101
|
Wang L, Qi H, Tang Y, Shen HM. Post-translational Modifications of Key Machinery in the Control of Mitophagy. Trends Biochem Sci 2020; 45:58-75. [DOI: 10.1016/j.tibs.2019.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
|
102
|
Pten haploinsufficiency disrupts scaling across brain areas during development in mice. Transl Psychiatry 2019; 9:329. [PMID: 31804455 PMCID: PMC6895202 DOI: 10.1038/s41398-019-0656-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Haploinsufficiency for PTEN is a cause of autism spectrum disorder and brain overgrowth; however, it is not known if PTEN mutations disrupt scaling across brain areas during development. To address this question, we used magnetic resonance imaging to analyze brains of male Pten haploinsufficient (Pten+/-) mice and wild-type littermates during early postnatal development and adulthood. Adult Pten+/- mice display a consistent pattern of abnormal scaling across brain areas, with white matter (WM) areas being particularly affected. This regional and WM enlargement recapitulates structural abnormalities found in individuals with PTEN haploinsufficiency and autism. Early postnatal Pten+/- mice do not display the same pattern, instead exhibiting greater variability across mice and brain regions than controls. This suggests that Pten haploinsufficiency may desynchronize growth across brain regions during early development before stabilizing by maturity. Pten+/- cortical cultures display increased proliferation of glial cell populations, indicating a potential substrate of WM enlargement, and provide a platform for testing candidate therapeutics. Pten haploinsufficiency dysregulates coordinated growth across brain regions during development. This results in abnormally scaled brain areas and associated behavioral deficits, potentially explaining the relationship between PTEN mutations and neurodevelopmental disorders.
Collapse
|
103
|
Manjunath H, Zhang H, Rehfeld F, Han J, Chang TC, Mendell JT. Suppression of Ribosomal Pausing by eIF5A Is Necessary to Maintain the Fidelity of Start Codon Selection. Cell Rep 2019; 29:3134-3146.e6. [PMID: 31801078 PMCID: PMC6917043 DOI: 10.1016/j.celrep.2019.10.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Sequences within 5' UTRs dictate the site and efficiency of translation initiation. In this study, an unbiased screen designed to interrogate the 5' UTR-mediated regulation of the growth-promoting gene MYC unexpectedly revealed the ribosomal pause relief factor eIF5A as a regulator of translation initiation codon selection. Depletion of eIF5A enhances upstream translation within 5' UTRs across yeast and human transcriptomes, including on the MYC transcript, where this results in increased production of an N-terminally extended protein. Furthermore, ribosome profiling experiments established that the function of eIF5A as a suppressor of ribosomal pausing at sites of suboptimal peptide bond formation is conserved in human cells. We present evidence that proximal ribosomal pausing on a transcript triggers enhanced use of upstream suboptimal or non-canonical initiation codons. Thus, we propose that eIF5A functions not only to maintain efficient translation elongation in eukaryotic cells but also to maintain the fidelity of translation initiation.
Collapse
Affiliation(s)
- Hema Manjunath
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8821, USA; Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8821, USA
| | - Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
104
|
David G, Fogeron ML, Montserret R, Lecoq L, Page A, Delolme F, Nassal M, Böckmann A. Phosphorylation and Alternative Translation on Wheat Germ Cell-Free Protein Synthesis of the DHBV Large Envelope Protein. Front Mol Biosci 2019; 6:138. [PMID: 31850370 PMCID: PMC6902406 DOI: 10.3389/fmolb.2019.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat-germ cell-free protein synthesis (WG-CFPS) is a potent platform for the high-yield production of proteins. It is especially of interest for difficult-to-express eukaryotic proteins, such as toxic and transmembrane proteins, and presents an important tool in high-throughput protein screening. Until recently, an assumed drawback of WG-CFPS was a reduced capacity for post-translational modifications. Meanwhile, phosphorylation has been observed in WG-CFPS; yet, authenticity of the respective phosphorylation sites remained unclear. Here we show that a viral membrane protein, the duck hepatitis B virus (DHBV) large envelope protein (DHBs L), produced by WG-CFPS, is phosphorylated upon translation at the same sites as DHBs L produced during DHBV infection of primary hepatocytes. Furthermore, we show that alternative translation initiation of the L protein, previously identified in virus-producing hepatic cells, occurs on WG-CFPS as well. Together, these findings further strengthen the high potential of WG-CFPS to include the reproduction of specific modifications proteins experience in vivo.
Collapse
Affiliation(s)
- Guillaume David
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
105
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
106
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
107
|
Long Noncoding RNA GATA3-AS1 Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma by Suppression of PTEN, CDKN1A, and TP53. Can J Gastroenterol Hepatol 2019; 2019:1389653. [PMID: 31871924 PMCID: PMC6913283 DOI: 10.1155/2019/1389653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been known to play important roles in the progression of various types of human cancer. LncRNA GATA3 antisense RNA 1, GATA3-AS1, has been reported to be associated with T-cell development and differentiation. However, the expression pattern and function of GATA3-AS1 in hepatocellular carcinoma (HCC) remain unknown. METHODS Real-time quantitative PCR (RT-qPCR) assay was conducted to detect GATA3-AS1 expression levels in 80 cases of pairs HCC tissues and matched normal tissues. Chi-squared (χ 2) test was used to analyze the correlation between GATA3-AS1 expression and clinicopathologic variables. Survival curves were plotted using the Kaplan-Meier method and were compared via the log-rank test. The cell counting kit-8 (CCK-8) and wound scratch assays were applied to detect the effect of GATA3-AS1 knockdown and overexpression on cell growth and migration of HCC. RT-qPCR was performed for the detection of the phosphatase and tensin homolog (PTEN), cyclin-dependent kinase inhibitor 1A (CDKN1A), and tumor protein p53 (TP53) expression in HCC cells after GATA3-AS1 knockdown and overexpression. RESULTS GATA3-AS1 was significantly upregulated in HCC tissues compared with matched normal tissues. The high expression of GATA3-AS1 was significantly correlated with larger tumor size, advanced TNM stage, and more lymph node metastasis. High GATA3-AS1 expression was markedly correlated with shorter overall survival times of HCC patients. Furthermore, knockdown of GATA3-AS1 obviously inhibited Hep3B and HCCLM3 cell growth and migration, whereas overexpression of GATA3-AS1 had the opposite effects. In addition, GATA3-AS1 knockdown resulted in upregulated expression levels of tumor-suppressive genes, PTEN, CDKN1A, and TP53, in Hep3B and HCCLM3 cells, while restoration of GATA3-AS1 decreased PTEN, CDKN1A, and TP53 expression levels. CONCLUSION Our data suggested that GATA3-AS1 promotes cell proliferation and metastasis of HCC by suppression of PTEN, CDKN1A, and TP53.
