101
|
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, USA.
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-mer, Sorbonne Universités, France.
| |
Collapse
|
102
|
Wang ZY, Ragsdale CW. Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death. J Exp Biol 2018; 221:jeb185751. [PMID: 30104305 PMCID: PMC6198452 DOI: 10.1242/jeb.185751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
103
|
Santos MM, Ruivo R, Capitão A, Fonseca E, Castro LFC. Identifying the gaps: Resources and perspectives on the use of nuclear receptor based-assays to improve hazard assessment of emerging contaminants. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:508-511. [PMID: 29731175 DOI: 10.1016/j.jhazmat.2018.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Biological control of key processes, such as development and reproduction, is largely ascribed to a superfamily of ligand-dependent and independent transcription factors named Nuclear Receptors (NRs). Given their ability to accommodate ligands, NRs are prime targets of man-made compounds that mimic or antagonise the action of endogenous ligands. Accordingly, NRs occupy a prominent role in OECD and EPA guidelines for testing and assessment of Endocrine disrupting chemicals (EDCs). Although NR assays are already a key instrument in the OECD Conceptual Framework for Testing and Assessment of EDCs, the focus is mostly on vertebrate NRs. Here, we address the chief knowledge gaps in the field. More specifically, we (1) verify the growing availability of genomes/transcriptome projects, (2) highlight gaps in the identification and characterization of metazoan NR and in the establishment of (3) life cycle and (4) toxicity testing protocols. An overall bias towards vertebrates and selected invertebrate groups, notably Arthropoda, Annelida and Mollusca, was observed. Hence, if we aim to improve risk assessment of EDCs and emerging pollutants at an ecosystems scale, and understand their mode of action (MOA), we must establish a framework to include a broad phylogenetic sampling of Metazoans.
Collapse
Affiliation(s)
- M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal
| | - A Capitão
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - E Fonseca
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - L F C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
104
|
Della Torre S, Rando G, Meda C, Ciana P, Ottobrini L, Maggi A. Transcriptional activity of oestrogen receptors in the course of embryo development. J Endocrinol 2018; 238:165-176. [PMID: 30012715 PMCID: PMC6084787 DOI: 10.1530/joe-18-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Oestrogens are well-known proliferation and differentiation factors that play an essential role in the correct development of sex-related organs and behaviour in mammals. With the use of the ERE-Luc reporter mouse model, we show herein that throughout mouse development, oestrogen receptors (ERs) are active starting from day 12 post conception. Most interestingly, we show that prenatal luciferase expression in each organ is proportionally different in relation to the germ layer of the origin. The luciferase content is highest in ectoderm-derived organs (such as brain and skin) and is lowest in endoderm-derived organs (such as liver, lung, thymus and intestine). Consistent with the testosterone surge occurring in male mice at the end of pregnancy, in the first 2 days after birth, we observed a significant increase in the luciferase content in several organs, including the liver, bone, gonads and hindbrain. The results of the present study show a widespread transcriptional activity of ERs in developing embryos, pointing to the potential contribution of these receptors in the development of non-reproductive as well as reproductive organs. Consequently, the findings reported here might be relevant in explaining the significant differences in male and female physiopathology reported by a growing number of studies and may underline the necessity for more systematic analyses aimed at the identification of the prenatal effects of drugs interfering with ER signalling, such as aromatase inhibitors or endocrine disrupter chemicals.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Gianpaolo Rando
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Clara Meda
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Paolo Ciana
- Department of Oncology and Hemato-OncologyUniversity of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| |
Collapse
|
105
|
Gismondi E. Identification of molt-inhibiting hormone and ecdysteroid receptor cDNA sequences in Gammarus pulex, and variations after endocrine disruptor exposures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:9-17. [PMID: 29656166 DOI: 10.1016/j.ecoenv.2018.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
In amphipods, growth, development and reproduction are mediated by the molt, which is a hormonally controlled process and which, therefore, could be impacted by endocrine disruption compounds (EDC). The molt process is controlled by both X-organ (XO) and Y-organ (YO) through a variety of hormones and receptors including the molt-inhibiting hormone (MIH) and the ecdysteroid receptor (EcR). However, although many studies were devoted to characterize MIH and EcR in crustaceans, only few works evaluated their variations under EDCs exposures. Consequently, the present work aimed to characterize MIH and EcR genes of the amphipod Gammarus pulex, as well as to study their relative expression variations after exposure to four EDCs, proved in vertebrates: ethinylestradiol (estrogen), 4-hydroxytamoxifen (anti-estrogen), 17α-methyltestosterone (androgen) and cyproterone acetate (anti-androgen). PCR amplification allowed to obtain 204 bp length and 255 bp length fragments, encoding for partial sequences of 68 amino acids and 85 amino acids, which correspond to EcR and MIH, respectively, and which are highly conserved in crustacean species. Results highlighted MIH and EcR expressions mainly in G. pulex head, which is the localization of XO and YO. Moreover, irrespective of the EDC exposure, increases of MIH and EcR relative expressions were observed, as it was observed after the exposure to 20-hydroxyecdysone (20HE), the natural molt hormone, used as positive control. Therefore, it appeared that tested EDCs behaved like 20HE, suggesting that their effects could occur through the ecdysteroids pathways, and so impact the molt process of G. pulex on the long term. Finally, the present study is a first step in the possibility of using MIH and EcR relative expressions as biomarkers of exposure for EDCs risk assessment. However additional studies must first be carried out to better characterize and understand their variations, and also better predicted consequences for the exposed amphipods.
Collapse
Affiliation(s)
- Eric Gismondi
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and Oceanic Sciences Unit of Research (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium.
| |
Collapse
|
106
|
San-Jose LM, Roulin A. Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am Nat 2018; 192:111-130. [PMID: 30016163 DOI: 10.1086/698010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life.
Collapse
|
107
|
Morales M, Martínez-Paz P, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:132-138. [PMID: 29407779 DOI: 10.1016/j.ecoenv.2018.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment.
