101
|
Wang P, Yang W, Zhao S, Nashun B. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle 2021; 20:465-479. [PMID: 33590780 DOI: 10.1080/15384101.2021.1881726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.
Collapse
Affiliation(s)
- Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuxin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
102
|
Frenkel N, Jonas F, Carmi M, Yaakov G, Barkai N. Rtt109 slows replication speed by histone N-terminal acetylation. Genome Res 2021; 31:426-435. [PMID: 33563717 PMCID: PMC7919450 DOI: 10.1101/gr.266510.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023]
Abstract
The wrapping of DNA around histone octamers challenges processes that use DNA as their template. In vitro, DNA replication through chromatin depends on histone modifiers, raising the possibility that cells modify histones to optimize fork progression. Rtt109 is an acetyl transferase that acetylates histone H3 before its DNA incorporation on the K56 and N-terminal residues. We previously reported that, in budding yeast, a wave of histone H3 K9 acetylation progresses ∼3–5 kb ahead of the replication fork. Whether this wave contributes to replication dynamics remained unknown. Here, we show that the replication fork velocity increases following deletion of RTT109, the gene encoding the enzyme required for the prereplication H3 acetylation wave. By using histone H3 mutants, we find that Rtt109-dependent N-terminal acetylation regulates fork velocity, whereas K56 acetylation contributes to replication dynamics only when N-terminal acetylation is compromised. We propose that acetylation of newly synthesized histones slows replication by promoting replacement of nucleosomes evicted by the incoming fork, thereby protecting genome integrity.
Collapse
Affiliation(s)
- Nelly Frenkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
103
|
Liu Z, Chen SS, Clarke S, Veschi V, Thiele CJ. Targeting MYCN in Pediatric and Adult Cancers. Front Oncol 2021; 10:623679. [PMID: 33628735 PMCID: PMC7898977 DOI: 10.3389/fonc.2020.623679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Samuel S Chen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Saki Clarke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
104
|
Marr LT, Ocampo J, Clark DJ, Hayes JJ. Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes. Epigenetics Chromatin 2021; 14:5. [PMID: 33430969 PMCID: PMC7802155 DOI: 10.1186/s13072-020-00381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Background The vast majority of methods available to characterize genome-wide chromatin structure exploit differences in DNA accessibility to nucleases or chemical crosslinking. We developed a novel method to gauge genome-wide accessibility of histone protein surfaces within nucleosomes by assessing reactivity of engineered cysteine residues with a thiol-specific reagent, biotin-maleimide (BM). Results Yeast nuclei were obtained from cells expressing the histone mutant H2B S116C, in which a cysteine resides near the center of the external flat protein surface of the nucleosome. BM modification revealed that nucleosomes are generally equivalently accessible throughout the S. cerevisiae genome, including heterochromatic regions, suggesting limited, higher-order chromatin structures in which this surface is obstructed by tight nucleosome packing. However, we find that nucleosomes within 500 bp of transcription start sites exhibit the greatest range of accessibility, which correlates with the density of chromatin remodelers. Interestingly, accessibility is not well correlated with RNA polymerase density and thus the level of gene expression. We also investigated the accessibility of cysteine mutations designed to detect exposure of histone surfaces internal to the nucleosome thought to be accessible in actively transcribed genes: H3 102, is at the H2A–H2B dimer/H3–H4 tetramer interface, and H3 A110C, resides at the H3–H3 interface. However, in contrast to the external surface site, we find that neither of these internal sites were found to be appreciably exposed. Conclusions Overall, our finding that nucleosomes surfaces within S. cerevisiae chromatin are equivalently accessible genome-wide is consistent with a globally uncompacted chromatin structure lacking substantial higher-order organization. However, we find modest differences in accessibility that correlate with chromatin remodelers but not transcription, suggesting chromatin poised for transcription is more accessible than actively transcribed or intergenic regions. In contrast, we find that two internal sites remain inaccessible, suggesting that such non-canonical nucleosome species generated during transcription are rapidly and efficiently converted to canonical nucleosome structure and thus not widely present in native chromatin.
Collapse
Affiliation(s)
- Luke T Marr
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
105
|
Huynh MT, Yadav SP, Reese JC, Lee TH. Nucleosome Dynamics during Transcription Elongation. ACS Chem Biol 2020; 15:3133-3142. [PMID: 33263994 DOI: 10.1021/acschembio.0c00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleosome is the basic packing unit of the eukaryotic genome. Dynamic interactions between DNA and histones in the nucleosome are the molecular basis of gene accessibility regulation that governs the kinetics of various DNA-templated processes such as transcription elongation by RNA Polymerase II (Pol II). On the basis of single-molecule FRET measurements with chemically modified histones, we investigated the nucleosome dynamics during transcription elongation and how it is affected by histone acetylation at H3 K56 and the histone chaperone Nap1, both of which can affect DNA-histone interactions. We observed that H3K56 acetylation dramatically shortens the pause duration of Pol II near the entry region of the nucleosome, while Nap1 induces no noticeable difference. We also found that the elongation rate of Pol II through the nucleosome is unaffected by the acetylation or Nap1. These results indicate that H3K56 acetylation facilitates Pol II translocation through the nucleosome by assisting paused Pol II to resume and that Nap1 does not affect Pol II progression. Following transcription, only a small fraction of nucleosomes remain intact, which is unaffected by H3K56 acetylation or Nap1. These results suggest that (i) spontaneous nucleosome opening enables Pol II progression, (ii) Pol II mediates nucleosome reassembly very inefficiently, and (iii) Nap1 in the absence of other factors does not promote nucleosome disassembly or reassembly during transcription.
