:3781-3795. [PMID: 32253462 PMCID: PMC7511430 DOI: 10.1007/s00018-020-03506-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The larynx and vocal folds sit at the crossroad between digestive and respiratory tracts and fulfill multiple functions related to breathing, protection and phonation. They develop at the head and trunk interface through a sequence of morphogenetic events that require precise temporo-spatial coordination. We are beginning to understand some of the molecular and cellular mechanisms that underlie critical processes such as specification of the laryngeal field, epithelial lamina formation and recanalization as well as the development and differentiation of mesenchymal cell populations. Nevertheless, many gaps remain in our knowledge, the filling of which is essential for understanding congenital laryngeal disorders and the evaluation and treatment approaches in human patients. This review highlights recent advances in our understanding of the laryngeal embryogenesis. Proposed genes and signaling pathways that are critical for the laryngeal development have a potential to be harnessed in the field of regenerative medicine.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Susan L Thibeault
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
107
|
Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK, Collins HY, Stevens B, Barres BA, MacVicar BA. Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Rep 2020; 27:2895-2908.e4. [PMID: 31167136 DOI: 10.1016/j.celrep.2019.05.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Microglia, the brain's immune cells, maintain homeostasis and sense pathological changes by continuously surveying the parenchyma with highly motile large processes. Here, we demonstrate that microglia also use thin actin-dependent filopodia that allow fast nanoscale sensing within discrete regions. Filopodia are distinct from large processes by their size, speed, and regulation mechanism. Increasing cyclic AMP (cAMP) by activating norepinephrine Gs-coupled receptors, applying nitric oxide, or inhibiting phosphodiesterases rapidly increases filopodia but collapses large processes. Alternatively, Gi-coupled P2Y12 receptor activation collapses filopodia but triggers large processes extension with bulbous tips. Similar control of cytoskeletal dynamics and microglial morphology by cAMP is observed in ramified primary microglia, suggesting that filopodia are intrinsically generated sensing structures. Therefore, nanoscale surveillance of brain parenchyma by microglia requires localized cAMP increases that drive filopodia formation. Shifting intracellular cAMP levels controls the polarity of microglial responses to changes in brain homeostasis and alters the scale of immunosurveillance.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada.
| | - Christopher J Bohlen
- Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA
| | - Elisa M York
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Alireza Kamyabi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Lasse Dissing-Olesen
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Jasmin K Hefendehl
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| | - Hannah Y Collins
- Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Ben A Barres
- Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA
| | - Brian A MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
108
|
Tackling the Molecular Drug Sensitivity in the Sea Louse Caligus rogercresseyi Based on mRNA and lncRNA Interactions. Genes (Basel) 2020; 11:genes11080857. [PMID: 32726954 PMCID: PMC7464394 DOI: 10.3390/genes11080857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.
Collapse
|
109
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
110
|
Pralle RS, Schultz NE, White HM, Weigel KA. Hyperketonemia GWAS and parity-dependent SNP associations in Holstein dairy cows intensively sampled for blood β-hydroxybutyrate concentration. Physiol Genomics 2020; 52:347-357. [PMID: 32628084 DOI: 10.1152/physiolgenomics.00016.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyperketonemia (HYK) is a metabolic disorder that affects early postpartum dairy cows; however, there has been limited success in identifying genomic variants contributing to HYK susceptibility. We conducted a genome-wide association study (GWAS) using HYK phenotypes based on an intensive screening protocol, interrogated genotype interactions with parity group (GWIS), and evaluated the enrichment of annotated metabolic pathways. Holstein cows were enrolled into the experiment after parturition, and blood samples were collected at four timepoints between 5 and 18 days postpartum. Concentration of blood β-hydroxybutyrate (BHB) was quantified cow-side via a handheld BHB meter. Cows were labeled as a HYK case when at least one blood sample had BHB ≥ 1.2 mmol/L, and all other cows were considered non-HYK controls. After quality control procedures, 1,710 cows and 58,699 genotypes were available for further analysis. The GWAS and GWIS were performed using the forward feature select linear mixed model method. There was evidence for an association between ARS-BFGL-NGS-91238 and HYK susceptibility, as well as parity-dependent associations to HYK for BovineHD0600024247 and BovineHD1400023753. Candidate genes annotated to these single nuclear polymorphism associations have been previously associated with obesity, diabetes, insulin resistance, and fatty liver in humans and rodent models. Enrichment analysis revealed focal adhesion and axon guidance as metabolic pathways contributing to HYK etiology, while genetic variation in pathways related to insulin secretion and sensitivity may affect HYK susceptibility in a parity-dependent matter. In conclusion, the present work proposes several novel marker associations and metabolic pathways contributing to genetic risk for HYK susceptibility.
Collapse
Affiliation(s)
- Ryan S Pralle
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nichol E Schultz
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heather M White
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kent A Weigel
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
111
|
Kiyoshi C, Tedeschi A. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Dev Neurobiol 2020; 80:277-301. [PMID: 32902152 PMCID: PMC7754183 DOI: 10.1002/dneu.22780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Axons in the adult mammalian central nervous system (CNS) fail to regenerate inside out due to intrinsic and extrinsic neuronal determinants. During CNS development, axon growth, synapse formation, and function are tightly regulated processes allowing immature neurons to effectively grow an axon, navigate toward target areas, form synaptic contacts and become part of information processing networks that control behavior in adulthood. Not only immature neurons are able to precisely control the expression of a plethora of genes necessary for axon extension and pathfinding, synapse formation and function, but also non-neuronal cells such as astrocytes and microglia actively participate in sculpting the nervous system through refinement, consolidation, and elimination of synaptic contacts. Recent evidence indicates that a balancing act between axon regeneration and synaptic function may be crucial for rebuilding functional neuronal circuits after CNS trauma and disease in adulthood. Here, we review the role of classical and new intrinsic and extrinsic neuronal determinants in the context of CNS development, injury, and disease. Moreover, we discuss strategies targeting neuronal and non-neuronal cell behaviors, either alone or in combination, to promote axon regeneration and neuronal circuit formation in adulthood.
Collapse
Affiliation(s)
- Conrad Kiyoshi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
112
|
Sexton JT, Tabor JJ. Multiplexing cell-cell communication. Mol Syst Biol 2020; 16:e9618. [PMID: 32672881 PMCID: PMC7365139 DOI: 10.15252/msb.20209618] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022] Open
Abstract
The engineering of advanced multicellular behaviors, such as the programmed growth of biofilms or tissues, requires cells to communicate multiple aspects of physiological information. Unfortunately, few cell-cell communication systems have been developed for synthetic biology. Here, we engineer a genetically encoded channel selector device that enables a single communication system to transmit two separate intercellular conversations. Our design comprises multiplexer and demultiplexer sub-circuits constructed from a total of 12 CRISPRi-based transcriptional logic gates, an acyl homoserine lactone-based communication module, and three inducible promoters that enable small molecule control over the conversations. Experimentally parameterized mathematical models of the sub-components predict the steady state and dynamical performance of the full system. Multiplexed cell-cell communication has applications in synthetic development, metabolic engineering, and other areas requiring the coordination of multiple pathways among a community of cells.