Collapse
Affiliation(s)
- Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Dpto. de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra, La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
108
|
Datta RR, Ling J, Kurland J, Ren X, Xu Z, Yucel G, Moore J, Shokri L, Baker I, Bishop T, Struffi P, Levina R, Bulyk ML, Johnston RJ, Small S. A feed-forward relay integrates the regulatory activities of Bicoid and Orthodenticle via sequential binding to suboptimal sites. Genes Dev 2018; 32:723-736. [PMID: 29764918 PMCID: PMC6004077 DOI: 10.1101/gad.311985.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022]
Abstract
Datta et al. define three major classes of enhancers that are differentially sensitive to binding and transcriptional activation by Bicoid (Bcd) and Orthodenticle (Otd). The specific activities of enhancers in each class are mediated by DNA motif variants preferentially bound by Bcd or Otd and the presence or absence of sites for cofactors that interact with these proteins. The K50 (lysine at amino acid position 50) homeodomain (HD) protein Orthodenticle (Otd) is critical for anterior patterning and brain and eye development in most metazoans. In Drosophila melanogaster, another K50HD protein, Bicoid (Bcd), has evolved to replace Otd's ancestral function in embryo patterning. Bcd is distributed as a long-range maternal gradient and activates transcription of a large number of target genes, including otd. Otd and Bcd bind similar DNA sequences in vitro, but how their transcriptional activities are integrated to pattern anterior regions of the embryo is unknown. Here we define three major classes of enhancers that are differentially sensitive to binding and transcriptional activation by Bcd and Otd. Class 1 enhancers are initially activated by Bcd, and activation is transferred to Otd via a feed-forward relay (FFR) that involves sequential binding of the two proteins to the same DNA motif. Class 2 enhancers are activated by Bcd and maintained by an Otd-independent mechanism. Class 3 enhancers are never bound by Bcd, but Otd binds and activates them in a second wave of zygotic transcription. The specific activities of enhancers in each class are mediated by DNA motif variants preferentially bound by Bcd or Otd and the presence or absence of sites for cofactors that interact with these proteins. Our results define specific patterning roles for Bcd and Otd and provide mechanisms for coordinating the precise timing of gene expression patterns during embryonic development.
Collapse
Affiliation(s)
- Rhea R Datta
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Jia Ling
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Jesse Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaotong Ren
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Zhe Xu
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Gozde Yucel
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Jackie Moore
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Leila Shokri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Isabel Baker
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Timothy Bishop
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Paolo Struffi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Rimma Levina
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Stephen Small
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
109
|
Immunolocalization and changes of 17beta-estradiol during ovarian development of Chinese mitten crab Eriocheir sinensis' [corrected]. Cell Tissue Res 2018; 373:509-520. [PMID: 29707750 DOI: 10.1007/s00441-018-2834-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
17beta-estradiol (E2) is important for crustacean ovarian development. This study aims to investigate the distribution and change pattern of E2 in the ovary, hepatopancreas, thoracic ganglion and brain ganglion as well as Vg-mRNA expression level during ovarian development of Chinese mitten crab Eriocheir sinensis. Results showed that strongly positive signals of E2 were mainly distributed in follicle cells of ovaries for all developmental stages as well as oocyte cytoplasm of stages III to V ovaries. In hepatopancreas, the E2-positive signal was mainly detected in the cytoplasm and nucleus of fibrillar cells and the nucleus of resorptive cells, while the maximum fluorescence intensity was observed in stage III hepatopancreas. On the contrary, the E2 immunoreactivities in nervous tissues were relatively stable during ovarian development. Moreover, the changing pattern of E2 concentration was similar within hemolymph, ovary and hepatopancreas during the ovarian development. From stages I to III, the E2 content in three tissues increased significantly, then decreased gradually until stage V. As for the Vg-mRNA expression level in hepatopancreas and ovaries, an increasing trend was found in ovaries but no significant difference was detected during the period of ovarian stages III to V. Hepatopancreatic Vg-mRNA expression level increased significantly during stages I to IV and dramatically decreased at stage V. In conclusion, our study suggests that ovary, hepatopancreas, hemolymph and nervous tissues are the target organs of E2 in E. sinensis and E2 concentrations in different tissues are closely related to vitellogenesis in ovary and hepatopancreas during ovarian development.
Collapse
|
110
|
Burgos-Aceves MA, Cohen A, Smith Y, Faggio C. A potential microRNA regulation of immune-related genes in invertebrate haemocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:302-307. [PMID: 29190554 DOI: 10.1016/j.scitotenv.2017.11.285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Bivalve mollusks have been employed as sentinel organisms in environmental health programs due to their sedentary lifestyle, filter-feeding behavior and their ability to accumulate pathogens or toxin molecules inside tissues. Endocrine disrupting chemicals (EDCs) can be up taken and bioaccumulated, and due to sensibility of mollusks to these EDCs, being able to cause immune alterations. Recently, microRNAs (miRNAs) were shown to be involved in modulation and buffering developmental processes against the effects of environmental alterations and pathogenic microorganisms. Moreover, it is suggested that this miRNAs are incorporated into the estrogen-controlled immune network, regulating mechanism of immune gene expression at the posttranscriptional level, modulating immune responses as phagocytosis, redox reaction and apoptosis in bivalve haemocytes. Thus, miRNAs can be used as biomarkers that specifically elucidate immunotoxic effects caused by exogenous biotic or abiotic factors, and can act as useful tools in integrated monitoring environmental health programs. In this review, we aim to describe the investigations that have been carried out on miRNAs in bivalve mollusks, especially those associated with immune responses against infectious agents and xenobiotic exposure.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas del Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23096, Mexico
| | - Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
111
|
Morfoisse F, Tatin F, Chaput B, Therville N, Vaysse C, Métivier R, Malloizel-Delaunay J, Pujol F, Godet AC, De Toni F, Boudou F, Grenier K, Dubuc D, Lacazette E, Prats AC, Guillermet-Guibert J, Lenfant F, Garmy-Susini B. Lymphatic Vasculature Requires Estrogen Receptor-α Signaling to Protect From Lymphedema. Arterioscler Thromb Vasc Biol 2018; 38:1346-1357. [PMID: 29650694 DOI: 10.1161/atvbaha.118.310997] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Estrogens exert beneficial effect on the blood vascular system. However, their role on the lymphatic system has been poorly investigated. We studied the protective effect of the 17β estradiol-the most potent endogenous estrogen-in lymphedema-a lymphatic dysfunction, which results in a massive fluid and fat accumulation in the limb. APPROACH AND RESULTS Screening of DNA motifs able to mobilize ERs (estrogen receptors) and quantitative real-time polymerase chain reaction analysis revealed that estradiol promotes transcriptional activation of lymphangiogenesis-related gene expression including VEGF (vascular endothelial growth factor)-D, VEGFR (VEGF receptor)-3, lyve-1, and HASs (hyaluronan synthases). Using an original model of secondary lymphedema, we observed a protective effect of estradiol on lymphedema by reducing dermal backflow-a representative feature of the pathology. Blocking ERα by tamoxifen-the selective estrogen modulator-led to a remodeling of the lymphatic network associated with a strong lymphatic leakage. Moreover, the protection of lymphedema by estradiol treatment was abrogated by the endothelial deletion of the receptor ERα in Tie2-Cre; ERαlox/lox mice, which exhibit dilated lymphatic vessels. This remodeling correlated with a decrease in lymphangiogenic gene expression. In vitro, blocking ERα by tamoxifen in lymphatic endothelial cells decreased cell-cell junctions, inhibited migration and sprouting, and resulted in an inhibition of Erk but not of Akt phosphorylation. CONCLUSIONS Estradiol protection from developing lymphedema is mediated by an activation of its receptor ERα and is antagonized by tamoxifen. These findings reveal a new facet of the estrogen influence in the management of the lymphatic system and provide more evidence that secondary lymphedema is worsened by hormone therapy.