Collapse
|
106
|
Shukla A, Bhalla P, Potdar PK, Jampala P, Bhargava P. Transcription-dependent enrichment of the yeast FACT complex influences nucleosome dynamics on the RNA polymerase III-transcribed genes. RNA (NEW YORK, N.Y.) 2020; 27:rna.077974.120. [PMID: 33277439 PMCID: PMC7901838 DOI: 10.1261/rna.077974.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.
Collapse
|
107
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
108
|
Histone chaperone FACT FAcilitates Chromatin Transcription: mechanistic and structural insights. Curr Opin Struct Biol 2020; 65:26-32. [DOI: 10.1016/j.sbi.2020.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
|
109
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
110
|
Yu Y, Yarrington RM, Stillman DJ. FACT and Ash1 promote long-range and bidirectional nucleosome eviction at the HO promoter. Nucleic Acids Res 2020; 48:10877-10889. [PMID: 33010153 PMCID: PMC7641740 DOI: 10.1093/nar/gkaa819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae HO gene is a model regulatory system with complex transcriptional regulation. Budding yeast divide asymmetrically and HO is expressed only in mother cells where a nucleosome eviction cascade along the promoter during the cell cycle enables activation. HO expression in daughter cells is inhibited by high concentration of Ash1 in daughters. To understand how Ash1 represses transcription, we used a myo4 mutation which boosts Ash1 accumulation in both mothers and daughters and show that Ash1 inhibits promoter recruitment of SWI/SNF and Gcn5. We show Ash1 is also required for the efficient nucleosome repopulation that occurs after eviction, and the strongest effects of Ash1 are seen when Ash1 has been degraded and at promoter locations distant from where Ash1 bound. Additionally, we defined a specific nucleosome/nucleosome-depleted region structure that restricts HO activation to one of two paralogous DNA-binding factors. We also show that nucleosome eviction occurs bidirectionally over a large distance. Significantly, eviction of the more distant nucleosomes is dependent upon the FACT histone chaperone, and FACT is recruited to these regions when eviction is beginning. These last observations, along with ChIP experiments involving the SBF factor, suggest a long-distance loop transiently forms at the HO promoter.
Collapse
Affiliation(s)
- Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| |
Collapse
|
111
|
Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 2020; 40:465-474. [PMID: 33199825 PMCID: PMC7819849 DOI: 10.1038/s41388-020-01556-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
RNF40 (OMIM: 607700) is a really interesting new gene (RING) finger E3 ubiquitin ligase containing multiple coiled-coil domains and a C-terminal RING finger motif, which engage in protein–DNA and protein–protein interactions. RNF40 encodes a polypeptide of 1001 amino acids with a predicted molecular mass of 113,678 Da. RNF40 and its paralog RNF20 form a stable heterodimer complex that can monoubiquitylate histone H2B at lysine 120 as well as other nonhistone proteins. Cancer is a major public health problem and the second leading cause of death. Through its protein ubiquitylation activity, RNF40 acts as a tumor suppressor or oncogene to play major epigenetic roles in cancer development, progression, and metastasis, highlighting the essential function of RNF40 and the importance of studying it. In this review, we summarize current knowledge about RNF40 gene structure and the role of RNF40 in histone H2B monoubiquitylation, DNA damage repair, apoptosis, cancer development, and metastasis. We also underscore challenges in applying this information to cancer prognosis and prevention and highlight the urgent need for additional investigations of RNF40 as a potential target for cancer therapeutics.
Collapse
|
112
|
Falbo L, Costanzo V. Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors. Bioessays 2020; 43:e2000181. [PMID: 33165968 DOI: 10.1002/bies.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.
Collapse
Affiliation(s)
- Lucia Falbo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy.,Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
113
|
Herrero E, Stinus S, Bellows E, Berry LK, Wood H, Thorpe PH. Asymmetric Transcription Factor Partitioning During Yeast Cell Division Requires the FACT Chromatin Remodeler and Cell Cycle Progression. Genetics 2020; 216:701-716. [PMID: 32878900 PMCID: PMC7648576 DOI: 10.1534/genetics.120.303439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022] Open
Abstract
The polarized partitioning of proteins in cells underlies asymmetric cell division, which is an important driver of development and cellular diversity. The budding yeast Saccharomyces cerevisiae divides asymmetrically, like many other cells, to generate two distinct progeny cells. A well-known example of an asymmetric protein is the transcription factor Ace2, which localizes specifically to the daughter nucleus, where it drives a daughter-specific transcriptional network. We screened a collection of essential genes to analyze the effects of core cellular processes in asymmetric cell division based on Ace2 localization. This screen identified mutations that affect progression through the cell cycle, suggesting that cell cycle delay is sufficient to disrupt Ace2 asymmetry. To test this model, we blocked cells from progressing through mitosis and found that prolonged metaphase delay is sufficient to disrupt Ace2 asymmetry after release, and that Ace2 asymmetry is restored after cytokinesis. We also demonstrate that members of the evolutionarily conserved facilitates chromatin transcription (FACT) chromatin-reorganizing complex are required for both asymmetric and cell cycle-regulated localization of Ace2, and for localization of the RAM network components.
