101
|
Jeknić S, Kudo T, Covert MW. Techniques for Studying Decoding of Single Cell Dynamics. Front Immunol 2019; 10:755. [PMID: 31031756 PMCID: PMC6470274 DOI: 10.3389/fimmu.2019.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cells must be able to interpret signals they encounter and reliably generate an appropriate response. It has long been known that the dynamics of transcription factor and kinase activation can play a crucial role in selecting an individual cell's response. The study of cellular dynamics has expanded dramatically in the last few years, with dynamics being discovered in novel pathways, new insights being revealed about the importance of dynamics, and technological improvements increasing the throughput and capabilities of single cell measurements. In this review, we highlight the important developments in this field, with a focus on the methods used to make new discoveries. We also include a discussion on improvements in methods for engineering and measuring single cell dynamics and responses. Finally, we will briefly highlight some of the many challenges and avenues of research that are still open.
Collapse
Affiliation(s)
- Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States
| | - Takamasa Kudo
- Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
102
|
Optically inducible membrane recruitment and signaling systems. Curr Opin Struct Biol 2019; 57:84-92. [PMID: 30884362 DOI: 10.1016/j.sbi.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/12/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
Collapse
|
103
|
Dagliyan O, Hahn KM. Controlling protein conformation with light. Curr Opin Struct Biol 2019; 57:17-22. [PMID: 30849716 DOI: 10.1016/j.sbi.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, United States.
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
104
|
Photodimerization systems for regulating protein-protein interactions with light. Curr Opin Struct Biol 2019; 57:1-8. [PMID: 30818200 DOI: 10.1016/j.sbi.2019.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
Collapse
|
105
|
Abstract
Many proteins can be split into fragments that spontaneously reassemble, without covalent linkage, into a functional protein. For split green fluorescent proteins (GFPs), fragment reassembly leads to a fluorescent readout, which has been widely used to investigate protein-protein interactions. We review the scope and limitations of this approach as well as other diverse applications of split GFPs as versatile sensors, molecular glues, optogenetic tools, and platforms for photophysical studies.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, USA; ,
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
106
|
Mansouri M, Strittmatter T, Fussenegger M. Light-Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800952. [PMID: 30643713 PMCID: PMC6325585 DOI: 10.1002/advs.201800952] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Indexed: 05/12/2023]
Abstract
The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology-inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light-controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non-neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light-sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light-controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26CH‐4058BaselSwitzerland
| |
Collapse
|
107
|
Khamo JS, Krishnamurthy VV, Chen Q, Diao J, Zhang K. Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation. Cell Chem Biol 2018; 26:400-410.e3. [PMID: 30595532 DOI: 10.1016/j.chembiol.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/13/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023]
Abstract
Nerve growth factor elicits signaling outcomes by interacting with both its high-affinity receptor, TrkA, and its low-affinity receptor, p75NTR. Although these two receptors can regulate distinct cellular outcomes, they both activate the extracellular-signal-regulated kinase pathway upon nerve growth factor stimulation. To delineate TrkA subcircuits in PC12 cell differentiation, we developed an optogenetic system whereby light was used to specifically activate TrkA signaling in the absence of nerve growth factor. By using tyrosine mutants of the optogenetic TrkA in combination with pathway-specific pharmacological inhibition, we find that Y490 and Y785 each contributes to PC12 cell differentiation through the extracellular-signal-regulated kinase pathway in an additive manner. Optogenetic activation of TrkA eliminates the confounding effect of p75NTR and other potential off-target effects of the ligand. This approach can be generalized for the mechanistic study of other receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vishnu V Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
108
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
109
|
Wang S, Shuai Y, Sun C, Xue B, Hou Y, Su X, Sun Y. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family. ACS Sens 2018; 3:2269-2277. [PMID: 30346738 DOI: 10.1021/acssensors.8b00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a special kind of delicate light-controllable genetically encoded optical device, reversibly photoswitchable fluorescent proteins (RSFPs) have been widely applied in many fields, especially various kinds of advanced nanoscopy approaches in recent years. However, there are still necessities for exploring novel RSFPs with specific biochemical or photophysical properties not only for bioimaging or biosensing applications but also for fluorescent protein (FP) mechanisms study and further knowledge-based molecular sensors or optical actuators' rational design and evolution. Besides previously reported GMars-Q and GMars-T variants, herein, we reported the development and applications of other RSFPs from GMars family, especially some featured RSFPs with desired optical properties. In the current work, in vitro FP purification, spectra measurements, and live-cell RESOLFT nanoscopy approaches were applied to characterize the basic properties and test the imaging performances of the selected RSFPs. As demonstrated, GMars variants such as GMars-A, GMars-G, or remarkable photofatigue-resistant GMars-L were found with beneficial properties to be capable of parallelized RESOLFT nanoscopy in living cells, while other featured GMars variants such as dark GMars-P may be a good candidate for further biosensor or actuator design and applications.