Collapse
|
108
|
Multiple roles of PTEN isoforms PTENα and PTENβ in cellular activities and tumor development. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1722-1724. [DOI: 10.1007/s11427-019-1595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
|
109
|
Fernández-Acero T, Bertalmio E, Luna S, Mingo J, Bravo-Plaza I, Rodríguez-Escudero I, Molina M, Pulido R, Cid VJ. Expression of Human PTEN-L in a Yeast Heterologous Model Unveils Specific N-Terminal Motifs Controlling PTEN-L Subcellular Localization and Function. Cells 2019; 8:cells8121512. [PMID: 31779149 PMCID: PMC6952770 DOI: 10.3390/cells8121512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The tumour suppressor PTEN is frequently downregulated, mutated or lost in several types of tumours and congenital disorders including PHTS (PTEN Hamartoma Tumour Syndrome) and ASD (Autism Spectrum Disorder). PTEN is a lipid phosphatase whose activity over the lipid messenger PIP3 counteracts the stimulation of the oncogenic phosphatidylinositol 3-kinase (PI3K) pathway. Recently, several extended versions of PTEN produced in the cell by alternative translation initiation have been described, among which, PTEN-L and PTEN-M represent the longest isoforms. We previously developed a humanized yeast model in which the expression of PI3K in Saccharomyces cerevisiae led to growth inhibition that could be suppressed by co-expression of PTEN. Here, we show that the expression of PTEN-L and PTEN-M in yeast results in robust counteracting of PI3K-dependent growth inhibition. N-terminally tagged GFP-PTEN-L was sharply localized at the yeast plasma membrane. Point mutations of a putative membrane-binding helix located at the PTEN-L extension or its deletion shifted localization to nuclear. Also, a shift from plasma membrane to nucleus was observed in mutants at basic amino acid clusters at the PIP2-binding motif, and at the Cα2 and CBR3 loops at the C2 domain. In contrast, C-terminally tagged PTEN-L-GFP displayed mitochondrial localization in yeast, which was shifted to plasma membrane by removing the first 22 PTEN-L residues. Our results suggest an important role of the N-terminal extension of alternative PTEN isoforms on their spatial and functional regulation.
Collapse
Affiliation(s)
- Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Eleonora Bertalmio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Sandra Luna
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
| | - Janire Mingo
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
| | - Ignacio Bravo-Plaza
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Rafael Pulido
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
- IKERBASQUE, Fundación Vasca para la Ciencia, 48011 Bilbao, Spain
- Correspondence: (R.P.); (V.J.C.)
| | - Víctor J. Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
- Correspondence: (R.P.); (V.J.C.)
| |
Collapse
|
110
|
Salvatore L, Calegari MA, Loupakis F, Fassan M, Di Stefano B, Bensi M, Bria E, Tortora G. PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers (Basel) 2019; 11:1765. [PMID: 31717544 PMCID: PMC6896095 DOI: 10.3390/cancers11111765] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular assessment of colorectal cancer (CRC) is receiving growing attention, beyond RAS and BRAF, because of its influence on prognosis and prediction in cancer treatment. PTEN (phosphatase and tensin homologue), a tumor suppressor, regulating cell division and apoptosis, has been explored, and significant evidence suggests a role in cetuximab and panitumumab resistance linked to the epidermal growth factor receptor (EGFR) signal transduction pathway. Factors influencing PTEN activity should be analyzed to develop strategies to maximize the tumor suppressor role and to improve tumor response to cancer treatment. Therefore, an in-depth knowledge of the PI3K-Akt pathway-one of the major cancer survival pathways-and the role of PTEN-a major brake of this pathway-is essential in the era of precision medicine. The purpose of this literature review is to summarize the role of PTEN as a predictive factor and possible therapeutic target in CRC, focusing on ongoing studies and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Lisa Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Alessandra Calegari
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fotios Loupakis
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV – IRCCS, 35128 Padua, Italy;
| | - Matteo Fassan
- Unit of Surgical Pathology, Department of Medicine, University of Padua, 35122 Padua, Italy
| | - Brunella Di Stefano
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Bensi
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
111
|
PTENα and PTENβ promote carcinogenesis through WDR5 and H3K4 trimethylation. Nat Cell Biol 2019; 21:1436-1448. [DOI: 10.1038/s41556-019-0409-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
|
112
|
Abstract
PTEN is a phosphatase that functions as a tumour suppressor by antagonizing the PI3K–AKT pathway. However, a study now demonstrates that translational variants of PTEN enable new interactions between PTEN and the COMPASS complex, identifying a new role for PTEN in modifying gene expression via COMPASS-mediated histone H3 lysine 4 methylation.
Collapse
Affiliation(s)
- Justin Taylor
- Leukemia Service and Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Leukemia Service and Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
113
|
Exploration of intermediate-sized INDELs by next-generation multigene panel testing in Han Chinese patients with breast cancer. Hum Genome Var 2019; 6:51. [PMID: 31700649 PMCID: PMC6820797 DOI: 10.1038/s41439-019-0080-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/30/2022] Open
Abstract
Multigene panel testing via next-generation sequencing focuses on the detection of small-sized mutations, such as single nucleotide variants and short insertions and deletions (INDELs). However, intermediate-sized INDELs have not been fully explored due to technical difficulties. Here, we performed bioinformatics analyses to identify intermediate-sized INDELs in 54 cancer-related genes from 583 Han Chinese patients with breast cancer. We detected a novel deletion-insertion in a translational variant of PTEN (also known as PTENα) in one patient.
Collapse
|
114
|
Thies KA, Lefler JE, Leone G, Ostrowski MC. PTEN in the Stroma. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036111. [PMID: 31427286 DOI: 10.1101/cshperspect.a036111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although tremendous progress has been made in understanding the functions of Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in tumor cells, only recently have tumor cell-non-autonomous PTEN actions within the tumor microenvironment (TME) been appreciated. While it is accepted that the TME actively communicates with cancer cells to influence disease progression, our understanding of the genes and pathways responsible is still evolving. Given that inactivation of PTEN in the stroma is correlated with worse outcomes in human cancers, determining the unique functions and mechanisms of PTEN regulation in various TME cell compartments is essential. In this review, the evidence for PTEN function in different TME cell compartments, the mechanisms governing PTEN inactivation, and the downstream pathways regulated by PTEN that are critical for intracellular communication, are covered. The potential clinical implications of these findings as well as the future directions for the study of stromal PTEN are discussed.
Collapse
Affiliation(s)
- Katie A Thies
- Department of Radiation Oncology and The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julia E Lefler
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
115
|
Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin Cancer Biol 2019; 68:59-74. [PMID: 31562957 DOI: 10.1016/j.semcancer.2019.09.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.
