101
|
Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife 2020; 9:52187. [PMID: 32254023 PMCID: PMC7138606 DOI: 10.7554/elife.52187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera. From iridescent blues to vibrant purples, many butterflies display dazzling ‘structural colors’ created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
102
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
103
|
Rivera-Colón AG, Westerman EL, Van Belleghem SM, Monteiro A, Papa R. Multiple Loci Control Eyespot Number Variation on the Hindwings of Bicyclus anynana Butterflies. Genetics 2020; 214:1059-1078. [PMID: 32019848 PMCID: PMC7153931 DOI: 10.1534/genetics.120.303059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input-output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana, a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breeding multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input-output genes.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Illinois 61801
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, 00925, Puerto Rico
| | - Erica L Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, 00925, Puerto Rico
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Yale-NUS College, Singapore 138609
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, 00925, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, 00926, Puerto Rico
| |
Collapse
|
104
|
Suzuki TK, Tomita S, Sezutsu H. Multicomponent structures in camouflage and mimicry in butterfly wing patterns. J Morphol 2020; 280:149-166. [PMID: 30556951 DOI: 10.1002/jmor.20927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/16/2018] [Accepted: 11/10/2018] [Indexed: 11/07/2022]
Abstract
Understanding how morphological structures are built is essential for appreciating the morphological complexity and divergence of organisms. One representative case of morphological structures is the camouflage and mimicry of butterfly wing patterns. Some previous studies have questioned whether camouflage and mimicry are truly structures, considering that they rely on coloration. Nevertheless, our recent study revealed that the leaf pattern of Kallima inachus butterfly wings evolved through the combination of changes in several pigment components in a block-wise manner; it remains unclear whether such block-wise structures are common in other cases of camouflage and mimicry in butterflies and how they come about. Previous studies focused solely on a set of homologous components, termed the nymphalid ground plan. In the present study, we extended the scope of the description of components by including not only the nymphalid ground plan but also other common components (i.e., ripple patterns, dependent patterns, and color fields). This extension allowed us to analyze the combinatorial building logic of structures and examine multicomponent structures of camouflage and mimicry in butterfly wing patterns. We investigated various patterns of camouflage and mimicry (e.g., masquerade, crypsis, Müllerian mimicry, Batesian mimicry) in nine species and decomposed them into an assembly of multiple components. These structural component analyses suggested that camouflage and mimicry in butterfly wing patterns are built up by combining multiple types of components. We also investigated associations between components and the kinds of camouflage and mimicry. Several components are statistically more often used to produce specific types of camouflage or mimicry. Thus, our work provides empirical evidence that camouflage and mimicry patterns of butterfly wings are mosaic structures, opening up a new avenue of studying camouflage, and mimicry from a structural perspective.
Collapse
Affiliation(s)
- Takao K Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, Japan
| | - Shuichiro Tomita
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, Japan
| |
Collapse
|
105
|
Gauthier J, de Silva DL, Gompert Z, Whibley A, Houssin C, Le Poul Y, McClure M, Lemaitre C, Legeai F, Mallet J, Elias M. Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Mol Ecol 2020; 29:1328-1343. [PMID: 32145112 DOI: 10.1111/mec.15403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022]
Abstract
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies.
Collapse
Affiliation(s)
- Jérémy Gauthier
- Inria, CNRS, IRISA, University Rennes, Rennes, France.,Geneva Natural History Museum, Geneva, Switzerland
| | - Donna Lisa de Silva
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | | | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Céline Houssin
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | - Yann Le Poul
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France.,Fakultat für Biologie, Biozentrum, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Melanie McClure
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | | | | | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| |
Collapse
|
106
|
VanKuren NW, Massardo D, Nallu S, Kronforst MR. Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Mol Biol Evol 2020; 36:2842-2853. [PMID: 31504750 DOI: 10.1093/molbev/msz194] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.
Collapse
Affiliation(s)
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Sumitha Nallu
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
107
|
Martin SH, Singh KS, Gordon IJ, Omufwoko KS, Collins S, Warren IA, Munby H, Brattström O, Traut W, Martins DJ, Smith DAS, Jiggins CD, Bass C, ffrench-Constant RH. Whole-chromosome hitchhiking driven by a male-killing endosymbiont. PLoS Biol 2020; 18:e3000610. [PMID: 32108180 PMCID: PMC7046192 DOI: 10.1371/journal.pbio.3000610] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences.
Collapse
Affiliation(s)
- Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Kumar Saurabh Singh
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Ian J. Gordon
- Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Kennedy Saitoti Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Ian A. Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Munby
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Oskar Brattström
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Walther Traut
- Institut für Biologie, Universität Lübeck, Lübeck, Germany
| | - Dino J. Martins
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | | |
Collapse
|
108
|
Moest M, Van Belleghem SM, James JE, Salazar C, Martin SH, Barker SL, Moreira GRP, Mérot C, Joron M, Nadeau NJ, Steiner FM, Jiggins CD. Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biol 2020; 18:e3000597. [PMID: 32027643 PMCID: PMC7029882 DOI: 10.1371/journal.pbio.3000597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/19/2020] [Accepted: 01/15/2020] [Indexed: 11/21/2022] Open
Abstract
Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation.