Collapse
Affiliation(s)
- Sheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yao Shuai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Chaoying Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Boxin Xue
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yingping Hou
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Yujie Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| |
Collapse
|
110
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
111
|
Reis JM, Xu X, McDonald S, Woloschuk RM, Jaikaran ASI, Vizeacoumar FS, Woolley GA, Uppalapati M. Discovering Selective Binders for Photoswitchable Proteins Using Phage Display. ACS Synth Biol 2018; 7:2355-2364. [PMID: 30203962 DOI: 10.1021/acssynbio.8b00123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nature provides an array of proteins that change conformation in response to light. The discovery of a complementary array of proteins that bind only the light-state or dark-state conformation of their photoactive partner proteins would allow each light-switchable protein to be used as an optogenetic tool to control protein-protein interactions. However, as many photoactive proteins have no known binding partner, the advantages of optogenetic control-precise spatial and temporal resolution-are currently restricted to a few well-defined natural systems. In addition, the affinities and kinetics of native interactions are often suboptimal and are difficult to engineer in the absence of any structural information. We report a phage display strategy using a small scaffold protein that can be used to discover new binding partners for both light and dark states of a given light-switchable protein. We used our approach to generate binding partners that interact specifically with the light state or the dark state conformation of two light-switchable proteins: PYP, a test case for a protein with no known partners, and AsLOV2, a well-characterized protein. We show that these novel light-switchable protein-protein interactions can function in living cells to control subcellular localization processes.
Collapse
Affiliation(s)
- Jakeb M. Reis
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Xiuling Xu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Sherin McDonald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Ryan M. Woloschuk
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Anna S. I. Jaikaran
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| |
Collapse
|
112
|
Kim J, Heo WD. Synergistic Ensemble of Optogenetic Actuators and Dynamic Indicators in Cell Biology. Mol Cells 2018; 41:809-817. [PMID: 30157546 PMCID: PMC6182222 DOI: 10.14348/molcells.2018.0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Discovery of the naturally evolved fluorescent proteins and their genetically engineered biosensors have enormously contributed to current bioimaging techniques. These reporters to trace dynamic changes of intracellular protein activities have continuously transformed according to the various demands in biological studies. Along with that, light-inducible optogenetic technologies have offered scientists to perturb, control and analyze the function of intracellular machineries in spatiotemporal manner. In this review, we present an overview of the molecular strategies that have been exploited for producing genetically encoded protein reporters and various optogenetic modules. Finally, in particular, we discuss the current efforts for combined use of these reporters and optogenetic modules as a powerful tactic for the control and imaging of signaling events in cells and tissues.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141,
Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
113
|
Aper SJA, den Hamer A, Wouters SFA, Lemmens LJM, Ottmann C, Brunsveld L, Merkx M. Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synth Biol 2018; 7:2216-2225. [PMID: 30125482 PMCID: PMC6154215 DOI: 10.1021/acssynbio.8b00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protease signaling and scaffold-induced control of protein-protein interactions represent two important mechanisms for intracellular signaling. Here we report a generic and modular approach to control the activity of scaffolding proteins by protease activity, creating versatile molecular platforms to construct synthetic signaling networks. Using 14-3-3 proteins as a structurally well-characterized and important class of scaffold proteins, three different architectures were explored to achieve optimal protease-mediated control of scaffold activity, fusing either one or two monovalent inhibitory ExoS peptides or a single bivalent ExoS peptide to T14-3-3 using protease-cleavable linkers. Analysis of scaffolding activity before and after protease-induced cleavage revealed optimal control of 14-3-3 activity for the system that contained monovalent ExoS peptides fused to both the N-and C-terminus, each blocking a single T14-3-3 binding site. The protease-activatable 14-3-3 scaffolds were successfully applied to construct a three-step signaling cascade in which dimerization and activation of FGG-caspase-9 on an orthogonal supramolecular platform resulted in activation of a 14-3-3 scaffold, which in turn allowed 14-3-3-templated complementation of a split-luciferase. In addition, by combining 14-3-3-templated activation of caspase-9 with a caspase-9-activatable 14-3-3 scaffold, the first example of a synthetic self-activating protease signaling network was created. Protease-activatable 14-3-3 proteins thus represent a modular platform whose properties can be rationally engineered to fit different applications, both to create artificial in vitro synthetic molecular networks and as a novel signaling hub to re-engineer intracellular signaling pathways.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anniek den Hamer
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone F. A. Wouters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
114
|
Hollywood JA, Sanz DJ, Davidson AJ, Harrison PT. Gene Editing of Stem Cells to Model and Treat Disease. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
115
|
Krishnamurthy VV, Zhang K. Chemical physics in living cells — Using light to visualize and control intracellular signal transduction. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Vishnu V. Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
116
|
Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses 2018; 10:v10060337. [PMID: 29925766 PMCID: PMC6024644 DOI: 10.3390/v10060337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.