Collapse
|
116
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
117
|
Gkountakos A, Sartori G, Falcone I, Piro G, Ciuffreda L, Carbone C, Tortora G, Scarpa A, Bria E, Milella M, Rosell R, Corbo V, Pilotto S. PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers (Basel) 2019; 11:cancers11081141. [PMID: 31404976 PMCID: PMC6721522 DOI: 10.3390/cancers11081141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Giulia Sartori
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Michele Milella
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Rafael Rosell
- Germans Trias i Pujol, Health Sciences Institute and Hospital, Campus Can Ruti, 08916 Badalona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy.
| | - Sara Pilotto
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
118
|
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN Tumor-Suppressor: The Dam of Stemness in Cancer. Cancers (Basel) 2019; 11:E1076. [PMID: 31366089 PMCID: PMC6721423 DOI: 10.3390/cancers11081076] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Francesca Luongo
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Colonna
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federica Calapà
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Vitale
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Micol E Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli"-I.R.C.C.S., Largo Francesco Vito 1-8, 00168 Rome, Italy.
| |
Collapse
|
119
|
Diaz de Arce AJ, Noderer WL, Wang CL. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Res 2019; 46:985-994. [PMID: 29228265 PMCID: PMC5778536 DOI: 10.1093/nar/gkx1114] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/06/2017] [Indexed: 01/23/2023] Open
Abstract
The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and disease etiology. Yet the ability to gauge expression based on the sequence of a translation initiation site (start codon and its flanking bases) has been limited. Here we have performed a comprehensive analysis of translation initiation sites that utilize non-AUG start codons. By combining genetic-reporter, cell-sorting, and high-throughput sequencing technologies, we have analyzed the expression associated with all possible variants of the -4 to +4 positions of non-AUG translation initiation site motifs. This complete motif analysis revealed that 1) with the right sequence context, certain non-AUG start codons can generate expression comparable to that of AUG start codons, 2) sequence context affects each non-AUG start codon differently, and 3) initiation at non-AUG start codons is highly sensitive to changes in the flanking sequences. Complete motif analysis has the potential to be a key tool for experimental and diagnostic genomics.
Collapse
Affiliation(s)
| | - William L Noderer
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Clifford L Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
120
|
Yuan Y, Zhao X, Wang P, Mei F, Zhou J, Jin Y, McNutt MA, Yin Y. PTENα regulates endocytosis and modulates olfactory function. FASEB J 2019; 33:11148-11162. [PMID: 31291551 DOI: 10.1096/fj.201900588rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) α is the first identified isoform of the well-known tumor suppressor PTEN. PTENα has an evolutionarily conserved 173-aa N terminus compared with canonical PTEN. Recently, PTENα has been shown to play roles in multiple biologic processes including learning and memory, cardiac homeostasis, and antiviral immunity. Here, we report that PTENα maintains mitral cells in olfactory bulb (OB), regulates endocytosis in OB neurons, and controls olfactory behaviors in mice. We show that PTENα directly dephosphorylates the endocytic protein amphiphysin and promotes its binding to adaptor-related protein complex 2 subunit β1 (Ap2b1). In addition, we identified mutations in the N terminus of PTENα in patients with Parkinson disease and Lewy-body dementia, which are neurodegenerative disorders with early olfactory loss. Overexpression of PTENα mutant H169N in mice OB reduces odor sensitivity. Our data demonstrate a role of PTENα in olfactory function and provide insight into the mechanism of olfactory dysfunction in neurologic disorders.-Yuan, Y., Zhao, X., Wang, P., Mei, F., Zhou, J., Jin, Y., McNutt, M. A., Yin, Y. PTENα regulates endocytosis and modulates olfactory function.
Collapse
Affiliation(s)
- Yuyao Yuan
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fan Mei
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Juntuo Zhou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
121
|
Palumbo E, Zhao B, Xue B, Uversky VN, Davé V. Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. J Biomol Struct Dyn 2019; 38:2253-2266. [PMID: 31232187 DOI: 10.1080/07391102.2019.1630005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While studies on pathological protein aggregation are largely limited to neurodegenerative disease, emerging evidence suggests that other diseases are also associated with pathogenic protein aggregation. For example, tumor suppressor protein p53, and its mutant conformers, undergo protein aggregation, exacerbating the cancer phenotype. These findings raise the possibility that inactivation of tumor suppressors via protein aggregation may participate in cancer and other disease pathologies. Since tumor suppressor protein PTEN has similar functions to p53, and is mutated in multiple diseases, we examined the aggregation propensity of PTEN wild-type and 1523 clinically relevant PTEN mutants. Applying computational tools to PTEN mutation databases revealed that PTEN wild-type protein can aggregate under physiological conditions, and 274 distinct PTEN mutants had increased aggregation propensity. To understand the mechanism underlying PTEN conformer aggregation, we analyzed the physicochemical properties of these 274 PTEN mutants and defined their aggregation potential. We conclude that increased aggregation propensity of select PTEN mutants may contribute to disease phenotypes. Our studies have built the foundation for interrogating the aggregation potential of these select mutants in cancers and in PTENopathies. Elucidating the pathogenic mechanisms associated with aggregation-prone PTEN conformers will aid in developing therapies that target PTEN-aggregates in multiple diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
122
|
Coronas-Serna JM, Valenti M, Del Val E, Fernández-Acero T, Rodríguez-Escudero I, Mingo J, Luna S, Torices L, Pulido R, Molina M, Cid VJ. Modeling human disease in yeast: recreating the PI3K-PTEN-Akt signaling pathway in Saccharomyces cerevisiae. Int Microbiol 2019; 23:75-87. [PMID: 31218536 DOI: 10.1007/s10123-019-00082-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The yeast Saccharomyces cerevisiae is a model organism that has been thoroughly exploited to understand the universal mechanisms that govern signaling pathways. Due to its ease of manipulation, humanized yeast models that successfully reproduce the function of human genes permit the development of highly efficient genetic approaches for molecular studies. Of special interest are those pathways related to human disease that are conserved from yeast to mammals. However, it is also possible to engineer yeast cells to implement functions that are naturally absent in fungi. Along the years, we have reconstructed several aspects of the mammalian phosphatidylinositol 3-kinase (PI3K) pathway in S. cerevisiae. Here, we briefly review the use of S. cerevisiae as a tool to study human oncogenes and tumor suppressors, and we present an overview of the models applied to the study of the PI3K oncoproteins, the tumor suppressor PTEN, and the Akt protein kinase. We discuss the application of these models to study the basic functional properties of these signaling proteins, the functional assessment of their clinically relevant variants, and the design of feasible platforms for drug discovery.