Collapse
Affiliation(s)
- John T Sexton
- Department of BioengineeringRice UniversityHoustonTXUSA
| | - Jeffrey J Tabor
- Department of BioengineeringRice UniversityHoustonTXUSA
- Department of BioSciencesRice UniversityHoustonTXUSA
| |
Collapse
|
113
|
Harris JM, Wang AYD, Boulanger-Weill J, Santoriello C, Foianini S, Lichtman JW, Zon LI, Arlotta P. Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects. Dev Cell 2020; 53:577-588.e7. [PMID: 32516597 PMCID: PMC7375170 DOI: 10.1016/j.devcel.2020.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 01/12/2023]
Abstract
Axons connect neurons together, establishing the wiring architecture of neuronal networks. Axonal connectivity is largely built during embryonic development through highly constrained processes of axon guidance, which have been extensively studied. However, the inability to control axon guidance, and thus neuronal network architecture, has limited investigation of how axonal connections influence subsequent development and function of neuronal networks. Here, we use zebrafish motor neurons expressing a photoactivatable Rac1 to co-opt endogenous growth cone guidance machinery to precisely and non-invasively direct axon growth using light. Axons can be guided over large distances, within complex environments of living organisms, overriding competing endogenous signals and redirecting axons across potent repulsive barriers to construct novel circuitry. Notably, genetic axon guidance defects can be rescued, restoring functional connectivity. These data demonstrate that intrinsic growth cone guidance machinery can be co-opted to non-invasively build new connectivity, allowing investigation of neural network dynamics in intact living organisms.
Collapse
Affiliation(s)
- James M. Harris
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Andy Yu-Der Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Current Address: Tufts University School of Medicine, Boston, MA 02115, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Cristina Santoriello
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| | - Stephan Foianini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA.,Lead contact. Correspondence:
| |
Collapse
|
114
|
Katiyar KS, Struzyna LA, Morand JP, Burrell JC, Clements B, Laimo FA, Browne KD, Kohn J, Ali Z, Ledebur HC, Smith DH, Cullen DK. Tissue Engineered Axon Tracts Serve as Living Scaffolds to Accelerate Axonal Regeneration and Functional Recovery Following Peripheral Nerve Injury in Rats. Front Bioeng Biotechnol 2020; 8:492. [PMID: 32523945 PMCID: PMC7261940 DOI: 10.3389/fbioe.2020.00492] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Strategies to accelerate the rate of axon regeneration would improve functional recovery following peripheral nerve injury, in particular for cases involving segmental nerve defects. We are advancing tissue engineered nerve grafts (TENGs) comprised of long, aligned, centimeter-scale axon tracts developed by the controlled process of axon "stretch-growth" in custom mechanobioreactors. The current study used a rat sciatic nerve model to investigate the mechanisms of axon regeneration across nerve gaps bridged by TENGs as well as the extent of functional recovery compared to nerve guidance tubes (NGT) or autografts. We established that host axon growth occurred directly along TENG axons, which mimicked the action of "pioneer" axons during development by providing directed cues for accelerated outgrowth. Indeed, axon regeneration rates across TENGs were 3-4 fold faster than NGTs and equivalent to autografts. The infiltration of host Schwann cells - traditional drivers of peripheral axon regeneration - was also accelerated and progressed directly along TENG axons. Moreover, TENG repairs resulted in functional recovery levels equivalent to autografts, with both several-fold superior to NGTs. These findings demonstrate that engineered axon tracts serve as "living scaffolds" to guide host axon outgrowth by a new mechanism - which we term "axon-facilitated axon regeneration" - that leads to enhanced functional recovery.
Collapse
Affiliation(s)
- Kritika S. Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
| | - Laura A. Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph P. Morand
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Basak Clements
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Franco A. Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
115
|
Varderidou-Minasian S, Verheijen BM, Schätzle P, Hoogenraad CC, Pasterkamp RJ, Altelaar M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J Proteome Res 2020; 19:2391-2403. [PMID: 32357013 PMCID: PMC7281779 DOI: 10.1021/acs.jproteome.0c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Neuronal development is a complex
multistep process that shapes
neurons by progressing though several typical stages, including axon
outgrowth, dendrite formation, and synaptogenesis. Knowledge of the
mechanisms of neuronal development is mostly derived from the study
of animal models. Advances in stem cell technology now enable us to
generate neurons from human induced pluripotent stem cells (iPSCs).
Here we provide a mass spectrometry-based quantitative proteomic signature
of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic
neurons and iPSC-derived motor neurons, throughout neuronal differentiation.