Collapse
|
117
|
Christenson Wick Z, Krook-Magnuson E. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Front Cell Neurosci 2018; 12:151. [PMID: 29962936 PMCID: PMC6010559 DOI: 10.3389/fncel.2018.00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is a powerful and rapidly expanding set of techniques that use genetically encoded light sensitive proteins such as opsins. Through the selective expression of these exogenous light-sensitive proteins, researchers gain the ability to modulate neuronal activity, intracellular signaling pathways, or gene expression with spatial, directional, temporal, and cell-type specificity. Optogenetics provides a versatile toolbox and has significantly advanced a variety of neuroscience fields. In this review, using recent epilepsy research as a focal point, we highlight how the specificity, versatility, and continual development of new optogenetic related tools advances our understanding of neuronal circuits and neurological disorders. We additionally provide a brief overview of some currently available optogenetic tools including for the selective expression of opsins.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
118
|
A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Sci Rep 2018; 8:8984. [PMID: 29895862 PMCID: PMC5997707 DOI: 10.1038/s41598-018-27174-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/25/2018] [Indexed: 02/04/2023] Open
Abstract
Genetically encoded biosensors based on the principle of Förster resonance energy transfer comprise two major classes: biosensors based on fluorescence resonance energy transfer (FRET) and those based on bioluminescence energy transfer (BRET). The FRET biosensors visualize signaling-molecule activity in cells or tissues with high resolution. Meanwhile, due to the low background signal, the BRET biosensors are primarily used in drug screening. Here, we report a protocol to transform intramolecular FRET biosensors to BRET-FRET hybrid biosensors called hyBRET biosensors. The hyBRET biosensors retain all properties of the prototype FRET biosensors and also work as BRET biosensors with dynamic ranges comparable to the prototype FRET biosensors. The hyBRET biosensors are compatible with optogenetics, luminescence microplate reader assays, and non-invasive whole-body imaging of xenograft and transgenic mice. This simple protocol will expand the use of FRET biosensors and enable visualization of the multiscale dynamics of cell signaling in live animals.
Collapse
|
119
|
Laptenok SP, Gil AA, Hall CR, Lukacs A, Iuliano JN, Jones GA, Greetham GM, Donaldson P, Miyawaki A, Tonge PJ, Meech SR. Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa. Nat Chem 2018; 10:845-852. [PMID: 29892029 DOI: 10.1038/s41557-018-0073-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
Photochromic fluorescent proteins play key roles in super-resolution microscopy and optogenetics. The light-driven structural changes that modulate the fluorescence involve both trans-to-cis isomerization and proton transfer. The mechanism, timescale and relative contribution of chromophore and protein dynamics are currently not well understood. Here, the mechanism of off-to-on-state switching in dronpa is studied using femtosecond-to-millisecond time-resolved infrared spectroscopy and isotope labelling. Chromophore and protein dynamics are shown to occur on multiple timescales, from picoseconds to hundreds of microseconds. Following excitation of the trans chromophore, a ground-state primary product is formed within picoseconds. Surprisingly, the characteristic vibrational spectrum of the neutral cis isomer appears only after several tens of nanoseconds. Further fluctuations in protein structure around the neutral cis chromophore are required to form a new intermediate, which promotes the final proton-transfer reaction. These data illustrate the interplay between chromophore dynamics and the protein environment underlying fluorescent protein photochromism.
Collapse
Affiliation(s)
- Sergey P Laptenok
- School of Chemistry, University of East Anglia, Norwich, UK.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Agnieszka A Gil
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christopher R Hall
- School of Chemistry, University of East Anglia, Norwich, UK.,ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Gregory M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Paul Donaldson
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
120
|
Ueda Y, Sato M. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools. Chembiochem 2018; 19:1217-1231. [PMID: 29577530 DOI: 10.1002/cbic.201700635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity with high spatial and temporal precision in cells, tissues, and organs in animals. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review we summarize recent advances in the development of such photoswitches and in how these optotools are applied to signaling processes.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- AMED-PRIME (Japan), Agency for Medical Research and Development, Tokyo, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
121
|
Mao YT, Zhu JX, Hanamura K, Iurilli G, Datta SR, Dalva MB. Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase. Neuron 2018; 98:767-782.e8. [PMID: 29731254 DOI: 10.1016/j.neuron.2018.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2017] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle.