Collapse
Affiliation(s)
- Julia María Coronas-Serna
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Marta Valenti
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Elba Del Val
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Sandra Luna
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
123
|
Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, Hsu CH, Asara JM, Tibarewal P, Leslie NR, Shi Y, Pandolfi PP, Wei W. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov 2019; 9:1306-1323. [PMID: 31217297 DOI: 10.1158/2159-8290.cd-18-0083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Medical Research Institute, Wuhan University, Wuhan, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jesse M Katon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts
| | - Chih-Hung Hsu
- Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
124
|
Sato K, Masuda T, Hu Q, Tobo T, Gillaspie S, Niida A, Thornton M, Kuroda Y, Eguchi H, Nakagawa T, Asano K, Mimori K. Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer. EBioMedicine 2019; 44:387-402. [PMID: 31175057 PMCID: PMC6606960 DOI: 10.1016/j.ebiom.2019.05.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Translational reprogramming through controlled initiation from non-AUG start codons is considered a crucial driving force in tumorigenesis and tumor progression. However, its clinical impact and underlying mechanism are not fully understood. METHODS Using a bioinformatics approach, we identified translation initiation regulator 5MP1/BZW2 on chromosome 7p as a potential oncogenic driver gene in colorectal cancer (CRC), and explored the biological effect of 5MP1 in CRC in vitro or in vivo. Pathway analysis was performed to identify the downstream target of 5MP1, which was verified with transcriptomic and biochemical analyses. Finally, we assessed the clinical significance of 5MP1 expression in CRC patients. FINDINGS 5MP1 was ubiquitously amplified and overexpressed in CRC. 5MP1 promoted tumor growth and induced cell cycle progression of CRC. c-Myc was identified as its potential downstream effector. c-Myc has two in-frame start codons, AUG and CUG (non-AUG) located upstream of the AUG. 5MP1 expression increased the AUG-initiated c-Myc isoform relative to the CUG-initiated isoform. The AUG-initiated c-Myc isoform displayed higher protein stability and a stronger transactivation activity for oncogenic pathways than the CUG-initiated isoform, accounting for 5MP1-driven cell cycle progression and tumor growth. Clinically, high 5MP1 expression predicts poor survival of CRC patients. INTERPRETATION 5MP1 is a novel oncogene that reprograms c-Myc translation in CRC. 5MP1 could be a potential therapeutic target to overcome therapeutic resistance conferred by tumor heterogeneity of CRC. FUND: Japan Society for the Promotion of Science; Priority Issue on Post-K computer; National Institutes of Health; National Science Foundation; KSU Johnson Cancer Center.
Collapse
Affiliation(s)
- Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka 860-8556, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine and Pathology, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yousuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka 860-8556, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan.
| |
Collapse
|
125
|
Chen D, Li Z, Cheng Q, Wang Y, Qian L, Gao J, Zhu JY. Genetic alterations and expression of PTEN and its relationship with cancer stem cell markers to investigate pathogenesis and to evaluate prognosis in hepatocellular carcinoma. J Clin Pathol 2019; 72:588-596. [DOI: 10.1136/jclinpath-2019-205769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022]
Abstract
AimsTo investigate molecular alteration and expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in hepatocellular carcinoma (HCC), and to evaluate the correlation between PTEN and cancer stem cell (CSC) markers and the prognostic value of these markers.MethodsWe evaluated changes of PTEN and CSC markers (CD133, epithelial cell adhesion molecule (EpCAM) and CK19) in 183 resection specimens by immunohistochemistry (IHC) and detected PTEN and phosphoinositide-3-kinase catalytic-alpha (PIK3CA) gene by fluorescence in situ hybridisation (FISH) in some specimens.ResultsPTEN and CD133, EpCAM and CK19 in 183 resection specimens were studied by IHC, and PTEN and PIK3CA genes were detected by FISH. PTEN expression was reduced in 92 HCC tissues (50.3%). There were 16 HCCs with PTEN deletion (51.6%). Comparison between PTEN IHC and FISH showed that the analysis was highly concordant (54/59, 91.5%). There were 19 HCCs with PIK3CA amplification. Deletion of PTEN was positively correlated with amplification of PIK3CA. Positive expression of CD133, EpCAM and CK19 was correlated with steatosis, moderate to poor differentiation, and so on. Reduction of PTEN expression was negatively correlated with positive expression of CD133, EpCAM and CK19. Reduced expression of PTEN (p=0.028) was an independent predictor for HCC recurrence and overall survival in HCC. PTEN−/CD133+ group had shorter OS and RFS time.ConclusionsPTEN plays a key role in hepatocarcinogenesis and reduction of PTEN expression is related to increased expression of CD133, EpCAM and CK19, which is a useful tool to evaluate HCC prognosis and recurrence.
Collapse
|
126
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
127
|
Ferri C, Weich N, Gutiérrez L, De Brasi C, Bengió M, Zapata P, Fundia A, Larripa I. Single nucleotide polymorphism in PTEN-Long gene: A risk factor in chronic myeloid leukemia. Gene 2019; 694:71-75. [DOI: 10.1016/j.gene.2019.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 02/01/2023]
|
128
|
PTENα promotes neutrophil chemotaxis through regulation of cell deformability. Blood 2019; 133:2079-2089. [PMID: 30926592 DOI: 10.1182/blood-2019-01-899864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are a major component of immune defense and are recruited through neutrophil chemotaxis in response to invading pathogens. However, the molecular mechanism that controls neutrophil chemotaxis remains unclear. Here, we report that PTENα, the first isoform identified in the PTEN family, regulates neutrophil deformability and promotes chemotaxis of neutrophils. A high level of PTENα is detected in neutrophils and lymphoreticular tissues. Homozygous deletion of PTENα impairs chemoattractant-induced migration of neutrophils. We show that PTENα physically interacts with cell membrane cross-linker moesin through its FERM domain and dephosphorylates moesin at Thr558, which disrupts the association of filamentous actin with the plasma membrane and subsequently induces morphologic changes in neutrophil pseudopodia. These results demonstrate that PTENα acts as a phosphatase of moesin and modulates neutrophil-mediated host immune defense. We propose that PTENα signaling is a potential target for the treatment of infections and immune diseases.
Collapse
|
129
|
Kim YB, Ahn YH, Jung JH, Lee YJ, Lee JH, Kang JL. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell Mol Immunol 2019; 16:851-867. [PMID: 30842627 PMCID: PMC6828747 DOI: 10.1038/s41423-019-0209-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022] Open
Abstract
Apoptotic cell clearance by phagocytes is essential in tissue homeostasis. We demonstrated that conditioned medium (CM) from macrophages exposed to apoptotic cancer cells inhibits the TGFβ1-induced epithelial–mesenchymal transition (EMT), migration, and invasion of cancer cells. Apoptotic 344SQ (ApoSQ) cell-induced PPARγ activity in macrophages increased the levels of PTEN, which was secreted in exosomes. Exosomal PTEN was taken up by recipient lung cancer cells. ApoSQ-exposed CM from PTEN knockdown cells failed to enhance PTEN in 344SQ cells, restore cellular polarity, or exert anti-EMT and anti-invasive effects. The CM that was deficient in PPARγ ligands, including 15-HETE, lipoxin A4, and 15d-PGJ2, could not reverse the suppression of PPARγ activity or the PTEN increase in 344SQ cells and consequently failed to prevent the EMT process. Moreover, a single injection of ApoSQ cells inhibited lung metastasis in syngeneic immunocompetent mice with enhanced PPARγ/PTEN signaling both in tumor-associated macrophages and in tumor cells. PPARγ antagonist GW9662 reversed the signaling by PPARγ/PTEN; the reduction in EMT-activating transcription factors, such as Snai1 and Zeb1; and the antimetastatic effect of the ApoSQ injection. Thus, the injection of apoptotic lung cancer cells may offer a new strategy for the prevention of lung metastasis.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Young-Ho Ahn
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.,Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Ji-Hae Jung
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Ye-Ji Lee
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Jin-Hwa Lee
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.,Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea. .,Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.