Tandem mass tag 10-plex labeling was carried out to perform proteomic
profiling of cells at different time points. Our analysis reveals
significant expression changes (FDR < 0.001) of several key proteins
during the differentiation process, e.g., proteins involved in the
Wnt and Notch signaling pathways. Overall, our data provide a rich
resource of information on protein expression during human iPSC neuron
differentiation.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
116
|
Leitão L, Neto E, Conceição F, Monteiro A, Couto M, Alves CJ, Sousa DM, Lamghari M. Osteoblasts are inherently programmed to repel sensory innervation. Bone Res 2020; 8:20. [PMID: 32435517 PMCID: PMC7220946 DOI: 10.1038/s41413-020-0096-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue innervation is a complex process controlled by the expression profile of signaling molecules secreted by tissue-resident cells that dictate the growth and guidance of axons. Sensory innervation is part of the neuronal network of the bone tissue with a defined spatiotemporal occurrence during bone development. Yet, the current understanding of the mechanisms regulating the map of sensory innervation in the bone tissue is still limited. Here, we demonstrated that differentiation of human mesenchymal stem cells to osteoblasts leads to a marked impairment of their ability to promote axonal growth, evidenced under sensory neurons and osteoblastic-lineage cells crosstalk. The mechanisms by which osteoblast lineage cells provide this nonpermissive environment for axons include paracrine-induced repulsion and loss of neurotrophic factors expression. We identified a drastic reduction of NGF and BDNF production and stimulation of Sema3A, Wnt4, and Shh expression culminating at late stage of OB differentiation. We noted a correlation between Shh expression profile, OB differentiation stages, and OB-mediated axonal repulsion. Blockade of Shh activity and signaling reversed the repulsive action of osteoblasts on sensory axons. Finally, to strengthen our model, we localized the expression of Shh by osteoblasts in bone tissue. Overall, our findings provide evidence that the signaling profile associated with osteoblast phenotype differentiating program can regulate the patterning of sensory innervation, and highlight osteoblast-derived Shh as an essential player in this cue-induced regulation.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Marina Couto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
117
|
The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy. Cells 2020; 9:cells9051173. [PMID: 32397324 PMCID: PMC7290591 DOI: 10.3390/cells9051173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a common pathological condition and an independent risk factor that triggers cardiovascular morbidity. As an important epigenetic regulator, miRNA is widely involved in many biological processes. In this study, miRNAs expressed in rat hearts that underwent isoprenaline-induced cardiac hypertrophy were identified using high-throughput sequencing, and functional verification of typical miRNAs was performed using rat primary cardiomyocytes. A total of 623 miRNAs were identified, of which 33 were specifically expressed in cardiac hypertrophy rats. The enriched pathways of target genes of differentially expressed miRNAs included the FoxO signaling pathway, dopaminergic synapse, Wnt signaling pathway, MAPK (mitogen-activated protein kinase) signaling pathway, and Hippo signaling pathway. Subsequently, miR-144 was the most differentially expressed miRNA and was subsequently selected for in vitro validation. Inhibition of miR-144 expression in primary myocardial cells caused up-regulation of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The dual luciferase reporter system showed that ANP may be a target gene of miR-144. Long non-coding RNA myocardial infarction associated transcript (LncMIAT) is closely related to heart disease, and here, we were the first to discover that LncMIAT may act as an miR-144 sponge in isoproterenol-induced cardiac hypertrophy. Taken together, these results enriched the understanding of miRNA in regulating cardiac hypertrophy and provided a reference for preventing and treating cardiac hypertrophy.
Collapse
|
118
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
119
|
Sasaki Y. Local Translation in Growth Cones and Presynapses, Two Axonal Compartments for Local Neuronal Functions. Biomolecules 2020; 10:biom10050668. [PMID: 32344905 PMCID: PMC7277458 DOI: 10.3390/biom10050668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023] Open
Abstract
During neural development, growth cones, very motile compartments of tips of axons, lead axonal extension to the correct targets. Subsequently, presynapses, another axonal compartment with vigorous trafficking of synaptic vesicles, emerge to form functional synapses with postsynapses. In response to extracellular stimuli, the immediate supply of proteins by local translation within these two axonal compartments far from cell bodies confers high motility of growth cones and active vesicle trafficking in presynapses. Although local translation in growth cones and presynapses occurs at a very low level compared with cell bodies and even dendrites, recent progress in omics and visualization techniques with subcellular fractionation of these compartments has revealed the actual situation of local translation within these two axonal compartments. Here, the increasing evidence for local protein synthesis in growth cones and presynapses for axonal and synaptic functions has been reviewed. Furthermore, the mechanisms regulating local translation in these two compartments and pathophysiological conditions caused by dysregulated local translation are highlighted.
Collapse
Affiliation(s)
- Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
120
|
Chai D, Yan J, Li C, Sun Y, Jiang H. Sevoflurane inhibits neuronal migration and axon growth in the developing mouse cerebral cortex. Aging (Albany NY) 2020; 12:6436-6455. [PMID: 32271715 PMCID: PMC7185136 DOI: 10.18632/aging.103041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022]
Abstract
The highly organized laminar structure of the mammalian brain is dependent on successful neuronal migration, and migration deficits can cause lissencephaly and behavioral and cognitive defects. Here, we investigated the contribution of neuronal migration dysregulation to anesthesia-induced neurotoxicity in the fetal brain. Pregnant C57BL/6 mice at embryonic day 14.5 received 2.5% sevoflurane daily for two days. Cortical neuron migration and axon lengths were evaluated using GFP immunostaining. Morris water maze tests were performed to assess the effects of sevoflurane exposure on spatial memory in offspring. We found that sevoflurane exposure decreased axon length and caused cognitive defects in young mice. RNA sequencing revealed that these defects were associated with reduced neuro-oncological ventral antigen 2 (Nova2) expression. In utero electroporation experiments using Nova2 shRNA recapitulated this finding. Nova2 shRNA inhibited neuronal migration and decreased axon lengths. Finally, we found that Netrin-1/Deleted in Colorectal Cancer (Dcc) proteins acted downstream of Nova2 to suppresses neuronal migration. These findings describe a novel mechanism by which prenatal anesthesia exposure affects embryonic neural development and postnatal behavior.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunzhu Li
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
121
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
122
|
Hong YG, Kang B, Lee S, Lee Y, Ju BG, Jeong S. Identification of cis -Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System. Mol Cells 2020; 43:228-235. [PMID: 32024353 PMCID: PMC7103886 DOI: 10.14348/molcells.2019.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/27/2022] Open
Abstract
The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.
Collapse
Affiliation(s)
- Young Gi Hong
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
| | - Bongsu Kang
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Sangyun Jeong
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
123
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
124
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
125
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
126
|
Regulation of Synaptic Development by Astrocyte Signaling Factors and Their Emerging Roles in Substance Abuse. Cells 2020; 9:cells9020297. [PMID: 31991879 PMCID: PMC7072591 DOI: 10.3390/cells9020297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes have critical functions throughout the central nervous system (CNS) and have emerged as regulators of synaptic development and function. With their highly complex morphologies, they are able to interact with thousands of synapses via peripheral astrocytic processes (PAPs), ensheathing neuronal axons and dendrites to form the tripartite synapse. In this way, astrocytes engage in crosstalk with neurons to mediate a variety of CNS processes including the regulation of extracellular matrix protein signaling, formation and maintenance of the blood-brain barrier (BBB), axon growth and guidance, homeostasis of the synaptic microenvironment, synaptogenesis, and the promotion of synaptic diversity. In this review, we discuss several key astrocyte signaling factors (thrombospondins, netrins, apolipoproteins, neuregulins, bone morphogenetic proteins, and neuroligins) in the maintenance and regulation of synapse formation. We also explore how these astrocyte signaling factors are impacted by and contribute to substance abuse, particularly alcohol and cocaine use.
Collapse
|
127
|
Babola TA, Kersbergen CJ, Wang HC, Bergles DE. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space. eLife 2020; 9:e52160. [PMID: 31913121 PMCID: PMC7015667 DOI: 10.7554/elife.52160] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in supporting cells regulates hair cell excitability by controlling the volume of the extracellular space.