Collapse
Affiliation(s)
- Yu-Ting Mao
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Julia X Zhu
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Kenji Hanamura
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA; Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi City, Gunma 371-8511, Japan
| | - Giuliano Iurilli
- Department of Neurobiology, Harvard Medical School, Room 336 Warren Alpert Building, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Room 336 Warren Alpert Building, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
122
|
Caldwell RM, Bermudez JG, Thai D, Aonbangkhen C, Schuster BS, Courtney T, Deiters A, Hammer DA, Chenoweth DM, Good MC. Optochemical Control of Protein Localization and Activity within Cell-like Compartments. Biochemistry 2018; 57:2590-2596. [PMID: 29671583 DOI: 10.1021/acs.biochem.8b00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.
Collapse
Affiliation(s)
| | | | | | | | | | - Taylor Courtney
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Deiters
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | | | | | | |
Collapse
|
123
|
Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 2018; 47:2454-2484. [PMID: 29498733 DOI: 10.1039/c7cs00404d] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
Collapse
Affiliation(s)
- Anna V Leopold
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | | | | |
Collapse
|
124
|
Benedetti L, Barentine AES, Messa M, Wheeler H, Bewersdorf J, De Camilli P. Light-activated protein interaction with high spatial subcellular confinement. Proc Natl Acad Sci U S A 2018; 115:E2238-E2245. [PMID: 29463750 PMCID: PMC5877946 DOI: 10.1073/pnas.1713845115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methods to acutely manipulate protein interactions at the subcellular level are powerful tools in cell biology. Several blue-light-dependent optical dimerization tools have been developed. In these systems one protein component of the dimer (the bait) is directed to a specific subcellular location, while the other component (the prey) is fused to the protein of interest. Upon illumination, binding of the prey to the bait results in its subcellular redistribution. Here, we compared and quantified the extent of light-dependent dimer occurrence in small, subcellular volumes controlled by three such tools: Cry2/CIB1, iLID, and Magnets. We show that both the location of the photoreceptor protein(s) in the dimer pair and its (their) switch-off kinetics determine the subcellular volume where dimer formation occurs and the amount of protein recruited in the illuminated volume. Efficient spatial confinement of dimer to the area of illumination is achieved when the photosensitive component of the dimerization pair is tethered to the membrane of intracellular compartments and when on and off kinetics are extremely fast, as achieved with iLID or Magnets. Magnets and the iLID variants with the fastest switch-off kinetics induce and maintain protein dimerization in the smallest volume, although this comes at the expense of the total amount of dimer. These findings highlight the distinct features of different optical dimerization systems and will be useful guides in the choice of tools for specific applications.
Collapse
Affiliation(s)
- Lorena Benedetti
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Andrew E S Barentine
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - Mirko Messa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Heather Wheeler
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510;
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
125
|
Li Y, Lee M, Kim N, Wu G, Deng D, Kim JM, Liu X, Heo WD, Zi Z. Spatiotemporal Control of TGF-β Signaling with Light. ACS Synth Biol 2018; 7:443-451. [PMID: 29241005 DOI: 10.1021/acssynbio.7b00225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells employ signaling pathways to make decisions in response to changes in their immediate environment. Transforming growth factor beta (TGF-β) is an important growth factor that regulates many cellular functions in development and disease. Although the molecular mechanisms of TGF-β signaling have been well studied, our understanding of this pathway is limited by the lack of tools that allow the control of TGF-β signaling with high spatiotemporal resolution. Here, we developed an optogenetic system (optoTGFBRs) that enables the precise control of TGF-β signaling in time and space. Using the optoTGFBRs system, we show that TGF-β signaling can be selectively and sequentially activated in single cells through the modulation of the pattern of light stimulations. By simultaneously monitoring the subcellular localization of TGF-β receptor and Smad2 proteins, we characterized the dynamics of TGF-β signaling in response to different patterns of blue light stimulations. The spatial and temporal precision of light control will make the optoTGFBRs system as a powerful tool for quantitative analyses of TGF-β signaling at the single cell level.