Collapse
Affiliation(s)
- Markus Moest
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Steven M. Van Belleghem
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Jennifer E. James
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota D.C., Colombia
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L. Barker
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Gilson R. P. Moreira
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claire Mérot
- IBIS, Department of Biology, Université Laval, Québec, Canada
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS—Université de Montpellier—Université Paul Valéry Montpellier—EPHE, Montpellier, France
| | - Nicola J. Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
109
|
Banerjee TD, Monteiro A. Dissection of Larval and Pupal Wings of Bicyclus anynana Butterflies. Methods Protoc 2020; 3:E5. [PMID: 31936719 PMCID: PMC7189656 DOI: 10.3390/mps3010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
The colorful wings of butterflies are emerging as model systems for evolutionary and developmental studies. Some of these studies focus on localizing gene transcripts and proteins in wings at the larval and pupal stages using techniques such as immunostaining and in situ hybridization. Other studies quantify mRNA expression levels or identify regions of open chromatin that are bound by proteins at different stages of wing development. All these techniques require dissection of the wings from the animal but a detailed video protocol describing this procedure has not been available until now. Here, we present a written and accompanying video protocol where we describe the tools and the method we use to remove the larval and pupal wings of the African Squinting Bush Brown butterfly Bicyclus anynana. This protocol should be easy to adapt to other species.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
| |
Collapse
|
110
|
Pinheiro de Castro ÉC, Demirtas R, Orteu A, Olsen CE, Motawie MS, Zikan Cardoso M, Zagrobelny M, Bak S. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103259. [PMID: 31698083 DOI: 10.1016/j.ibmb.2019.103259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Heliconius butterflies are highly specialized in Passiflora plants, laying eggs and feeding as larvae only on them. Interestingly, both Heliconius butterflies and Passiflora plants contain cyanogenic glucosides (CNglcs). While feeding on specific Passiflora species, Heliconius melpomene larvae are able to sequester simple cyclopentenyl CNglcs, the most common CNglcs in this plant genus. Yet, aromatic, aliphatic, and modified CNglcs have been reported in Passiflora species and they were never tested for sequestration by heliconiine larvae. As other cyanogenic lepidopterans, H. melpomene also biosynthesize the aliphatic CNglcs linamarin and lotaustralin, and their toxicity does not rely exclusively on sequestration. Although the genes encoding the enzymes in the CNglc biosynthesis have not yet been biochemically characterized in butterflies, the cytochromes P450 CYP405A4, CYP405A5, CYP405A6 and CYP332A1 have been hypothesized to be involved in this pathway in H. melpomene. In this study, we determine how the CNglc composition and expression of the putative P450s involved in the biosynthesis of these compounds vary at different developmental stages of Heliconius butterflies. We also establish which kind of CNglcs H. melpomene larvae can sequester from Passiflora. By analysing the chemical composition of the haemolymph from larvae fed with different Passiflora diets, we show that H. melpomene is able to sequestered prunasin, an aromatic CNglcs, from P. platyloba. They are also able to sequester amygdalin, gynocardin, [C13/C14]linamarin and [C13/C14]lotaustralin painted on the plant leaves. The CNglc tetraphyllin B-sulphate from P. caerulea is not detected in the larval haemolymph, suggesting that such modified CNglcs cannot be sequestered by Heliconius. Although pupae and virgin adults contain dihydrogynocardin resulting from larval sequestration, this compound was metabolized during adulthood, and not used as nuptial gift or transferred to the offspring. Thus, we speculate that dihydrogynocardin is catabolized to recycle nitrogen and glucose, and/or to produce fitness signals during courtship. Mature adults have a higher concentration of CNglcs than any other developmental stages due to increased de novo biosynthesis of linamarin and lotaustralin. Accordingly, all CYP405As are expressed in adults, whereas larvae mostly express CYP405A4. Our results shed light on the importance of CNglcs for Heliconius biology and their coevolution with Passiflora.
Collapse
Affiliation(s)
- Érika C Pinheiro de Castro
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark; Department of Zoology, Cambridge University. Downing Street, CB3 3EJ, Cambridge, United Kingdom
| | - Rojan Demirtas
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Anna Orteu
- Department of Zoology, Cambridge University. Downing Street, CB3 3EJ, Cambridge, United Kingdom
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Mohammed Saddik Motawie
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Márcio Zikan Cardoso
- Department of Ecology, Federal University of Rio Grande Do Norte, Natal, RN, 59078-900, Brazil
| | - Mika Zagrobelny
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| |
Collapse
|
111
|
Banerjee TD, Monteiro A. Molecular mechanisms underlying simplification of venation patterns in holometabolous insects. Development 2020; 147:dev.196394. [DOI: 10.1242/dev.196394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
How mechanisms of pattern formation evolve has remained a central research theme in the field of evolutionary and developmental biology. The mechanism of wing vein differentiation in Drosophila is a classic text-book example of pattern formation using a system of positional-information, yet very little is known about how species with a different number of veins pattern their wings, and how insect venation patterns evolved. Here, we examine the expression pattern of genes previously implicated in vein differentiation in Drosophila in two butterfly species with more complex venation Bicyclus anynana and Pieris canidia. We also test the function of some of these genes in B. anynana. We identify both conserved as well as new domains of decapentaplegic, engrailed, invected, spalt, optix, wingless, armadillo, blistered, and rhomboid gene expression in butterflies, and propose how the simplified venation in Drosophila might have evolved via loss of decapentaplegic, spalt and optix gene expression domains, silencing of vein inducing programs at Spalt-expression boundaries, and changes in gene expression of vein maintenance genes.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore
- Yale-NUS College, Singapore
| |
Collapse
|
112
|
Hines HM, Rahman SR. Evolutionary genetics in insect phenotypic radiations: the value of a comparative genomic approach. CURRENT OPINION IN INSECT SCIENCE 2019; 36:90-95. [PMID: 31541856 DOI: 10.1016/j.cois.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Expanding genome sequencing and transgenic technologies are enabling the discovery of genes driving phenotypic diversity across insect taxa. Limitations in downstream functional genetic approaches, however, have been an obstacle for developing non-model systems for evolutionary genetics. Phenotypically diverse radiations, such as those exhibiting convergence and divergence as a result of mimicry, are ideal for evolutionary genetics as they can lead to insights using comparative genomic approaches alone. The varied and repeated instances of phenotypes in highly polymorphic systems allow assessment of whether similar loci are repeatedly targeted by selection and can inform how alleles sort across lineages. Comparative genomics of these taxa can be used to decipher components of gene regulatory networks, dissect regulatory regions, and validate genes.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
113
|
Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Curr Biol 2019; 29:3996-4009.e4. [DOI: 10.1016/j.cub.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022]
|
114
|
Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci U S A 2019; 116:24174-24183. [PMID: 31712408 DOI: 10.1073/pnas.1907068116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.
Collapse
|
115
|
Palmer R, McKenna KZ, Nijhout HF. Morphological Murals: The Scaling and Allometry of Butterfly Wing Patterns. Integr Comp Biol 2019; 59:1281-1289. [PMID: 31290536 DOI: 10.1093/icb/icz123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The color patterns of butterflies moths are exceptionally diverse, but are very stable within a species, so that most species can be identified on the basis of their color pattern alone. The color pattern is established in the wing imaginal disc during a prolonged period of growth and differentiation, beginning during the last larval instar and ending during the first few days of the pupal stage. During this period, a variety of diffusion and reaction-diffusion signaling mechanisms determine the positions and sizes of the various elements that make up the overall color pattern. The patterning occurs while the wing is growing from a small imaginal disc to a very large pupal wing. One would therefore expect that some or all aspects of the color pattern would be sensitive to the size of the developmental field on which pattern formation takes place. To study this possibility, we analyzed the color patterns of Junonia coenia from animals whose growth patterns were altered by periodic starvation during larval growth, which produced individuals with a large range of variation in body size and wing size. Analyses of the color patterns showed that the positions and size of the pattern elements scaled perfectly isometrically with wing size. This is a puzzling finding and suggests the operation of a homeostatic or robustness mechanism that stabilizes pattern in spite of variation in the growth rate and final size of the wing.
Collapse
Affiliation(s)
- Rayleigh Palmer
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - H F Nijhout
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
116
|
Blankers T, Oh KP, Shaw KL. Parallel genomic architecture underlies repeated sexual signal divergence in Hawaiian Laupala crickets. Proc Biol Sci 2019; 286:20191479. [PMID: 31594503 PMCID: PMC6790767 DOI: 10.1098/rspb.2019.1479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
When the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favoured over others, making a shared genetic basis to repeated polygenic evolution more likely. To examine this, we studied the genetics of parallel male mating song evolution in the Hawaiian cricket Laupala. We compared quantitative trait loci (QTL) underlying song divergence in three species pairs varying in phenotypic distance. We tested whether replicated song divergence between species involves the same QTL and whether the likelihood of QTL sharing is related to QTL effect size. Contrary to theoretical predictions, we find substantial parallelism in polygenic genetic architectures underlying repeated song divergence. QTL overlapped more frequently than expected based on simulated QTL analyses. Interestingly, QTL effect size did not predict QTL sharing, but did correlate with magnitude of phenotypic divergence. We highlight potential mechanisms driving these constraints on cricket song evolution and discuss a scenario that consolidates empirical quantitative genetic observations with micro-mutational theory.