Collapse
Affiliation(s)
- Eva Herrero
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Sonia Stinus
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UT3, 31062, France
| | - Eleanor Bellows
- School of Biosciences, The University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Lisa K Berry
- School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, United Kingdom
| | - Henry Wood
- School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, United Kingdom
| |
Collapse
|
114
|
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV's discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.
Collapse
|
115
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
116
|
Feng Y, Endo M, Sugiyama H. Nucleosomes and Epigenetics from a Chemical Perspective. Chembiochem 2020; 22:595-612. [PMID: 32864867 DOI: 10.1002/cbic.202000332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Nucleosomes, which are the fundamental building blocks of chromatin, are highly dynamic, they play vital roles in the formation of higher-order chromatin structures and orchestrate gene regulation. Nucleosome structures, histone modifications, nucleosome-binding proteins, and their functions are being gradually unravelled with the development of epigenetics. With the continuous development of research approaches such as cryo-EM, FRET and next-generation sequencing for genome-wide analysis of nucleosomes, the understanding of nucleosomes is getting wider and deeper. Herein, we review recent progress in research on nucleosomes and epigenetics, from nucleosome structure to chromatin formation, with a focus on chemical aspects. Basic knowledge of the nucleosome (nucleosome structure, nucleosome position sequence, nucleosome assembly and remodeling), epigenetic modifications, chromatin structure, chemical biology methods and nucleosome, observation nucleosome by AFM, phase separation and nucleosomes are described in this review.
Collapse
Affiliation(s)
- Yihong Feng
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| |
Collapse
|
117
|
Xu J, Wang W, Xu L, Chen JY, Chong J, Oh J, Leschziner AE, Fu XD, Wang D. Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers. Proc Natl Acad Sci U S A 2020; 117:25486-25493. [PMID: 32989164 PMCID: PMC7568279 DOI: 10.1073/pnas.2013379117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.
Collapse
Affiliation(s)
- Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Wei Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Liang Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
118
|
Tsunaka Y, Ohtomo H, Morikawa K, Nishimura Y. Partial Replacement of Nucleosomal DNA with Human FACT Induces Dynamic Exposure and Acetylation of Histone H3 N-Terminal Tails. iScience 2020; 23:101641. [PMID: 33103079 PMCID: PMC7569332 DOI: 10.1016/j.isci.2020.101641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The FACT (facilitates chromatin transcription) complex, comprising SPT16 and SSRP1, conducts structural alterations during nucleosome unwrapping. Our previous cryoelectron microscopic (cryo-EM) analysis revealed the first intermediate structure of an unwrapped nucleosome with human FACT, in which 112-bp DNA and the phosphorylated intrinsically disordered (pAID) segment of SPT16 jointly wrapped around the histone core instead of 145-bp DNA. Using NMR, here we clarified that the histone H3 N-terminal tails, unobserved in the cryo-EM structure, adopt two different conformations reflecting their asymmetric locations at entry/exit sites: one corresponds to the original nucleosome site buried in two DNA gyres (DNA side), whereas the other, comprising pAID and DNA, is more exposed to the solvent (pAID side). NMR real-time monitoring showed that H3 acetylation is faster on the pAID side than on the DNA side. Our findings highlight that accessible conformations of H3 tails are created by the replacement of nucleosomal DNA with pAID. H3 N-tail, restricted to two DNA gyres of nucleosome, is protected from Gcn5 H3 N-tail is dynamically exposed by replacement of nucleosomal DNA with pAID of FACT Gcn5 efficiently acetylates accessible H3 N-tail of nucleosome with FACT FACT acts as a modulator for dynamic behavior of H3 tails in nucleosome
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
119
|
Mechanistic and structural insights into histone H2A–H2B chaperone in chromatin regulation. Biochem J 2020; 477:3367-3386. [DOI: 10.1042/bcj20190852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Histone chaperones include a wide variety of proteins which associate with histones and regulate chromatin structure. The classic H2A–H2B type of histone chaperones, and the chromatin remodeling complex components possessing H2A–H2B chaperone activity, show a broad range of structures and functions. Rapid progress in the structural and functional study of H2A–H2B chaperones extends our knowledge about the epigenetic regulation of chromatin. In this review, we summarize the most recent advances in the understanding of the structure and function of H2A–H2B chaperones that interact with either canonical or variant H2A–H2B dimers. We discuss the current knowledge of the H2A–H2B chaperones, which present no preference for canonical and variant H2A–H2B dimers, describing how they interact with H2A–H2B to fulfill their functions. We also review recent advances of H2A variant-specific chaperones, demarcating how they achieve specific recognition for histone variant H2A.Z and how these interactions regulate chromatin structure by nucleosome editing. We highlight the universal mechanism underlying H2A–H2B dimers recognition by a large variety of histone chaperones. These findings will shed insight into the biological impacts of histone chaperone, chromatin remodeling complex, and histone variants in chromatin regulation.