Collapse
Affiliation(s)
- Yuchao Li
- Otto-Warburg
Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Minji Lee
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nury Kim
- Center
for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Guoyu Wu
- Otto-Warburg
Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Difan Deng
- Otto-Warburg
Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Jin Man Kim
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Xuedong Liu
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0596, United States
| | - Won Do Heo
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center
for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Zhike Zi
- Otto-Warburg
Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| |
Collapse
|
126
|
Kyriakakis P, Catanho M, Hoffner N, Thavarajah W, Hu VJ, Chao SS, Hsu A, Pham V, Naghavian L, Dozier LE, Patrick GN, Coleman TP. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP + Reductase Systems Enables Genetically Encoded PhyB Optogenetics. ACS Synth Biol 2018; 7:706-717. [PMID: 29301067 PMCID: PMC5820651 DOI: 10.1021/acssynbio.7b00413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
Collapse
Affiliation(s)
- Phillip Kyriakakis
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Marianne Catanho
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Nicole Hoffner
- Neurosciences
Graduate Program, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Walter Thavarajah
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Vincent J. Hu
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Syh-Shiuan Chao
- Frank
H. Better School of Medicine, Quinnipiac University, 370 Bassett Road, North Haven, Connecticut 06473, United States
| | - Athena Hsu
- School
of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Vivian Pham
- Roy J. and
Lucille A. Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, United States
| | - Ladan Naghavian
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Lara E. Dozier
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Gentry N. Patrick
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Todd P. Coleman
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| |
Collapse
|
127
|
Deng A, Boxer SG. Structural Insight into the Photochemistry of Split Green Fluorescent Proteins: A Unique Role for a His-Tag. J Am Chem Soc 2018; 140:375-381. [PMID: 29193968 PMCID: PMC5815829 DOI: 10.1021/jacs.7b10680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligohistidine affinity tags (His-tags) are commonly fused to proteins to aid in their purification via metal affinity chromatography. These His-tags are generally assumed to have minimal impact on the properties of the fusion protein, as they have no propensity to form ordered elements, and are small enough not to significantly affect the solubility or size. Here we report structures of two variants of truncated green fluorescent protein (GFP), i.e., split GFP with a β-strand removed, that were found to behave differently in the presence of light. In these structures, the N-terminal His-tag and several neighboring residues play a highly unusual structural and functional role in stabilizing the truncated GFP by substituting as a surrogate β-strand in the groove vacated by the native strand. This finding provides an explanation for the seemingly very different peptide binding and photodissociation properties of split proteins involving β-strands 10 and 11. We show that these truncated GFPs can bind other non-native sequences, and this promiscuity invites the possibility for rational design of sequences optimized for strand binding and photodissociation, both useful for optogenetic applications.
Collapse
Affiliation(s)
- Alan Deng
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
128
|
Milas A, Jagrić M, Martinčić J, Tolić IM. Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells. Methods Cell Biol 2018; 145:191-215. [DOI: 10.1016/bs.mcb.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
129
|
Nihongaki Y, Otabe T, Sato M. Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9. Anal Chem 2017; 90:429-439. [DOI: 10.1021/acs.analchem.7b04757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuta Nihongaki
- Graduate School
of Arts and
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takahiro Otabe
- Graduate School
of Arts and
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Graduate School
of Arts and
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
130
|
Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen Z, Zhang X, Tan W. Reversible and Quantitative Photoregulation of Target Proteins. Chem 2017. [DOI: 10.1016/j.chempr.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
131
|
Illuminating information transfer in signaling dynamics by optogenetics. Curr Opin Cell Biol 2017; 49:9-15. [DOI: 10.1016/j.ceb.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022]
|
132
|
Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017; 96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Collapse
|
133
|
Zhou XX, Fan LZ, Li P, Shen K, Lin MZ. Optical control of cell signaling by single-chain photoswitchable kinases. Science 2017; 355:836-842. [PMID: 28232577 DOI: 10.1126/science.aah3605] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Protein kinases transduce signals to regulate a wide array of cellular functions in eukaryotes. A generalizable method for optical control of kinases would enable fine spatiotemporal interrogation or manipulation of these various functions. We report the design and application of single-chain cofactor-free kinases with photoswitchable activity. We engineered a dimeric protein, pdDronpa, that dissociates in cyan light and reassociates in violet light. Attaching two pdDronpa domains at rationally selected locations in the kinase domain, we created the photoswitchable kinases psRaf1, psMEK1, psMEK2, and psCDK5. Using these photoswitchable kinases, we established an all-optical cell-based assay for screening inhibitors, uncovered a direct and rapid inhibitory feedback loop from ERK to MEK1, and mediated developmental changes and synaptic vesicle transport in vivo using light.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Linlin Z Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengpeng Li
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Kang Shen
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Neurobiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
134
|
Roebroek T, Duwé S, Vandenberg W, Dedecker P. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization. Int J Mol Sci 2017; 18:ijms18092015. [PMID: 28930199 PMCID: PMC5618663 DOI: 10.3390/ijms18092015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023] Open
Abstract
Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.