Collapse
|
117
|
Wang Z, Yang L, Liu Z, Lu M, Wang M, Sun Q, Lan Y, Shi T, Wu D, Hua J. Natural variations of growth thermo-responsiveness determined by SAUR26/27/28 proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:291-305. [PMID: 31127632 DOI: 10.1111/nph.15956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 05/22/2023]
Abstract
How diversity in growth thermo-responsiveness is generated for local adaptation is a long-standing biological question. We investigated molecular genetic basis of natural variations in thermo-responsiveness of plant architecture in Arabidopsis thaliana. We measured the extent of rosette architecture at 22°C and 28°C in a set of 69 natural accessions and determined their thermo-responsiveness of plant architecture. A genome-wide association study was performed to identify major loci for variations in thermo-responsiveness. The SAUR26 subfamily, a new subfamily of SAUR genes, was identified as a major locus for the thermo-responsive architecture variations. The expression of SAUR26/27/28 is modulated by temperature and PIF4. Extensive natural polymorphisms in these genes affect their RNA expression levels and protein activities and influence the thermo-responsiveness of plant architecture. In addition, the SAUR26 subfamily genes exhibit a high variation frequency and their variations are associated with the local temperature climate. This study reveals that the SAUR26 subfamily is a key variation for thermo-responsive architecture and suggests a preference for generating diversity for local adaptation through signaling connectors.
Collapse
Affiliation(s)
- Zhixue Wang
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Leiyun Yang
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zhenhua Liu
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Minghui Lu
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Yiheng Lan
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Jian Hua
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
118
|
Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G, Brien MN, Burg SL, Morochz C, Fairclough JPA, Vukusic P, Martin SJ, Doak S, Nadeau NJ. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 2019; 15:rsif.2017.0948. [PMID: 29669892 PMCID: PMC5938584 DOI: 10.1098/rsif.2017.0948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.
Collapse
Affiliation(s)
- Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - James E Bradford
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Adam L Washington
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | | | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Simon J Martin
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Scott Doak
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| |
Collapse
|
119
|
Ye CY, Tang W, Wu D, Jia L, Qiu J, Chen M, Mao L, Lin F, Xu H, Yu X, Lu Y, Wang Y, Olsen KM, Timko MP, Fan L. Genomic evidence of human selection on Vavilovian mimicry. Nat Ecol Evol 2019; 3:1474-1482. [PMID: 31527731 DOI: 10.1038/s41559-019-0976-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 01/25/2023]
Abstract
Vavilovian mimicry is an evolutionary process by which weeds evolve to resemble domesticated crop plants and is thought to be the result of unintentional selection by humans. Unravelling its molecular mechanisms will extend our knowledge of mimicry and contribute to our understanding of the origin and evolution of agricultural weeds, an important component of crop biology. To this end, we compared mimetic and non-mimetic populations of Echinochloa crus-galli from the Yangtze River basin phenotypically and by genome resequencing, and we show that this weed in rice paddies has evolved a small tiller angle, allowing it to phenocopy cultivated rice at the seedling stage. We demonstrate that mimetic lines evolved from the non-mimetic population as recently as 1,000 yr ago and were subject to a genetic bottleneck, and that genomic regions containing 87 putative plant architecture-related genes (including LAZY1, a key gene controlling plant tiller angle) were under selection during the mimicry process. Our data provide genome-level evidence for the action of human selection on Vavilovian mimicry.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Jia
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jie Qiu
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meihong Chen
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lingfeng Mao
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Feng Lin
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haiming Xu
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyue Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongliang Lu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Longjiang Fan
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
120
|
Saenko SV, Chouteau M, Piron-Prunier F, Blugeon C, Joron M, Llaurens V. Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata. EvoDevo 2019; 10:16. [PMID: 31406559 PMCID: PMC6686539 DOI: 10.1186/s13227-019-0129-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Unravelling the genetic basis of polymorphic characters is central to our understanding of the origins and diversification of living organisms. Recently, supergenes have been implicated in a wide range of complex polymorphisms, from adaptive colouration in butterflies and fish to reproductive strategies in birds and plants. The concept of a supergene is now a hot topic in biology, and identification of its functional elements is needed to shed light on the evolution of highly divergent adaptive traits. Here, we apply different gene expression analyses to study the supergene P that controls polymorphism of mimetic wing colour patterns in the neotropical butterfly Heliconius numata. Results We performed de novo transcriptome assembly and differential expression analyses using high-throughput Illumina RNA sequencing on developing wing discs of different H. numata morphs. Within the P interval, 30 and 17 of the 191 transcripts were expressed differentially in prepupae and day-1 pupae, respectively. Among these is the gene cortex, known to play a role in wing pattern formation in Heliconius and other Lepidoptera. Our in situ hybridization experiments confirmed the relationship between cortex expression and adult wing patterns. Conclusions This study found the majority of genes in the P interval to be expressed in the developing wing discs during the critical stages of colour pattern formation, and detect drastic changes in expression patterns in multiple genes associated with structural variants. The patterns of expression of cortex only partially recapitulate the variation in adult phenotype, suggesting that the remaining phenotypic variation could be controlled by other genes within the P interval. Although functional studies on cortex are now needed to determine its exact developmental role, our results are in accordance with the classical supergene hypothesis, whereby several genes inherited together due to tight linkage control a major developmental switch. Electronic supplementary material The online version of this article (10.1186/s13227-019-0129-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne V Saenko
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Mathieu Chouteau
- 2Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, CNRS Guyane, Université De Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Florence Piron-Prunier
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole normale superieure (IBENS), École normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Joron
- 4Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France
| | - Violaine Llaurens
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
121
|
Suzuki TK, Koshikawa S, Kobayashi I, Uchino K, Sezutsu H. Modular cis-regulatory logic of yellow gene expression in silkmoth larvae. INSECT MOLECULAR BIOLOGY 2019; 28:568-577. [PMID: 30737958 PMCID: PMC6849593 DOI: 10.1111/imb.12574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colour patterns in butterflies and moths are crucial traits for adaptation. Previous investigations have highlighted genes responsible for pigmentation (ie yellow and ebony). However, the mechanisms by which these genes are regulated in lepidopteran insects remain poorly understood. To elucidate this, molecular studies involving dipterans have largely analysed the cis-regulatory regions of pigmentation genes and have revealed cis-regulatory modularity. Here, we used well-developed transgenic techniques in Bombyx mori and demonstrated that cis-regulatory modularity controls tissue-specific expression of the yellow gene. We first identified which body parts are regulated by the yellow gene via black pigmentation. We then isolated three discrete regulatory elements driving tissue-specific gene expression in three regions of B. mori larvae. Finally, we found that there is no apparent sequence conservation of cis-regulatory regions between B. mori and Drosophila melanogaster, and no expression driven by the regulatory regions of one species when introduced into the other species. Therefore, the trans-regulatory landscapes of the yellow gene differ significantly between the two taxa. The results of this study confirm that lepidopteran species use cis-regulatory modules to control gene expression related to pigmentation, and represent a powerful cadre of transgenic tools for studying evolutionary developmental mechanisms.