Collapse
|
120
|
Torné J, Ray-Gallet D, Boyarchuk E, Garnier M, Le Baccon P, Coulon A, Orsi GA, Almouzni G. Two HIRA-dependent pathways mediate H3.3 de novo deposition and recycling during transcription. Nat Struct Mol Biol 2020; 27:1057-1068. [PMID: 32895554 DOI: 10.1038/s41594-020-0492-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Nucleosomes represent a challenge in regard to transcription. Histone eviction enables RNA polymerase II (RNAPII) progression through DNA, but compromises chromatin integrity. Here, we used the SNAP-tag system to distinguish new and old histones and monitor chromatin reassembly coupled to transcription in human cells. We uncovered a transcription-dependent loss of old histone variants H3.1 and H3.3. At transcriptionally active domains, H3.3 enrichment reflected both old H3.3 retention and new deposition. Mechanistically, we found that the histone regulator A (HIRA) chaperone is critical to processing both new and old H3.3 via different pathways. De novo H3.3 deposition is totally dependent on HIRA trimerization as well as on its partner ubinuclein 1 (UBN1), while antisilencing function 1 (ASF1) interaction with HIRA can be bypassed. By contrast, recycling of H3.3 requires HIRA but proceeds independently of UBN1 or HIRA trimerization and shows absolute dependency on ASF1-HIRA interaction. We propose a model whereby HIRA coordinates these distinct pathways during transcription to fine-tune chromatin states.
Collapse
Affiliation(s)
- Júlia Torné
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Dominique Ray-Gallet
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Ekaterina Boyarchuk
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.,Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris, France
| | - Patricia Le Baccon
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.,Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris, France
| | - Antoine Coulon
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.,Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Guillermo A Orsi
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France. .,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France. .,LBMC, Université de Lyon, ENS de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France. .,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.
| |
Collapse
|
121
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
122
|
Abstract
Histone variants regulate chromatin accessibility and gene transcription. Given their distinct properties and functions, histone varint substitutions allow for profound alteration of nucleosomal architecture and local chromatin landscape. Skeletal myogenesis driven by the key transcription factor MyoD is characterized by precise temporal regulation of myogenic genes. Timed substitution of variants within the nucleosomes provides a powerful means to ensure sequential expression of myogenic genes. Indeed, growing evidence has shown H3.3, H2A.Z, macroH2A, and H1b to be critical for skeletal myogenesis. However, the relative importance of various histone variants and their associated chaperones in myogenesis is not fully appreciated. In this review, we summarize the role that histone variants play in altering chromatin landscape to ensure proper muscle differentiation. The temporal regulation and cross talk between histones variants and their chaperones in conjunction with other forms of epigenetic regulation could be critical to understanding myogenesis and their involvement in myopathies.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
123
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
124
|
Tettey TT, Gao X, Shao W, Li H, Story BA, Chitsazan AD, Glaser RL, Goode ZH, Seidel CW, Conaway RC, Zeitlinger J, Blanchette M, Conaway JW. A Role for FACT in RNA Polymerase II Promoter-Proximal Pausing. Cell Rep 2020; 27:3770-3779.e7. [PMID: 31242411 DOI: 10.1016/j.celrep.2019.05.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 04/22/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
FACT (facilitates chromatin transcription) is an evolutionarily conserved histone chaperone that was initially identified as an activity capable of promoting RNA polymerase II (Pol II) transcription through nucleosomes in vitro. In this report, we describe a global analysis of FACT function in Pol II transcription in Drosophila. We present evidence that loss of FACT has a dramatic impact on Pol II elongation-coupled processes including histone H3 lysine 4 (H3K4) and H3K36 methylation, consistent with a role for FACT in coordinating histone modification and chromatin architecture during Pol II transcription. Importantly, we identify a role for FACT in the maintenance of promoter-proximal Pol II pausing, a key step in transcription activation in higher eukaryotes. These findings bring to light a broader role for FACT in the regulation of Pol II transcription.
Collapse
Affiliation(s)
- Theophilus T Tettey
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA; The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA, UK
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Wanqing Shao
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Benjamin A Story
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alex D Chitsazan
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Robert L Glaser
- Wadsworth Center, New York State Department of Health, PO Box 509, Albany, NY 12201, USA
| | - Zach H Goode
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Christopher W Seidel
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marco Blanchette
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
125
|