Collapse
Affiliation(s)
- Florent Morfoisse
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Florence Tatin
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | | | - Nicole Therville
- Unité Mixte de Recherche 1037-Centre de Recherche en Cancérologie de Toulouse (N.T., J.G.-G.), Inserm, Université Paul Sabatier, France
| | - Charlotte Vaysse
- Department of Gynecology Surgery, IUCT-Oncopole, Toulouse, France (C.V.)
| | - Raphael Métivier
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6290, Rennes, France (R.M.)
| | - Julie Malloizel-Delaunay
- Department of Vascular Medicine (J.M.-D.), Centre Hospitalo-Universitaire Rangueil, Toulouse, France
| | - Francoise Pujol
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Anne-Claire Godet
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Fabienne De Toni
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Frederic Boudou
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Katia Grenier
- Centre National de la Recherche Scientifique, Laboratoire d'analyse et d'architecture des systèmes, Toulouse, France (K.G., D.D.)
| | - David Dubuc
- Centre National de la Recherche Scientifique, Laboratoire d'analyse et d'architecture des systèmes, Toulouse, France (K.G., D.D.)
| | - Eric Lacazette
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Anne-Catherine Prats
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Julie Guillermet-Guibert
- Unité Mixte de Recherche 1037-Centre de Recherche en Cancérologie de Toulouse (N.T., J.G.-G.), Inserm, Université Paul Sabatier, France
| | - Francoise Lenfant
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| | - Barbara Garmy-Susini
- From the Institute of Metabolic and Cardiovascular Diseases of Toulouse, Université de Toulouse (F.M., F.T., F.P., A.C.G., F.D.T., F.B., E.L., A.C.P., F.L., B.G.-S.)
| |
Collapse
|
112
|
Clark BJ, Prough RA, Klinge CM. Mechanisms of Action of Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:29-73. [PMID: 30029731 DOI: 10.1016/bs.vh.2018.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant steroids in circulation and decline with age. Rodent studies have shown that DHEA has a wide variety of effects on liver, kidney, adipose, reproductive tissues, and central nervous system/neuronal function. The mechanisms by which DHEA and DHEA-S impart their physiological effects may be direct actions on plasma membrane receptors, including a DHEA-specific, G-protein-coupled receptor in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A, N-methyl-d-aspartate (NMDA), and sigma-1 (S1R) receptors; by binding steroid receptors: androgen and estrogen receptors (ARs, ERα, or ERβ); or by their metabolism to more potent sex steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which bind with higher affinity to ARs and ERs. DHEA inhibits voltage-gated T-type calcium channels. DHEA activates peroxisome proliferator-activated receptor (PPARα) and CAR by a mechanism apparently involving PP2A, a protein phosphatase dephosphorylating PPARα and CAR to activate their transcriptional activity. We review our recent study showing DHEA activated GPER1 (G-protein-coupled estrogen receptor 1) in HepG2 cells to stimulate miR-21 transcription. This chapter reviews some of the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
113
|
From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angew Chem Int Ed Engl 2018; 57:4313-4328. [DOI: 10.1002/anie.201707976] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/14/2017] [Indexed: 12/20/2022]
|
114
|
Kohman RE, Kunjapur AM, Hysolli E, Wang Y, Church GM. Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNA-Technologien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richie E. Kohman
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | | | - Eriona Hysolli
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
| | - Yu Wang
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | - George M. Church
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| |
Collapse
|
115
|
|
116
|
Mezghani-Chaari S, Machreki-Ajimi M, Hamza-Chaffai A, Minier C. High estradiol exposure disrupts the reproductive cycle of the clam Ruditapes decussatus in a sex-specific way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26670-26680. [PMID: 28956239 DOI: 10.1007/s11356-017-0146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Bivalve species may be susceptible to environmental estrogenic compounds including estradiol (E2). However, they are able to biotransform the hormone quite readily and inactivate its estrogenic action. To study the long-term effects of elevated free E2 tissue levels, we transiently exceeded the biotransformation capacity of the clam Ruditapes decussatus by exposing them with high E2 concentrations (400 ng/L) and subsequently study the consequences on gametogenesis during the following reproductive cycle. Exposure to 400 ngE2/L led to a significant increase in tissue free E2 levels, which reached 10-50 ng E2Eq/gww. No deleterious effect on gonado-somatic index (GSI), condition index (CI), or ability to respond to the stress on stress test could be detected after a month of exposure, suggesting the absence of negative effects on the clam's health. However, a marked increase in gametogenesis could be observed in both sexes during the exposure. Subsequent transplantation of the clams in the field allowed the normal development of the male clams and maturation of the gonads without any detrimental effect observed after 4 months. In contrast, in early July, all female clams formerly exposed to E2 showed lower health status, and only ovaries with atretic oocytes while all control and indigenous females were normal and mature. These results show a sex-specific effect of high E2 exposure and suggest either a direct or indirect role for E2 in R. decussatus' reproduction.
Collapse
Affiliation(s)
- Sawssan Mezghani-Chaari
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia.
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France.
| | - Monia Machreki-Ajimi
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France
| |
Collapse
|
117
|
Weckle A, McGowen MR, Xing J, Chen C, Sterner KN, Hou ZC, Romero R, Wildman DE. Ancestral resurrection of anthropoid estrogen receptor β demonstrates functional consequences of positive selection. Mol Phylogenet Evol 2017; 117:2-9. [PMID: 28916155 PMCID: PMC6071416 DOI: 10.1016/j.ympev.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
Anthropoid primates arose during the Eocene approximately 55 million years ago (mya), and extant anthropoids share a most recent common ancestor ∼40mya. Paleontology has been very successful at describing the morphological phenotypes of extinct anthropoids. Less well understood is the molecular biology of these extinct species as well as the phenotypic consequences of evolutionary variation in their genomes. Here we resurrect the most recent common ancestral anthropoid estrogen receptor β gene (ESR2) and demonstrate that the function of this ancestral estrogen receptor has been maintained during human descent but was altered during early New World monkey (NWM) evolution by becoming a more potent transcriptional activator. We tested hypotheses of adaptive evolution in the protein coding sequences of ESR2, and determined that ESR2 evolved via episodic positive selection on the NWM stem lineage. We separately co-transfected ESR2 constructs for human, NWM, and the anthropoid ancestor along with reporter gene vectors and performed hormone binding dose response experiments that measure transactivation activity. We found the transactivation potentials of the ancestral and human sequences to be significantly lower (p<0.0001 in each comparison) than that of the NWM when treated with estradiol, the most prevalent estrogen. We conclude the difference in fold activation is due to positive selection in the NWM ERβ ligand binding domain. Our study validates inferential methods for detecting adaptive evolution that predict functional consequences of nucleotide substitutions and points a way toward examining the functional consequences of positive Darwinian selection.