Collapse
Affiliation(s)
- T. K. Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - S. Koshikawa
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporo060‐0810Japan
| | - I. Kobayashi
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - K. Uchino
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - H. Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| |
Collapse
|
122
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
123
|
Liu A, He F, Zhou J, Zou Y, Su Z, Gu X. Comparative Transcriptome Analyses Reveal the Role of Conserved Function in Electric Organ Convergence Across Electric Fishes. Front Genet 2019; 10:664. [PMID: 31379927 PMCID: PMC6657706 DOI: 10.3389/fgene.2019.00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
The independent origins of multiple electric organs (EOs) of fish are fascinating examples of convergent evolution. However, comparative transcriptomics of different electric fish lineages are scarce. In this study, we found that the gene expression of EOs and skeletal muscles from three lineages (Mormyroidea, Siluriformes, and Gymnotiformes) tended to cluster together based on the species of origin, irrespective of the organ from which they are derived. A pairwise comparison of differentially expressed genes (DEGs) revealed that no less than half of shared DEGs exhibited parallel expression differentiation, indicating conserved directionality of differential expression either in or between lineages, but only a few shared DEGs were identified across all focal species. Nevertheless, the functional enrichment analysis of DEGs indicated that there were more parallel gene expression changes at the level of pathways and biological functions. Therefore, we may conclude that there is no parallel evolution of the entire transcriptomes of EOs among different lineages. Further, our results support the hypothesis that it is not different genes but conserved biological functions that play a crucial role in the convergence of complex phenotypes. This study provides insight into the genetic basis underlying the EO convergent evolution; however, more studies in different cases will be needed to demonstrate whether this pattern can be extended to other cases to derive a general rule for convergent evolution.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Funan He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyun Zou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai, China.,Singlera Genomics Inc., Shanghai, China
| | - Xun Gu
- Department of GDC Biology, Iowa State University, Ames, IA, United States.,Fudan Human Phenome Institute, Shanghai, China
| |
Collapse
|
124
|
Lamrabet O, Plumbridge J, Martin M, Lenski RE, Schneider D, Hindré T. Plasticity of Promoter-Core Sequences Allows Bacteria to Compensate for the Loss of a Key Global Regulatory Gene. Mol Biol Evol 2019; 36:1121-1133. [PMID: 30825312 DOI: 10.1093/molbev/msz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transcription regulatory networks (TRNs) are of central importance for both short-term phenotypic adaptation in response to environmental fluctuations and long-term evolutionary adaptation, with global regulatory genes often being targets of natural selection in laboratory experiments. Here, we combined evolution experiments, whole-genome resequencing, and molecular genetics to investigate the driving forces, genetic constraints, and molecular mechanisms that dictate how bacteria can cope with a drastic perturbation of their TRNs. The crp gene, encoding a major global regulator in Escherichia coli, was deleted in four different genetic backgrounds, all derived from the Long-Term Evolution Experiment (LTEE) but with different TRN architectures. We confirmed that crp deletion had a more deleterious effect on growth rate in the LTEE-adapted genotypes; and we showed that the ptsG gene, which encodes the major glucose-PTS transporter, gained CRP (cyclic AMP receptor protein) dependence over time in the LTEE. We then further evolved the four crp-deleted genotypes in glucose minimal medium, and we found that they all quickly recovered from their growth defects by increasing glucose uptake. We showed that this recovery was specific to the selective environment and consistently relied on mutations in the cis-regulatory region of ptsG, regardless of the initial genotype. These mutations affected the interplay of transcription factors acting at the promoters, changed the intrinsic properties of the existing promoters, or produced new transcription initiation sites. Therefore, the plasticity of even a single promoter region can compensate by three different mechanisms for the loss of a key regulatory hub in the E. coli TRN.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jacqueline Plumbridge
- CNRS UMR8261, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, Paris, France
| | - Mikaël Martin
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI
| | | | - Thomas Hindré
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| |
Collapse
|
125
|
Hanly JJ, Wallbank RWR, McMillan WO, Jiggins CD. Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo 2019; 10:15. [PMID: 31341608 PMCID: PMC6631869 DOI: 10.1186/s13227-019-0127-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many traits evolve by cis-regulatory modification, by which changes to noncoding sequences affect the binding affinity for available transcription factors and thus modify the expression profile of genes. Multiple examples of cis-regulatory evolution have been described at pattern switch genes responsible for butterfly wing pattern polymorphism, including in the diverse neotropical genus Heliconius, but the identities of the factors that can regulate these switch genes have not been identified. RESULTS We investigated the spatial transcriptomic landscape across the wings of three closely related butterfly species, two of which have a convergently evolved co-mimetic pattern and the other having a divergent pattern. We identified candidate factors for regulating the expression of wing patterning genes, including transcription factors with a conserved expression profile in all three species, and others, including both transcription factors and Wnt pathway genes, with markedly different profiles in each of the three species. We verified the conserved expression profile of the transcription factor homothorax by immunofluorescence and showed that its expression profile strongly correlates with that of the selector gene optix in butterflies with the Amazonian forewing pattern element 'dennis.' CONCLUSION Here we show that, in addition to factors with conserved expression profiles like homothorax, there are also a variety of transcription factors and signaling pathway components that appear to vary in their expression profiles between closely related butterfly species, highlighting the importance of genome-wide regulatory evolution between species.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- Biological Sciences, The George Washington University, Washington, DC 20052 USA
| | - Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
126
|
Iijima T, Yoda S, Fujiwara H. The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Commun Biol 2019; 2:257. [PMID: 31312726 PMCID: PMC6620351 DOI: 10.1038/s42003-019-0510-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
The swallowtail butterfly Papilio polytes is sexually dimorphic and exhibits female-limited Batesian mimicry. This species also has two female forms, a non-mimetic form with male-like wing patterns, and a mimetic form resembling an unpalatable model, Pachliopta aristolochiae. The mimicry locus H constitutes a dimorphic Mendelian 'supergene', including a transcription factor gene doublesex (dsx). However, how the mimetic-type dsx (dsx-H) orchestrates the downstream gene network and causes the mimetic traits remains unclear. Here we performed RNA-seq-based gene screening and found that Wnt1 and Wnt6 are up-regulated by dsx-H during the early pupal stage and are involved in the red/white pigmentation and patterning of mimetic female wings. In contrast, a homeobox gene abdominal-A is repressed by dsx-H and involved in the non-mimetic colouration pattern. These findings suggest that dual regulation by dsx-H, induction of mimetic gene networks and repression of non-mimetic gene networks, is essential for the switch from non-mimetic to mimetic pattern in mimetic female wings.