Collapse
Affiliation(s)
- Travis A Babola
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Calvin J Kersbergen
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Han Chin Wang
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Dwight E Bergles
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
- Department of Otolaryngology Head and Neck SurgeryJohns Hopkins UniversityBaltimoreUnited States
- Kavli Neuroscience Discovery InstituteJohns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
128
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
129
|
Hunter GL, Giniger E. Phosphorylation and Proteolytic Cleavage of Notch in Canonical and Noncanonical Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:51-68. [DOI: 10.1007/978-3-030-36422-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
130
|
Basso JMV, Yurchenko I, Wiens MR, Staii C. Neuron dynamics on directional surfaces. SOFT MATTER 2019; 15:9931-9941. [PMID: 31764921 DOI: 10.1039/c9sm01769k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geometrical features play a very important role in neuronal growth and the formation of functional connections between neuronal cells. Here, we analyze the dynamics of axonal growth for neuronal cells cultured on micro-patterned polydimethylsiloxane surfaces. We utilize fluorescence microscopy to image axons, quantify their dynamics, and demonstrate that periodic geometrical patterns impart strong directional bias to neuronal growth. We quantify axonal alignment and present a general stochastic approach that quantitatively describes the dynamics of the growth cones. Neuronal growth is described by a general phenomenological model, based on a simple automatic controller with a closed-loop feedback system. We demonstrate that axonal alignment on these substrates is determined by the surface geometry, and it is quantified by the deterministic part of the stochastic (Langevin and Fokker-Planck) equations. We also show that the axonal alignment with the surface patterns is greatly suppressed by the neuron treatment with Blebbistatin, a chemical compound that inhibits the activity of myosin II. These results give new insight into the role played by the molecular motors and external geometrical cues in guiding axonal growth, and could lead to novel approaches for bioengineering neuronal regeneration platforms.
Collapse
Affiliation(s)
- Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | |
Collapse
|
131
|
Neurite regrowth stimulation by a red-light spot focused on the neuronal cell soma following blue light-induced retraction. Sci Rep 2019; 9:18210. [PMID: 31796850 PMCID: PMC6890775 DOI: 10.1038/s41598-019-54687-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction of light with biological tissues has been considered for various therapeutic applications. Light-induced neurite growth has the potential to be a clinically useful technique for neuron repair. However, most previous studies used either a large illumination area to accelerate overall neurite growth or employed a light spot to guide a growing neurite. It is not clear if optical stimulation can induce the regrowth of a retracted neurite. In the present work, we used blue light (wavelength: 473 nm) to cause neurite retraction, and we proved that using a red-light (wavelength: 650 nm) spot to illuminate the soma near the junction of the retracted neurite could induce neurite regrowth. As a comparison, we found that green light (wavelength 550 nm) had a 62% probability of inducing neurite regrowth, while red light had a 75% probability of inducing neurite regrowth at the same power level. Furthermore, the neurite regrowth length induced by red light was increased by the pre-treatment with inhibitors of myosin functions. We also observed actin propagation from the soma to the tip of the re-growing neurite following red-light stimulation of the soma. The red light-induced extension and regrowth were abrogated in the calcium-free medium. These results suggest that illumination with a red-light spot on the soma may trigger the regrowth of a neurite after the retraction caused by blue-light illumination.
Collapse
|
132
|
Dias CM, Punetha J, Zheng C, Mazaheri N, Rad A, Efthymiou S, Petersen A, Dehghani M, Pehlivan D, Partlow JN, Posey JE, Salpietro V, Gezdirici A, Malamiri RA, Al Menabawy NM, Selim LA, Vahidi Mehrjardi MY, Banu S, Polla DL, Yang E, Rezazadeh Varaghchi J, Mitani T, van Beusekom E, Najafi M, Sedaghat A, Keller-Ramey J, Durham L, Coban-Akdemir Z, Karaca E, Orlova V, Schaeken LLM, Sherafat A, Jhangiani SN, Stanley V, Shariati G, Galehdari H, Gleeson JG, Walsh CA, Lupski JR, Seiradake E, Houlden H, van Bokhoven H, Maroofian R. Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder. Am J Hum Genet 2019; 105:1048-1056. [PMID: 31668703 PMCID: PMC6849109 DOI: 10.1016/j.ajhg.2019.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.
Collapse
Affiliation(s)
- Caroline M Dias
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Céline Zheng
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135783151, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, 6155689467, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Andrea Petersen
- Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA
| | - Mohammadreza Dehghani
- Medical Genetics Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, 34303, Turkey
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6163764648, Iran
| | - Nihal M Al Menabawy
- Pediatric Neurology and Metabolic Division, Cairo University Children Hospital, Egypt
| | - Laila A Selim
- Pediatric Neurology and Metabolic Division, Cairo University Children Hospital, Egypt
| | | | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Daniel L Polla
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands; CAPES Foundation, Ministry of Education of Brazil, 549 Brasília, Brazil
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ellen van Beusekom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Leslie Durham
- Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Valeria Orlova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lieke L M Schaeken
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Amir Sherafat
- Department of Neurology, Faculty of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, 6155689467, Iran; Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135783151, Iran
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK.
| |
Collapse
|
133
|
Marmor-Kollet N, Gutman I, Issman-Zecharya N, Schuldiner O. Glial Derived TGF-β Instructs Axon Midline Stopping. Front Mol Neurosci 2019; 12:232. [PMID: 31611773 PMCID: PMC6776989 DOI: 10.3389/fnmol.2019.00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
A fundamental question that underlies the proper wiring and function of the nervous system is how axon extension stops during development. However, our mechanistic understanding of axon stopping is currently poor. The stereotypic development of the Drosophila mushroom body (MB) provides a unique system in which three types of anatomically distinct neurons (γ, α’/β’, and α/β) develop and interact to form a complex neuronal structure. All three neuronal types innervate the ipsi-lateral side and do not cross the midline. Here we find that Plum, an immunoglobulin (Ig) superfamily protein that we have previously shown to function as a TGF-β accessory receptor, is required within MB α/β neurons for their midline stopping. Overexpression of Plum within MB neurons is sufficient to induce retraction of α/β axons. As expected, rescue experiments revealed that Plum likely functions in α/β neurons and mediates midline stopping via the downstream effector RhoGEF2. Finally, we have identified glial-derived Myoglianin (Myo) as the major TGF-β ligand that instructs midline stopping of MB neurons. Taken together, our study strongly suggests that TGF-β signals originating from the midline facilitate midline stopping of α/β neuron in a Plum dependent manner.