Collapse
Affiliation(s)
- Amy Weckle
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Jun Xing
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Caoyi Chen
- Life Science Institute, Nantong University, Nantong, People's Republic of China
| | | | - Zhuo-Cheng Hou
- Department of Animal Genetics, China Agricultural University, Beijing, China
| | - Roberto Romero
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
118
|
Siddiq MA, Hochberg GK, Thornton JW. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr Opin Struct Biol 2017; 47:113-122. [PMID: 28841430 PMCID: PMC6141201 DOI: 10.1016/j.sbi.2017.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Specific interactions between proteins and their molecular partners drive most biological processes, so understanding how these interactions evolve is an important question for biochemists and evolutionary biologists alike. It is often thought that ancestral proteins were systematically more promiscuous than modern proteins and that specificity usually evolves after gene duplication by partitioning and refining the activities of multifunctional ancestors. However, recent studies using ancestral protein reconstruction (APR) have found that ligand-specific functions in some modern protein families evolved de novo from ancestors that did not already have those functions. Further, the new specific interactions evolved by simple mechanisms, with just a few mutations changing classically recognized biochemical determinants of specificity, such as steric and electrostatic complementarity. Acquiring new specific interactions during evolution therefore appears to be neither difficult nor rare. Rather, it is likely that proteins continually gain and lose new activities over evolutionary time as mutations cause subtle but consequential changes in the shape and electrostatics of interaction interfaces. Only a few of these activities, however, are incorporated into the biological processes that contribute to fitness before they are lost to the ravages of further mutation.
Collapse
Affiliation(s)
| | | | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, USA; Department of Human Genetics, University of Chicago, USA.
| |
Collapse
|
119
|
The directed evolution of ligand specificity in a GPCR and the unequal contributions of efficacy and affinity. Sci Rep 2017; 7:16012. [PMID: 29167562 PMCID: PMC5700115 DOI: 10.1038/s41598-017-16332-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 11/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) must discriminate between hundreds of related signal molecules. In order to better understand how GPCR specificity can arise from a common promiscuous ancestor, we used laboratory evolution to invert the specificity of the Saccharomyces cerevisiae mating receptor Ste2. This GPCR normally responds weakly to the pheromone of the related species Kluyveromyces lactis, though we previously showed that mutation N216S is sufficient to make this receptor promiscuous. Here, we found that three additional substitutions, A265T, Y266F and P290Q, can act together to confer a novel specificity for K. lactis pheromone. Unlike wild-type Ste2, this new variant does not rely on differences in binding affinity to discriminate against its non-preferred ligand. Instead, the mutation P290Q is critical for suppressing the efficacy of the native pheromone. These two alternative methods of ligand discrimination were mapped to specific amino acid positions on the peptide pheromones. Our work demonstrates that changes in ligand efficacy can drive changes in GPCR specificity, thus obviating the need for extensive binding pocket re-modeling.
Collapse
|
120
|
Abstract
The study of evolutionary relationships among protein sequences was one of the first applications of bioinformatics. Since then, and accompanying the wealth of biological data produced by genome sequencing and other high-throughput techniques, the use of bioinformatics in general and phylogenetics in particular has been gaining ground in the study of protein and proteome evolution. Nowadays, the use of phylogenetics is instrumental not only to infer the evolutionary relationships among species and their genome sequences, but also to reconstruct ancestral states of proteins and proteomes and hence trace the paths followed by evolution. Here I survey recent progress in the elucidation of mechanisms of protein and proteome evolution in which phylogenetics has played a determinant role.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics Department, Centro de Investigación Principe Felipe
| |
Collapse
|
121
|
Bal N, Kumar A, Nugegoda D. Assessing multigenerational effects of prednisolone to the freshwater snail, Physa acuta (Gastropoda: Physidae). JOURNAL OF HAZARDOUS MATERIALS 2017; 339:281-291. [PMID: 28658637 DOI: 10.1016/j.jhazmat.2017.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 05/12/2023]
Abstract
Prednisolone (PDS), a potent synthetic glucocorticoid is widely prescribed for its exceptional anti-inflammatory properties. Several studies have detected the environmental presence of PDS in water bodies which has led to an ecological concern for its toxicity to non-target aquatic biota. The present study investigated the effects of exposure to PDS on different life-cycle stages and generations of the freshwater snail, Physa acuta. This continuous exposure over a period of multiple generations resulted in generational impairments at measured endpoints. LOEC values (p<0.001) for PDS exposure ranged from 32 to 4μg/L in exposed F0-F2 generations. Global DNA methylation (% 5-methyl cytosine) of adult progeny was found to be affected at higher test concentrations in comparison to the parent snails. Partially formed to completely missed growth components of shell structure and shell thinning in abnormally underdeveloped PDS exposed snails of F1 and F2 generation, was also observed in this multigenerational exposure experiment. The multigenerational study confirmed P. acuta as a promising bioindicator since critical effects of the long term glucocorticoid exposure opens up the way for further investigations on transgenerational toxicity in environmental toxicology and risk assessment and to monitor glucocorticoid pollution in aqueous ecosystem.
Collapse
Affiliation(s)
- Navdeep Bal
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia.
| | - Anu Kumar
- CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia.