Aoki D, Awazu A, Fujii M, Uewaki JI, Hashimoto M, Tochio N, Umehara T, Tate SI. Ultrasensitive Change in Nucleosome Binding by Multiple Phosphorylations to the Intrinsically Disordered Region of the Histone Chaperone FACT. J Mol Biol 2020; 432:4637-4657. [PMID: 32553729 DOI: 10.1016/j.jmb.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that functions as a nucleosome remodeler and a chaperone. The two subunits of FACT, Spt16 and SSRP1, mediate multiple interactions between the subunits and components of the nucleosome. Among the interactions, the role of the DNA-binding domain in SSRP1 has not been characterized. We reported previously that the DNA-binding domain in Drosophila SSRP1 (dSSRP1) has multiple casein kinase II phosphorylation sites, and the DNA binding affinity of the domain changes sigmoidally in response to the degree of phosphorylation ("ultrasensitive response"). In this report, we explored the molecular mechanisms for the ultrasensitive response of the DNA-binding domain in dSSRP1 using the shortest fragment (AB-HMG, residues 434-624) responsible for nucleosome binding. AB-HMG contains two intrinsically disordered (ID) regions: the N-terminal part rich in acidic residues (AID) and the C-terminal part rich in basic residues (BID) followed by the HMG box. NMR and coarse-grained molecular dynamics simulations revealed a phosphorylation-dependent change in intramolecular contacts between the AID and BID-HMG, which is mediated by a hinge bending motion of AB-HMG to enable the ultrasensitive response. Ultrasensitivity generates two distinct forms of dSSRP1, which are high- and low-affinity nucleosome-binding forms. Drosophila FACT (dFACT) switches function according to the degree of phosphorylation of the AID in dSSRP1. We propose that dFACT in various phosphorylation states functions cooperatively to facilitate gene regulation in the context of the chromatin.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan
| | - Jun-Ichi Uewaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manami Hashimoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan
| | - Naoya Tochio
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
126
|
Cheon Y, Kim H, Park K, Kim M, Lee D. Dynamic modules of the coactivator SAGA in eukaryotic transcription. Exp Mol Med 2020; 52:991-1003. [PMID: 32616828 PMCID: PMC8080568 DOI: 10.1038/s12276-020-0463-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase) is a highly conserved transcriptional coactivator that consists of four functionally independent modules. Its two distinct enzymatic activities, histone acetylation and deubiquitylation, establish specific epigenetic patterns on chromatin and thereby regulate gene expression. Whereas earlier studies emphasized the importance of SAGA in regulating global transcription, more recent reports have indicated that SAGA is involved in other aspects of gene expression and thus plays a more comprehensive role in regulating the overall process. Here, we discuss recent structural and functional studies of each SAGA module and compare the subunit compositions of SAGA with related complexes in yeast and metazoans. We discuss the regulatory role of the SAGA deubiquitylating module (DUBm) in mRNA surveillance and export, and in transcription initiation and elongation. The findings suggest that SAGA plays numerous roles in multiple stages of transcription. Further, we describe how SAGA is related to human disease. Overall, in this report, we illustrate the newly revealed understanding of SAGA in transcription regulation and disease implications for fine-tuning gene expression. A protein that helps add epigenetic information to genome, SAGA, controls many aspects of gene activation, potentially making it a target for cancer therapies. To fit inside the tiny cell nucleus, the genome is tightly packaged, and genes must be unpacked before they can be activated. Known to be important in genome opening, SAGA has now been shown to also play many roles in gene activation. Daeyoup Lee at the KAIST, Daejeon, South Korea, and co-workers have reviewed recent discoveries about SAGA’s structure, function, and roles in disease. They report that SAGA’s complex (19 subunits organized into four modules) allows it to play so many roles, genome opening, initiating transcription, and efficiently exporting mRNAs. Its master role means that malfunction of SAGA may be linked to many diseases.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Harim Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Kyubin Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
127
|
Cheng L, Zhang X, Wang Y, Gan H, Xu X, Lv X, Hua X, Que J, Ordog T, Zhang Z. Chromatin Assembly Factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Res 2020; 47:11114-11131. [PMID: 31586391 PMCID: PMC6868363 DOI: 10.1093/nar/gkz858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Establishment and subsequent maintenance of distinct chromatin domains during embryonic stem cell (ESC) differentiation are crucial for lineage specification and cell fate determination. Here we show that the histone chaperone Chromatin Assembly Factor 1 (CAF-1), which is recruited to DNA replication forks through its interaction with proliferating cell nuclear antigen (PCNA) for nucleosome assembly, participates in the establishment of H3K27me3-mediated silencing during differentiation. Deletion of CAF-1 p150 subunit impairs the silencing of many genes including Oct4, Sox2 and Nanog as well as the establishment of H3K27me3 at these gene promoters during ESC differentiation. Mutations of PCNA residues involved in recruiting CAF-1 to the chromatin also result in defects in differentiation in vitro and impair early embryonic development as p150 deletion. Together, these results reveal that the CAF-1-PCNA nucleosome assembly pathway plays an important role in the establishment of H3K27me3-mediated silencing during cell fate determination.
Collapse
Affiliation(s)
- Liang Cheng
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Xu Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Yan Wang
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiangdong Lv
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
128
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
129
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
130
|
Unachukwu U, Chada K, D’Armiento J. High Mobility Group AT-Hook 2 (HMGA2) Oncogenicity in Mesenchymal and Epithelial Neoplasia. Int J Mol Sci 2020; 21:ijms21093151. [PMID: 32365712 PMCID: PMC7246488 DOI: 10.3390/ijms21093151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
High mobility group AT-hook 2 (HMGA2) has been associated with increased cell proliferation and cell cycle dysregulation, leading to the ontogeny of varied tumor types and their metastatic potentials, a frequently used index of disease prognosis. In this review, we deepen our understanding of HMGA2 pathogenicity by exploring the mechanisms by which HMGA2 misexpression and ectopic expression induces mesenchymal and epithelial tumorigenesis respectively and distinguish the pathogenesis of benign from malignant mesenchymal tumors. Importantly, we highlight the regulatory role of let-7 microRNA family of tumor suppressors in determining HMGA2 misexpression events leading to tumor pathogenesis and focused on possible mechanisms by which HMGA2 could propagate lymphangioleiomyomatosis (LAM), benign mesenchymal tumors of the lungs. Lastly, we discuss potential therapeutic strategies for epithelial and mesenchymal tumorigenesis based on targeting the HMGA2 signaling pathway.