Collapse
Affiliation(s)
- Thijs Roebroek
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Sam Duwé
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Wim Vandenberg
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
135
|
Abstract
To orchestrate the function and development of multicellular organisms, cells integrate intra- and extracellular information. This information is processed via signal networks in space and time, steering dynamic changes in cellular structure and function. Defects in those signal networks can lead to developmental disorders or cancer. However, experimental analysis of signal networks is challenging as their state changes dynamically and differs between individual cells. Thus, causal relationships between network components are blurred if lysates from large cell populations are analyzed. To directly study causal relationships, perturbations that target specific components have to be combined with measurements of cellular responses within individual cells. However, using standard single-cell techniques, the number of signal activities that can be monitored simultaneously is limited. Furthermore, diffusion of signal network components limits the spatial precision of perturbations, which blurs the analysis of spatiotemporal processing in signal networks. Hybrid strategies based on optogenetics, surface patterning, chemical tools, and protein design can overcome those limitations and thereby sharpen our view into the dynamic spatiotemporal state of signal networks and enable unique insights into the mechanisms that control cellular function in space and time.
Collapse
Affiliation(s)
- Dominic Kamps
- Department for Systemic Cell Biology, Max
Planck Institute of Molecular Physiology and Fakultät für
Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Leif Dehmelt
- Department for Systemic Cell Biology, Max
Planck Institute of Molecular Physiology and Fakultät für
Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
136
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
137
|
Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. Am J Physiol Regul Integr Comp Physiol 2017; 313:R633-R645. [PMID: 28794102 DOI: 10.1152/ajpregu.00091.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022]
Abstract
Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond.
Collapse
Affiliation(s)
- Jingwei Jiang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Huxing Cui
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; .,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
138
|
Strategies for the photo-control of endogenous protein activity. Curr Opin Struct Biol 2017; 45:53-58. [DOI: 10.1016/j.sbi.2016.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/13/2016] [Indexed: 11/21/2022]
|
139
|
Dagliyan O, Tarnawski M, Chu PH, Shirvanyants D, Schlichting I, Dokholyan NV, Hahn KM. Engineering extrinsic disorder to control protein activity in living cells. Science 2017; 354:1441-1444. [PMID: 27980211 DOI: 10.1126/science.aah3404] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/16/2016] [Indexed: 11/03/2022]
Abstract
Optogenetic and chemogenetic control of proteins has revealed otherwise inaccessible facets of signaling dynamics. Here, we use light- or ligand-sensitive domains to modulate the structural disorder of diverse proteins, thereby generating robust allosteric switches. Sensory domains were inserted into nonconserved, surface-exposed loops that were tight and identified computationally as allosterically coupled to active sites. Allosteric switches introduced into motility signaling proteins (kinases, guanosine triphosphatases, and guanine exchange factors) controlled conversion between conformations closely resembling natural active and inactive states, as well as modulated the morphodynamics of living cells. Our results illustrate a broadly applicable approach to design physiological protein switches.
Collapse
Affiliation(s)
- Onur Dagliyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Pei-Hsuan Chu
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Shirvanyants
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nikolay V Dokholyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Klaus M Hahn
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
140
|
Liu Q, Tucker CL. Engineering genetically-encoded tools for optogenetic control of protein activity. Curr Opin Chem Biol 2017; 40:17-23. [PMID: 28527343 DOI: 10.1016/j.cbpa.2017.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Optogenetic tools offer fast and reversible control of protein activity with subcellular spatial precision. In the past few years, remarkable progress has been made in engineering photoactivatable systems regulating the activity of cellular proteins. In this review, we discuss general strategies in designing and optimizing such optogenetic tools and highlight recent advances in the field, with specific focus on applications regulating protein catalytic activity.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
141
|
Yang Q, Song D, Qing H. Neural changes in Alzheimer's disease from circuit to molecule: Perspective of optogenetics. Neurosci Biobehav Rev 2017; 79:110-118. [PMID: 28522119 DOI: 10.1016/j.neubiorev.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD), as a crucial neurodegenerative disorder, affects neural activities at many levels. Synaptic plasticity and neural circuits are most susceptible in AD, but the detailed mechanism is unclear. Optogenetic tools provide unprecedented spatio-temporal specificity to stimulate specific neural circuits or synaptic molecules to reveal the precise function of normal brain and mechanism of deficits in AD models. Furthermore, using optogenetics to stimulate neurons can rescue learning and memory loss caused by AD. It also has possibility to use light to control the Neurotransmitter receptors and their downstream signal pathway. These technical methods have broad therapeutic application prospect.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
142
|
Chow RWY, Vermot J. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology. F1000Res 2017; 6. [PMID: 28413613 PMCID: PMC5389412 DOI: 10.12688/f1000research.10617.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The zebrafish ( Danio rerio) is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.