| | - Dayanthi Nugegoda
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
122
|
Kim DH, Kim HS, Hwang DS, Kim HJ, Hagiwara A, Lee JS, Jeong CB. Genome-wide identification of nuclear receptor (NR) genes and the evolutionary significance of the NR1O subfamily in the monogonont rotifer Brachionus spp. Gen Comp Endocrinol 2017; 252:219-225. [PMID: 28673513 DOI: 10.1016/j.ygcen.2017.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are a large family of transcription factors that are involved in many fundamental biological processes. NRs are considered to have originated from a common ancestor, and are highly conserved throughout the whole animal taxa. Therefore, the genome-wide identification of NR genes in an animal taxon can provide insight into the evolutionary tendencies of NRs. Here, we identified all the NR genes in the monogonont rotifer Brachionus spp., which are considered an ecologically key species due to their abundance and world-wide distribution. The NR family was composed of 40, 32, 29, and 32 genes in the genomes of the rotifers B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis, respectively, which were classified into seven distinct subfamilies. The composition of each subfamily was highly conserved between species, except for NR1O genes, suggesting that they have undergone sporadic evolutionary processes for adaptation to their different environmental pressures. In addition, despite the dynamics of NR evolution, the significance of the conserved endocrine system, particularly for estrogen receptor (ER)-signaling, in rotifers was discussed on the basis of phylogenetic analyses. The results of this study may help provide a better understanding the evolution of NRs, and expand our knowledge of rotifer endocrine systems.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
123
|
Bury NR. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors. Gen Comp Endocrinol 2017; 251:4-11. [PMID: 27838382 DOI: 10.1016/j.ygcen.2016.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/31/2023]
Abstract
Basal ray-finned fish (Actinopterygii) possess a single glucocorticoid receptor (GR) and when compared to the lobe-finned vertebrate (Sarcopterygii) GR possess nine additional amino acids between the zinc-finger of the DNA binding domain. A whole genome duplication event which occurred between 320 and 350MYA in the teleost lineage following the split from the basal ray-finned fish resulted in 2 GRs: one GR group, GR1, has retained the 9 amino acids insert whereas the other group, GR2, has not. The exception to this is the zebrafish, that have lost one of the GRs, but they do possess 2 GRs with a splice variant that lacks the C-terminal portion of the GR to form GRβ which acts as a dominant-repressor of the wildtype GR. Another splice variant sees the basal ray-finned GR and teleost GR1 without the 9 amino acids insert. The molecular basis for GRs retention is beginning to be unravelled. In Pantadon buchholzi, rainbow trout, carp, marine and Japanese medaka GR2 is more sensitive to glucocorticoids (GC), thus potentially playing a more significant role in regulating gene expression at basal circulatory GC concentrations. However, this division in GC sensitivity is not seen in other species. The few studies to evaluate the significance of the 9 amino acid insert have shown that it affect maximal transactivational activity the extent to which is dependent on the number of glucocorticoid response elements (GREs) present in the reporter plasmid. The retention of these GRs would suggest there was an evolutionary advantage, which saw the development of a complex regulatory process to mediate the actions of the glucocorticoids.
Collapse
Affiliation(s)
- Nic R Bury
- King's College London, Diabetes and Nutritional Sciences Division, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; University of Suffolk, Faculty of Health and Science, James Hehir Building, University Quays, Ipswich IP3 0AQ, Suffolk, United Kingdom.
| |
Collapse
|
124
|
Tian J, Liu L, Han Y, Yang Y, Jin S, Yang J. Effects of testosterone and flutamide on reproduction in Brachionus calyciflorus. Sci Rep 2017; 7:6569. [PMID: 28747724 PMCID: PMC5529538 DOI: 10.1038/s41598-017-05517-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022] Open
Abstract
The effects of testosterone and flutamide on reproduction in Brachionus calyciflorus were studied. Asexual reproduction in B. calyciflorus was not affected by testosterone at different concentrations of flutamide. Flutamide in combination with 0, 25, 50, or 75 µg L-1 testosterone had a significant effect on mixis rate. The combination of 5 µg L-1 flutamide with 25 µg L-1 or 50 µg L-1 testosterone resulted in a mixis rate that was 2.2× lower than that with flutamide alone. Fertilization rate was significantly decreased by 7.5 µg L-1 flutamide in combination with 25, 50, or 75 µg L-1 testosterone. The number of resting eggs produced per mictic female was significantly lower at all concentrations of testosterone. A low concentration of flutamide in combination with testosterone resulted in antagonism, increasing the number of resting eggs produced. However, when testosterone was combined with a higher concentration of flutamide, resting egg production declined. Therefore, long-term exposure to either testosterone, flutamide, or a combination of these two compounds may significantly reduce resting egg production in rotifers. This implies that resting egg production is affected differently by hormone pathways.
Collapse
Affiliation(s)
- Jian Tian
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Lulu Liu
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Yajie Han
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Yuanhao Yang
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Sichen Jin
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jiaxin Yang
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
125
|
Prisco M, Agnese M, De Marino A, Andreuccetti P, Rosati L. Spermatogenic Cycle and Steroidogenic Control of Spermatogenesis in Mytilus galloprovincialis Collected in the Bay of Naples. Anat Rec (Hoboken) 2017; 300:1881-1894. [PMID: 28658561 DOI: 10.1002/ar.23626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022]
Abstract
The aim of the present article was to study the spermatogenic cycle of Mytilus galloprovincialis collected in the Bay of Naples during a whole year and to acquire new insights into the mechanism of control. Knowledge of the Mytilus cycle in this geographic area is of particular interest as, to the best of our knowledge, the male gonad cycle has been hitherto unexplored. Testis organization was evaluated together with the localization of the enzymes 3β-HSD, 17β-HSD, and P450-aromatase, which are strictly connected to the synthesis of two key hormones involved in the testis activity: testosterone and 17β-estradiol. It was demonstrated that: (1) the spermatogenic cycle starts in late Summer-early Fall and continues until early Winter, when the first spawning occurs; after rapid gonad restoration, several spawning events take place until June, when the testis becomes non-active again; (2) in the testis, true Leydig and Sertoli cells are present; (3) during the reproductive period, Sertoli, Leydig, germ, and adipogranular cells (ADGs) are positive to 3β-HSD and 17β-HSD, while only germ cells are positive to P450 aromatase; by contrast, during the resting period, only ADGs are positive to 3β-HSD and 17β-HSD, and P450-aromatase is no longer recognizable. The presence of a hermaphrodite sample is also described. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1881-1894, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biology, Federico II Naples University, Naples, Italy
| | - Marisa Agnese
- Department of Biology, Federico II Naples University, Naples, Italy
| | | | | | - Luigi Rosati
- Department of Biology, Federico II Naples University, Naples, Italy
| |
Collapse
|
126
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
127
|
Lafontaine A, Baiwir D, Joaquim-Justo C, De Pauw E, Lemoine S, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:306-314. [PMID: 28371731 DOI: 10.1016/j.ecoenv.2017.03.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans.
Collapse
Affiliation(s)
- Anne Lafontaine
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium.