Collapse
Affiliation(s)
- Neta Marmor-Kollet
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Itai Gutman
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Noa Issman-Zecharya
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
134
|
Kaur R, Surala M, Hoger S, Grössmann N, Grimm A, Timaeus L, Kallina W, Hummel T. Pioneer interneurons instruct bilaterality in the Drosophila olfactory sensory map. SCIENCE ADVANCES 2019; 5:eaaw5537. [PMID: 31681838 PMCID: PMC6810332 DOI: 10.1126/sciadv.aaw5537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Interhemispheric synaptic connections, a prominent feature in animal nervous systems for the rapid exchange and integration of neuronal information, can appear quite suddenly during brain evolution, raising the question about the underlying developmental mechanism. Here, we show in the Drosophila olfactory system that the induction of a bilateral sensory map, an evolutionary novelty in dipteran flies, is mediated by a unique type of commissural pioneer interneurons (cPINs) via the localized activity of the cell adhesion molecule Neuroglian. Differential Neuroglian signaling in cPINs not only prepatterns the olfactory contralateral tracts but also prevents the targeting of ingrowing sensory axons to their ipsilateral synaptic partners. These results identified a sensitive cellular interaction to switch the sequential assembly of diverse neuron types from a unilateral to a bilateral brain circuit organization.
Collapse
Affiliation(s)
- Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Michael Surala
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Sebastian Hoger
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Nicole Grössmann
- Ludwig Boltzmann Institute, Health Technology Assessment (LBI-HTA), Garnisongasse7/20, 1090 Vienna, Austria
- Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alexandra Grimm
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Lorin Timaeus
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Wolfgang Kallina
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| |
Collapse
|
135
|
Barros Ribeiro da Silva V, Porcionatto M, Toledo Ribas V. The Rise of Molecules Able To Regenerate the Central Nervous System. J Med Chem 2019; 63:490-511. [PMID: 31518122 DOI: 10.1021/acs.jmedchem.9b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injury to the adult central nervous system (CNS) usually leads to permanent deficits of cognitive, sensory, and/or motor functions. The failure of axonal regeneration in the damaged CNS limits functional recovery. The lack of information concerning the biological mechanism of axonal regeneration and its complexity has delayed the process of drug discovery for many years compared to other drug classes. Starting in the early 2000s, the ability of many molecules to stimulate axonal regrowth was evaluated through automated screening techniques; many hits and some new mechanisms involved in axonal regeneration were identified. In this Perspective, we discuss the rise of the CNS regenerative drugs, the main biological techniques used to test these drug candidates, some of the most important screens performed so far, and the main challenges following the identification of a drug that is able to induce axonal regeneration in vivo.
Collapse
Affiliation(s)
| | - Marimélia Porcionatto
- Universidade Federal de São Paulo , Escola Paulista de Medicina, Laboratório de Neurobiologia Molecular, Departmento de Bioquímica , Rua Pedro de Toledo, 669 - third floor, 04039-032 São Paulo , São Paolo , Brazil
| | - Vinicius Toledo Ribas
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neurobiologia Av. Antônio Carlos, 6627, room O3-245 , - Campus Pampulha, 31270-901 , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
136
|
Kośla K, Płuciennik E, Styczeń-Binkowska E, Nowakowska M, Orzechowska M, Bednarek AK. The WWOX Gene Influences Cellular Pathways in the Neuronal Differentiation of Human Neural Progenitor Cells. Front Cell Neurosci 2019; 13:391. [PMID: 31543760 PMCID: PMC6730490 DOI: 10.3389/fncel.2019.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
The brain is the most functionally organized structure of all organs. It manages behavior, perception and higher cognitive functions. The WWOX gene is non-classical tumor suppressor gene, which has been shown to have an impact on proliferation, apoptosis and migration processes. Moreover, genetic aberrations in WWOX induce severe neuropathological phenotypes in humans and rodents. The aim of the present study was to investigate in detail the impact of WWOX on human neural progenitor cell (hNPC) maintenance and how depletion of WWOX disturbs signaling pathways playing a pivotal role in neuronal differentiation and central nervous system (CNS) organogenesis. hNPC with a silenced WWOX gene exhibited lowered mitochondrial redox potential, enhanced adhesion to fibronectin and extracellular matrix protein mixture, downregulation of MMP2/9 expression and impaired 3D growth. Global transcriptome analysis using cap analysis of gene expression (CAGE) found that WWOX downregulation significantly changes the expression of multiple genes engaged in cytoskeleton organization, adhesion, cell signaling and chromatin remodeling. The massive changes in gene expression caused by WWOX silencing may strongly affect the differentiation and migration of neurons in organogenesis, brain injury, cancerogenesis or neurodifferentiation. WWOX gene appears to be an important regulator of neural tissue architecture and function.
Collapse
Affiliation(s)
- Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | | | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
137
|
Sunnerberg JP, Moore P, Spedden E, Kaplan DL, Staii C. Variations of Elastic Modulus and Cell Volume with Temperature for Cortical Neurons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10965-10976. [PMID: 31380651 PMCID: PMC7306228 DOI: 10.1021/acs.langmuir.9b01651] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurons change their growth dynamics and mechanical properties in response to external stimuli such as stiffness of the local microenvironment, ambient temperature, and biochemical or geometrical guidance cues. Here we use combined atomic force microscopy (AFM) and fluorescence microscopy experiments to investigate the relationship between external temperature, soma volume, and elastic modulus for cortical neurons. We measure how changes in ambient temperature affect the volume and the mechanical properties of neuronal cells at both the bulk (elastic modulus) and local (elasticity maps) levels. The experimental data demonstrate that both the volume and the elastic modulus of the neuron soma vary with changes in temperature. Our results show a decrease by a factor of 2 in the soma elastic modulus as the ambient temperature increases from room (25 °C) to physiological (37 °C) temperature, while the volume of the soma increases by a factor of 1.3 during the same temperature sweep. Using high-resolution AFM force mapping, we measure the temperature-induced variations within different regions of the elasticity maps (low and high values of elastic modulus) and correlate these variations with the dynamics of cytoskeleton components and molecular motors. We quantify the change in soma volume with temperature and propose a simple theoretical model that relates this change with variations in soma elastic modulus. These results have significant implications for understanding neuronal development and functions, as ambient temperature, cytoskeletal dynamics, and cellular volume may change with variations in physiological conditions, for example, during tissue compression and infections in vivo as well as during cell manipulation and tissue regeneration ex vivo.