| |
Collapse
|
130
|
Jochner MCE, An J, Lättig-Tünnemann G, Kirchner M, Dagane A, Dittmar G, Dirnagl U, Eickholt BJ, Harms C. Unique properties of PTEN-L contribute to neuroprotection in response to ischemic-like stress. Sci Rep 2019; 9:3183. [PMID: 30816308 PMCID: PMC6395706 DOI: 10.1038/s41598-019-39438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) signalling might influence neuronal survival after brain ischemia. However, the influence of the less studied longer variant termed PTEN-L (or PTENα) has not been studied to date. Therefore, we examined the translational variant PTEN-L in the context of neuronal survival. We identified PTEN-L by proteomics in murine neuronal cultures and brain lysates and established a novel model to analyse PTEN or PTEN-L variants independently in vitro while avoiding overexpression. We found that PTEN-L, unlike PTEN, localises predominantly in the cytosol and translocates to the nucleus 10-20 minutes after glutamate stress. Genomic ablation of PTEN and PTEN-L increased neuronal susceptibility to oxygen-glucose deprivation. This effect was rescued by expression of either PTEN-L indicating that both PTEN isoforms might contribute to a neuroprotective response. However, in direct comparison, PTEN-L replaced neurons were protected against ischemic-like stress compared to neurons expressing PTEN. Neurons expressing strictly nuclear PTEN-L NLS showed increased vulnerability, indicating that nuclear PTEN-L alone is not sufficient in protecting against stress. We identified mutually exclusive binding partners of PTEN-L or PTEN in cytosolic or nuclear fractions, which were regulated after ischemic-like stress. GRB2-associated-binding protein 2, which is known to interact with phosphoinositol-3-kinase, was enriched specifically with PTEN-L in the cytosol in proximity to the plasma membrane and their interaction was lost after glutamate exposure. The present study revealed that PTEN and PTEN-L have distinct functions in response to stress and might be involved in different mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Magdalena C E Jochner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), QUEST-Centre for Transforming Biomedical Research, 10178 Berlin, Germany
| | - Junfeng An
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Medical Research Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gisela Lättig-Tünnemann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Centre for Molecular Medicine (MDC), Proteomics Platform, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Proteomics Platform, 10178 Berlin, Germany
| | - Alina Dagane
- Max Delbrück Centre for Molecular Medicine (MDC), Proteomics Platform, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Centre for Molecular Medicine (MDC), Proteomics Platform, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Proteome and Genome Research Laboratory, Luxembourg institute of Health, 1a Rue Thomas Edison, 1224, Strassen, Luxembourg
| | - Ulrich Dirnagl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), QUEST-Centre for Transforming Biomedical Research, 10178 Berlin, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| | - Britta J Eickholt
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| | - Christoph Harms
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany.
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), QUEST-Centre for Transforming Biomedical Research, 10178 Berlin, Germany.
| |
Collapse
|
131
|
Cell Non-autonomous Function of daf-18/PTEN in the Somatic Gonad Coordinates Somatic Gonad and Germline Development in C. elegans Dauer Larvae. Curr Biol 2019; 29:1064-1072.e8. [PMID: 30827916 DOI: 10.1016/j.cub.2019.01.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
C. elegans larvae integrate environmental information and developmental decisions [1-3]. In favorable conditions, worms develop rapidly and continuously through four larval stages into reproductive adulthood. However, if conditions are unfavorable through the second larval stage, worms enter dauer diapause, a state of global and reversible developmental arrest in which precursor cells remain quiescent and preserve developmental potential, anticipating developmental progression if conditions improve. Signaling from neurons, hypodermis, and intestine regulate the appearance and behavior of dauer larvae and many aspects of developmental arrest of the non-gonadal soma [1, 4, 5]. Here, we show that the decision of somatic gonad blast cells (SGBs) and germline stem cells (GSCs) to be quiescent or progress developmentally is regulated differently from the non-gonadal soma: daf-18/PTEN acts non-autonomously within the somatic gonad to maintain developmental quiescence of both SGBs and GSCs. Our analysis suggests that daf-18 acts in somatic gonad cells to produce a "pro-quiescence" signal (or signals) that acts inter se and between the somatic gonad and the germline. The inferred signal does not require DAF-2/insulin receptor or maintain quiescence of the nearby sex myoblasts, and developmental progression in daf-18(0) does not require dafachronic acids. Abrogating quiescence in dauer results in post-dauer sterility. Our results implicate the somatic gonad as an endocrine organ to synchronize somatic gonad and germline development during dauer diapause and recovery, and our finding that PTEN acts non-autonomously to control blast cell quiescence may be relevant to its function as a tumor suppressor in mammals and to combating parasitic nematodes.
Collapse
|
132
|
Abstract
Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions essential for mediating effective humoral immunity. CSR is catalyzed by activation-induced deaminase (AID) that initiates DNA lesions in the evolutionarily conserved switch (S) regions at the immunoglobulin heavy chain (Igh) locus. AID-initiated DNA lesions are subsequently converted into DNA double stranded breaks (DSBs) in the S regions of Igh locus, repaired by non-homologous end-joining to effect CSR in mammalian B lymphocytes. While molecular mechanisms of CSR are well characterized, it remains less well understood how upstream signaling pathways regulate AID expression and CSR. B lymphocytes express multiple receptors including the B cell antigen receptor (BCR) and co-receptors (e.g., CD40). These receptors may share common signaling pathways or may use distinct signaling elements to regulate CSR. Here, we discuss how signals emanating from different receptors positively or negatively regulate AID expression and CSR.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
133
|
Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol 2019; 59:66-79. [PMID: 30738865 DOI: 10.1016/j.semcancer.2019.02.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/04/2023]
Abstract
PTEN is a phosphatase which metabolises PIP3, the lipid product of PI 3-Kinase, directly opposing the activation of the oncogenic PI3K/AKT/mTOR signalling network. Accordingly, loss of function of the PTEN tumour suppressor is one of the most common events observed in many types of cancer. Although the mechanisms by which PTEN function is disrupted are diverse, the most frequently observed events are deletion of a single gene copy of PTEN and gene silencing, usually observed in tumours with little or no PTEN protein detectable by immunohistochemistry. Accordingly, with the exceptions of glioblastoma and endometrial cancer, mutations of the PTEN coding sequence are uncommon (<10%) in most types of cancer. Here we review the data relating to PTEN loss in seven common tumour types and discuss mechanisms of PTEN regulation, some of which appear to contribute to reduced PTEN protein levels in cancers.