| | - Dominique Baiwir
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Célia Joaquim-Justo
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Soazig Lemoine
- DYNECAR-UMR BOREA (MNHN/CNRS 7208/IRD207/UPMC/UA), University of the French West Indies, Campus de Fouillole, F-97110 Pointe-à-Pitre, Guadeloupe, France
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Eric Gismondi
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| |
Collapse
|
128
|
Fanson KV, Németh Z, Ramenofsky M, Wingfield JC, Buchanan KL. Inter‐laboratory variation in corticosterone measurement: Implications for comparative ecological and evolutionary studies. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kerry V. Fanson
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
| | - Zoltán Németh
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis CA USA
- Department of Evolutionary Zoology MTA‐DE “Lendület” Behavioural Ecology Research Group University of Debrecen Debrecen Hungary
| | - Marilyn Ramenofsky
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis CA USA
| | - John C. Wingfield
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis CA USA
| | - Katherine L. Buchanan
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
| |
Collapse
|
129
|
Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering. Biochem J 2017; 474:1-19. [PMID: 28008088 DOI: 10.1042/bcj20160507] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
A central goal in molecular evolution is to understand the ways in which genes and proteins evolve in response to changing environments. In the absence of intact DNA from fossils, ancestral sequence reconstruction (ASR) can be used to infer the evolutionary precursors of extant proteins. To date, ancestral proteins belonging to eubacteria, archaea, yeast and vertebrates have been inferred that have been hypothesized to date from between several million to over 3 billion years ago. ASR has yielded insights into the early history of life on Earth and the evolution of proteins and macromolecular complexes. Recently, however, ASR has developed from a tool for testing hypotheses about protein evolution to a useful means for designing novel proteins. The strength of this approach lies in the ability to infer ancestral sequences encoding proteins that have desirable properties compared with contemporary forms, particularly thermostability and broad substrate range, making them good starting points for laboratory evolution. Developments in technologies for DNA sequencing and synthesis and computational phylogenetic analysis have led to an escalation in the number of ancient proteins resurrected in the last decade and greatly facilitated the use of ASR in the burgeoning field of synthetic biology. However, the primary challenge of ASR remains in accurately inferring ancestral states, despite the uncertainty arising from evolutionary models, incomplete sequences and limited phylogenetic trees. This review will focus, firstly, on the use of ASR to uncover links between sequence and phenotype and, secondly, on the practical application of ASR in protein engineering.
Collapse
|
130
|
Zaucha J, Heddle JG. Resurrecting the Dead (Molecules). Comput Struct Biotechnol J 2017; 15:351-358. [PMID: 28652896 PMCID: PMC5472138 DOI: 10.1016/j.csbj.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Biological molecules, like organisms themselves, are subject to genetic drift and may even become "extinct". Molecules that are no longer extant in living systems are of high interest for several reasons including insight into how existing life forms evolved and the possibility that they may have new and useful properties no longer available in currently functioning molecules. Predicting the sequence/structure of such molecules and synthesizing them so that their properties can be tested is the basis of "molecular resurrection" and may lead not only to a deeper understanding of evolution, but also to the production of artificial proteins with novel properties and even to insight into how life itself began.
Collapse
Affiliation(s)
- Jan Zaucha
- Departament of Computer Science, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Jonathan G. Heddle
- Bionanoscience and Biochemistry Laboratory, Jagiellonian University, Malopolska Centre of Biotechnology, Gronstajowa 7A, 30-387 Kraków, Poland
| |
Collapse
|
131
|
Expression and DNA methylation pattern of reproduction-related genes in partially fertile triploid Pacific oysters Crassostrea gigas. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0563-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
132
|
Abstract
A central goal in biochemistry is to explain the causes of protein sequence, structure, and function. Mainstream approaches seek to rationalize sequence and structure in terms of their effects on function and to identify function's underlying determinants by comparing related proteins to each other. Although productive, both strategies suffer from intrinsic limitations that have left important aspects of many proteins unexplained. These limits can be overcome by reconstructing ancient proteins, experimentally characterizing their properties, and retracing their evolution through time. This approach has proven to be a powerful means for discovering how historical changes in sequence produced the functions, structures, and other physical/chemical characteristics of modern proteins. It has also illuminated whether protein features evolved because of functional optimization, historical constraint, or blind chance. Here we review recent studies employing ancestral protein reconstruction and show how they have produced new knowledge not only of molecular evolutionary processes but also of the underlying determinants of modern proteins' physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
- Department of Human Genetics, University of Chicago, Illinois 60637
| |
Collapse
|
133
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. The constitutively active estrogen receptor (ER) binds and activates the promoter of the vitellogenin (Vtg) gene in the Sydney rock oyster, Saccostrea glomerata. MARINE POLLUTION BULLETIN 2017; 118:397-402. [PMID: 28259423 DOI: 10.1016/j.marpolbul.2017.02.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Vitellogenin (Vtg) is a well-established biomarker of estrogenic exposure in aquatic animals. In vertebrates, Vtg gene transcription is controlled by the estrogen receptors (ERs). Although an ER ortholog is present in molluscs, its role as a transcriptional regulator remains elusive. Here, we tested the hypothesis that in the Sydney rock oyster, Saccostrea glomerata, the ER ortholog activates Vtg gene transcription through specific interaction with its promoter. Luciferase reporter assays indicated that sgER activated both a minimal promoter containing the consensus estrogen-responsive elements (EREs) and the sgVtg promoter in an estrogen-independent manner. The sgVtg promoter-luciferase activation was significantly reduced when any of three putative ERE half sites (½EREs) in the promoter were mutated. Electrophoretic mobility shift assay (EMSA) confirmed that sgER binds specifically to a 68-bp promoter sequence where these ½EREs reside. Overall, the results suggest that sgER is a constitutively active transcription factor that binds and activates the sgVtg promoter.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An, Vietnam
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
134
|
Lv L, Dong X, Lv F, Zhao W, Yu Y, Yang W. Molecular cloning and characterization of an estrogen receptor gene in the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 207:15-21. [DOI: 10.1016/j.cbpb.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022]
|
135
|
Lambert MR, Edwards TM. Hormonally active phytochemicals and vertebrate evolution. Evol Appl 2017; 10:419-432. [PMID: 28515776 PMCID: PMC5427676 DOI: 10.1111/eva.12469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies Yale University New Haven CT USA
| | - Thea M Edwards
- Department of Biology University of the South Sewanee TN USA
| |
Collapse
|
136
|
Jones BL, Walker C, Azizi B, Tolbert L, Williams LD, Snell TW. Conservation of estrogen receptor function in invertebrate reproduction. BMC Evol Biol 2017; 17:65. [PMID: 28259146 PMCID: PMC5336670 DOI: 10.1186/s12862-017-0909-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/08/2017] [Indexed: 11/12/2022] Open
Abstract
Background Rotifers are microscopic aquatic invertebrates that reproduce both sexually and asexually. Though rotifers are phylogenetically distant from humans, and have specialized reproductive physiology, this work identifies a surprising conservation in the control of reproduction between humans and rotifers through the estrogen receptor. Until recently, steroid signaling has been observed in only a few invertebrate taxa and its role in regulating invertebrate reproduction has not been clearly demonstrated. Insights into the evolution of sex signaling pathways can be gained by clarifying how receptors function in invertebrate reproduction. Results In this paper, we show that a ligand-activated estrogen-like receptor in rotifers binds human estradiol and regulates reproductive output in females. In other invertebrates characterized thus far, ER ligand binding domains have occluded ligand-binding sites and the ERs are not ligand activated. We have used a suite of computational, biochemical and biological techniques to determine that the rotifer ER binding site is not occluded and can bind human estradiol. Conclusions Our results demonstrate that this mammalian hormone receptor plays a key role in reproduction of the ancient microinvertebrate Brachinous manjavacas. The presence and activity of the ER within the phylum Rotifera indicates that the ER structure and function is highly conserved throughout animal evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0909-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brande L Jones
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA.
| | - Chris Walker
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Bahareh Azizi
- Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Laren Tolbert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
137
|
Markov GV, Gutierrez-Mazariegos J, Pitrat D, Billas IML, Bonneton F, Moras D, Hasserodt J, Lecointre G, Laudet V. Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen. SCIENCE ADVANCES 2017; 3:e1601778. [PMID: 28435861 PMCID: PMC5375646 DOI: 10.1126/sciadv.1601778] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/10/2017] [Indexed: 05/11/2023]
Abstract
The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.