Collapse
Affiliation(s)
- Takuro Iijima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| | - Shinichi Yoda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| |
Collapse
|
127
|
Tian L, Rahman SR, Ezray BD, Franzini L, Strange JP, Lhomme P, Hines HM. A homeotic shift late in development drives mimetic color variation in a bumble bee. Proc Natl Acad Sci U S A 2019; 116:11857-11865. [PMID: 31043564 PMCID: PMC6575597 DOI: 10.1073/pnas.1900365116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural phenotypic radiations, with their high diversity and convergence, are well-suited for informing how genomic changes translate to natural phenotypic variation. New genomic tools enable discovery in such traditionally nonmodel systems. Here, we characterize the genomic basis of color pattern variation in bumble bees (Hymenoptera, Apidae, Bombus), a group that has undergone extensive convergence of setal color patterns as a result of Müllerian mimicry. In western North America, multiple species converge on local mimicry patterns through parallel shifts of midabdominal segments from red to black. Using genome-wide association, we establish that a cis-regulatory locus between the abdominal fate-determining Hox genes, abd-A and Abd-B, controls the red-black color switch in a western species, Bombus melanopygus Gene expression analysis reveals distinct shifts in Abd-B aligned with the duration of setal pigmentation at the pupal-adult transition. This results in atypical anterior Abd-B expression, a late developmental homeotic shift. Changing expression of Hox genes can have widespread effects, given their important role across segmental phenotypes; however, the late timing reduces this pleiotropy, making Hox genes suitable targets. Analysis of this locus across mimics and relatives reveals that other species follow independent genetic routes to obtain the same phenotypes.
Collapse
Affiliation(s)
- Li Tian
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | | | - Briana D Ezray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Luca Franzini
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - James P Strange
- United States Department of Agriculture-Agricultural Research Service Pollinating Insects Research Unit, Utah State University, Logan, UT 84322
| | - Patrick Lhomme
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Biodiversity and Crop Improvement Program, International Center of Agricultural Research in the Dry Areas, 10112 Rabat, Morocco
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
128
|
Babar A, Mipam TD, Wu S, Xu C, Shah MA, Mengal K, Yi C, Luo H, Zhao W, Cai X, Luo X. Comparative iTRAQ Proteomics Identified Myocardium Proteins Associated with Hypoxia of Yak. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190123151619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: Yaks inhabit high-altitude are well-adapted to the hypoxic environments.
Though, the mechanisms involved in regulatory myocardial protein expression at high-altitude were
not completely understood.
</P><P>
Objective: To revel the molecular mechanism of hypoxic adaptation in yak, here we have applied comparative
myocardial proteomics in between yak and cattle by isobaric Tag for Relative and Absolute
Quantitation (iTRAQ) labelling.
</P><P>
Methods: To understand the systematic protein expression variations in myocardial tissues that explain
the hypoxic adaptation in yak, we have performed iTRAQ analysis combined with Liquid Chromatography-
Tandem Mass Spectrometry (LC-MS/MS). Bioinformatics analysis was performed to find the
association of these Differentially Expressed Proteins (DEPs) in different functions and pathways. Protein
to protein interaction was analyzed by using STRING database.
</P><P>
Results: 686 Differentially Expressed Proteins (DEPs) were identified in yak with respect to cattle.
From which, 480 DEPs were up-regulated and 206 were down-regulated in yak. Upregulated expression
of ASB4, STAT, HRG, RHO and TSP4 in yak may be associated with angiogenesis, cardiovascular
development, response to pressure overload to heart and regulation of myocardial contraction in response
to increased oxygen tension. The up-regulation of mitochondrial proteins, ACAD8, GPDH-M,
PTPMT1, and ALDH2, may have contributed to oxidation within mitochondria, hypoxia-induced cell
metabolism and protection of heart against cardiac ischemic injuries. Further, the upregulated expression
of SAA1, PTX, HP and MBL2 involved in immune response potentially helpful in myocardial
protection against ischemic injuries, extracellular matrix remodeling and free heme neutralization/
clearance in oxygen-deficient environment.
</P><P>
Conclusion: Therefore, the identification of these myocardial proteins in will be conducive to investigation
of the molecular mechanisms involved in hypoxic adaptations of yaks at high-altitude condition.</P>
Collapse
Affiliation(s)
- Asma Babar
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Tserang Donko Mipam
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Kifayatullah Mengal
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Cai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xuegang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
129
|
Ingley SJ. Digest: Ecomorphological convergence across the Atlantic. Evolution 2019; 73:1055-1056. [PMID: 30957217 DOI: 10.1111/evo.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Did the remarkable helicopter damselflies (family Pseudostigmatidae) evolve their unique feeding and oviposition behaviors independently on two continents? In this issue, Toussaint et al. use molecular phylogenetic approaches to provide convincing evidence that these "forest giants" are in fact an example of ecomorphological convergence across the Atlantic Ocean.
Collapse
Affiliation(s)
- Spencer J Ingley
- Faculty of Science, Brigham Young University-Hawaii, Laie, Hawaii
| |
Collapse
|
130
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
131
|
Vilgalys TP, Rogers J, Jolly CJ, Baboon Genome Analysis, Mukherjee S, Tung J. Evolution of DNA Methylation in Papio Baboons. Mol Biol Evol 2019; 36:527-540. [PMID: 30521003 PMCID: PMC6389319 DOI: 10.1093/molbev/msy227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Changes in gene regulation have long been thought to play an important role in primate evolution. However, although a number of studies have compared genome-wide gene expression patterns across primate species, fewer have investigated the gene regulatory mechanisms that underlie such patterns, or the relative contribution of drift versus selection. Here, we profiled genome-scale DNA methylation levels in blood samples from five of the six extant species of the baboon genus Papio (4-14 individuals per species). This radiation presents the opportunity to investigate DNA methylation divergence at both shallow and deeper timescales (0.380-1.4 My). In contrast to studies in human populations, but similar to studies in great apes, DNA methylation profiles clearly mirror genetic and geographic structure. Divergence in DNA methylation proceeds fastest in unannotated regions of the genome and slowest in regions of the genome that are likely more constrained at the sequence level (e.g., gene exons). Both heuristic approaches and Ornstein-Uhlenbeck models suggest that DNA methylation levels at a small set of sites have been affected by positive selection, and that this class is enriched in functionally relevant contexts, including promoters, enhancers, and CpG islands. Our results thus indicate that the rate and distribution of DNA methylation changes across the genome largely mirror genetic structure. However, at some CpG sites, DNA methylation levels themselves may have been a target of positive selection, pointing to loci that could be important in connecting sequence variation to fitness-related traits.