Collapse
|
138
|
Hossain MM, Tsuzuki T, Sakakibara K, Imaizumi F, Ikegaya A, Inagaki M, Takahashi I, Ito T, Takamatsu H, Kumanogoh A, Negishi T, Yukawa K. PlexinA1 is crucial for the midline crossing of callosal axons during corpus callosum development in BALB/cAJ mice. PLoS One 2019; 14:e0221440. [PMID: 31430342 PMCID: PMC6701775 DOI: 10.1371/journal.pone.0221440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 12/04/2022] Open
Abstract
The corpus callosum (CC) is the biggest commissure that links cerebral hemispheres. Guidepost structures develop in the cortical midline during CC development and express axon guidance molecules that instruct neurons regarding the proper direction of axonal elongation toward and across the cortical midline. Neuropilin-1 (Npn1), a high affinity receptor for class 3 semaphorins (Sema3s) localized on cingulate pioneering axons, plays a crucial role in axon guidance to the midline through interactions with Sema3s. However, it remains unclear which type of Plexin is a component of Sema3 holoreceptors with Npn1 during the guidance of cingulate pioneering axons. To address the role of PlexinA1 in CC development, we examined with immunohistochemistry the localization of PlexinA1, Npn1, and Sema3s using embryonic brains from wild-type (WT) and PlexinA1-deficient (PlexinA1 knock-out (KO)) mice with a BALB/cAJ background. The immunohistochemistry confirmed the expression of PlexinA1 in callosal axons derived from the cingulate and neocortex of the WT mice on embryonic day 17.5 (E17.5) but not in the PlexinA1 KO mice. To examine the role of PlexinA1 in the navigation of callosal axons, the extension of callosal axons toward and across the midline was traced in brains of WT and PlexinA1 KO mice at E17.5. As a result, callosal axons in the PlexinA1 KO brains had a significantly lower incidence of midline crossing at E17.5 compared with the WT brains. To further examine the role of PlexinA1 in CC development, the CC phenotype was examined in PlexinA1 KO mice at postnatal day 0.5 (P0.5). Most of the PlexinA1 KO mice at P0.5 showed agenesis of the CC. These results indicate the crucial involvement of PlexinA1 in the midline crossing of callosal axons during CC development in BALB/cAJ mice.
Collapse
Affiliation(s)
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazuki Sakakibara
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Fumitaka Imaizumi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Ikegaya
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Mami Inagaki
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Ikuko Takahashi
- Radioisotope Center, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takuji Ito
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takayuki Negishi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazunori Yukawa
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
139
|
Reduced gene expression of netrin family members in skin and sural nerve specimens of patients with painful peripheral neuropathies. J Neurol 2019; 266:2812-2820. [PMID: 31392393 DOI: 10.1007/s00415-019-09496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the expression of axon guidance cues in skin and sural nerve biopsies of patients with polyneuropathies (PNP) as potential markers of nerve de- and regeneration and inflammation. METHODS We prospectively recruited 88 patients with PNP and compared data between patient subgroups and healthy controls. All patients underwent skin punch and/or sural nerve biopsy at the lower leg and proximal thigh. We characterized gene expression profiles of netrin family members as target genes involved in neuronal de- and regeneration [netrin 1, deleted in colorectal cancer (DCC), uncoordinated5H2, neogenin 1 (NEO1), netrin G1, netrin G2] using quantitative real-time PCR. RESULTS Gene expression of netrin 1 (p < 0.05 in proximal skin), DCC (p < 0.001 in distal skin), NEO1 (p < 0.05 in distal skin), netrin G1 (p < 0.05 in proximal and p < 0.01 in distal skin), and netrin G2 (p < 0.001 in distal skin) was lower in skin biopsies of patients with neuropathy compared to healthy controls. Gene expression of NEO1 (p < 0.05 in distal skin), netrin G2 (p < 0.05 in distal skin), and DCC (p < 0.05 in sural nerve) was lower in samples of patients with painful compared to painless PNP and also correlated positively with intraepidermal nerve fiber density. Skin and sural nerve gene expression of the investigated target genes did not differ between neuropathies of different etiologies. CONCLUSION We show reduced cutaneous and neural axon guide expression, which may contribute to a dysregulation of nerve fiber de- and regeneration.
Collapse
|
140
|
Byun H, Lee HL, Liu H, Forrest D, Rudenko A, Kim IJ. Rorβ regulates selective axon-target innervation in the mammalian midbrain. Development 2019; 146:146/14/dev171926. [PMID: 31332038 DOI: 10.1242/dev.171926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/23/2019] [Indexed: 11/20/2022]
Abstract
Developmental control of long-range neuronal connections in the mammalian midbrain remains unclear. We explored the mechanisms regulating target selection of the developing superior colliculus (SC). The SC is a midbrain center that directs orienting behaviors and defense responses. We discovered that a transcription factor, Rorβ, controls establishment of axonal projections from the SC to two thalamic nuclei: the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior nucleus (LP). A genetic strategy used to visualize SC circuits revealed that in control animals Rorβ+ neurons abundantly innervate the dLGN but barely innervate the LP. The opposite phenotype was observed in global and conditional Rorb mutants: projections to the dLGN were strongly decreased, and projections to the LP were increased. Furthermore, overexpression of Rorb in the wild type showed increased projections to the dLGN and decreased projections to the LP. In summary, we identified Rorβ as a key developmental mediator of colliculo-thalamic innervation. Such regulation could represent a general mechanism orchestrating long-range neuronal connections in the mammalian brain.
Collapse
Affiliation(s)
- Haewon Byun
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hae-Lim Lee
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDK, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDK, Bethesda, MD 20892, USA
| | - Andrii Rudenko
- Department of Biology and Graduate Program, The City College and City University of New York, New York, NY 10031, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
141
|
Zhou Y, Fu Y, Bai Z, Li P, Zhao B, Han Y, Xu T, Zhang N, Lin L, Cheng J, Zhang J, Zhang J. Neural Differentiation of Mouse Neural Stem Cells as a Tool to Assess Developmental Neurotoxicity of Drinking Water in Taihu Lake. Biol Trace Elem Res 2019; 190:172-186. [PMID: 30465171 DOI: 10.1007/s12011-018-1533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
In this study, we used neural stem cells (NSCs) as a toxicology tool to assess the potential developmental neurotoxicity of drinking water from Taihu Lake. We found that the condensed drinking water could inhibit the proliferation and differentiation of NSCs, especially the tap water. Inductively coupled plasma mass spectrometry and high-performance liquid chromatography analysis showed that nickel was detected in the tap water with a high concentration. Our study revealed that nickel could inhibit NSCs proliferation and differentiation, which is induced not only by the intracellular reactive oxygen species generation, but also by the protein levels upregulation of p-c-Raf, p-MEK1/2 and p-Erk1/2 through the axon guidance signal pathways. These findings will provide a new way of research insight for investigation of nickel-induced neurotoxicity. Meanwhile, our test method confirmed the feasibility and reliability of stem cell assays for developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Yang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Yu Fu
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Zhendong Bai
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Peixin Li
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Bo Zhao
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yuehua Han
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Ting Xu
- College of Environmental Science and Engineering, Tongji University, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, People's Republic of China
| | - Ningyan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Lin Lin
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jian Cheng
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jing Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
- Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| |
Collapse
|
142
|
Aberle H. Axon Guidance and Collective Cell Migration by Substrate-Derived Attractants. Front Mol Neurosci 2019; 12:148. [PMID: 31244602 PMCID: PMC6563653 DOI: 10.3389/fnmol.2019.00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Neurons have evolved specialized growth structures to reach and innervate their target cells. These growth cones express specific receptor molecules that sense environmental cues and transform them into steering decisions. Historically, various concepts of axon guidance have been developed to better understand how axons reach and identify their targets. The essence of these efforts seems to be that growth cones require solid substrates and that major guidance decisions are initiated by extracellular cues. These sometimes highly conserved ligands and receptors have been extensively characterized and mediate four major guidance forces: chemoattraction, chemorepulsion, contact attraction and contact repulsion. However, during development, cells, too, do migrate in order to reach molecularly-defined niches at target locations. In fact, axonal growth could be regarded as a special case of cellular migration, where only a highly polarized portion of the cell is elongating. Here, I combine several examples from genetically tractable model organisms, such as Drosophila or zebrafish, in which cells and axons are guided by attractive cues. Regardless, if these cues are secreted into the extracellular space or exposed on cellular surfaces, migrating cells and axons seem to keep close contact with these attractants and seem to detect them right at their source. Migration towards and along such substrate-derived attractants seem to be particularly robust, as genetic deletion induces obvious searching behaviors and permanent guidance errors. In addition, forced expression of these factors in ectopic tissues is highly distractive too, regardless of the pattern of other endogenous cues. Thus, guidance and migration towards and along attractive tissues is a powerful steering mechanism that exploits affinity differences to the surroundings and, in some instances, determines growth trajectories from source to target region.