Collapse
Affiliation(s)
- Gabriel V. Markov
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Sorbonne Universités, Muséum National d’Histoire Naturelle (MNHN), Paris, France
| | - Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Delphine Pitrat
- Laboratoire de Chimie, Université de Lyon, Université Lyon 1, CNRS UMR 5182, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Isabelle M. L. Billas
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - François Bonneton
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Dino Moras
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Jens Hasserodt
- Laboratoire de Chimie, Université de Lyon, Université Lyon 1, CNRS UMR 5182, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Guillaume Lecointre
- Département Systématique et Evolution, Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS–MNHN–Université Pierre et Marie Curie (UPMC)–École Pratique des Hautes Études (EPHE), Sorbonne Universités, Muséum National d’Histoire Naturelle, CP 30, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
138
|
Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW. Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol 2017; 34:247-261. [PMID: 27795231 PMCID: PMC6095102 DOI: 10.1093/molbev/msw223] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using ancestral protein reconstruction (APR)-phylogenetic inference of ancestral sequences followed by synthesis and experimental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches, including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino acid state at every ambiguous site in the sequence into a single "worst plausible case" protein. In every case, qualitative conclusions about the ancestral proteins' functions and the effects of key historical mutations were robust to sequence uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally characterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity.
Collapse
Affiliation(s)
- Geeta N Eick
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Department of Anthropology, University of Oregon, Eugene, OR
| | - Jamie T Bridgham
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
| | - Douglas P Anderson
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Michael J Harms
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Joseph W Thornton
- Department of Ecology & Evolution and Department of Human Genetics, University of Chicago, Chicago, IL
| |
Collapse
|
139
|
Mustafin ZS, Lashin SA, Matushkin YG, Gunbin KV, Afonnikov DA. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles. BMC Bioinformatics 2017; 18:1427. [PMID: 28466792 PMCID: PMC5333177 DOI: 10.1186/s12859-016-1427-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background There are many available software tools for visualization and analysis of biological networks. Among them, Cytoscape (http://cytoscape.org/) is one of the most comprehensive packages, with many plugins and applications which extends its functionality by providing analysis of protein-protein interaction, gene regulatory and gene co-expression networks, metabolic, signaling, neural as well as ecological-type networks including food webs, communities networks etc. Nevertheless, only three plugins tagged ‘network evolution’ found in Cytoscape official app store and in literature. We have developed a new Cytoscape 3.0 application Orthoscape aimed to facilitate evolutionary analysis of gene networks and visualize the results. Results Orthoscape aids in analysis of evolutionary information available for gene sets and networks by highlighting: (1) the orthology relationships between genes; (2) the evolutionary origin of gene network components; (3) the evolutionary pressure mode (diversifying or stabilizing, negative or positive selection) of orthologous groups in general and/or branch-oriented mode. The distinctive feature of Orthoscape is the ability to control all data analysis steps via user-friendly interface. Conclusion Orthoscape allows its users to analyze gene networks or separated gene sets in the context of evolution. At each step of data analysis, Orthoscape also provides for convenient visualization and data manipulation. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1427-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sergey Alexandrovich Lashin
- Institute of Cytology and Genetics SB RAS, Lavrentiev Avenue 10, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia.
| | | | | | - Dmitry Arkadievich Afonnikov
- Institute of Cytology and Genetics SB RAS, Lavrentiev Avenue 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
140
|
Holzer G, Markov GV, Laudet V. Evolution of Nuclear Receptors and Ligand Signaling. Curr Top Dev Biol 2017; 125:1-38. [DOI: 10.1016/bs.ctdb.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
141
|
Martínez-Paz P, Morales M, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1488-1497. [PMID: 27890585 DOI: 10.1016/j.envpol.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medioambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
142
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
143
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|
144
|
Ankley GT, LaLone CA, Gray LE, Villeneuve DL, Hornung MW. Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2806-2816. [PMID: 27074246 DOI: 10.1002/etc.3456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 05/02/2023]
Abstract
The US Environmental Protection Agency has responsibility for assessing endocrine activity of more than 10 000 chemicals, a task that cannot reasonably be achieved solely through use of available mammalian and nonmammalian in vivo screening assays. Hence, it has been proposed that chemicals be prioritized for in vivo testing using data from in vitro high-throughput assays for specific endocrine system targets. Recent efforts focused on potential estrogenic chemicals-specifically those that activate estrogen receptor-alpha (ERα)-have broadly demonstrated feasibility of the approach. However, a major uncertainty is whether prioritization based on mammalian (primarily human) high-throughput assays accurately reflects potential chemical-ERα interactions in nonmammalian species. The authors conducted a comprehensive analysis of cross-species comparability of chemical-ERα interactions based on information concerning structural attributes of estrogen receptors, in vitro binding and transactivation data for ERα, and the effects of a range of chemicals on estrogen-signaling pathways in vivo. Overall, this integrated analysis suggests that chemicals with moderate to high estrogenic potency in mammalian systems also should be priority chemicals in nonmammalian vertebrates. However, the degree to which the prioritization approach might be applicable to invertebrates is uncertain because of a lack of knowledge of the biological role(s) of possible ERα orthologs found in phyla such as annelids. Further, comparative analysis of in vitro data for fish and reptiles suggests that mammalian-based assays may not effectively capture ERα interactions for low-affinity chemicals in all vertebrate classes. Environ Toxicol Chem 2016;35:2806-2816. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T Ankley
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota.
| | - Carlie A LaLone
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - L Earl Gray
- Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Michael W Hornung
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
145
|
Yatsu R, Katsu Y, Kohno S, Mizutani T, Ogino Y, Ohta Y, Myburgh J, van Wyk JH, Guillette LJ, Miyagawa S, Iguchi T. Characterization of evolutionary trend in squamate estrogen receptor sensitivity. Gen Comp Endocrinol 2016; 238:88-95. [PMID: 27072832 DOI: 10.1016/j.ygcen.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022]
Abstract
Steroid hormones are a key regulator of reproductive biology in vertebrates, and are largely regulated via nuclear receptor families. Estrogen signaling is regulated by two estrogen receptor (ER) subtypes alpha and beta in the nucleus. In order to understand the role of estrogen in vertebrates, these ER from various species have been isolated and were functionally analyzed using luciferase reporter gene assays. Interestingly, species difference in estrogen sensitivity has been noted in the past, and it was reported that snake ER displayed highest estrogen sensitivity. Here, we isolated additional ER from three lizards: chameleon (Bradypodion pumilum), skink (Plestiodon finitimus), and gecko (Gekko japonicus). We have performed functional characterization of these ERs using reporter gene assay system, and found high estrogen sensitivity in all three species. Furthermore, comparison with results from other tetrapod ER revealed a seemingly uniform gradual pattern of ligand sensitivity evolution. In silico 3D homology modeling of the ligand-binding domain revealed structural variation at three sites, helix 2, and juncture between helices 8 and 9, and caudal region of helix 10/11. Docking simulations indicated that predicted ligand-receptor interaction also correlated with the reporter assay results, and overall squamates displayed highest stabilized interactions. The assay system and homology modeling system provides tool for in-depth comparative analysis of estrogen function, and provides insight toward the evolution of ER among vertebrates.