Collapse
Affiliation(s)
- Uchenna Unachukwu
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S 12-402, New York, NY 10032, USA;
| | - Kiran Chada
- Department of Biochemistry & Molecular Biology; Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA;
| | - Jeanine D’Armiento
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S 12-402, New York, NY 10032, USA;
- Correspondence: ; Tel.: +212-305-3745
| |
Collapse
|
131
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
132
|
Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, Fry CJ, Puri R, Wolinsky E, Schineller M, Frost TC, Gebre M, Zhao B, Giulino-Roth L, Doench JG, Teng M, Gewurz BE. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell 2020; 78:653-669.e8. [PMID: 32315601 DOI: 10.1016/j.molcel.2020.03.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Apurva Govande
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Fang Chen
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA
| | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emma Wolinsky
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Molly Schineller
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas C Frost
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Makda Gebre
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA.
| |
Collapse
|
133
|
Kujirai T, Kurumizaka H. Transcription through the nucleosome. Curr Opin Struct Biol 2020; 61:42-49. [DOI: 10.1016/j.sbi.2019.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
|
134
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
135
|
Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 2020; 295:4782-4795. [PMID: 32060094 DOI: 10.1074/jbc.ra119.011827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.
Collapse
Affiliation(s)
- Philipp E Merkl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Michael Pilsl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Tobias Fremter
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Katrin Schwank
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Christoph Engel
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Gernot Längst
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Herbert Tschochner
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| |
Collapse
|
136
|
Murawska M, Schauer T, Matsuda A, Wilson MD, Pysik T, Wojcik F, Muir TW, Hiraoka Y, Straub T, Ladurner AG. The Chaperone FACT and Histone H2B Ubiquitination Maintain S. pombe Genome Architecture through Genic and Subtelomeric Functions. Mol Cell 2020; 77:501-513.e7. [PMID: 31837996 PMCID: PMC7007867 DOI: 10.1016/j.molcel.2019.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
The histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA polymerase II (Pol II) passage through chromatin, yet it is not clear how they cooperate mechanistically. We used genomics, genetic, biochemical, and microscopic approaches to dissect their interplay in Schizosaccharomyces pombe. We show that FACT and H2Bub globally repress antisense transcripts near the 5' end of genes and inside gene bodies, respectively. The accumulation of these transcripts is accompanied by changes at genic nucleosomes and Pol II redistribution. H2Bub is required for FACT activity in genic regions. In the H2Bub mutant, FACT binding to chromatin is altered and its association with histones is stabilized, which leads to the reduction of genic nucleosomes. Interestingly, FACT depletion globally restores nucleosomes in the H2Bub mutant. Moreover, in the absence of Pob3, the FACT Spt16 subunit controls the 3' end of genes. Furthermore, FACT maintains nucleosomes in subtelomeric regions, which is crucial for their compaction.
Collapse
Affiliation(s)
- Magdalena Murawska
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Biomedical Center, Bioinformatics Unit, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Thomas Pysik
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Felix Wojcik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Tobias Straub
- Biomedical Center, Bioinformatics Unit, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
137
|
Bina R, Matalon D, Fregeau B, Tarsitano JJ, Aukrust I, Houge G, Bend R, Warren H, Stevenson RE, Stuurman KE, Barkovich AJ, Sherr EH. De novo variants in SUPT16H cause neurodevelopmental disorders associated with corpus callosum abnormalities. J Med Genet 2020; 57:461-465. [PMID: 31924697 DOI: 10.1136/jmedgenet-2019-106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Whole-exome sequencing (WES) has identified de novo variants in chromatin remodelling genes in patients with neurodevelopmental disorders (NDD). We report on a novel genetic discovery in chromatin remodelling in patients with NDD who also have corpus callosum (CC) anomalies. OBJECTIVE To discover novel genes linked to both CC anomalies and NDD. METHODS Clinical WES was performed for evaluation of NDD, identifying five patients with de novo variants in SUPT16H, a subunit of the FACT (facilitates chromatin transcription) complex. The clinical phenotypes, genetic results and brain MRIs were obtained and systematically reviewed. In silico protein function predictions were assessed and allele frequencies in control populations were compared. RESULTS We identified four patients with de novo missense variants in SUPT16H and one patient with a de novo deletion including SUPT16H. These variants were not reported in the updated Genome Aggregation Database. When assayable, all protein products were predicted to be damaging. Symptoms included intellectual disability, autistic features, minor dysmorphic features and seizures. Anomalies of the CC were seen in all three patients with available brain imaging. CONCLUSION Our findings implicate the gene SUPT16H in a novel disorder characterised by neurodevelopmental deficits and CC anomalies.