Collapse
Affiliation(s)
- Hermann Aberle
- Functional Cell Morphology Lab, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
143
|
Kang H, Zhao J, Jiang X, Li G, Huang W, Cheng H, Duan R. Drosophila Netrin-B controls mushroom body axon extension and regulates courtship-associated learning and memory of a Drosophila fragile X syndrome model. Mol Brain 2019; 12:52. [PMID: 31138234 PMCID: PMC6540430 DOI: 10.1186/s13041-019-0472-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/06/2019] [Indexed: 01/29/2023] Open
Abstract
Mushroom body (MB) is a prominent structure essential for olfactory learning and memory in the Drosophila brain. The development of the MB involves the appropriate guidance of axon lobes and sister axon branches. Appropriate guidance that accurately shapes MB development requires the integration of various guidance cues provided by a series of cell types, which guide axons to reach their final positions within the MB neuropils. Netrins are axonal guidance molecules that are conserved regulators of embryonic nerve cord patterning. However, whether they contribute to MB morphogenesis has not yet been evaluated. Here, we find that Netrin-B (NetB) is highly expressed in the MB lobes, regulating lobe length through genetic interactions with the receptors Frazzled and Uncoordinated-5 from 24 h after pupal formation onwards. We observe that overexpression of NetB causes severe β lobe fusion in the MB, which is similar to the MB defects seen in the Drosophila model of fragile X syndrome (FXS). Our results further show that fragile-X mental retardation protein FMRP inhibits the translational activity of human ortholog Netrin-1 (NTN1). Knock-down of NetB significantly rescues the MB defects and ameliorates deficits in the learning and memory in FXS model Drosophila. These results indicate a critical role for NetB in MB lobe extension and identify NetB as a novel target of FMRP which contributes to learning and memory.
Collapse
Affiliation(s)
- Huaixing Kang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Juan Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xuan Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Huili Cheng
- Changchun Children' Hospital, Changchun, 130000, Jilin, China.
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
144
|
Lien YC, Condon DE, Georgieff MK, Simmons RA, Tran PV. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients 2019; 11:nu11051191. [PMID: 31137889 PMCID: PMC6566599 DOI: 10.3390/nu11051191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Early-life iron deficiency results in long-term abnormalities in cognitive function and affective behavior in adulthood. In preclinical models, these effects have been associated with long-term dysregulation of key neuronal genes. While limited evidence suggests histone methylation as an epigenetic mechanism underlying gene dysregulation, the role of DNA methylation remains unknown. To determine whether DNA methylation is a potential mechanism by which early-life iron deficiency induces gene dysregulation, we performed whole genome bisulfite sequencing to identify loci with altered DNA methylation in the postnatal day (P) 15 iron-deficient (ID) rat hippocampus, a time point at which the highest level of hippocampal iron deficiency is concurrent with peak iron demand for axonal and dendritic growth. We identified 229 differentially methylated loci and they were mapped within 108 genes. Among them, 63 and 45 genes showed significantly increased and decreased DNA methylation in the P15 ID hippocampus, respectively. To establish a correlation between differentially methylated loci and gene dysregulation, the methylome data were compared to our published P15 hippocampal transcriptome. Both datasets showed alteration of similar functional networks regulating nervous system development and cell-to-cell signaling that are critical for learning and behavior. Collectively, the present findings support a role for DNA methylation in neural gene dysregulation following early-life iron deficiency.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David E Condon
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
145
|
Sensory Axon Growth Requires Spatiotemporal Integration of CaSR and TrkB Signaling. J Neurosci 2019; 39:5842-5860. [PMID: 31123102 DOI: 10.1523/jneurosci.0027-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Neural circuit development involves the coordinated growth and guidance of axons. During this process, axons encounter many different cues, but how these cues are integrated and translated into growth is poorly understood. In this study, we report that receptor signaling does not follow a linear path but changes dependent on developmental stage and coreceptors involved. Using developing chicken embryos of both sexes, our data show that calcium-sensing receptor (CaSR), a G-protein-coupled receptor important for regulating calcium homeostasis, regulates neurite growth in two distinct ways. First, when signaling in isolation, CaSR promotes growth through the PI3-kinase-Akt pathway. At later developmental stages, CaSR enhances tropomyosin receptor kinase B (TrkB)/BDNF-mediated neurite growth. This enhancement is facilitated through a switch in the signaling cascade downstream of CaSR (i.e., from the PI3-kinase-Akt pathway to activation of GSK3α Tyr279). TrkB and CaSR colocalize within late endosomes, cotraffic and coactivate GSK3, which serves as a shared signaling node for both receptors. Our study provides evidence that two unrelated receptors can integrate their individual signaling cascades toward a nonadditive effect and thus control neurite growth during development.SIGNIFICANCE STATEMENT This work highlights the effect of receptor coactivation and signal integration in a developmental setting. During embryonic development, neurites grow toward their targets guided by cues in the extracellular environment. These cues are sensed by receptors at the surface that trigger intracellular signaling events modulating the cytoskeleton. Emerging evidence suggests that the effects of guidance cues are diversified, therefore expanding the number of responses. Here, we show that two unrelated receptors can change the downstream signaling cascade and regulate neuronal growth through a shared signaling node. In addition to unraveling a novel signaling pathway in neurite growth, this research stresses the importance of receptor coactivation and signal integration during development of the nervous system.