Collapse
Affiliation(s)
- Virginia Álvarez-Garcia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Yasmine Tawil
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Helen M Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
134
|
Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 2019; 129:452-464. [PMID: 30614812 DOI: 10.1172/jci121277] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the "PTEN-opathies." Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanne Ngeow
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore.,Oncology Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
135
|
Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P. Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:287-300. [PMID: 30654190 PMCID: PMC6348769 DOI: 10.1016/j.omtn.2018.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
PTEN expression is lost in many cancers, and even small changes in PTEN activity affect susceptibility and prognosis in a range of highly aggressive malignancies, such as melanoma and triple-negative breast cancer (TNBC). Loss of PTEN expression occurs via multiple mechanisms, including mutation, transcriptional repression and epigenetic silencing. Transcriptional repression of PTEN contributes to resistance to inhibitors used in the clinic, such as B-Raf inhibitors in BRAF mutant melanoma. We aimed to activate PTEN expression using the CRISPR system, specifically dead (d) Cas9 fused to the transactivator VP64-p65-Rta (VPR). dCas9-VPR was directed to the PTEN proximal promoter by single-guide RNAs (sgRNAs), in cancer cells that exhibited low levels of PTEN expression. The dCas9-VPR system increased PTEN expression in melanoma and TNBC cell lines, without transcriptional regulation at predicted off-target sgRNA binding sites. PTEN activation significantly repressed downstream oncogenic pathways, including AKT, mTOR, and MAPK signaling. BRAF V600E mutant melanoma cells transduced with dCas9-VPR displayed reduced migration, as well as diminished colony formation in the presence of B-Raf inhibitors, PI3K/mTOR inhibitors, and with combined PI3K/mTOR and B-Raf inhibition. CRISPR-mediated targeted activation of PTEN may provide an alternative therapeutic approach for highly aggressive cancers that are refractory to current treatments.
Collapse
Affiliation(s)
- Colette Moses
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Fiona Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charlene Babra Waryah
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Benjamin Garcia-Bloj
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Medicine, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Alan R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
136
|
Wang H, Yu Q, Wang L, Li Y, Xie M, Lu Y, Cui Y. Expression of PTEN-long nephritis and its effect on renal inflammation. Exp Ther Med 2018; 17:1405-1411. [PMID: 30680021 DOI: 10.3892/etm.2018.7049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/14/2018] [Indexed: 01/05/2023] Open
Abstract
Based on the important functions of phosphatase and tensin homolog (PTEN)-Long for renal diseases, the present study aimed to investigate the expression of PTEN-Long in patients and mice with nephritis and its effect on nephritis. Expression levels of PTEN-Long in serum of patients with nephritis, renal cell carcinoma (RCC) as well as normal controls, and in serum and renal tissues of mice were measured by western blotting. PTEN-Long knock-in and knock-out mice were constructed via the CRISPR-Cas9 technique. Intraperitoneal injection of lipopolysaccharide+renal homogenate was performed to construct a mouse nephritis model. Mice were divided into control group, model group, knock-in group and knock-out group. A Bio-Plex system was used to detect secretion of serum inflammatory factors. Expression of inflammatory factors in renal tissues of different groups was detected by reverse transcription semi-quantitative polymerase chain reaction. Hematoxylin and eosin staining was used to observe the pathological changes of renal tissue. PTEN-Long was downregulated in patients with nephritis and RCC compared with controls, whereas the expression levels of inflammatory factors were increased. PTEN-long knock-in significantly reduced the serum content and expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-18. PTEN-long knock-out also decreased the expression levels of TNF-α and IL-6 but exhibited no effects on expression of IL-1β and IL-18. Compared with knock-out and model groups, renal tissue inflammation was significantly reduced in knock-in group. The protein level of PTEN-Long was significantly lower in serum than in renal tissue. These findings suggest that PTEN-long can inhibit the progression of nephritis by interacting with inflammatory factors to protect kidney.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Qingxia Yu
- Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lin Wang
- Institute of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yongwei Li
- Institute of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Mao Xie
- Institute of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Youyi Lu
- Institute of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yupeng Cui
- Institute of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
137
|
PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat Commun 2018; 9:5006. [PMID: 30479334 PMCID: PMC6258708 DOI: 10.1038/s41467-018-07344-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Engineered oncolytic viruses are used clinically to destroy cancer cells and have the ability to boost anticancer immunity. Phosphatase and tensin homolog deleted on chromosome 10 loss is common across a broad range of malignancies, and is implicated in immune escape. The N-terminally extended isoform, phosphatase and tensin homolog deleted on chromosome 10 alpha (PTENα), regulates cellular functions including protein kinase B signaling and mitochondrial adenosine triphosphate production. Here we constructed HSV-P10, a replicating, PTENα expressing oncolytic herpesvirus, and demonstrate that it inhibits PI3K/AKT signaling, increases cellular adenosine triphosphate secretion, and reduces programmed death-ligand 1 expression in infected tumor cells, thus priming an adaptive immune response and overcoming tumor immune escape. A single dose of HSV-P10 resulted in long term survivors in mice bearing intracranial tumors, priming anticancer T-cell immunity leading to tumor rejection. This implicates HSV-P10 as an oncolytic and immune stimulating therapeutic for anticancer therapy. Oncolytic viruses are a promising therapeutic approach for cancer treatment. The authors demonstrate the efficacy of an engineered HSV-1 expressing PTENα as an oncolytic and immune stimulating therapy against brain cancer metastases.
Collapse
|
138
|
Islam MA, Xu Y, Tao W, Ubellacker JM, Lim M, Aum D, Lee GY, Zhou K, Zope H, Yu M, Cao W, Oswald JT, Dinarvand M, Mahmoudi M, Langer R, Kantoff PW, Farokhzad OC, Zetter BR, Shi J. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat Biomed Eng 2018; 2:850-864. [PMID: 31015614 PMCID: PMC6486184 DOI: 10.1038/s41551-018-0284-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/30/2018] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a well-characterized tumour-suppressor gene that is lost or mutated in about half of metastatic castration-resistant prostate cancers and in many other human cancers. The restoration of functional PTEN as a treatment for prostate cancer has, however, proven difficult. Here, we show that PTEN messenger RNA (mRNA) can be reintroduced into PTEN-null prostate cancer cells in vitro and in vivo via its encapsulation in polymer-lipid hybrid nanoparticles coated with a polyethylene glycol shell. The nanoparticles are stable in serum, elicit low toxicity and enable high PTEN mRNA transfection in prostate cancer cells. Moreover, significant inhibition of tumour growth is achieved when delivered systemically in multiple mouse models of prostate cancer. We also show that the restoration of PTEN function in PTEN-null prostate cancer cells inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT pathway and enhances apoptosis. Our findings provide proof-of-principle evidence of the restoration of mRNA-based tumour suppression in vivo.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Oncology Division, Immunomic Therapeutics, Inc., Rockville, MD, USA
| | - Yingjie Xu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Hematology Division, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Lim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Aum
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Zhou
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harshal Zope
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wuji Cao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - James Trevor Oswald
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, Ontario, Canada
| | - Meshkat Dinarvand
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Bruce R Zetter
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
139
|
Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep 2018; 45:2869-2881. [PMID: 30145641 DOI: 10.1007/s11033-018-4321-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ali-Hemmati
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cell Therapy Research Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
140
|
Altınoğlu SA, Wang M, Li KQ, Li Y, Xu Q. Intracellular delivery of the PTEN protein using cationic lipidoids for cancer therapy. Biomater Sci 2018; 4:1773-1780. [PMID: 27748775 DOI: 10.1039/c6bm00580b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor, mutated or inactive in a large percentage of human cancers. Restoring PTEN activity in cancer cells through gene therapy has shown to inhibit cell growth and induce apoptosis, particularly in cells with a PTEN deficiency. Gene therapy, however, comes with some inherent risks such as triggering an immune response and permanent off target effects. Nanoparticle assisted protein delivery could mitigate these liabilities while maintaining therapeutic integrity. In this report, we evaluated the use of cationic lipid-like (lipidoid) materials to intracellularly deliver the PTEN protein. We synthesized a small library of cationic lipidoid materials and screened for the delivery of PTEN based on cell viability. The lipidoid material EC16-80 was selected for high efficacy and the subsequent lipidoid-protein complex was characterized using DLS, zeta potential, and TEM. Intracellular delivery of PTEN with EC16-80 to the PTEN deficient prostate cancer cell line PC-3 resulted in a significant decrease in activated AKT and induced apoptosis. Interestingly, delivery of PTEN to PTEN deficient prostate cancer cell lines PC-3 and LNCaP compared to the breast cancer cell line, MCF-7 with endogenous PTEN, resulted in significantly lower IC50 values in PC-3 and LNCaP cells indicating that the treatment is predominantly specific to PTEN-deficient cells. Altogether, these results demonstrate the first intracellular delivery of recombinant PTEN using a synthetic delivery vehicle and highlight the potential of intracellular PTEN protein delivery as a potential targeted cancer therapy.