Collapse
Affiliation(s)
- Tauras P Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY
- Center for the Study of Human Origins, New York University, New York, NY
- New York Consortium for Evolutionary Primatology, New York, NY
| | | | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC
- Department of Mathematics, Duke University, Durham, NC
- Department of Computer Science, Duke University, Durham, NC
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC
- Department of Biology, Duke University, Durham, NC
- Duke University Population Research Institute, Duke University, Durham, NC
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
| |
Collapse
|
132
|
Toussaint EFA, Bybee SM, Erickson RJ, Condamine FL. Forest giants on different evolutionary branches: Ecomorphological convergence in helicopter damselflies*. Evolution 2019; 73:1045-1054. [DOI: 10.1111/evo.13695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Seth M. Bybee
- Department of Biology and Monte L. Bean MuseumBrigham Young University Provo Utah 84602
| | - Robert J. Erickson
- Department of Biology and Monte L. Bean MuseumBrigham Young University Provo Utah 84602
| | - Fabien L. Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier/CNRS/IRD/EPHE)Place Eugène Bataillon 34095 Montpellier France
| |
Collapse
|
133
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
134
|
Ellison C, Bachtrog D. Contingency in the convergent evolution of a regulatory network: Dosage compensation in Drosophila. PLoS Biol 2019; 17:e3000094. [PMID: 30742611 PMCID: PMC6417741 DOI: 10.1371/journal.pbio.3000094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
The repeatability or predictability of evolution is a central question in evolutionary biology and most often addressed in experimental evolution studies. Here, we infer how genetically heterogeneous natural systems acquire the same molecular changes to address how genomic background affects adaptation in natural populations. In particular, we take advantage of independently formed neo-sex chromosomes in Drosophila species that have evolved dosage compensation by co-opting the dosage-compensation male-specific lethal (MSL) complex to study the mutational paths that have led to the acquisition of hundreds of novel binding sites for the MSL complex in different species. This complex recognizes a conserved 21-bp GA-rich sequence motif that is enriched on the X chromosome, and newly formed X chromosomes recruit the MSL complex by de novo acquisition of this binding motif. We identify recently formed sex chromosomes in the D. melanica and D. robusta species groups by genome sequencing and generate genomic occupancy maps of the MSL complex to infer the location of novel binding sites. We find that diverse mutational paths were utilized in each species to evolve hundreds of de novo binding motifs along the neo-X, including expansions of microsatellites and transposable element (TE) insertions. However, the propensity to utilize a particular mutational path differs between independently formed X chromosomes and appears to be contingent on genomic properties of that species, such as simple repeat or TE density. This establishes the "genomic environment" as an important determinant in predicting the outcome of evolutionary adaptations.
Collapse
Affiliation(s)
- Christopher Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
135
|
Merrill RM, Rastas P, Martin SH, Melo MC, Barker S, Davey J, McMillan WO, Jiggins CD. Genetic dissection of assortative mating behavior. PLoS Biol 2019; 17:e2005902. [PMID: 30730873 PMCID: PMC6366751 DOI: 10.1371/journal.pbio.2005902] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation.
Collapse
Affiliation(s)
- Richard M. Merrill
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Maria C. Melo
- Smithsonian Tropical Research Institute, Panama City, Panama
- IST Austria, Klosterburg, Austria
| | - Sarah Barker
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John Davey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
136
|
Martin SH, Davey JW, Salazar C, Jiggins CD. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol 2019; 17:e2006288. [PMID: 30730876 PMCID: PMC6366726 DOI: 10.1371/journal.pbio.2006288] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
Hybridisation and introgression can dramatically alter the relationships among groups of species, leading to phylogenetic discordance across the genome and between populations. Introgression can also erode species differences over time, but selection against introgression at certain loci acts to maintain postmating species barriers. Theory predicts that species barriers made up of many loci throughout the genome should lead to a broad correlation between introgression and recombination rate, which determines the extent to which selection on deleterious foreign alleles will affect neutral alleles at physically linked loci. Here, we describe the variation in genealogical relationships across the genome among three species of Heliconius butterflies: H. melpomene (mel), H. cydno (cyd), and H. timareta (tim), using whole genomes of 92 individuals, and ask whether this variation can be explained by heterogeneous barriers to introgression. We find that species relationships vary predictably at the chromosomal scale. By quantifying recombination rate and admixture proportions, we then show that rates of introgression are predicted by variation in recombination rate. This implies that species barriers are highly polygenic, with selection acting against introgressed alleles across most of the genome. In addition, long chromosomes, which have lower recombination rates, produce stronger barriers on average than short chromosomes. Finally, we find a consistent difference between two species pairs on either side of the Andes, which suggests differences in the architecture of the species barriers. Our findings illustrate how the combined effects of hybridisation, recombination, and natural selection, acting at multitudes of loci over long periods, can dramatically sculpt the phylogenetic relationships among species.
Collapse
Affiliation(s)
- Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John W. Davey
- Department of Biology, University of York, York, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
137
|
Airoldi CA, Ferria J, Glover BJ. The cellular and genetic basis of structural colour in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:81-87. [PMID: 30399605 DOI: 10.1016/j.pbi.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
While the pathways that produce plant pigments have been well studied for decades, the use by plants of nanoscale structures to produce colour effects has only recently begun to be studied. A variety of plants from across the plant kingdom have been shown to use different mechanism to generate structural colours in tissues as diverse as leaves, flowers and fruits. In this review we explore the cellular mechanisms by which these nanoscale structures are built and discuss the first insights that have been published into the genetic pathways underpinning these traits.
Collapse
Affiliation(s)
- Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
138
|
Hao Y, Qu Y, Song G, Lei F. Genomic Insights into the Adaptive Convergent Evolution. Curr Genomics 2019; 20:81-89. [PMID: 31555059 PMCID: PMC6728901 DOI: 10.2174/1389202920666190313162702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022] Open
Abstract
Adaptive convergent evolution, which refers to the same or similar phenotypes produced by species from independent lineages under similar selective pressures, has been widely examined for a long time. Accumulating studies on the adaptive convergent evolution have been reported from many different perspectives (cellular, anatomical, morphological, physiological, biochemical, and behavioral). Recent advances in the genomic technologies have demonstrated that adaptive convergence can arise from specific genetic mechanisms in different hierarchies, ranging from the same nucleotide or amino acid substitutions to the biological functions or pathways. Among these genetic mechanisms, the same amino acid changes in protein-coding genes play an important role in adaptive phenotypic convergence. Methods for detecting adaptive convergence at the protein sequence level have been constantly debated and developed. Here, we review recent progress on using genomic approaches to evaluate the genetic mechanisms of adaptive convergent evolution, summarize the research methods for identifying adaptive amino acid convergence, and discuss the future perspectives for researching adaptive convergent evolu-tion.