Collapse
Affiliation(s)
- Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
143
|
Zhang W, Lohman AW, Zhuravlova Y, Lu X, Wiens MD, Hoi H, Yaganoglu S, Mohr MA, Kitova EN, Klassen JS, Pantazis P, Thompson RJ, Campbell RE. Optogenetic control with a photocleavable protein, PhoCl. Nat Methods 2017; 14:391-394. [PMID: 28288123 DOI: 10.1038/nmeth.4222] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/14/2017] [Indexed: 11/08/2022]
Abstract
To expand the range of experiments that are accessible with optogenetics, we developed a photocleavable protein (PhoCl) that spontaneously dissociates into two fragments after violet-light-induced cleavage of a specific bond in the protein backbone. We demonstrated that PhoCl can be used to engineer light-activatable Cre recombinase, Gal4 transcription factor, and a viral protease that in turn was used to activate opening of the large-pore ion channel Pannexin-1.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Xiaocen Lu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew D Wiens
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hiofan Hoi
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sine Yaganoglu
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Manuel A Mohr
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Roger J Thompson
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
144
|
Chen X, Venkatachalapathy M, Kamps D, Weigel S, Kumar R, Orlich M, Garrecht R, Hirtz M, Niemeyer CM, Wu YW, Dehmelt L. “Molecular Activity Painting”: Switch-like, Light-Controlled Perturbations inside Living Cells. Angew Chem Int Ed Engl 2017; 56:5916-5920. [DOI: 10.1002/anie.201611432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre of the Max-Planck Society; Dortmund Germany
| | - Muthukumaran Venkatachalapathy
- Department for Systemic Cell Biology; Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Germany
| | - Dominic Kamps
- Department for Systemic Cell Biology; Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Germany
| | - Simone Weigel
- Institute for Biological Interfaces; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Michael Orlich
- Department for Systemic Cell Biology; Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Germany
| | - Ruben Garrecht
- Institute for Biological Interfaces; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck Society; Dortmund Germany
| | - Leif Dehmelt
- Department for Systemic Cell Biology; Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Germany
| |
Collapse
|
145
|
Chen X, Venkatachalapathy M, Kamps D, Weigel S, Kumar R, Orlich M, Garrecht R, Hirtz M, Niemeyer CM, Wu YW, Dehmelt L. “Molecular Activity Painting”: schaltbare, lichtgesteuerte Manipulation in lebenden Zellen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
| | - Muthukumaran Venkatachalapathy
- Abteilung für Systemische Zellbiologie; Max-Planck-Institut für Molekulare Physiologie und Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Deutschland
| | - Dominic Kamps
- Abteilung für Systemische Zellbiologie; Max-Planck-Institut für Molekulare Physiologie und Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Deutschland
| | - Simone Weigel
- Institut für Biologische Grenzflächen; Karlsruher Institut für Technologie (KIT); Karlsruhe Deutschland
| | - Ravi Kumar
- Institut für Nanotechnologie (INT) und Karlsruhe Nano Micro Facility (KNMF); Karlsruher Institut für Technologie (KIT); Karlsruhe Deutschland
| | - Michael Orlich
- Abteilung für Systemische Zellbiologie; Max-Planck-Institut für Molekulare Physiologie und Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Deutschland
| | - Ruben Garrecht
- Institut für Biologische Grenzflächen; Karlsruher Institut für Technologie (KIT); Karlsruhe Deutschland
| | - Michael Hirtz
- Institut für Nanotechnologie (INT) und Karlsruhe Nano Micro Facility (KNMF); Karlsruher Institut für Technologie (KIT); Karlsruhe Deutschland
| | - Christof M. Niemeyer
- Institut für Biologische Grenzflächen; Karlsruher Institut für Technologie (KIT); Karlsruhe Deutschland
| | - Yao-Wen Wu
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
| | - Leif Dehmelt
- Abteilung für Systemische Zellbiologie; Max-Planck-Institut für Molekulare Physiologie und Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Dortmund Deutschland
| |
Collapse
|
146
|
Kainrath S, Stadler M, Reichhart E, Distel M, Janovjak H. Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains. Angew Chem Int Ed Engl 2017; 56:4608-4611. [PMID: 28319307 PMCID: PMC5396336 DOI: 10.1002/anie.201611998] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/10/2022]
Abstract
Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes.