Collapse
Affiliation(s)
- Roya Bina
- Neurology, UCSF, San Francisco, California, USA
| | - Dena Matalon
- Pediatrics, Stanford University, Stanford, California, USA
| | | | | | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Renee Bend
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Hannah Warren
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | | | | | |
Collapse
|
138
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|
139
|
Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, Carragher B, Potter CS, D'Arcy S, Luger K. FACT caught in the act of manipulating the nucleosome. Nature 2020; 577:426-431. [PMID: 31775157 PMCID: PMC7441595 DOI: 10.1038/s41586-019-1820-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 01/21/2023]
Abstract
The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as 'facilitates chromatin transcription' (FACT1) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair2. However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. 3). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80305
| | - Keda Zhou
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80305
| | - Naifu Zhang
- The University of Texas at Dallas, Department of Chemistry and Biochemistry, Dallas, TX 75080
| | - Hui Wei
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027
| | - Yong Zi Tan
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Zhening Zhang
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027,Biochemistry and Molecular Biophysics Dept., Columbia University Medical Center, New York, NY 10032
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027
| | - Sheena D'Arcy
- The University of Texas at Dallas, Department of Chemistry and Biochemistry, Dallas, TX 75080
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80305,Howard Hughes Medical Institute
| |
Collapse
|
140
|
Grasser KD. The FACT Histone Chaperone: Tuning Gene Transcription in the Chromatin Context to Modulate Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:85. [PMID: 32140163 PMCID: PMC7042381 DOI: 10.3389/fpls.2020.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
FACT is a heterodimeric histone chaperone consisting of the SSRP1 and SPT16 proteins and is conserved among eukaryotes. It interacts with the histones H2A-H2B and H3-H4 as well as with DNA. Based on in vitro and in vivo studies mainly in yeast and mammalian cells, FACT can mediate nucleosome disassembly and reassembly and thus facilitates in the chromatin context DNA-dependent processes including transcription, replication and repair. In plants, primarily the role of FACT related to RNA polymerase II transcription has been examined. FACT was found to associate with elongating Arabidopsis RNA polymerase II (RNAPII) as part of the transcript elongation complex and it was identified as repressor of aberrant intragenic transcriptional initiation. Arabidopsis mutants depleted in FACT subunits exhibit various defects in vegetative and reproductive development. Strikingly, FACT modulates important developmental transitions by promoting expression of key repressors of these processes. Thus, FACT facilitates expression of DOG1 and FLC adjusting the switch from seed dormancy to germination and from vegetative to reproductive development, respectively. In the central cell of the female gametophyte, FACT can facilitate DNA demethylation especially within heterochromatin, and thereby contributes to gene imprinting during Arabidopsis reproduction. This review discusses results particularly from the plant perspective about the contribution of FACT to processes that involve reorganisation of nucleosomes with a main focus on RNAPII transcription and its implications for diverse areas of plant biology.
Collapse
|
141
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
142
|
Holla S, Dhakshnamoorthy J, Folco HD, Balachandran V, Xiao H, Sun LL, Wheeler D, Zofall M, Grewal SIS. Positioning Heterochromatin at the Nuclear Periphery Suppresses Histone Turnover to Promote Epigenetic Inheritance. Cell 2019; 180:150-164.e15. [PMID: 31883795 DOI: 10.1016/j.cell.2019.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023]
Abstract
In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.
Collapse
Affiliation(s)
- Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling-Ling Sun
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
143
|
Neurodevelopmental phenotype associated with CHD8-SUPT16H duplication. Neurogenetics 2019; 21:67-72. [PMID: 31823155 DOI: 10.1007/s10048-019-00599-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/27/2019] [Indexed: 12/31/2022]
Abstract
Microdeletions encompassing 14q11.2 locus, involving SUPT16H and CHD8, were shown to cause developmental delay, intellectual disability, autism spectrum disorders and macrocephaly. Variations leading to CHD8 haploinsufficiency or loss of function were also shown to lead to a similar phenotype. Recently, a 14q11.2 microduplication syndrome, encompassing CHD8 and SUPT16H, has been described, highlighting the importance of a tight control of at least CHD8 gene-dosage for a normal development. There have been only a few reports of 14q11.2 microduplications. Patients showed variable neurodevelopmental issues of variable severity. Breakpoints of the microduplications were non-recurrent, making interpretation of the CNV and determination of their clinical relevance difficult. Here, we report on two patients with 14q11.2 microduplication encompassing CHD8 and SUPT16H, one of whom had normal intelligence. Review of previous reports describing patients with comparable microduplications allowed for a more precise delineation of the condition and widening of the phenotypic spectrum.
Collapse
|
144
|
NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Rep 2019; 23:1853-1866. [PMID: 29742439 DOI: 10.1016/j.celrep.2018.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC). A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation.
Collapse
|
145
|
Chang HW, Nizovtseva EV, Razin SV, Formosa T, Gurova KV, Studitsky VM. Histone Chaperone FACT and Curaxins: Effects on Genome Structure and Function. ACTA ACUST UNITED AC 2019; 5. [PMID: 31853507 DOI: 10.20517/2394-4722.2019.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The histone chaperone FACT plays important roles in essentially every chromatin-associated process and is an important indirect target of the curaxin class of anti-cancer drugs. Curaxins are aromatiс compounds that intercalate into DNA and can trap FACT in bulk chromatin, thus interfering with its distribution and its functions in cancer cells. Recent studies have provided mechanistic insight into how FACT and curaxins cooperate to promote unfolding of nucleosomes and chromatin fibers, resulting in genome-wide disruption of contact chromatin domain boundaries, perturbation of higher order chromatin organization, and global disregulation of gene expression. Here, we discuss the implications of these insights for cancer biology.
Collapse
Affiliation(s)
- Han-Wen Chang
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Sergey V Razin
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia.,Biology Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY14263, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Biology Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| |
Collapse
|
146
|
Krajewski WA. The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1. Biochim Biophys Acta Gen Subj 2019; 1864:129497. [PMID: 31785324 DOI: 10.1016/j.bbagen.2019.129497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. METHODS We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. RESULTS H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro. CONCLUSIONS AND GENERAL SIGNIFICANCE The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia..