Collapse
Affiliation(s)
- Sarah A Altınoğlu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Ming Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Kathleen Q Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Yuyang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
141
|
Li G, Yang J, Yang C, Zhu M, Jin Y, McNutt MA, Yin Y. PTENα regulates mitophagy and maintains mitochondrial quality control. Autophagy 2018; 14:1742-1760. [PMID: 29969932 DOI: 10.1080/15548627.2018.1489477] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PTEN plays an important role in tumor suppression, and PTEN family members are involved in multiple biological processes in various subcellular locations. Here we report that PTENα, the first identified PTEN isoform, regulates mitophagy through promotion of PARK2 recruitment to damaged mitochondria. We show that PTENα-deficient mice exhibit accumulation of cardiac mitochondria with structural and functional abnormalities, and PTENα-deficient mouse hearts are more susceptible to injury induced by isoprenaline and ischemia-reperfusion. Mitochondrial clearance by mitophagy is also impaired in PTENα-deficient cardiomyocytes. In addition, we found PTENα physically interacts with the E3 ubiquitin ligase PRKN, which is an important mediator of mitophagy. PTENα binds PRKN through the membrane binding helix in its N-terminus, and promotes PRKN mitochondrial translocation through enhancing PRKN self-association in a phosphatase-independent manner. Loss of PTENα compromises mitochondrial translocation of PRKN and resultant mitophagy following mitochondrial depolarization. We propose that PTENα functions as a mitochondrial quality controller that maintains mitochondrial function and cardiac homeostasis. ABBREVIATIONS BECN1 beclin 1; CCCP carbonyl cyanide m-chlorophenylhydrazone; FBXO7 F-box protein 7; FS fraction shortening; HSPA1L heat shock protein family A (Hsp70) member 1 like; HW: BW heart weight:body weight ratio; I-R ischemia-reperfusion; ISO isoprenaline; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; MBH membrane binding helix; MFN1 mitofusin 1; MFN2 mitofusin 2; Nam nicotinamide; TMRM tetramethylrhodamine ethyl ester; WGA wheat germ agglutinin.
Collapse
Affiliation(s)
- Guoliang Li
- a Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing , China
| | - Jingyi Yang
- b Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , China
| | - Chunyuan Yang
- a Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing , China
| | - Minglu Zhu
- a Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing , China
| | - Yan Jin
- a Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing , China
| | - Michael A McNutt
- a Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing , China
| | - Yuxin Yin
- a Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing , China
| |
Collapse
|
142
|
Yehia L, Eng C. 65 YEARS OF THE DOUBLE HELIX: One gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. Endocr Relat Cancer 2018; 25:T121-T140. [PMID: 29792313 DOI: 10.1530/erc-18-0162] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
An average of 10% of all cancers (range 1-40%) are caused by heritable mutations and over the years have become powerful models for precision medicine practice. Furthermore, such cancer predisposition genes for seemingly rare syndromes have turned out to help explain mechanisms of sporadic carcinogenesis and often inform normal development. The tumor suppressor PTEN encodes a ubiquitously expressed phosphatase that counteracts the PI3K/AKT/mTOR cascade - one of the most critical growth-promoting signaling pathways. Clinically, individuals with germline PTEN mutations have diverse phenotypes and fall under the umbrella term PTEN hamartoma tumor syndrome (PHTS). PHTS encompasses four clinically distinct allelic overgrowth syndromes, namely Cowden, Bannayan-Riley-Ruvalcaba, Proteus and Proteus-like syndromes. Relatedly, mutations in other genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN also predispose patients to partially overlapping clinical manifestations, with similar effects as PTEN malfunction. We refer to these syndromes as 'PTEN-opathies.' As a tumor suppressor and key regulator of normal development, PTEN dysfunction can cause a spectrum of phenotypes including benign overgrowths, malignancies, metabolic and neurodevelopmental disorders. Relevant to clinical practice, the identification of PTEN mutations in patients not only establishes a PHTS molecular diagnosis, but also informs on more accurate cancer risk assessment and medical management of those patients and affected family members. Importantly, timely diagnosis is key, as early recognition allows for preventative measures such as high-risk screening and surveillance even prior to cancer onset. This review highlights the translational impact that the discovery of PTEN has had on the diagnosis, management and treatment of PHTS.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Charis Eng
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer InstituteCleveland Clinic, Cleveland, Ohio, USA
- Department of Genetics and Genome SciencesCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Germline High Risk Cancer Focus GroupCASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
143
|
Sánchez-Hernández L, Hernández-Soto J, Vergara P, González RO, Segovia J. Additive effects of the combined expression of soluble forms of GAS1 and PTEN inhibiting glioblastoma growth. Gene Ther 2018; 25:439-449. [DOI: 10.1038/s41434-018-0020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
|
144
|
PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy. Cell Res 2018; 28:787-802. [PMID: 29934616 PMCID: PMC6082900 DOI: 10.1038/s41422-018-0056-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Mitophagy is an important type of selective autophagy for specific elimination of damaged mitochondria. PTEN-induced putative kinase protein 1 (PINK1)-catalyzed phosphorylation of ubiquitin (Ub) plays a critical role in the onset of PINK1-Parkin-mediated mitophagy. Phosphatase and tensin homolog (PTEN)-long (PTEN-L) is a newly identified isoform of PTEN, with addition of 173 amino acids to its N-terminus. Here we report that PTEN-L is a novel negative regulator of mitophagy via its protein phosphatase activity against phosphorylated ubiquitin. We found that PTEN-L localizes at the outer mitochondrial membrane (OMM) and overexpression of PTEN-L inhibits, whereas deletion of PTEN-L promotes, mitophagy induced by various mitochondria-damaging agents. Mechanistically, PTEN-L is capable of effectively preventing Parkin mitochondrial translocation, reducing Parkin phosphorylation, maintaining its closed inactive conformation, and inhibiting its E3 ligase activity. More importantly, PTEN-L reduces the level of phosphorylated ubiquitin (pSer65-Ub) in vivo, and in vitro phosphatase assay confirms that PTEN-L dephosphorylates pSer65-Ub via its protein phosphatase activity, independently of its lipid phosphatase function. Taken together, our findings demonstrate a novel function of PTEN-L as a protein phosphatase for ubiquitin, which counteracts PINK1-mediated ubiquitin phosphorylation leading to blockage of the feedforward mechanisms in mitophagy induction and eventual suppression of mitophagy. Thus, understanding this novel function of PTEN-L provides a key missing piece in the molecular puzzle controlling mitophagy, a critical process in many important human diseases including neurodegenerative disorders such as Parkinson's disease.