Collapse
Affiliation(s)
| | | | | | - Fumin Lei
- Address correspondence to this author at the Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, P.O. Box: 100101, Beijing, China; Fax: +86-10-64807159; E-mail:
| |
Collapse
|
139
|
Abstract
Animals display an astonishing array of diverse colors and patterns, and animals also exhibit preferences for these diverse, species-specific traits when choosing a mate (i.e., assortative mate preference). It is hypothesized that in order for both preference and trait to be species specific, alleles for a trait and the preference for that trait must be inherited together and hence maintained as linked loci. This linkage could be maintained by three different genetic architectures: (A) the genes responsible for a species-specific preferred trait also directly influence preference for that trait; (B) genes producing preference and the preferred trait are not identical but are instead in close physical proximity in the genome; and (C) genes for preference and the preferred trait are nonadjacent but are inherited together due to selection. Merrill and colleagues test these hypotheses by performing large-scale genetic mapping of mating behavior using hybrids of two sympatric species of Heliconius butterflies, Heliconius melpomene and H. cydno. They identified three small genomic regions highly associated with mate preference, one of which was adjacent to a gene for the preferred trait, and two of which were not. Their findings illustrate that mate preference may be influenced by a small number of genes, while providing support for multiple hypotheses for the genetic architecture of assortative mate preferences.
Collapse
Affiliation(s)
- Erica L. Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
140
|
Westerman EL, VanKuren NW, Massardo D, Tenger-Trolander A, Zhang W, Hill RI, Perry M, Bayala E, Barr K, Chamberlain N, Douglas TE, Buerkle N, Palmer SE, Kronforst MR. Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice. Curr Biol 2018; 28:3469-3474.e4. [PMID: 30415702 PMCID: PMC6234856 DOI: 10.1016/j.cub.2018.08.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Neotropical Heliconius butterflies display a diversity of warningly colored wing patterns, which serve roles in both Müllerian mimicry and mate choice behavior. Wing pattern diversity in Heliconius is controlled by a small number of unlinked, Mendelian "switch" loci [1]. One of these, termed the K locus, switches between yellow and white color patterns, important mimicry signals as well as mating cues [2-4]. Furthermore, mate preference behavior is tightly linked to this locus [4]. K controls the distribution of white versus yellow scales on the wing, with a dominant white allele and a recessive yellow allele. Here, we combine fine-scale genetic mapping, genome-wide association studies, gene expression analyses, population and comparative genomics, and genome editing with CRISPR/Cas9 to characterize the molecular basis of the K locus in Heliconius and to infer its evolutionary history. We show that white versus yellow color variation in Heliconius cydno is due to alternate haplotypes at a putative cis-regulatory element (CRE) downstream of a tandem duplication of the homeodomain transcription factor aristaless. Aristaless1 (al1) and aristaless2 (al2) are differentially regulated between white and yellow wings throughout development with elevated expression of al1 in developing white wings, suggesting a role in repressing pigmentation. Consistent with this, knockout of al1 causes white wings to become yellow. The evolution of wing color in this group has been marked by retention of the ancestral yellow color in many lineages, a single origin of white coloration in H. cydno, and subsequent introgression of white color from H. cydno into H. melpomene.
Collapse
Affiliation(s)
- Erica L Westerman
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nicholas W VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | - Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Erick Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Barr
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nicola Chamberlain
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tracy E Douglas
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Nathan Buerkle
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Stephanie E Palmer
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
141
|
Abolins-Abols M, Kornobis E, Ribeca P, Wakamatsu K, Peterson MP, Ketterson ED, Milá B. Differential gene regulation underlies variation in melanic plumage coloration in the dark-eyed junco (Junco hyemalis
). Mol Ecol 2018; 27:4501-4515. [DOI: 10.1111/mec.14878] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Mikus Abolins-Abols
- Department of Animal Biology; University of Illinois; Urbana Illinois
- Department of Biology; Indiana University; Bloomington Indiana
| | - Etienne Kornobis
- National Museum of Natural Sciences; Spanish National Research Council (CSIC); Madrid Spain
| | | | - Kazumasa Wakamatsu
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Aichi Japan
| | | | | | - Borja Milá
- National Museum of Natural Sciences; Spanish National Research Council (CSIC); Madrid Spain
| |
Collapse
|
142
|
Gautier M, Yamaguchi J, Foucaud J, Loiseau A, Ausset A, Facon B, Gschloessl B, Lagnel J, Loire E, Parrinello H, Severac D, Lopez-Roques C, Donnadieu C, Manno M, Berges H, Gharbi K, Lawson-Handley L, Zang LS, Vogel H, Estoup A, Prud'homme B. The Genomic Basis of Color Pattern Polymorphism in the Harlequin Ladybird. Curr Biol 2018; 28:3296-3302.e7. [PMID: 30146156 PMCID: PMC6203698 DOI: 10.1016/j.cub.2018.08.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 12/02/2022]
Abstract
Many animal species comprise discrete phenotypic forms. A common example in natural populations of insects is the occurrence of different color patterns, which has motivated a rich body of ecological and genetic research [1-6]. The occurrence of dark, i.e., melanic, forms displaying discrete color patterns is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and red patches on adult elytra varies wildly within species, forming strikingly different complex color patterns [7, 8]. In the harlequin ladybird, Harmonia axyridis, more than 200 distinct color forms have been described, which classic genetic studies suggest result from allelic variation at a single, unknown, locus [9, 10]. Here, we combined whole-genome sequencing, population-based genome-wide association studies, gene expression, and functional analyses to establish that the transcription factor Pannier controls melanic pattern polymorphism in H. axyridis. We show that pannier is necessary for the formation of melanic elements on the elytra. Allelic variation in pannier leads to protein expression in distinct domains on the elytra and thus determines the distinct color patterns in H. axyridis. Recombination between pannier alleles may be reduced by a highly divergent sequence of ∼170 kb in the cis-regulatory regions of pannier, with a 50 kb inversion between color forms. This most likely helps maintain the distinct alleles found in natural populations. Thus, we propose that highly variable discrete color forms can arise in natural populations through cis-regulatory allelic variation of a single gene.
Collapse
Affiliation(s)
- Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Julien Foucaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Aurélien Ausset
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Benoit Facon
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Bernhard Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jacques Lagnel
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Etienne Loire
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Hugues Parrinello
- MGX, Biocampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Dany Severac
- MGX, Biocampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | | | - Maxime Manno
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Helene Berges
- INRA, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Karim Gharbi
- Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Lori Lawson-Handley
- Evolutionary and Environmental Genomics Group, School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Lian-Sheng Zang
- Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Arnaud Estoup
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.