Collapse
Affiliation(s)
- Ryohei Yatsu
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yoshinao Katsu
- Graduate School of Life Science and Department of Biological Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | - Takeshi Mizutani
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yukiko Ogino
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yasuhiko Ohta
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan.
| | - Jan Myburgh
- Department of Paraclinical Sciences, University of Pretoria, Private Bag 04, Onderstepoort 0110, South Africa.
| | - Johannes H van Wyk
- Department of Botany & Zoology, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Shinichi Miyagawa
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
146
|
Lafontaine A, Hanikenne M, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20661-20671. [PMID: 27470247 DOI: 10.1007/s11356-016-7273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.
Collapse
Affiliation(s)
- Anne Lafontaine
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium.
| | - Marc Hanikenne
- Center for Protein Engineering, Functional Genomics and Plant Molecular Imaging, University of Liège, 27 Boulevard du Rectorat, 4000, Liège, Belgium
- PhytoSYSTEMS, University of Liège, 27 Boulevard du Rectorat, 4000, Liège, Belgium
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Lebon, 76058, Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Lebon, 76058, Le Havre, France
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium
| |
Collapse
|
147
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:82-94. [PMID: 27592181 DOI: 10.1016/j.aquatox.2016.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The results showed that the promoter is predominantly hypomethylated (with 0-3.3% methylcytosines) regardless of sgER mRNA levels. Overall, our investigations suggest that the estrogen responsiveness of sgER is regulated by a novel ligand-dependent receptor, presumably via a non-genomic pathway(s) of estrogen signalling.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An, Vietnam
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
148
|
Katsu Y, Cziko PA, Chandsawangbhuwana C, Thornton JW, Sato R, Oka K, Takei Y, Baker ME, Iguchi T. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription. Gen Comp Endocrinol 2016; 236:105-114. [PMID: 27432813 DOI: 10.1016/j.ygcen.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan
| | - Paul A Cziko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Joseph W Thornton
- Departments of Ecology and Evolution and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Rui Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koari Oka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Michael E Baker
- Department of Medicine, University of California, San Diego, CA, USA
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan; National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
149
|
Ip JCH, Leung PTY, Ho KKY, Qiu JW, Leung KMY. De novo transcriptome assembly of the marine gastropod Reishia clavigera for supporting toxic mechanism studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:39-48. [PMID: 27450239 DOI: 10.1016/j.aquatox.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The intertidal whelk Reishia clavigera is commonly used as a biomonitor of chemical contamination in the marine environment along Western Pacific region, and as a model for mechanistic studies of organotin-mediated imposex development. However, limited genomic resources of R. clavigera have restricted its role for the investigation of molecular mechanisms of such endocrine disruptions. This study, therefore, aimed to establish tissue-specific transcriptomes of the digestive gland, gonad, head ganglia, penis and the remaining body part of the male and female R. clavigera. By combining the results, a global transcriptome was obtained. A total of 578,134,720 high-quality filtered reads were obtained using Illumina sequencing. The R. clavigera transcriptome comprised of 38,466 transcripts and 32,798 unigenes with predicted open reading frames. The average length of transcripts was 1,709bp with N50 of 2,236bp. Based on sequence similarity searches against public databases, 28,657 transcripts and 24,403 unigenes had at least one BLAST hit. There were 17,530 transcripts and 14,897 unigenes annotated with at least one Gene Ontology (GO) term. Moreover, 5,776 transcripts and 5,137 unigenes were associated with 333 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. The numbers of unigenes were similar among the five target tissues and between sexes, but tissue-specific expression profiles were revealed by multivariate analyses. Based on the functional annotation, putative steroid hormone-associated unigenes were identified. In particular, we highlighted the presence of steroid hormone receptor homologues that could be the targets for mechanistic studies of the organotin-mediated imposex development in marine gastropods. This newly generated transcriptome assembly of R. clavigera provides a valuable molecular resource for ecotoxicological and environmental genomic studies.
Collapse
Affiliation(s)
- Jack C H Ip
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J W Qiu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
150
|
Bal N, Kumar A, Du J, Nugegoda D. Prednisolone impairs embryonic and posthatching development and shell formation of the freshwater snail, Physa acuta. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2339-2348. [PMID: 26887568 DOI: 10.1002/etc.3401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate the lethal and sublethal effects of prednisolone exposure on the embryonic and posthatching stage of the freshwater snail, Physa acuta. The egg masses were exposed for 14 d to prednisolone concentrations ranging from 15.6 μg/L to 1000 μg/L. Treatment with prednisolone at 125 μg/L to 1000 μg/L resulted in significant decline in growth, survival, and heart rate, as well as notable abnormalities in embryonic development. Premature embryonic hatching was observed at lower concentrations of 31.25 μg/L and 62.5 μg/L, whereas delayed hatching was seen at concentrations from 125 μg/L to 1000 μg/L. To assess impacts of prednisolone exposure on the hatched juveniles, the drug exposure was extended for another 28 d. Impairment of shell development was noted in juveniles exposed to concentrations from 62.5 μg/L to 1000 μg/L at the end of 42 d, which resulted in thin and fragile shells. The thickness of shells in snails exposed to 1000 μg/L was significantly lower in comparison to those in the 15.6-μg/L and control treatments. In addition, lower calcium concentration in shells of the exposed juvenile snails at treatments of 62.5 μg/L to 1000 μg/L consequently reduced their growth. The present study confirms that continuous exposure to prednisolone can result in deleterious effects on calcium deposition, resulting in shell thinning in the freshwater snail P. acuta. Environ Toxicol Chem 2016;35:2339-2348. © 2016 SETAC.
Collapse
Affiliation(s)
- Navdeep Bal
- RMIT University, Melbourne, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, South Australia, Australia
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, South Australia, Australia
| | - Jun Du
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, South Australia, Australia
| | | |
Collapse
|