| |
Collapse
|
147
|
Song H, Zeng J, Roychoudhury S, Biswas P, Mohapatra B, Ray S, Dowlatshahi K, Wang J, Band V, Talmon G, Bhakat KK. Targeting Histone Chaperone FACT Complex Overcomes 5-Fluorouracil Resistance in Colon Cancer. Mol Cancer Ther 2019; 19:258-269. [PMID: 31575655 DOI: 10.1158/1535-7163.mct-19-0600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022]
Abstract
Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway. Downregulation of APE1, a key enzyme in the BER pathway, decreases IC50 of 5-FU in dMMR colorectal cancer cells by 10-fold. Furthermore, we discover that the facilitates chromatin transcription (FACT) complex facilitates 5-FU repair in DNA via promoting the recruitment and acetylation of APE1 (AcAPE1) to damage sites in chromatin. Downregulation of FACT affects 5-FU damage repair in DNA and sensitizes dMMR colorectal cancer cells to 5-FU. Targeting the FACT complex with curaxins, a class of small molecules, significantly improves the 5-FU efficacy in dMMR colorectal cancer in vitro (∼50-fold decrease in IC50) and in vivo xenograft models. We show that primary tumor tissues of colorectal cancer patients have higher FACT and AcAPE1 levels compared with adjacent nontumor tissues. Additionally, there is a strong clinical correlation of FACT and AcAPE1 levels with colorectal cancer patients' response to chemotherapy. Together, our study demonstrates that targeting FACT with curaxins is a promising strategy to overcome 5-FU resistance in dMMR colorectal cancer patients.
Collapse
Affiliation(s)
- Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jiping Zeng
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pranjal Biswas
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kayvon Dowlatshahi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jing Wang
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska. .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
148
|
Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 2019; 68:21-30. [PMID: 31562955 DOI: 10.1016/j.semcancer.2019.09.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Quinacrine, also known as mepacrine, has originally been used as an antimalarial drug for close to a century, but was recently rediscovered as an anticancer agent. The mechanisms of anticancer effects of quinacrine are not well understood. The anticancer potential of quinacrine was discovered in a screen for small molecule activators of p53, and was specifically shown to inhibit NFκB suppression of p53. However, quinacrine can cause cell death in cells that lack p53 or have p53 mutations, which is a common occurrence in many malignant tumors including high grade serous ovarian cancer. Recent reports suggest quinacrine may inhibit cancer cell growth through multiple mechanisms including regulating autophagy, FACT (facilitates chromatin transcription) chromatin trapping, and the DNA repair process. Additional reports also suggest quinacrine is effective against chemoresistant gynecologic cancer. In this review, we discuss anticancer effects of quinacrine and potential mechanisms of action with a specific focus on gynecologic and breast cancer where treatment-refractory tumors are associated with increased mortality rates. Repurposing quinacrine as an anticancer agent appears to be a promising strategy based on its ability to target multiple pathways, its selectivity against cancer cells, and the synergistic cytotoxicity when combined with other anticancer agents with limited side effects and good tolerability profile.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christopher L Pathoulas
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Upasana Ray
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prabhu Thirusangu
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
149
|
Krajewski WA, Li J, Dou Y. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics. Nucleic Acids Res 2019; 46:7631-7642. [PMID: 29931239 PMCID: PMC6125632 DOI: 10.1093/nar/gky526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
DNA in nucleosomes has restricted nucleosome dynamics and is refractory to DNA-templated processes. Histone post-translational modifications play important roles in regulating DNA accessibility in nucleosomes. Whereas most histone modifications function either by mitigating the electrostatic shielding of histone tails or by recruiting 'reader' proteins, we show that ubiquitylation of H2B K34, which is located in a tight space protected by two coils of DNA superhelix, is able to directly influence the canonical nucleosome conformation via steric hindrances by ubiquitin groups. H2B K34 ubiquitylation significantly enhances nucleosome dynamics and promotes generation of hexasomes both with symmetrically or asymmetrically modified nucleosomes. Our results indicate a direct mechanism by which a histone modification regulates the chromatin structural states.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow, 119334, Russia.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
150
|
de Vivo A, Sanchez A, Yegres J, Kim J, Emly S, Kee Y. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res 2019; 47:729-746. [PMID: 30508113 PMCID: PMC6344881 DOI: 10.1093/nar/gky1219] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Timely stalling and resumption of RNA polymerases at damaged chromatin are actively regulated processes. Prior work showed an importance of FACT histone chaperone in such process. Here we provide a new role of OTUD5 deubiquitinase in the FACT-dependent process. Through a DUB RNAi screen, we found OTUD5 as a specific stabilizer of the UBR5 E3 ligase. OTUD5 localizes to DNA double strand breaks (DSBs), interacts with UBR5 and represses the RNA Pol II elongation and RNA synthesis. OTUD5 co-localizes and interacts with the FACT component SPT16 and antagonizes the histone H2A deposition at DSB lesions. OTUD5 interacts with UBR5 and SPT16 independently through two distinct regions, and both interactions are necessary for arresting the Pol II elongation at lesions. These analyses suggested that the catalytic (through UBR5 stabilization) as well as scaffolding (through FACT binding) activities of OTUD5 are involved in the FACT-dependent transcription. We found that a cancer-associated missense mutation within the OTUD5 Ubiquitin Interacting Motif (UIM) abrogates the FACT association and the Pol II arrest, providing a possible link between the transcriptional regulation and tumor suppression. Our work establishes OTUD5 as a new regulator of the DNA damage response, and provides an insight into the FACT-dependent transcription at damaged chromatin.
Collapse
Affiliation(s)
- Angelo de Vivo
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Anthony Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Jose Yegres
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Jeonghyeon Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Sylvia Emly
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|