Collapse
|
146
|
Ren Y, He Y, Brown S, Zbornik E, Mlodzianoski MJ, Ma D, Huang F, Mattoo S, Suter DM. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol Biol Cell 2019; 30:1817-1833. [PMID: 31116646 PMCID: PMC6727743 DOI: 10.1091/mbc.e18-04-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cortactin is a Src tyrosine phosphorylation substrate that regulates multiple actin-related cellular processes. While frequently studied in nonneuronal cells, the functions of cortactin in neuronal growth cones are not well understood. We recently reported that cortactin mediates the effects of Src tyrosine kinase in regulating actin organization and dynamics in both lamellipodia and filopodia of Aplysia growth cones. Here, we identified a single cortactin tyrosine phosphorylation site (Y499) to be important for the formation of filopodia. Overexpression of a 499F phospho-deficient cortactin mutant decreased filopodia length and density, whereas overexpression of a 499E phospho-mimetic mutant increased filopodia length. Using an antibody against cortactin pY499, we showed that tyrosine-phosphorylated cortactin is enriched along the leading edge. The leading edge localization of phosphorylated cortactin is Src2-dependent, F-actin-independent, and important for filopodia formation. In vitro kinase assays revealed that Src2 phosphorylates cortactin at Y499, although Y505 is the preferred site in vitro. Finally, we provide evidence that Arp2/3 complex acts downstream of phosphorylated cortactin to regulate density but not length of filopodia. In conclusion, we have characterized a tyrosine phosphorylation site in Aplysia cortactin that plays a major role in the Src/cortactin/Arp2/3 signaling pathway controlling filopodia formation.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Sherlene Brown
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Erica Zbornik
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael J Mlodzianoski
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Donghan Ma
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Fang Huang
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907.,Department of Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907.,Department of Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
147
|
Yurchenko I, Vensi Basso JM, Syrotenko VS, Staii C. Anomalous diffusion for neuronal growth on surfaces with controlled geometries. PLoS One 2019; 14:e0216181. [PMID: 31059532 PMCID: PMC6502317 DOI: 10.1371/journal.pone.0216181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Geometrical cues are known to play a very important role in neuronal growth and the formation of neuronal networks. Here, we present a detailed analysis of axonal growth and dynamics for neuronal cells cultured on patterned polydimethylsiloxane surfaces. We use fluorescence microscopy to image neurons, quantify their dynamics, and demonstrate that the substrate geometrical patterns cause strong directional alignment of axons. We quantify axonal growth and report a general stochastic approach that quantitatively describes the motion of growth cones. The growth cone dynamics is described by Langevin and Fokker-Planck equations with both deterministic and stochastic contributions. We show that the deterministic terms contain both the angular and speed dependence of axonal growth, and that these two contributions can be separated. Growth alignment is determined by surface geometry, and it is quantified by the deterministic part of the Langevin equation. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: speed and angular distributions, correlation functions, diffusion coefficients, characteristics speeds and damping coefficients. We demonstrate that axonal dynamics displays a cross-over from Brownian motion (Ornstein-Uhlenbeck process) at earlier times to anomalous dynamics (superdiffusion) at later times. The superdiffusive regime is characterized by non-Gaussian speed distributions and power law dependence of the axonal mean square length and the velocity correlation functions. These results demonstrate the importance of geometrical cues in guiding axonal growth, and could lead to new methods for bioengineering novel substrates for controlling neuronal growth and regeneration.
Collapse
Affiliation(s)
- Ilya Yurchenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Vladyslav Serhiiovych Syrotenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
148
|
Urwyler O, Izadifar A, Vandenbogaerde S, Sachse S, Misbaer A, Schmucker D. Branch-restricted localization of phosphatase Prl-1 specifies axonal synaptogenesis domains. Science 2019; 364:364/6439/eaau9952. [DOI: 10.1126/science.aau9952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Central nervous system (CNS) circuit development requires subcellular control of synapse formation and patterning of synapse abundance. We identified the Drosophila membrane-anchored phosphatase of regenerating liver (Prl-1) as an axon-intrinsic factor that promotes synapse formation in a spatially restricted fashion. The loss of Prl-1 in mechanosensory neurons reduced the number of CNS presynapses localized on a single axon collateral and organized as a terminal arbor. Flies lacking all Prl-1 protein had locomotor defects. The overexpression of Prl-1 induced ectopic synapses. In mechanosensory neurons, Prl-1 modulates the insulin receptor (InR) signaling pathway within a single contralateral axon compartment, thereby affecting the number of synapses. The axon branch–specific localization and function of Prl-1 depend on untranslated regions of the prl-1 messenger RNA (mRNA). Therefore, compartmentalized restriction of Prl-1 serves as a specificity factor for the subcellular control of axonal synaptogenesis.
Collapse
|
149
|
Sun AX, Prest TA, Fowler JR, Brick RM, Gloss KM, Li X, DeHart M, Shen H, Yang G, Brown BN, Alexander PG, Tuan RS. Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration. Biomaterials 2019; 203:86-95. [DOI: 10.1016/j.biomaterials.2019.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
|
150
|
Vensi Basso JM, Yurchenko I, Simon M, Rizzo DJ, Staii C. Role of geometrical cues in neuronal growth. Phys Rev E 2019; 99:022408. [PMID: 30934335 DOI: 10.1103/physreve.99.022408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 11/07/2022]
Abstract
Geometrical cues play an essential role in neuronal growth. Here, we quantify axonal growth on surfaces with controlled geometries and report a general stochastic approach that quantitatively describes the motion of growth cones. We show that axons display a strong directional alignment on micropatterned surfaces when the periodicity of the patterns matches the dimension of the growth cone. The growth cone dynamics on surfaces with uniform geometry is described by a linear Langevin equation with both deterministic and stochastic contributions. In contrast, axonal growth on surfaces with periodic patterns is characterized by a system of two generalized Langevin equations with both linear and quadratic velocity dependence and stochastic noise. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: angular distributions, correlation functions, diffusion coefficients, characteristics speeds, and damping coefficients. We demonstrate that axonal dynamics displays a crossover from an Ornstein-Uhlenbeck process to a nonlinear stochastic regime when the geometrical periodicity of the pattern approaches the linear dimension of the growth cone. Growth alignment is determined by surface geometry, which is fully quantified by the deterministic part of the Langevin equation. These results provide insight into the role of curvature sensing proteins and their interactions with geometrical cues.
Collapse
Affiliation(s)
- Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Ilya Yurchenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Marc Simon
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Daniel J Rizzo
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|