Collapse
|
145
|
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547-562. [DOI: 10.1038/s41580-018-0015-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
146
|
Lusche DF, Buchele EC, Russell KB, Soll BA, Vitolo MI, Klemme MR, Wessels DJ, Soll DR. Overexpressing TPTE2 ( TPIP), a homolog of the human tumor suppressor gene PTEN, rescues the abnormal phenotype of the PTEN-/- mutant. Oncotarget 2018; 9:21100-21121. [PMID: 29765523 PMCID: PMC5940379 DOI: 10.18632/oncotarget.24941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
One possible approach to normalize mutant cells that are metastatic and tumorigenic, is to upregulate a functionally similar homolog of the mutated gene. Here we have explored this hypothesis by generating an overexpressor of TPTE2 (TPIP), a homolog of PTEN, in PTEN-/- mutants, the latter generated by targeted mutagenesis of a human epithelial cell line. Overexpression of TPTE2 normalized phenotypic changes associated with the PTEN mutation. The PTEN-/- -associated changes rescued by overexpressing TPTE2 included 1) accelerated wound healing in the presence or absence of added growth factors (GFs), 2) increased division rates on a 2D substrate in the presence of GFs, 3) adhesion and viability on a 2D substrate in the absence of GFs, 4) viability in a 3D Matrigel model in the absence of GFs and substrate adhesion 5) loss of apoptosis-associated annexin V cell surface binding sites. The results justify further exploration into the possibility that upregulating TPTE2 by a drug may reverse metastatic and tumorigenic phenotypes mediated in part by a mutation in PTEN. This strategy may also be applicable to other tumorigenic mutations in which a homolog to the mutated gene is present and can substitute functionally.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Emma C. Buchele
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Kanoe B. Russell
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Benjamin A. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Michele I. Vitolo
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland, Baltimore, 21201 MD, USA
| | - Michael R. Klemme
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - David R. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| |
Collapse
|
147
|
Zhang Z, Ma M, Hu R, Xu B, Zong L, Wei H, Meng Y. RasGRP3, a Ras guanyl releasing protein 3 that contributes to malignant proliferation and aggressiveness in human esophageal squamous cell carcinoma. Clin Exp Pharmacol Physiol 2018; 45:720-728. [PMID: 29461644 DOI: 10.1111/1440-1681.12926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide; however, clinical and pathological parameters have limited ability in discriminating between clinically significant and indolent ESCC. Since RasGRP3 transcript levels have prognostic value in discriminating ESCC with different clinical aggressiveness, we decided to investigate its putative oncogenic role in ESCC. We found that RasGRP3 was highly expressed in ESCC cells. Suppression of endogenous RasGRP3 expression in esophageal cell lines reduced Ras-GTP formation as well as AKT phosphorylation. RasGRP3 suppression also inhibited cell invasion and migration and reduced proliferation, demonstrating the importance of RasGRP3 for the transformed phenotype of melanoma cells. Suppression of RasGRP3 expression in these cells inhibited downstream RasGRP3 responses and suppressed cell growth and migration, confirming the functional role of RasGRP3 in the altered behaviour of these cells. This suggests that RasGRP3 may function as a Ras activator in the phosphoinositide signalling pathway and may potentially serve as a new therapeutic target.
Collapse
Affiliation(s)
- Ziteng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ming Ma
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ronghang Hu
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Baobin Xu
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ling Zong
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Haixiang Wei
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yanhong Meng
- Department of Ultrasonography, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
148
|
Wang P, Mei F, Hu J, Zhu M, Qi H, Chen X, Li R, McNutt MA, Yin Y. PTENα Modulates CaMKII Signaling and Controls Contextual Fear Memory and Spatial Learning. Cell Rep 2018. [PMID: 28636948 DOI: 10.1016/j.celrep.2017.05.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PTEN (phosphatase and tensin homology deleted on chromosome 10) has multiple functions, and recent studies have shown that the PTEN family has isoforms. The roles of these PTEN family members in biologic activities warrant specific evaluation. Here, we show that PTENα maintains CaMKII in a state that is competent to induce long-term potentiation (LTP) with resultant regulation of contextual fear memory and spatial learning. PTENα binds to CaMKII with its distinctive N terminus and resets CaMKII to an activatable state by dephosphorylating it at sites T305/306. Loss of PTENα impedes the interaction of CaMKII and NR2B, leading to defects in hippocampal LTP, fear-conditioned memory, and spatial learning. Restoration of PTENα in the hippocampus of PTENα-deficient mice rescues learning deficits through regulation of CaMKII. CaMKII mutations in dementia patients inhibit CaMKII activity and result in disruption of PTENα-CaMKII-NR2B signaling. We propose that CaMKII is a target of PTENα phosphatase and that PTENα is an essential element in the molecular regulation of neural activity.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Fan Mei
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Jiapan Hu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Minglu Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Hailong Qi
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Ruiqi Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
149
|
Zhang J, Guo J, Qin X, Wang B, Zhang L, Wang Y, Gan W, Pandolfi PP, Chen W, Wei W. The p85 isoform of the kinase S6K1 functions as a secreted oncoprotein to facilitate cell migration and tumor growth. Sci Signal 2018; 11:11/523/eaao1052. [PMID: 29588411 DOI: 10.1126/scisignal.aao1052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cancer cells can remodel surrounding microenvironments to facilitate cell growth, invasion, and migration by secreting proteins that educate surrounding stromal cells. We report that p85S6K1, the longest isoform of S6K (ribosomal protein S6 kinase), but not the shorter isoform p70S6K1 or p56S6K2, was secreted from cancer cells through its HIV TAT-like, N-terminal six-arginine motif. The exogenously produced p85S6K1 protein entered cultured transformed and nontransformed cells to promote or confer malignant behaviors, leading to increased cell growth and migration. When injected into mice, the p85S6K1 protein enhanced the growth of xenografted breast cancer cells and lung metastasis. Hence, our findings reveal a role for p85S6K1 as a secreted oncogenic kinase and provide a mechanism by which cancer cells remodel their microenvironment by transforming the surrounding cells to drive tumorigenesis.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Bin Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linli Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yingnan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pier Paolo Pandolfi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
150
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|