| | | |
Collapse
|
143
|
Xing L, Sun L, Liu S, Li X, Zhang L, Yang H. De Novo assembly and comparative transcriptome analyses of purple and green morphs of Apostichopus japonicus during body wall pigmentation process. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:151-161. [PMID: 30241009 DOI: 10.1016/j.cbd.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 01/23/2023]
Abstract
Pigmentation processes provide a traceable and relevant trait for understanding key issues in evolutionary biology such as adaptation, speciation and the maintenance of balanced polymorphisms. The sea cucumber Apostichopus japonicus, which has nutritive and medical properties, is considered the most valuable commercial species in many parts of Asia. Compared with the green morph, the purple morph is rare and has great appeal to consumers. However, little is currently known about the molecular mechanism of body color formation in A. japonicus, even in echinoderm. Here, we employ illumina sequencing to examine expression patterns of the gene network underlying body wall development in purple and green morphs of A. japonicus. Overall, the number of down-regulated genes in the green morph was significantly more than in the purple morph during the pigmentation stage. We observed dynamic expression patterns of a large number of pigment, regulation and growth genes from the "Melanogenesis", "Melanoma", "Wnt signaling pathway", "Notch signaling pathway", "epithelium development", "epidermal growth factor receptor binding","growth factor activity" and "growth", including contrasting expression patterns of these genes in green and purple morph. This study provides comprehensive lists of differentially expressed genes during body wall development in the green and purple morphs, revealing potential candidate genes that may be involved in regulating body color formation and polymorphism. These data will provide valuable information for future genetic studies on sea cucumbers elucidating the molecular mechanisms underlying pigmentation, and may support the culture of desirable color morphs.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
144
|
Panettieri S, Gjinaj E, John G, Lohman DJ. Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra. PLoS One 2018; 13:e0202465. [PMID: 30208047 PMCID: PMC6135364 DOI: 10.1371/journal.pone.0202465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/04/2018] [Indexed: 11/18/2022] Open
Abstract
With varied, brightly patterned wings, butterflies have been the focus of much work on the evolution and development of phenotypic novelty. However, the chemical structures of wing pigments from few butterfly species have been identified. We characterized the orange wing pigments of female Elymnias hypermnestra butterflies (Lepidoptera: Nymphalidae: Satyrinae) from two Southeast Asian populations. This species is a sexually dimorphic Batesian mimic of several model species. Females are polymorphic: in some populations, females are dark, resemble conspecific males, and mimic Euploea spp. In other populations, females differ from males and mimic orange Danaus spp. Using LC-MS/MS, we identified nine ommochrome pigments: six from a population in Chiang Mai, Thailand, and five compounds from a population in Bali, Indonesia. Two ommochromes were found in both populations, and only two of the nine compounds have been previously reported. The sexually dimorphic Thai and Balinese populations are separated spatially by monomorphic populations in peninsular Malaysia, Singapore, and Sumatra, suggesting independent evolution of mimetic female wing pigments in these disjunct populations. These results indicate that other butterfly wing pigments remain to be discovered.
Collapse
Affiliation(s)
- Silvio Panettieri
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | - Erisa Gjinaj
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
| | - George John
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
- * E-mail: (DJL); (GJ)
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, United States of America
- Entomology Section, National Museum of the Philippines, Manila, Philippines
- * E-mail: (DJL); (GJ)
| |
Collapse
|
145
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
146
|
Hu Y, Schmitt-Engel C, Schwirz J, Stroehlein N, Richter T, Majumdar U, Bucher G. A morphological novelty evolved by co-option of a reduced gene regulatory network and gene recruitment in a beetle. Proc Biol Sci 2018; 285:rspb.2018.1373. [PMID: 30135167 DOI: 10.1098/rspb.2018.1373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022] Open
Abstract
The mechanisms underlying the evolution of morphological novelties have remained enigmatic but co-option of existing gene regulatory networks (GRNs), recruitment of genes and the evolution of orphan genes have all been suggested to contribute. Here, we study a morphological novelty of beetle pupae called gin-trap. By combining the classical candidate gene approach with unbiased screening in the beetle Tribolium castaneum, we find that 70% of the tested components of the wing network were required for gin-trap development. However, many downstream and even upstream components were not included in the co-opted network. Only one gene was recruited from another biological context, but it was essential for the anteroposterior symmetry of the gin-traps, which represents a gin-trap-unique morphological innovation. Our data highlight the importance of co-option and modification of GRNs. The recruitment of single genes may not be frequent in the evolution of morphological novelties, but may be essential for subsequent diversification of the novelties. Finally, after having screened about 28% of annotated genes in the Tribolium genome to identify the genes required for gin-trap development, we found none of them are orphan genes, suggesting that orphan genes may have played only a minor, if any, role in the evolution of gin-traps.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Christian Schmitt-Engel
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jonas Schwirz
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Nadi Stroehlein
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Richter
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Upalparna Majumdar
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
147
|
Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution. PLoS Genet 2018; 14:e1007375. [PMID: 29723190 PMCID: PMC5953500 DOI: 10.1371/journal.pgen.1007375] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/15/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution. A major goal of biology is to identify the genetic causes of organismal diversity. Convergent evolution of traits is often caused by changes in the same genes–evolutionary ‘hotspots’. shavenbaby is a ‘hotspot’ for larval trichome loss in Drosophila, but microRNA-92a underlies the gain of leg trichomes. To understand this difference in the genetics of phenotypic evolution, we compared the expression and function of genes in the underlying regulatory networks. We found that the pathway of evolution is influenced by differences in gene regulatory network architecture in different developmental contexts, as well as by whether a trait is lost or gained. Therefore, hotspots in one context may not readily evolve in a different context. This has important implications for understanding the genetic basis of phenotypic change and the predictability of evolution.
Collapse
|
148
|
McGirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett 2018; 2:62-75. [PMID: 30283665 PMCID: PMC6089502 DOI: 10.1002/evl3.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Parallel evolution of gene expression commonly underlies convergent niche specialization, but parallel changes in expression could also underlie divergent specialization. We investigated divergence in gene expression and whole-genome genetic variation across three sympatric Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist and two derived specialists adapted to novel niches: a scale-eating and a snail-eating pupfish. We sampled total mRNA from all three species at two early developmental stages and compared gene expression with whole-genome genetic differentiation among all three species in 42 resequenced genomes. Eighty percent of genes that were differentially expressed between snail-eaters and generalists were up or down regulated in the same direction between scale-eaters and generalists; however, there were no fixed variants shared between species underlying these parallel changes in expression. Genes showing parallel evolution of expression were enriched for effects on metabolic processes, whereas genes showing divergent expression were enriched for effects on cranial skeleton development and pigment biosynthesis, reflecting the most divergent phenotypes observed between specialist species. Our findings reveal that even divergent niche specialists may exhibit convergent adaptation to higher trophic levels through shared genetic pathways. This counterintuitive result suggests that parallel evolution in gene expression can accompany divergent ecological speciation during adaptive radiation.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| | - Christopher H. Martin
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| |
Collapse
|
149
|
Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila. Genetics 2018; 207:825-842. [PMID: 29097397 DOI: 10.1534/genetics.116.187120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster, will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved.
Collapse
|
150
|
Dowell NL, Giorgianni MW, Griffin S, Kassner VA, Selegue JE, Sanchez EE, Carroll SB. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species. Curr Biol 2018; 28:1016-1026.e4. [PMID: 29576471 DOI: 10.1016/j.cub.2018.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.
Collapse
Affiliation(s)
- Noah L Dowell
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Matt W Giorgianni
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Sam Griffin
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jane E Selegue
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University, Kingsville, MSC 224, Kingsville, TX 78363, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|