Collapse
Affiliation(s)
- Stephanie Kainrath
- Synthetic Physiology, Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Manuela Stadler
- Innovative Cancer Models, Children's Cancer Research Institute (CCRI), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Eva Reichhart
- Synthetic Physiology, Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Martin Distel
- Innovative Cancer Models, Children's Cancer Research Institute (CCRI), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Harald Janovjak
- Synthetic Physiology, Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
147
|
Kainrath S, Stadler M, Reichhart E, Distel M, Janovjak H. Grünlicht-induzierte Rezeptorinaktivierung durch Cobalamin-bindende Domänen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stephanie Kainrath
- Synthetic Physiology; Institute of Science and Technology Austria (IST Austria); Am Campus 1 3400 Klosterneuburg Österreich
| | - Manuela Stadler
- Innovative Cancer Models; Children's Cancer Research Institute (CCRI); Zimmermannplatz 10 1090 Wien Österreich
| | - Eva Reichhart
- Synthetic Physiology; Institute of Science and Technology Austria (IST Austria); Am Campus 1 3400 Klosterneuburg Österreich
| | - Martin Distel
- Innovative Cancer Models; Children's Cancer Research Institute (CCRI); Zimmermannplatz 10 1090 Wien Österreich
| | - Harald Janovjak
- Synthetic Physiology; Institute of Science and Technology Austria (IST Austria); Am Campus 1 3400 Klosterneuburg Österreich
| |
Collapse
|
148
|
Czapiński J, Kiełbus M, Kałafut J, Kos M, Stepulak A, Rivero-Müller A. How to Train a Cell-Cutting-Edge Molecular Tools. Front Chem 2017; 5:12. [PMID: 28344971 PMCID: PMC5344921 DOI: 10.3389/fchem.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.
Collapse
Affiliation(s)
- Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of WarsawWarsaw, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi UniversityTurku, Finland
- Department of Biosciences, Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
149
|
Yamanaka M, Hoshizumi M, Nagao S, Nakayama R, Shibata N, Higuchi Y, Hirota S. Formation and carbon monoxide-dependent dissociation of Allochromatium vinosum cytochrome c' oligomers using domain-swapped dimers. Protein Sci 2017; 26:464-474. [PMID: 27883268 PMCID: PMC5326568 DOI: 10.1002/pro.3090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c' from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four-helix bundle structure containing a covalently bound five-coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer-monomer transition according to the absence and presence of CO. Herein, domain-swapped dimeric AVCP was constructed and utilized to form a tetramer and high-order oligomers. The X-ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain-swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain-swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit-subunit interactions at the interfaces of the domain-swapped dimer and monomer subunits in the tetramer were also similar to the subunit-subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain-swapped dimer and two monomers upon CO binding. Without monomers, the domain-swapped dimers formed tetramers, hexamers, and higher-order oligomers in the absence of CO, whereas the oligomers dissociated to domain-swapped dimers in the presence of CO, demonstrating that the domain-swapped dimer maintains the CO-induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer-monomer transition protein.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Makoto Hoshizumi
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Satoshi Nagao
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Ryoko Nakayama
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Naoki Shibata
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Yoshiki Higuchi
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Shun Hirota
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| |
Collapse
|
150
|
Tan P, He L, Han G, Zhou Y. Optogenetic Immunomodulation: Shedding Light on Antitumor Immunity. Trends Biotechnol 2017; 35:215-226. [PMID: 27692897 PMCID: PMC5316489 DOI: 10.1016/j.tibtech.2016.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
Microbial opsin-based optogenetic tools have been transformative for neuroscience. To extend optogenetic approaches to the immune system to remotely control immune responses with superior spatiotemporal precision, pioneering tools have recently been crafted to modulate lymphocyte trafficking, inflammasome activation, dendritic cell (DC) maturation, and antitumor immunity through the photoactivation of engineered chemokine receptors and calcium release-activated calcium channels. We highlight herein some conceptual design strategies for installing light sensitivities into the immune signaling network and, in parallel, we propose potential solutions for in vivo optogenetic applications in living organisms with near-infrared light-responsive upconversion nanomaterials. Moreover, to move beyond proof-of-concept into translational applications, we discuss future prospects for integrating personalized immunoengineering with optogenetics to overcome critical hurdles in cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA.
| |
Collapse
|